1
|
Koeberle A, Werz O. Multi-target approach for natural products in inflammation. Drug Discov Today 2014; 19:1871-82. [DOI: 10.1016/j.drudis.2014.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/11/2014] [Accepted: 08/20/2014] [Indexed: 12/30/2022]
|
|
11 |
192 |
2
|
Koeberle A, Siemoneit U, Bühring U, Northoff H, Laufer S, Albrecht W, Werz O. Licofelone suppresses prostaglandin E2 formation by interference with the inducible microsomal prostaglandin E2 synthase-1. J Pharmacol Exp Ther 2008; 326:975-82. [PMID: 18550688 DOI: 10.1124/jpet.108.139444] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The anti-inflammatory drug licofelone [=ML3000; 2-[6-(4-chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl] acetic acid], currently undergoing phase III trials for osteoarthritis, inhibits the prostaglandin (PG) and leukotriene biosynthetic pathway. Licofelone was reported to suppress the formation of PGE(2) in various cell-based test systems, but the underlying molecular mechanisms are not entirely clear. Here, we examined the direct interference of licofelone with enzymes participating in PGE(2) biosynthesis, that is, cyclooxygenase (COX)-1 and COX-2 as well as microsomal PGE(2) synthase (mPGES)-1. Licofelone concentration-dependently inhibited isolated COX-1 (IC(50) = 0.8 microM), whereas isolated COX-2 was less affected (IC(50) > 30 microM). However, licofelone efficiently blocked the conversion of PGH(2) to PGE(2) mediated by mPGES-1 (IC(50) = 6 microM) derived from microsomes of interleukin-1beta-treated A549 cells, being about equipotent to 3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2-dimethylpropanoic acid (MK-886), a well recognized mPGES-1 inhibitor. In intact interleukin-1beta-treated A549 cells, licofelone potently (IC(50) < 1 microM) blocked formation of PGE(2) in response to calcimycin (A23187) plus exogenous arachidonic acid, but the concomitant generation of 6-keto PGF(1alpha), used as a biomarker for COX-2 activity, was not inhibited. We conclude that licofelone suppresses inflammatory PGE(2) formation preferentially by inhibiting mPGES-1 at concentrations that do not affect COX-2, implying an attractive and thus far unique molecular pharmacological dynamics as inhibitor of COX-1, the 5-lipoxygenase pathway, and of mPGES-1.
Collapse
|
Comparative Study |
17 |
138 |
3
|
Werner M, Jordan PM, Romp E, Czapka A, Rao Z, Kretzer C, Koeberle A, Garscha U, Pace S, Claesson HE, Serhan CN, Werz O, Gerstmeier J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J 2019; 33:6140-6153. [PMID: 30735438 DOI: 10.1096/fj.201802509r] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonsteroidal anti-inflammatory drugs interfere with the metabolism of arachidonic acid to proinflammatory prostaglandins and leukotrienes by targeting cyclooxygenases (COXs), 5-lipoxygenase (LOX), or the 5-LOX-activating protein (FLAP). These and related enzymes act in conjunction with marked crosstalk within a complex lipid mediator (LM) network where also specialized proresolving LMs (SPMs) are formed. Here, we present how prominent LM pathways can be differentially modulated in human proinflammatory M1 and proresolving M2 macrophage phenotypes that, upon exposure to Escherichia coli, produce either abundant prostaglandins and leukotrienes (M1) or SPMs (M2). Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was applied to analyze and quantify the specific LM profiles. Besides expected on-target actions, we found that: 1) COX or 15-LOX-1 inhibitors elevate inflammatory leukotriene levels, 2) FLAP and 5-LOX inhibitors reduce leukotrienes in M1 but less so in M2 macrophages, 3) zileuton blocks resolution-initiating SPM biosynthesis, whereas FLAP inhibition increases SPM levels, and 4) that the 15-LOX-1 inhibitor 3887 suppresses SPM formation in M2 macrophages. Conclusively, interference with discrete LM biosynthetic enzymes in different macrophage phenotypes considerably affects the LM metabolomes with potential consequences for inflammation-resolution pharmacotherapy. Our data may allow better appraisal of the therapeutic potential of these drugs to intervene with inflammatory disorders.-Werner, M., Jordan, P. M., Romp, E., Czapka, A., Rao, Z., Kretzer, C., Koeberle, A., Garscha, U., Pace, S., Claesson, H.-E., Serhan, C. N., Werz, O., Gerstmeier, J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
98 |
4
|
Siemoneit U, Koeberle A, Rossi A, Dehm F, Verhoff M, Reckel S, Maier TJ, Jauch J, Northoff H, Bernhard F, Doetsch V, Sautebin L, Werz O. Inhibition of microsomal prostaglandin E2 synthase-1 as a molecular basis for the anti-inflammatory actions of boswellic acids from frankincense. Br J Pharmacol 2011; 162:147-62. [PMID: 20840544 DOI: 10.1111/j.1476-5381.2010.01020.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Frankincense, the gum resin derived from Boswellia species, showed anti-inflammatory efficacy in animal models and in pilot clinical studies. Boswellic acids (BAs) are assumed to be responsible for these effects but their anti-inflammatory efficacy in vivo and their molecular modes of action are incompletely understood. EXPERIMENTAL APPROACH A protein fishing approach using immobilized BA and surface plasmon resonance (SPR) spectroscopy were used to reveal microsomal prostaglandin E(2) synthase-1 (mPGES1) as a BA-interacting protein. Cell-free and cell-based assays were applied to confirm the functional interference of BAs with mPGES1. Carrageenan-induced mouse paw oedema and rat pleurisy models were utilized to demonstrate the efficacy of defined BAs in vivo. KEY RESULTS Human mPGES1 from A549 cells or in vitro-translated human enzyme selectively bound to BA affinity matrices and SPR spectroscopy confirmed these interactions. BAs reversibly suppressed the transformation of prostaglandin (PG)H(2) to PGE(2) mediated by mPGES1 (IC(50) = 3-10 µM). Also, in intact A549 cells, BAs selectively inhibited PGE(2) generation and, in human whole blood, β-BA reduced lipopolysaccharide-induced PGE(2) biosynthesis without affecting formation of the COX-derived metabolites 6-keto PGF(1α) and thromboxane B(2) . Intraperitoneal or oral administration of β-BA (1 mg·kg(-1) ) suppressed rat pleurisy, accompanied by impaired levels of PGE(2) and β-BA (1 mg·kg(-1) , given i.p.) also reduced mouse paw oedema, both induced by carrageenan. CONCLUSIONS AND IMPLICATIONS Suppression of PGE(2) formation by BAs via interference with mPGES1 contribute to the anti-inflammatory effectiveness of BAs and of frankincense, and may constitute a biochemical basis for their anti-inflammatory properties.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
94 |
5
|
Koeberle A, Werz O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol 2015; 98:1-15. [PMID: 26123522 DOI: 10.1016/j.bcp.2015.06.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Prostaglandin (PG)E2 encompasses crucial roles in pain, fever, inflammation and diseases with inflammatory component, such as cancer, but is also essential for gastric, renal, cardiovascular and immune homeostasis. Cyclooxygenases (COX) convert arachidonic acid to the intermediate PGH2 which is isomerized to PGE2 by at least three different PGE2 synthases. Inhibitors of COX - non-steroidal anti-inflammatory drugs (NSAIDs) - are currently the only available therapeutics that target PGE2 biosynthesis. Due to adverse effects of COX inhibitors on the cardiovascular system (COX-2-selective), stomach and kidney (COX-1/2-unselective), novel pharmacological strategies are in demand. The inducible microsomal PGE2 synthase (mPGES)-1 is considered mainly responsible for the excessive PGE2 synthesis during inflammation and was suggested as promising drug target for suppressing PGE2 biosynthesis. However, 15 years after intensive research on the biology and pharmacology of mPGES-1, the therapeutic value of mPGES-1 as drug target is still vague and mPGES-1 inhibitors did not enter the market so far. This commentary will first shed light on the structure, mechanism and regulation of mPGES-1 and will then discuss its biological function and the consequence of its inhibition for the dynamic network of eicosanoids. Moreover, we (i) present current strategies for interfering with mPGES-1-mediated PGE2 synthesis, (ii) summarize bioanalytical approaches for mPGES-1 drug discovery and (iii) describe preclinical test systems for the characterization of mPGES-1 inhibitors. The pharmacological potential of selective mPGES-1 inhibitor classes as well as dual mPGES-1/5-lipoxygenase inhibitors is reviewed and pitfalls in their development, including species discrepancies and loss of in vivo activity, are discussed.
Collapse
|
Review |
10 |
93 |
6
|
Rossi A, Pergola C, Koeberle A, Hoffmann M, Dehm F, Bramanti P, Cuzzocrea S, Werz O, Sautebin L. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br J Pharmacol 2011; 161:555-70. [PMID: 20880396 DOI: 10.1111/j.1476-5381.2010.00930.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
90 |
7
|
Koeberle A, Werz O. Inhibitors of the microsomal prostaglandin E(2) synthase-1 as alternative to non steroidal anti-inflammatory drugs (NSAIDs)--a critical review. Curr Med Chem 2010; 16:4274-96. [PMID: 19754418 DOI: 10.2174/092986709789578178] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 09/17/2009] [Indexed: 11/22/2022]
Abstract
Pharmacological suppression of cyclooxygenase (COX)-1 and -2-mediated prostanoid biosynthesis by non steroidal anti-inflammatory drugs (NSAIDs) is used in the therapy of inflammation, fever, and pain. However, long-term application of these drugs is associated with severe side effects, mainly gastrointestinal injury and renal irritations, apparently due to impaired biosynthesis of physiologically relevant prostanoids. Although COX-2 selective drugs (coxibs) show reduced gastrointestinal complications, recent clinical trials indicated a significantly increased cardiovascular risk. In order to minimize these side-effects, selective suppression of microsomal prostaglandin E(2) synthase (mPGES)-1 derived prostaglandin (PG)E(2) formation has been considered as alternative to general inhibition of prostanoid biosynthesis. mPGES-1 is functionally coupled to COX-2 being responsible for excessive PGE(2) generation connected to pathologies and current knowledge suggests key roles of mPGES-1 in inflammation, pain, fever, atherosclerosis, and tumorigenesis. However, mPGES-1 as promising therapeutic target was questioned because blockade of mPGES-1 allows redirection of the substrate PGH(2) to other PG synthases, and the consequences are still elusive. This review summarizes current knowledge about synthetic and natural mPGES-1 inhibitors focusing on structural and mechanistic investigations. Further, the therapeutic efficiency and safety is critically discussed on the basis of cellular and animal studies in which mPGES-1 activity was pharmacologically or genetically (knockout, knockdown) modulated.
Collapse
|
Review |
15 |
88 |
8
|
Koeberle A, Northoff H, Werz O. Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Mol Cancer Ther 2009; 8:2348-55. [DOI: 10.1158/1535-7163.mct-09-0290] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
16 |
86 |
9
|
Pein H, Ville A, Pace S, Temml V, Garscha U, Raasch M, Alsabil K, Viault G, Dinh CP, Guilet D, Troisi F, Neukirch K, König S, Bilancia R, Waltenberger B, Stuppner H, Wallert M, Lorkowski S, Weinigel C, Rummler S, Birringer M, Roviezzo F, Sautebin L, Helesbeux JJ, Séraphin D, Mosig AS, Schuster D, Rossi A, Richomme P, Werz O, Koeberle A. Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat Commun 2018; 9:3834. [PMID: 30237488 PMCID: PMC6148290 DOI: 10.1038/s41467-018-06158-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Systemic vitamin E metabolites have been proposed as signaling molecules, but their physiological role is unknown. Here we show, by library screening of potential human vitamin E metabolites, that long-chain ω-carboxylates are potent allosteric inhibitors of 5-lipoxygenase, a key enzyme in the biosynthesis of chemoattractant and vasoactive leukotrienes. 13-((2R)-6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)-2,6,10-trimethyltridecanoic acid (α-T-13'-COOH) can be synthesized from α-tocopherol in a human liver-on-chip, and is detected in human and mouse plasma at concentrations (8-49 nM) that inhibit 5-lipoxygenase in human leukocytes. α-T-13'-COOH accumulates in immune cells and inflamed murine exudates, selectively inhibits the biosynthesis of 5-lipoxygenase-derived lipid mediators in vitro and in vivo, and efficiently suppresses inflammation and bronchial hyper-reactivity in mouse models of peritonitis and asthma. Together, our data suggest that the immune regulatory and anti-inflammatory functions of α-tocopherol depend on its endogenous metabolite α-T-13'-COOH, potentially through inhibiting 5-lipoxygenase in immune cells.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
83 |
10
|
Koeberle A, Zettl H, Greiner C, Wurglics M, Schubert-Zsilavecz M, Werz O. Pirinixic Acid Derivatives as Novel Dual Inhibitors of Microsomal Prostaglandin E2 Synthase-1 and 5-Lipoxygenase. J Med Chem 2008; 51:8068-76. [DOI: 10.1021/jm801085s] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
17 |
80 |
11
|
Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J, Troisi F, Pein H, Schaible AM, Weinigel C, Rummler S, Northoff H, Laufer S, Maier TJ, Rådmark O, Samuelsson B, Koeberle A, Sautebin L, Werz O. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Invest 2017; 127:3167-3176. [PMID: 28737505 DOI: 10.1172/jci92885] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory leukotrienes (LTs) are produced by 5-lipoxygenase (5-LO) aided by 5-LO-activating protein (FLAP). LT biosynthesis inhibitors are currently under clinical investigation as treatments for respiratory and cardiovascular diseases. Here, we have revealed a sex bias in the efficiency of clinically relevant LT biosynthesis inhibitors, showing that their effects are superior in females. We found that androgens cause these sex differences by impeding the LT-biosynthetic 5-LO/FLAP complex assembly. Lower doses of the FLAP inhibitor MK886 were required to reduce LTB4 levels in exudates of female versus male mice and rats. Following platelet-activating factor-induced shock, MK886 increased survival exclusively in female mice, and this effect was abolished by testosterone administration. FLAP inhibitors and the novel-type 5-LO inhibitors licofelone and sulindac sulfide exhibited higher potencies in human blood from females, and bioactive 5-LO/FLAP complexes were formed in female, but not male, human and murine leukocytes. Supplementation of female blood or leukocytes with 5α-dihydrotestosterone abolished the observed sex differences. Our data suggest that females may benefit from anti-LT therapy to a greater extent than males, prompting consideration of sex issues in LT modifier development.
Collapse
|
Journal Article |
8 |
72 |
12
|
Koeberle A, Pollastro F, Northoff H, Werz O. Myrtucommulone, a natural acylphloroglucinol, inhibits microsomal prostaglandin E(2) synthase-1. Br J Pharmacol 2009; 156:952-61. [PMID: 19298395 DOI: 10.1111/j.1476-5381.2009.00070.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The selective inhibition of prostaglandin (PG)E(2) formation via interference with microsomal PGE(2) synthase (mPGES)-1 could have advantages in the treatment of PGE(2)-associated diseases, such as inflammation, fever and pain, compared with a general suppression of all PG biosynthesis, provided by inhibition of cyclooxygenase (COX)-1 and 2. Here, we addressed whether the naturally occurring acylphloroglucinol myrtucommulone (MC) from Myrtus communis L. (myrtle) affected mPGES-1. EXPERIMENTAL APPROACH The effect of MC on PGE(2) formation was investigated in a cell-free assay by using microsomal preparations of interleukin-1beta-stimulated A549 cells as the source of mPGES-1, in intact A549 cells, and in lipopolysaccharide-stimulated human whole blood. Inhibition of COX-1 and COX-2 activity in cellular and cell-free assays was assessed by measuring 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid and 6-oxo PGF(1alpha) formation. KEY RESULTS MC concentration-dependently inhibited cell-free mPGES-1-mediated conversion of PGH(2) to PGE(2) (IC(50) = 1 micromol x L(-1)). PGE(2) formation was also diminished in intact A549 cells as well as in human whole blood at low micromolar concentrations. Neither COX-2 activity in A549 cells nor isolated human recombinant COX-2 was significantly affected by MC up to 30 micromol x L(-1), and only moderate inhibition of cellular or cell-free COX-1 was evident (IC(50) > 15 micromol x L(-1)). CONCLUSIONS AND IMPLICATIONS MC is the first natural product to inhibit mPGES-1 that efficiently suppresses PGE(2) formation without significant inhibition of the COX enzymes. This provides an interesting pharmacological profile suitable for interventions in inflammatory disorders, without the typical side effects of coxibs and non-steroidal anti-inflammatory drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
64 |
13
|
Bauer J, Kuehnl S, Rollinger JM, Scherer O, Northoff H, Stuppner H, Werz O, Koeberle A. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1. J Pharmacol Exp Ther 2012; 342:169-76. [PMID: 22511203 PMCID: PMC3523389 DOI: 10.1124/jpet.112.193847] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Prostaglandin E(2) (PGE(2)), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE(2) synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE(2) in a cell-free assay by direct interference with microsomal PGE(2) synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC(50) values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC(50) values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE(2) generation upon stimulation with lipopolysaccharide (IC(50) = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF(1α), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B(2)] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE(2) formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE(2) formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis.
Collapse
|
research-article |
13 |
59 |
14
|
Rossi A, Di Paola R, Mazzon E, Genovese T, Caminiti R, Bramanti P, Pergola C, Koeberle A, Werz O, Sautebin L, Cuzzocrea S. Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo. J Pharmacol Exp Ther 2009; 329:76-86. [PMID: 19056932 DOI: 10.1124/jpet.108.143214] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myrtucommulone (MC), a nonprenylated acylphloroglucinol contained in the leaves of myrtle (Myrtus communis), has been reported to suppress the biosynthesis of eicosanoids by inhibition of 5-lipoxygenase and cyclooxygenase-1 in vitro and to inhibit the release of elastase and the formation of reactive oxygen species in activated polymorphonuclear leukocytes. Here, in view of the ability of MC to suppress typical proinflammatory cellular responses in vitro, we have investigated the effects of MC in in vivo models of inflammation. MC was administered to mice intraperitoneally, and paw edema and pleurisy were induced by the subplantar and intrapleural injection of carrageenan, respectively. MC (0.5, 1.5, and 4.5 mg/kg i.p.) reduced the development of mouse carrageenan-induced paw edema in a dose-dependent manner. Moreover, MC (4.5 mg/kg i.p. 30 min before and after carrageenan) exerted anti-inflammatory effects in the pleurisy model. In particular, 4 h after carrageenan injection in the pleurisy model, MC reduced: 1) the exudate volume and leukocyte numbers; 2) lung injury (histological analysis) and neutrophil infiltration (myeloperoxidase activity); 3) the lung intercellular adhesion molecule-1 and P-selectin immunohistochemical localization; 4) the cytokine levels (tumor necrosis factor-alpha and interleukin-1beta) in the pleural exudate and their immunohistochemical localization in the lung; 5) the leukotriene B(4), but not prostaglandin E(2), levels in the pleural exudates; and 6) lung peroxidation (thiobarbituric acid-reactant substance) and nitrotyrosine and poly (ADP-ribose) immunostaining. In conclusion, our results demonstrate that MC exerts potent anti-inflammatory effects in vivo and offer a novel therapeutic approach for the management of acute inflammation.
Collapse
|
|
16 |
59 |
15
|
Espada L, Dakhovnik A, Chaudhari P, Martirosyan A, Miek L, Poliezhaieva T, Schaub Y, Nair A, Döring N, Rahnis N, Werz O, Koeberle A, Kirkpatrick J, Ori A, Ermolaeva MA. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat Metab 2020; 2:1316-1331. [PMID: 33139960 DOI: 10.1038/s42255-020-00307-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Current clinical trials are testing the life-extending benefits of the diabetes drug metformin in healthy individuals without diabetes. However, the metabolic response of a non-diabetic cohort to metformin treatment has not been studied. Here, we show in C. elegans and human primary cells that metformin shortens lifespan when provided in late life, contrary to its positive effects in young organisms. We find that metformin exacerbates ageing-associated mitochondrial dysfunction, causing respiratory failure. Age-related failure to induce glycolysis and activate the dietary-restriction-like mobilization of lipid reserves in response to metformin result in lethal ATP exhaustion in metformin-treated aged worms and late-passage human cells, which can be rescued by ectopic stabilization of cellular ATP content. Metformin toxicity is alleviated in worms harbouring disruptions in insulin-receptor signalling, which show enhanced resilience to mitochondrial distortions at old age. Together, our data show that metformin induces deleterious changes of conserved metabolic pathways in late life, which could bring into question its benefits for older individuals without diabetes.
Collapse
|
|
5 |
59 |
16
|
Liedtke AJ, Keck PRWEF, Lehmann F, Koeberle A, Werz O, Laufer SA. Arylpyrrolizines as Inhibitors of Microsomal Prostaglandin E2 Synthase-1 (mPGES-1) or as Dual Inhibitors of mPGES-1 and 5-Lipoxygenase (5-LOX). J Med Chem 2009; 52:4968-72. [DOI: 10.1021/jm900481c] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
16 |
57 |
17
|
Koeberle A, Laufer SA, Werz O. Design and Development of Microsomal Prostaglandin E2 Synthase-1 Inhibitors: Challenges and Future Directions. J Med Chem 2016; 59:5970-86. [DOI: 10.1021/acs.jmedchem.5b01750] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
|
9 |
55 |
18
|
Koeberle A, Rossi A, Bauer J, Dehm F, Verotta L, Northoff H, Sautebin L, Werz O. Hyperforin, an Anti-Inflammatory Constituent from St. John's Wort, Inhibits Microsomal Prostaglandin E(2) Synthase-1 and Suppresses Prostaglandin E(2) Formation in vivo. Front Pharmacol 2011; 2:7. [PMID: 21687502 PMCID: PMC3108608 DOI: 10.3389/fphar.2011.00007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/06/2011] [Indexed: 12/19/2022] Open
Abstract
The acylphloroglucinol hyperforin (Hyp) from St. John's wort possesses anti-inflammatory and anti-carcinogenic properties which were ascribed among others to the inhibition of 5-lipoxygenase. Here, we investigated whether Hyp also interferes with prostanoid generation in biological systems, particularly with key enzymes participating in prostaglandin (PG)E2 biosynthesis, i.e., cyclooxygenases (COX)-1/2 and microsomal PGE2 synthase (mPGES)-1 which play key roles in inflammation and tumorigenesis. Similar to the mPGES-1 inhibitors MK-886 and MD-52, Hyp significantly suppressed PGE2 formation in whole blood assays starting at 0.03–1 μM, whereas the concomitant generation of COX-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, thromboxane B2, and 6-keto PGF1α was not significantly suppressed up to 30 μM. In cell-free assays, Hyp efficiently blocked the conversion of PGH2 to PGE2 mediated by mPGES-1 (IC50 = 1 μM), and isolated COX enzymes were not (COX-2) or hardly (COX-1) suppressed. Intraperitoneal (i.p.) administration of Hyp (4 mg kg−1) to rats impaired exudate volume and leukocyte numbers in carrageenan-induced pleurisy associated with reduced PGE2 levels, and Hyp (given i.p.) inhibited carrageenan-induced mouse paw edema formation (ED50 = 1 mg kg−1) being superior over indomethacin (ED50 = 5 mg kg−1). We conclude that the suppression of PGE2 biosynthesis in vitro and in vivo by acting on mPGES-1 critically contributes to the anti-inflammatory efficiency of Hyp.
Collapse
|
Journal Article |
14 |
51 |
19
|
Koeberle A, Muñoz E, Appendino GB, Minassi A, Pace S, Rossi A, Weinigel C, Barz D, Sautebin L, Caprioglio D, Collado JA, Werz O. SAR Studies on Curcumin’s Pro-inflammatory Targets: Discovery of Prenylated Pyrazolocurcuminoids as Potent and Selective Novel Inhibitors of 5-Lipoxygenase. J Med Chem 2014; 57:5638-48. [DOI: 10.1021/jm500308c] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
11 |
50 |
20
|
Koeberle A, Haberl EM, Rossi A, Pergola C, Dehm F, Northoff H, Troschuetz R, Sautebin L, Werz O. Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E2 synthase-1. Bioorg Med Chem 2009; 17:7924-32. [DOI: 10.1016/j.bmc.2009.10.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
|
|
16 |
49 |
21
|
Rodrigues T, Werner M, Roth J, da Cruz EHG, Marques MC, Akkapeddi P, Lobo SA, Koeberle A, Corzana F, da Silva Júnior EN, Werz O, Bernardes GJL. Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor. Chem Sci 2018; 9:6899-6903. [PMID: 30310622 PMCID: PMC6138237 DOI: 10.1039/c8sc02634c] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 12/04/2022] Open
Abstract
Using machine learning, targets were identified for β-lapachone.
Using machine learning, targets were identified for β-lapachone. Resorting to biochemical assays, β-lapachone was validated as a potent, ligand efficient, allosteric and reversible modulator of 5-lipoxygenase (5-LO). Moreover, we provide a rationale for 5-LO modulation and show that inhibition of 5-LO is relevant for the anticancer activity of β-lapachone. This work demonstrates the power of machine intelligence to deconvolute complex phenotypes, as an alternative and/or complement to chemoproteomics and as a viable general approach for systems pharmacology studies.
Collapse
|
Journal Article |
7 |
49 |
22
|
Feißt C, Pergola C, Rakonjac M, Rossi A, Koeberle A, Dodt G, Hoffmann M, Hoernig C, Fischer L, Steinhilber D, Franke L, Schneider G, Rådmark O, Sautebin L, Werz O. Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cell Mol Life Sci 2009; 66:2759-71. [PMID: 19579006 PMCID: PMC11115900 DOI: 10.1007/s00018-009-0078-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 01/02/2023]
Abstract
We previously showed that, in vitro, hyperforin from St. John's wort (Hypericum perforatum) inhibits 5-lipoxygenase (5-LO), the key enzyme in leukotriene biosynthesis. Here, we demonstrate that hyperforin possesses a novel and unique molecular pharmacological profile as a 5-LO inhibitor with remarkable efficacy in vivo. Hyperforin (4 mg/kg, i.p.) significantly suppressed leukotriene B(4) formation in pleural exudates of carrageenan-treated rats associated with potent anti-inflammatory effectiveness. Inhibition of 5-LO by hyperforin, but not by the iron-ligand type 5-LO inhibitor BWA4C or the nonredox-type inhibitor ZM230487, was abolished in the presence of phosphatidylcholine and strongly reduced by mutation (W13A-W75A-W102A) of the 5-LO C2-like domain. Moreover, hyperforin impaired the interaction of 5-LO with coactosin-like protein and abrogated 5-LO nuclear membrane translocation in ionomycin-stimulated neutrophils, processes that are typically mediated via the regulatory 5-LO C2-like domain. Together, hyperforin is a novel type of 5-LO inhibitor apparently acting by interference with the C2-like domain, with high effectiveness in vivo.
Collapse
|
research-article |
16 |
49 |
23
|
Müller H, Paul M, Hartmann D, Huch V, Blaesius D, Koeberle A, Werz O, Jauch J. Total Synthesis of Myrtucommulone A. Angew Chem Int Ed Engl 2010; 49:2045-9. [DOI: 10.1002/anie.200903906] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
15 |
48 |
24
|
Wallert M, Schmölz L, Koeberle A, Krauth V, Glei M, Galli F, Werz O, Birringer M, Lorkowski S. α-Tocopherol long-chain metabolite α-13'-COOH affects the inflammatory response of lipopolysaccharide-activated murine RAW264.7 macrophages. Mol Nutr Food Res 2015; 59:1524-34. [PMID: 25943249 DOI: 10.1002/mnfr.201400737] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 01/28/2023]
Abstract
SCOPE Inflammatory response of macrophages is regulated by vitamin E forms. The long-chain metabolite α-13'-carboxychromanol (α-13'-COOH) is formed by hepatic α-tocopherol (α-TOH) catabolism and acts as a regulatory metabolite via pathways that are different from its metabolic precursor. METHODS AND RESULTS Using semisynthetically-derived α-13'-COOH we profiled its action on LPS-induced expression of pro- and anti-inflammatory genes using RT-qPCR and of key proteins by Western blotting. Effects on inflammatory response were assessed by measuring production of nitric oxide and prostaglandin (PG) E2 , PGD2 , and PGF2α. α-13'-COOH inhibits proinflammatory pathways in LPS-stimulated RAW264.7 macrophages more efficiently than α-TOH. Profiling inflammation-related genes showed significant blocking of interleukin (Il)1β by the metabolite and its precursor as well, while upregulation of Il6 was not impaired. However, induction of Il10, cyclooxygenase 2 (Cox2) and inducible nitric oxide synthase (iNos) by LPS and consequently the formation of nitric oxide and PG was significantly reduced by α-13'-COOH. Interestingly, α-13'-COOH acted independently from translocation of NFκB subunit p65. CONCLUSION Our study sheds new light on the mode of action of α-TOH on the inflammatory response in macrophages, which may be mediated in vivo at least in part by its metabolite α-13'-COOH. Our data show that α-13'-COOH is a potent anti-inflammatory molecule.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
47 |
25
|
Koeberle A, Shindou H, Harayama T, Yuki K, Shimizu T. Polyunsaturated fatty acids are incorporated into maturating male mouse germ cells by lysophosphatidic acid acyltransferase 3. FASEB J 2011; 26:169-80. [DOI: 10.1096/fj.11-184879] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
14 |
44 |