101
|
Zhang H, Zhao Y, Cui JG, Li XN, Li JL. DEHP-induced mitophagy and mitochondrial damage in the heart are associated with dysregulated mitochondrial biogenesis. Food Chem Toxicol 2022; 161:112818. [PMID: 35032567 DOI: 10.1016/j.fct.2022.112818] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 01/13/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in agricultural and industrial plastic products. Many researchers have demonstrated that DEHP can cause varying degrees of harm to the heart. This research investigated the mechanism by which DEHP causes heart damage in quail. The quail were treated with DEHP (250 mg/kg BW/day, 500 mg/kg BW/day or 750 mg/kg BW/day) for 45 days. The present study suggested that DEHP could cause varying levels of heart damage, including disordered myocardial fiber arrangements, myocardial fiber breakage and myocardial cell swelling. The results showed that DEHP induced mitochondrial damage, such as cavitation lesions and mitochondrial crest breakage. DEHP damaged mitochondria and inhibited nuclear respiratory factor 1 (Nrf1)-mediated mitochondrial biogenesis, which led to mitochondrial damage. DEHP caused oxidative stress in the heart and activated the defense mechanism of the nuclear factor red blood cell 2 related factor 2 (Nrf2) system. DEHP-induced mitophagy was related to a decline in mitochondrial biogenesis and disordered mitochondrial dynamics. The data indicated that DEHP exposure damaged cardiac mitochondria and caused mitophagy and cardiotoxicity. Of note, this study showed that DEHP-induced mitophagy and mitochondrial damage are associated with the dysregulation of mitochondrial biogenesis.
Collapse
|
102
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai XC, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fritsch M, Fu CD, Gao Y, Gao Y, Gao Y, Gao YG, Garzia I, Ge PT, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KL, Heinsius FH, Heinz CH, Held T, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jiang HB, Jiang XS, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li JL, Li JQ, Li JS, Li K, Li LK, Li L, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu L, Liu MH, Liu PL, Liu Q, Liu Q, Liu SB, Liu S, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XX, Ma XY, Maas FE, Maggiora M, Maldaner S, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pogodin S, Poling R, Prasad V, Qi H, Qi HR, Qi KH, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan DC, Shan W, Shan XY, Shangguan JF, Shao M, Shen CP, Shen HF, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Su KX, Su PP, Sui FF, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun WY, Sun X, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Teng JX, Thoren V, Tian WH, Tian YT, Uman I, Wang B, Wang CW, Wang DY, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang YY, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu GF, Xu QJ, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang SL, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang AQ, Zhang BX, Zhang G, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang S, Zhang SF, Zhang S, Zhang XD, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. First Measurement of Polarizations in the Decay D^{0}→ωφ. PHYSICAL REVIEW LETTERS 2022; 128:011803. [PMID: 35061485 DOI: 10.1103/physrevlett.128.011803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Using a data sample corresponding to an integrated luminosity of 2.93 fb^{-1} collected at a center-of-mass energy sqrt[s]=3.773 GeV by the BESIII detector, the decay D^{0}→ωϕ is observed for the first time. The branching fraction is measured to be (6.48±0.96±0.40)×10^{-4} with a significance of 6.3σ, where the first and second uncertainties are statistical and systematic, respectively. An angular analysis reveals that the ϕ and ω mesons from the D^{0}→ωϕ decay are transversely polarized. The 95% confidence level upper limit on longitudinal polarization fraction is set to be less than 0.24, which is inconsistent with current theoretical expectations and challenges our understanding of the underlying dynamics in charm meson decays.
Collapse
|
103
|
Zhao Y, Li HX, Luo Y, Cui JG, Talukder M, Li JL. Lycopene mitigates DEHP-induced hepatic mitochondrial quality control disorder via regulating SIRT1/PINK1/mitophagy axis and mitochondrial unfolded protein response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118390. [PMID: 34699919 DOI: 10.1016/j.envpol.2021.118390] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/25/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a hazardous chemical which is used as a plasticizer in the plastic products. Lycopene (LYC) is a carotenoid that has protective roles against cellular damage in different organs. The present study sought to explore the role of the interaction between mitophagy and mitochondrial unfolded protein response (UPRmt) in the LYC mitigating DEHP-induced hepatic mitochondrial quality control disorder. The mice were treated with LYC (5 mg/kg) and/or DEHP (500 or 1000 mg/kg). In our findings, LYC prevented DEHP-induced histopathological alterations including steatosis and fibrosis, and ultrastructural injuries including decreased mitochondrial membrane potential (ΔΨm) and mitochondria volume density. Furthermore, LYC alleviated DEHP-induced mitochondrial biogenesis disorder by suppressing SIRT1-PGC-1α axis, PINK1-mediated mitophagy and the activation of mitochondrial unfolded protein response (UPRmt). This research suggested that LYC could prevent DEHP-induced hepatic mitochondrial quality control disorder via regulating SIRT1/PINK1/mitophagy axis and UPRmt. The present study provided a current understanding about the potential implication of the SIRT1/PINK1/mitophagy axis and UPRmt in LYC preventing DEHP-induced hepatic mitochondrial quality control disorder.
Collapse
|
104
|
Liu H, Yang X, Guo LL, Li JL, Xu G, Lei Y, Li X, Sun L, Yang L, Yuan T, Wang C, Zhang D, Wei H, Li J, Liu M, Hua Y, Li Y, Che H, Zhang L. Frailty and Incident Depressive Symptoms During Short- and Long-Term Follow-Up Period in the Middle-Aged and Elderly: Findings From the Chinese Nationwide Cohort Study. Front Psychiatry 2022; 13:848849. [PMID: 35463534 PMCID: PMC9021567 DOI: 10.3389/fpsyt.2022.848849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Prefrailty and frailty are two common conditions among older individuals. Recent studies have reported the association between frailty and depressive symptoms, but whether those conditions could predict depressive symptoms is still inconsistent in a few longitudinal studies. In our study, we aimed to estimate the cross-sectional and longitudinal associations between frailty and incident depressive symptoms in a nationally representative sample of community-dwelling middle-aged and older Chinese adults. METHOD Data were obtained from the China Health and Retirement Longitudinal Study (CHARLS), which included 17,284 adults aged ≥ 45 years. Participants were followed every two years using a face-to-face, computer-aided personal interview (CAPI) and structured questionnaire. We excluded participants with no follow-up data. The numbers of individuals who completed the baseline surveys were 2,579 and follow-up surveys were 839 for the short-term (2 years from 2011 to 2013) and 788 for the long-term (4 years from 2011 to 2015). In addition, Frailty was measured by the Fried criteria and depressive symptoms were estimated by the Chinese version of the Center for Epidemiologic Studies-Depression scale (CES-D). Logistic regression was used to analyze the odds ratio (OR), and 95% confidence interval (CI) for the cross-sectional associations of frailty and its components with depressive symptoms in the participants at baseline. Cox proportional hazards analysis was conducted using the hazard ratio (HR), and 95% confidence interval (CI) for the prospective associations of baseline frailty and pre-frailty and its component in the participants without depressive symptoms at baseline. RESULTS At baseline, 57.93% of participants had depressive symptoms and 55.84% had pre-frail and 11.63% had frailty. In the cross-sectional analysis, both pre-frailty (OR = 5.293, 95%CI 4.363-6.422) and frailty (OR = 16.025, 95%CI 10.948-23.457) were associated with depressive symptoms. In the longitudinal analysis, frailty [HR = 1.395 (0.966-2.013)] and pre-frailty [HR = 2.458 (0.933, 6.479)] were not significantly associated with incident depressive symptoms in a full-adjusted model among participants free of baseline depressive symptoms during the short-term. However, frailty [HR = 1.397 (1.017, 1.920)] and pre-frailty [HR = 2.992 (1.210, 7.397)] were significantly associated with incident depressive symptoms during the short term. In the components of frailty, slowness [HR = 1.597 (1.078, 2.366)] was associated with an increased risk of depressive symptoms onset during the short-term. Weakness [HR = 2.08 (1.055, 4.104)] and exhaustion [HR = 1.928 (1.297, 2.867)] were associated with increased risk of depressive symptoms onset during the short-term. CONCLUSION Among the middle-aged and older adults, frailty, pre-frailty did not predict depressive symptoms during 2 years of follow-up, when accounting for the potential confounders, slowness considered alone predicted depressive symptoms. Additionally, frailty, pre-frailty predicted depressive symptoms during 4 years of follow-up, when accounting for the potential confounders, weakness and exhaustion considered alone predicted depressive symptoms.
Collapse
|
105
|
Zhu SY, Li CX, Tong YX, Xu YR, Wang ZY, Li JL. IL-6/STAT3/Foxo1 Axis as a Target of Lycopene Ameliorates Atrazine-Induced Thymic Mitophagy and Pyroptosis Cross-talk. Food Funct 2022; 13:8871-8879. [DOI: 10.1039/d2fo01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intensive adoption of atrazine (ATZ) has been a persistently widespread pollutant in daily life. However, ATZ is still used as an essential herbicide in numerous countries because its toxic...
Collapse
|
106
|
Jiang FW, Yang ZY, Bian YF, Cui JG, Zhang H, Zhao Y, Li JL. The novel role of the aquaporin water channel in lycopene preventing DEHP-induced renal ionic homeostasis disturbance in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112836. [PMID: 34601266 DOI: 10.1016/j.ecoenv.2021.112836] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), an extensively used plasticizer, can cause environmental pollution and organ injury. Lycopene (LYC) is a natural carotene that has the potential to prevent chronic diseases. To reveal the effect of DEHP and/or LYC on the kidney, male mice were treated with LYC (5 mg/kg) and/or DEHP (500 mg/kg or 1000 mg/kg) by gavage for 28 days. The study indicated that DEHP caused glomerular atrophy, tubular expansion, disappearance of the mitochondrial membrane, and cristae rupture. DEHP exposure can increase the expression of aquaporin (AQP) subunits and the activity of Ca2+-Mg2+-ATPase and decrease the activity of Na+-K+-ATPase, which results in ion disorder. However, LYC can relieve kidney injury by regulating the activity of ATPase, the expression of ATPase subunits, and AQP subunit expression. The results indicated that AQP was a target for LYC in antagonizing the disturbance of DEHP-induced renal damage.
Collapse
|
107
|
Zhao Y, Cui LG, Talukder M, Cui JG, Zhang H, Li JL. Lycopene prevents DEHP-induced testicular endoplasmic reticulum stress via regulating nuclear xenobiotic receptors and unfolded protein response in mice. Food Funct 2021; 12:12256-12264. [PMID: 34673871 DOI: 10.1039/d1fo02729h] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lycopene (LYC) is a potent antioxidant synthesized by red vegetables or plants. Di-2-ethylhexyl phthalate (DEHP) is frequently detected in diverse agricultural environments and considered as a reproductive toxicant. The present research was designed to assess the potential mechanisms of DEHP-induced testicular toxicity and the treatment efficacy of LYC. In this study, after the oral administration of LYC at the dose of 5 mg per kg b.w. per day, mice were given 500 or 1000 mg per kg b.w. per day of DEHP. This research suggested that LYC prevented the DEHP-induced disorder at the levels of activity and content of CYP450 enzymes. LYC attenuated DEHP-caused enhancement in nuclear xenobiotic receptors (NXRs) and the phase I metabolizing enzymes (CYP1, CYP2, CYP3, etc.) levels. Furthermore, endoplasmic reticulum (ER) stress was induced by DEHP and triggered unfolded protein response (UPR). Interestingly, LYC could effectively ameliorate these "hit". The present study suggested that LYC prevents DEHP-induced ER stress in testis via regulating NXRs and UPRER.
Collapse
|
108
|
Chen HJ, Zheng XB, Wang Y, Li JL, Xu B. [Evaluation of screening strategies of multidrug-resistant tuberculosis among pulmonary tuberculosis patients of the different risk levels]. ZHONGHUA LIU XING BING XUE ZA ZHI = ZHONGHUA LIUXINGBINGXUE ZAZHI 2021; 42:2164-2169. [PMID: 34954981 DOI: 10.3760/cma.j.cn112338-20210125-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objective: To evaluate the detection of MDR-TB and XDR-TB patients and to provide evidence for further improvement of MDR-TB and XDR-TB screening strategy. Methods: Patients who were under drug resistance surveillance, registered and reported by the TB Management Information System of the Chinese Disease Prevention and Control Information System from 2012 to 2019 and resided in Guizhou province were retrospectively analyzed. The contribution of five high-risk subgroups to detection of MDR/XDR-TB were evaluated using population attributable risk proportion (PARP). Results: Of the 18 506 cases under drug resistance surveillance, patients who were male, aged between 25 and 54 years, with drug-resistant TB or with MDR/XDR-TB accounted for 68.65% (12 705/18 506), 47.69% (8 826/18 506), 15.90% (2 943/18 506) or 5.42% (1 003/18 506), respectively. Five high-risk subgroups made significant contributions to the detection of MDR/XDR-TB with a PARP of 57.00%. Specifically, the PARP were 21.70%, 19.49%, 11.90% and 2.30% for patients that were relapse and return, failed initial treatment, chronic/retreatment failure and smear-positive at the end of the second or third month, respectively. The detection rate of MDR/XDR-TB in high-risk groups was 15.89% (578/3 637) while in low-risk groups was 2.86% (425/14 869). Conclusions: Number of patients under drug resistance surveillance and the detection of MDR/XDR-TB trended to increase in Guizhou province from 2012 to 2019. The detection rate of MDR/XDR-TB in high-risk groups was higher than low-risk groups.
Collapse
|
109
|
Li JL, Zhang M, Cai L, Yue JQ, Wang RF, Guan WB, Wang KZ, Wang LF. [DICER1 and relevant tumor]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2021; 50:1419-1422. [PMID: 34865443 DOI: 10.3760/cma.j.cn112151-20210825-00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
110
|
Duan BB, Xu JW, Xing T, Li JL, Zhang L, Gao F. Creatine nitrate supplementation strengthens energy status and delays glycolysis of broiler muscle via inhibition of LKB1/AMPK pathway. Poult Sci 2021; 101:101653. [PMID: 35007932 PMCID: PMC8749301 DOI: 10.1016/j.psj.2021.101653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
This study aimed to evaluate the effects of dietary creatine nitrate (CrN) on growth performance, meat quality, energy status, glycolysis, and related gene expression of liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) pathway in Pectoralis major (PM) muscle of broilers. A total of 240 male Arbor Acres broilers (28-day-old) were randomly allocated to one of 5 dietary treatments: the basal diet (control group), and the basal diets supplemented with 600 mg/kg guanidinoacetic acid (GAA), 300, 600, or 900 mg/kg CrN (identified as GAA600, CrN300, CrN600, or CrN900, respectively). We found that dietary GAA and CrN supplementation for 14 d from d 28 to 42 did not affect broiler growth performance, carcass traits, and textural characteristics of breast muscle. GAA600, CrN600, and CrN900 treatments increased pH24h and decreased drip loss of PM muscle compared with the control (P < 0.05). The PM muscles of CrN600 and CrN900 groups showed higher glycogen concentration and lower lactic acid concentration accompanied by lower activities of phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) (P < 0.05). Simultaneously, GAA600 and all CrN treatments increased concentration of muscle creatine, phosphocreatine (PCr) and ATP, and decreased AMP concentration and AMP/ATP ratio (P < 0.05). Meanwhile, the concentrations of muscle creatine, PCr, and ATP were increased linearly, while muscle AMP concentration and AMP/ATP ratio were decreased linearly and quadratic as the dose of CrN increased (P < 0.05). GAA600, CrN600, and CrN900 treatments upregulated mRNA expression of CreaT in PM muscle, and CrN600 and CrN900 treatments downregulated GAMT expression in liver and PM muscle compared with the control or GAA600 groups (P < 0.05). The mRNA expression of muscle LKB1, AMPKα1, and AMPKα2 was downregulated linearly in response to the increasing CrN level (P < 0.05). Overall, CrN showed better efficacy on strengthening muscle energy status and improve meat quality than GAA at the some dose. These results indicate that CrN may be a potential replacement for GAA as a new creatine supplement.
Collapse
|
111
|
Ge J, Huang Y, Lv M, Zhang C, Talukder M, Li J, Li J. Cadmium induced Fak -mediated anoikis activation in kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway. J Inorg Biochem 2021; 227:111682. [PMID: 34902763 DOI: 10.1016/j.jinorgbio.2021.111682] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/16/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal of considerable toxicity, possessing a serious environmental problem that threatening food safety and human health. However, the underlying mechanisms of Cd-induced nephrotoxicity and detoxification response remain largely unclear. Cd was administered at doses of 35, 70, and 140 mg/kg diet with feed for 90 days and produced potential damage to chickens' kidneys. The results showed that Cd exposure induced renal anatomical and histopathological injuries. Cd exposure up-regulated cytochrome P450 enzymes (CYP450s), activated nuclear xenobiotic receptors (NXRs) response, including aryl hydro-carbon receptor (AHR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) by low and moderate doses of Cd, and induced an increase in CYP isoforms expression. Cd exposure down-regulated phase II detoxification enzymes (glutathione-S-transferase (GST), glutathione peroxidase (GSH-PX) activities, and glutathione (GSH) content), and GST isoforms transcription . Furthermore, ATP-binding cassette (ABC) transporters, multidrug resistance protein (MRP1), and P-glycoprotein (P-GP) levels were elevated by low dose, but high dose inhibited the P-GP expression. Activation of detoxification enzymes lost their ability of resistance as increasing dose of Cd, afterwards brought into severe renal injury. Additionally, Cd suppressed focal adhesion kinase (Fak) and integrins protein expression as well as activated extrinsic pathway and intrinsic pathways, thereby producing anoikis. In conclusion, these results indicated that Cd induced Fak-mediated anoikis activation in the kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway.
Collapse
|
112
|
Fang J, Qu CJ, Zhang YB, Teng LQ, Li JL, Shen CY. [Drug-coated balloons versus bare metal stent for treatment of femoropopliteal lesions:36 month follow-up results of single center]. ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY] 2021; 59:975-979. [PMID: 34839611 DOI: 10.3760/cma.j.cn112139-20210902-00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To examine the therapeutic effects of drug-coated balloon (DCB) and bare metal stent (BMS) on primary femoropopliteal disease (FPAD) in the real world. Methods: This was a retrospective analysis of single-center follow-up results at 12,24,and 36 months of patients with FPAD lesions that were treated with DCB and BMS at Department of Aortic and Vascular Surgery, Fu Wai Hospital.One-to-one propensity score matching(PSM) was performed to balance the covariance between DCB group (137 cases) and BMS group (100 cases). Freedom from clinically driven target lesion reintervention rate(fCD-TLR) was determined by Kaplan-Meier curve.Log-rank test was used to compare the rates of fCD-TLR between DCB and BMS groups at 12,24,36 months post-operation. Results: After PSM, there were both 71 patients in each group,aged (68.0±9.6) years(range: 46 to 90 years) and (68.8±7.3) years(range: 48 to 87 years),lesion lengths were (119.6±14.2)mm(range:40 to 380 mm) and (110.8±13.1)mm(range:40 to 400 mm). The median follow-up period were 24.3 months (range:5.8 to 55.1 months).There was no death,amputation or reintervention within the 30 days after operation.The rates of fCD-TLR for DCB group at 12,24 and 36 months were 97.2%,85.9%,69.1%, and 95.8%,83.1%,59.2% for BMS group.There was no statistical difference between the two groups by Log-rank test (P=0.551). Conclusion: DCB and BMS can both maintain favorable clinical effects in FPAD patients at 12,24,36 months post-operation.
Collapse
|
113
|
Li JL, Sang YF, Xu LJ, Lu HY, Wang JY, Chen ZN. Highly Efficient Light-Emitting Diodes Based on an Organic Antimony(III) Halide Hybrid. Angew Chem Int Ed Engl 2021; 61:e202113450. [PMID: 34837440 DOI: 10.1002/anie.202113450] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/26/2022]
Abstract
As low-dimensional lead-free hybrids with higher stability and lower toxicity than those of three-dimensional lead perovskites, organic antimony(III) halides show great application potential in opt-electronic field owing to diverse topologies along with exceptional optical properties. We report herein an antimony(III) hybrid (MePPh3 )2 SbCl5 with a zero-dimensional (0D) structure, which exhibits brilliant orange emission peaked at 593 nm with near-unity photoluminescent quantum yield (99.4 %). The characterization of photophysical properties demonstrates that the broadband emission with a microsecond lifetime (3.24 μs) arises from self-trapped emission (STE). Electrically driven organic light-emitting diodes (OLEDs) based on neat and doped films of (MePPh3 )2 SbCl5 were fabricated. The doped devices show significant improvement in comparison to non-doped OLEDs. Owing to the much improved surface morphology and balanced carrier transport in light-emitting layers of doped devices, the peak luminance, current efficiency (CE) and external quantum efficiency (EQE) are boosted from 82 cd m-2 to 3500 cd m-2 , 1.1 cd A-1 to 6.8 cd A-1 , and 0.7 % to 3.1 % relative to non-doped devices, respectively.
Collapse
|
114
|
Zhang M, Li JL, Wang RF, Guan WB, Wang LF. [Clinicopathological analysis of abdominal epithelioid inflammatory myofibroblastic sarcoma in children]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2021; 50:1272-1274. [PMID: 34719169 DOI: 10.3760/cma.j.cn112151-20210219-00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
115
|
Li MZ, Zhao Y, Wang HR, Talukder M, Li JL. Lycopene Preventing DEHP-Induced Renal Cell Damage Is Targeted by Aryl Hydrocarbon Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12853-12861. [PMID: 34670089 DOI: 10.1021/acs.jafc.1c05250] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is an environmentally persistent and bioaccumulative plasticizer. Accumulation of DEHP in the body can eventually cause kidney damage. As a type of natural carotenoid, lycopene (LYC) has a potential protective effect on renal cells, but the protective mechanism has not yet been elucidated. The major goal of this study was to see how effective LYC was at treating DEHP-induced nephrotoxicity in mice. ICR mice were treated with DEHP (500 mg/kg BW/day or 1000 mg/kg BW/day) or LYC (5 mg/kg BW/day) for 28 days. Through histopathology and ultrastructure, we found that LYC attenuated DEHP-induced renal tubular cell and glomerular damage. LYC relieved DEHP-induced kidney injury evidenced by lower levels of blood urea nitrogen (Bun), creatinine (Cre), and uric acid (Uric). Meanwhile, the reduced expression of kidney injury molecule-1 (Kim-1) also supported it. Notably, LYC can alleviate the activity or content of cytochrome P450 system (CYP450s) interfered with by DEHP. In addition, LYC treatment reduced nuclear accumulation of DEHP-induced aromatic hydrocarbon receptor (AhR) and AhR nuclear transporter (Arnt), and its downstream target genes such as cytochrome P450-dependent monooxygenase (CYP) 1A1, 1A2, and 1B1 expression significantly decreased to normal in the LYC treatment group. In summary, LYC can mediate the AhR/Arnt signaling system to prevent kidney toxicity in mice caused by DEHP exposure.
Collapse
|
116
|
Zhao Y, Cui JG, Zhang H, Li XN, Li MZ, Talukder M, Li JL. Role of mitochondria-endoplasmic reticulum coupling in lycopene preventing DEHP-induced hepatotoxicity. Food Funct 2021; 12:10741-10749. [PMID: 34608470 DOI: 10.1039/d1fo00478f] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a hazardous compound used as a plasticizer in plastic products. As a natural carotenoid, lycopene (LYC) is considered an effective protective agent against various types of organ damage. The present study aimed to investigate the role of mitochondria-endoplasmic reticulum (ER) coupling in LYC preventing DEHP-induced hepatotoxicity. The mice were treated with LYC (5 mg kg-1) and/or DEHP (500 or 1000 mg kg-1). In the present study, LYC prevented DEHP-induced histopathological changes including fibrosis and glycogen storage in the liver. Additionally, LYC alleviated DEHP-induced ultrastructural injury of mitochondria and ER. LYC had the underlying preventability against DEHP-induced mitochondrial dynamics imbalance including an increase in fission and a decrease in fusion. Furthermore, DEHP induced mitochondria-associated endoplasmic reticulum membrane (MAM) disorder-induced ER stress through the ER unfolded protein response (UPRER), but LYC alleviated these alterations. Therefore, LYC prevented DEHP-induced hepatic mitochondrial dynamics and MAM disorder, leading to ER stress. The present study provides novel evidence of mitochondria-ER coupling as a target for LYC that prevents DEHP-induced hepatotoxicity.
Collapse
|
117
|
Li JL, Tang JX, Wu JY, Yang MM, Liang C, Zhang MH, Li YS, Wang GX, Zhou HY, Zhu GD, Cao J. [Surveillance of Culex mosquitoes in Jiangsu Province from 2018 to 2019]. ZHONGGUO XUE XI CHONG BING FANG ZHI ZA ZHI = CHINESE JOURNAL OF SCHISTOSOMIASIS CONTROL 2021; 33:510-512. [PMID: 34791850 DOI: 10.16250/j.32.1374.2020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the distribution and density of Culex mosquito populations and the resistance of Culex pipiens pallens to insecticides in Jiangsu Province in 2018 and 2019. METHODS During the period from June to October in 2018 and 2019, six counties (districts, cities) were sampled in southern, northern and central Jiangsu Province as surveillance sites. The density of Culex mosquitoes was measured overnight using the light trapping technique. In addition, Culex pipiens pallens mosquitoes were collected from Hai'an of Nantong City and Yandu District of Yancheng City, central Jiangsu Province, and the sensitivity of female first filial generations to dichlorodiphenyltrichloroethane (DDT), malation, proposur, beta cypermethrin and deltamethrin was tested using the standard WHO insecticide susceptibility test assay. RESULTS A total of 104 423 Culex mosquitoes were captured in six surveillance sites of Jiangsu Province in 2018 and 2019, and Culex quinquefasciatus (49.11%), Culex pipiens pallens (28.38%), and Culex tritaeniorhynchus (21.04%) were predominant species. The density of Culex mosquitoes started to increase since early June, peaked in July and tended to be low in late October. Culex pipiens pallens mosquitoes captured from Hai'an was susceptible to malation, while those from Yandu District were moderately resistant to malation. Culex pipiens pallens mosquitoes from both Yandu and Hai'an were moderately resistant to proposur, and were resistant to DDT, beta cypermethrin and deltamethrin. CONCLUSIONS Culex quinquefasciatus, Culex pipiens pallens and Culex tritaeniorhynchus are predominant Culex species in Jiangsu Province. Culex pipiens pallens is resistant to DT, beta cypermethrin and deltamethrin in central Jiangsu Province.
Collapse
|
118
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai XC, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fritsch M, Fu CD, Gao Y, Gao Y, Gao Y, Gao YG, Garzia I, Ge PT, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KL, Heinsius FH, Heinz CH, Held T, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jiang HB, Jiang XS, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li JL, Li JQ, Li JS, Li K, Li LK, Li L, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu L, Liu MH, Liu PL, Liu Q, Liu Q, Liu SB, Liu S, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XX, Ma XY, Maas FE, Maggiora M, Maldaner S, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Poling R, Prasad V, Qi H, Qi HR, Qi KH, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan DC, Shan W, Shan XY, Shangguan JF, Shao M, Shen CP, Shen HF, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Su KX, Su PP, Sui FF, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun WY, Sun X, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Teng JX, Thoren V, Tian WH, Tian YT, Uman I, Wang B, Wang CW, Wang DY, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang YY, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu GF, Xu QJ, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang SL, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zeng Y, Zhang AQ, Zhang BX, Zhang G, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang S, Zhang SF, Zhang S, Zhang XD, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Measurement of the Absolute Branching Fraction of D_{s}^{+}→τ^{+}ν_{τ} via τ^{+}→e^{+}ν_{e}ν[over ¯]_{τ}. PHYSICAL REVIEW LETTERS 2021; 127:171801. [PMID: 34739288 DOI: 10.1103/physrevlett.127.171801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Using a dataset of 6.32 fb^{-1} of e^{+}e^{-} annihilation data collected with the BESIII detector at center-of-mass energies between 4178 and 4226 MeV, we have measured the absolute branching fraction of the leptonic decay D_{s}^{+}→τ^{+}ν_{τ} via τ^{+}→e^{+}ν_{e}ν[over ¯]_{τ}, and find B_{D_{s}^{+}→τ^{+}ν_{τ}}=(5.27±0.10±0.12)×10^{-2}, where the first uncertainty is statistical and the second is systematic. The precision is improved by a factor of 2 compared to the previous best measurement. Combining with f_{D_{s}^{+}} from lattice quantum chromodynamics calculations or the |V_{cs}| from the CKMfitter group, we extract |V_{cs}|=0.978±0.009±0.012 and f_{D_{s}^{+}}=(251.1±2.4±3.0) MeV, respectively. Combining our result with the world averages of B_{D_{s}^{+}→τ^{+}ν_{τ}} and B_{D_{s}^{+}→μ^{+}ν_{μ}}, we obtain the ratio of the branching fractions B_{D_{s}^{+}→τ^{+}ν_{τ}}/B_{D_{s}^{+}→μ^{+}ν_{μ}}=9.72±0.37, which is consistent with the standard model prediction of lepton flavor universality.
Collapse
|
119
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai XC, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fritsch M, Fu CD, Gao Y, Gao Y, Gao Y, Gao YG, Garzia I, Ge PT, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, Hüsken N, He KL, Heinsius FH, Heinz CH, Held T, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Andersson WI, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jiang HB, Jiang XS, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li JL, Li JQ, Li JS, Li K, Li LK, Li L, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu MH, Liu PL, Liu Q, Liu Q, Liu SB, Liu S, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XX, Ma XY, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Poling R, Prasad V, Qi H, Qi HR, Qi KH, Qi M, Qi TY, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan DC, Shan W, Shan XY, Shangguan JF, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Su KX, Su PP, Sui FF, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun WY, Sun X, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Teng JX, Thoren V, Tian WH, Tian YT, Uman I, Wang B, Wang CW, Wang DY, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang YY, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidenkaff P, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu GF, Xu QJ, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang SL, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang S, Zhang SF, Zhang S, Zhang XD, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. Observation of D^{0}→K_{1}(1270)^{-}e^{+}ν_{e}. PHYSICAL REVIEW LETTERS 2021; 127:131801. [PMID: 34623854 DOI: 10.1103/physrevlett.127.131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Using 2.93 fb^{-1} of e^{+}e^{-} collision data taken with the BESIII detector at a center-of-mass energy of 3.773 GeV, the observation of the D^{0}→K_{1}(1270)^{-}e^{+}ν_{e} semileptonic decay is presented. The statistical significance of the decay D^{0}→K_{1}(1270)^{-}e^{+}ν_{e} is greater than 10σ. The branching fraction of D^{0}→K_{1}(1270)^{-}e^{+}ν_{e} is measured to be (1.09±0.13_{-0.16}^{+0.09}±0.12)×10^{-3}. Here, the first uncertainty is statistical, the second is systematic, and the third originates from the assumed branching fraction of K_{1}(1270)^{-}→K^{-}π^{+}π^{-}. The fraction of longitudinal polarization in D^{0}→K_{1}(1270)^{-}e^{+}ν_{e} is determined for the first time to be 0.50±0.19_{stat}±0.08_{syst}.
Collapse
|
120
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Chen ZJ, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dong X, Du SX, Fan YL, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fritsch M, Fu CD, Gao Y, Gao Y, Gao Y, Gao YG, Garzia I, Ge PT, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han TT, Han WY, Hao XQ, Harris FA, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Himmelreich M, Holtmann T, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jiang HB, Jiang XS, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li JL, Li JQ, Li JS, Li K, Li LK, Li L, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li X, Li ZY, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin T, Liu BJ, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu MH, Liu PL, Liu Q, Liu Q, Liu SB, Liu S, Liu T, Liu T, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XX, Ma XY, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pogodin S, Poling R, Prasad V, Qi H, Qi HR, Qi KH, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sang HS, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan DC, Shan W, Shan XY, Shangguan JF, Shao M, Shen CP, Shen HF, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Su KX, Su PP, Sui FF, Sun GX, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun WY, Sun X, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Teng JX, Thoren V, Tian WH, Tian YT, Uman I, Wang B, Wang CW, Wang DY, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang YY, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xu CJ, Xu GF, Xu QJ, Xu W, Xu XP, Xu YC, Yan F, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang SL, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan L, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng XZ, Zeng Y, Zhang AQ, Zhang BX, Zhang G, Zhang H, Zhang HH, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang S, Zhang SF, Zhang S, Zhang XD, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu TJ, Zhu WJ, Zhu WJ, Zhu YC, Zhu ZA, Zou BS, Zou JH. First Measurement of the Absolute Branching Fraction of Λ→pμ^{-}ν[over ¯]_{μ}. PHYSICAL REVIEW LETTERS 2021; 127:121802. [PMID: 34597097 DOI: 10.1103/physrevlett.127.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The absolute branching fraction of Λ→pμ^{-}ν[over ¯]_{μ} is reported for the first time based on an e^{+}e^{-} annihilation sample of 10×10^{9} J/ψ events collected with the BESIII detector at sqrt[s]=3.097 GeV. The branching fraction is determined to be B(Λ→pμ^{-}ν[over ¯]_{μ})=[1.48±0.21(stat)±0.08(syst)]×10^{-4}, which is improved by about 30% in precision over the previous indirect measurements. Combining this result with the world average of B(Λ→pe^{-}ν[over ¯]_{e}), we obtain the ratio {[Γ(Λ→pμ^{-}ν[over ¯]_{μ})]/[Γ(Λ→pe^{-}ν[over ¯]_{e})]} to be 0.178±0.028, which agrees with the standard model prediction assuming lepton flavor universality. The asymmetry of the branching fractions of Λ→pμ^{-}ν[over ¯]_{μ} and Λ[over ¯]→p[over ¯]μ^{+}ν_{μ} is also determined, and no evidence for CP violation is found.
Collapse
|
121
|
Talukder M, Bi SS, Jin HT, Ge J, Zhang C, Lv MW, Li JL. Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117083. [PMID: 33965856 DOI: 10.1016/j.envpol.2021.117083] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Metal-responsive transcription factor 1 (MTF1) participates in redox homeostasis and heavy metals detoxification via regulating the expression of metal responsive genes. However, the exact role of MTF1 in Cd-induced cerebral toxicity remains unclear. Herein, we explored the mechanism of Cd-elicited cerebral toxicity through modulating MTF1/MTs pathway in chicken cerebrum exposed to different concentrations of Cd (35 mg, 70 mg, and 140 mg/kg CdCl2) via diet. Notably, cerebral tissues showed varying degrees of microstructural changes under Cd exposure. Cd exposure significantly up-regulated the expression of metal transporters (DMT1, ZIP8, and ZIP10) with concomitant elevated Cd level, as determined by ICP-MS. Cd significantly altered other cerebral biometals concentrations (particularly, Zn, Fe, Se, Cr, Mo, and Pb) and redox balance, resulting in increased cerebral oxidative stress. More importantly, Cd exposure suppressed MTF1 mRNA and nuclear protein levels and its target metal-responsive genes, notably metallothioneins (MT1 and MT2), and Fe and Cu transporter genes (FPN1, ATOX1, and XIAP). Moreover, Cd disrupted the regulation of expression of selenoproteome (particularly, GPxs and SelW), and cerebral Se level. Overall, our data revealed that molecular mechanisms associated with Cd-induced cerebral damage might include over-expression of DMT1, ZIP8 and ZIP10, and suppression of MTF1 and its main target metal-responsive genes as well as several selenoproteins.
Collapse
|
122
|
Zhao Y, Bao RK, Zhu SY, Talukder M, Cui JG, Zhang H, Li XN, Li JL. Lycopene prevents DEHP-induced hepatic oxidative stress damage by crosstalk between AHR-Nrf2 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117080. [PMID: 33965855 DOI: 10.1016/j.envpol.2021.117080] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 05/20/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widespread plasticizer that persists in the environment and can significantly contribute to serious health hazards of liver especially oxidative stress injury. Lycopene (LYC) as a carotenoid has recently gained widespread attention because of antioxidant activity. However, the potential mechanism of DEHP-induced hepatotoxicity and antagonism effect of LYC on it are still unclear. To explore the underlying mechanisms of this hypothesis, the mice were given by gavage with LYC (5 mg/kg) and DEHP (500 or 1000 mg/kg). The data suggested that DEHP caused liver enlargement, reduction of antioxidant activity markers, increase of oxidative stress indicators and disorder of cytochrome P450 enzymes system (CYP450s) homeostasis. DEHP-induced reactive oxygen species (ROS) activated the NF-E2-relatedfactor2 (Nrf2) and nuclear xenobiotic receptors (NXRs) system including Aryl hydrocarbon receptor (AHR), Pregnane X receptor (PXR) and Constitutive androstane receptor (CAR). Interestingly, these disorders and injuries were prevented after LYC treatment. Taken together, DEHP administration resulted in hepatotoxicity including oxidative stress injury and disordered CYP450 system, but these alterations might be ameliorated by LYC via crosstalk between AHR-Nrf2 pathway.
Collapse
|
123
|
Li YS, Tang JX, Li JL, Liang C, Zhang MH, Wu JY, Wang GX, Zhu GD, Cao J. [Study on emergency metabolic changes of Anopheles sinensis larvae following exposure to deltamethrin]. ZHONGGUO XUE XI CHONG BING FANG ZHI ZA ZHI = CHINESE JOURNAL OF SCHISTOSOMIASIS CONTROL 2021; 33:387-395. [PMID: 34505446 DOI: 10.16250/j.32.1374.2020329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To analyze the changes of small molecular metabolites in the larvae of a deltamethrin-sensitive strain of Anopheles sinensis following exposure to deltamethrin, so as to provide the scientific basis for investigating the metabolic pathway and screening metabolic markers of deltamethrin in An. sinensis. METHODS The 50% and 75% lethal concentrations (LC50 and LC75) of deltamethrin against the larvae of a deltamethrin-sensitive strain of An. sinensis were calculated in laboratory. The type and content of An. sinensis larvae metabolites were detected using high performance liquid chromatography and mass spectrometry (LC-MS/MS) following exposure to deltamethrin at LC50 and LC75 for 30 min and 24 h, and the changes of metabolites were analyzed. RESULTS The LC50 and LC75 values of deltamethrin were 4.36 × 10-3 µg/mL and 1.12 × 10-2 µg/mL against thelarvae of a deltamethrin-sensitive strain of An. sinensis. Following exposure of the larvae of a deltamethrin-sensitive strain of An. sinensis to deltamethrin at LC50 and LC75 for 30 min, the differential metabolites mainly included organic oxygen compounds, carboxylic acid and its derivatives, fatty acyl and pyrimidine nucleotides, with reduced glucose levels. Following exposure for 24 h, the differential metabolites mainly included organic oxygen compounds, carboxylic acid and its derivatives, aliphatic acyl and purine nucleotides, with increased glucose level detected. CONCLUSIONS Carbohydrate, carboxylic acid and its derivatives, fatty acyls, amino acids and their derivatives may play important roles in deltamethrin metabolism in the larvae of a deltamethrin-sensitive strain of An. sinensis.
Collapse
|
124
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang Z, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schnier C, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan L, Yan L, Yan WB, Yan WC, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. Direct Measurement of the Branching Fractions B(ψ(3686)→J/ψX) and B(ψ(3770)→J/ψX), and Observation of the State R(3760) in e^{+}e^{-}→J/ψX. PHYSICAL REVIEW LETTERS 2021; 127:082002. [PMID: 34477419 DOI: 10.1103/physrevlett.127.082002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We report a measurement of the observed cross sections of e^{+}e^{-}→J/ψX based on 3.21 fb^{-1} of data accumulated at energies from 3.645 to 3.891 GeV with the BESIII detector operated at the BEPCII collider. In analysis of the cross sections, we measured the decay branching fractions of B(ψ(3686)→J/ψX)=(64.4±0.6±1.6)% and B(ψ(3770)→J/ψX)=(0.5±0.2±0.1)% for the first time. The energy-dependent line shape of these cross sections cannot be well described by two Breit-Wigner (BW) amplitudes of the expected decays ψ(3686)→J/ψX and ψ(3770)→J/ψX. Instead, it can be better described with one more BW amplitude of the decay R(3760)→J/ψX. Under this assumption, we extracted the R(3760) mass M_{R(3760)}=3766.2±3.8±0.4 MeV/c^{2} , total width Γ_{R(3760)}^{tot}=22.2±5.9±1.4 MeV, and product of leptonic width and decay branching fraction Γ_{R(3760)}^{ee}B[R(3760)→J/ψX]=(79.4±85.5±11.7) eV. The significance of the R(3760) is 5.3σ. The first uncertainties of these measured quantities are from fits to the cross sections and second systematic.
Collapse
|
125
|
Ge J, Guo K, Zhang C, Talukder M, Lv MW, Li JY, Li JL. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145442. [PMID: 33940727 DOI: 10.1016/j.scitotenv.2021.145442] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) has been confirmed as an environmental contaminant, which potential threats health impacts to humans and animals. Selenium (Se) as a beneficial element that alleviates the negative effects of Cd toxicity. Se mainly exists in two forms in food nutrients including organic Se usually as (Se-enriched yeast (SeY)) and inorganic Se (sodium selenite (SSe)). Nanoparticle of Se (Nano-Se), a new form Se, which is synthesized by the bioreduction of Se species, which attracted significant attention recently. However, compared the superiority alleviation effects of Nano-Se, SeY or SSe on Cd-induced toxicity and related mechanisms are still poorly understood. The purpose of this study was to compare the superiority antagonism effects of Nano-Se, SeY and SSe on Cd-induced inflammation response via NF-kB/IκB pathway in the heart. The present study demonstrated that exposed to Cd obviously increased the accumulation of Cd, disruption of ion homeostasis and depressed the ratios of K+/Na+ and Mg2+/Ca2+ via ion chromatography mass spectrometry (ICP-MS) detecting the heart specimens. In the results of histological and ultrastructure observation, typical inflammatory infiltrate characteristics and mitochondria and nuclear structure alterations in the hearts of Cd group were confirmed. Cd treatment enhanced the inducible nitric oxide synthase (iNOS) activities and NOS isoforms expression via NF-kB/IκB pathway to promote inflammation response. However, the combined treatment of Cd-exposed animals with Nano-Se was more effective than SeY and SSe in reversing Cd-induced histopathological changes and iNOS activities increased, reducing Cd accumulation and antagonizing Cd-triggered inflammation response via NF-kB/IκB pathway in chicken hearts. Overall, Se applications, especially Nano-Se, can be most efficiently used for relieving cardiotoxicity by exposed to Cd compared to other Se compound.
Collapse
|