Kacinski BM, Carter D, Kohorn EI, Mittal K, Bloodgood RS, Donahue J, Kramer CA, Fischer D, Edwards R, Chambers SK. Oncogene expression in vivo by ovarian adenocarcinomas and mixed-mullerian tumors.
THE YALE JOURNAL OF BIOLOGY AND MEDICINE 1989;
62:379-92. [PMID:
2556864 PMCID:
PMC2589084]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Six-micron paraffin sections of paraformaldehyde-fixed specimens of 24 ovarian benign and neoplastic specimens were assayed for tumor cell-specific oncogene expression by a sensitive, quantitative in situ hybridization technique with probes for 17 oncogenes, beta-actin, and E. coli beta-lactamase. In the benign, borderline, and invasive adenocarcinomas, multiple oncogenes, including neu, fes, fms, Ha-ras, trk, c-myc, fos, and PDGF-A chains, were expressed at significant levels relative to a housekeeping gene (beta-actin). In the mixed-Mullerian tumors, a rather different pattern of oncogene expression was observed, characterized primarily by expression of sis (PDGF-B chain). For the adenocarcinomas, statistical analysis demonstrated that expression of several genes (fms, neu, PDGF-A) was closely linked to others (c-fos, c-myc) known to have important roles in the control of cell proliferation, but only one gene, fms, correlated very strongly with clinicopathologic features (high FIGO histologic grade and high FIGO clinical stage) predictive of aggressive clinical behavior and poor outcome. The authors discuss the role that tumor epithelial cell expression of the fms gene product might play in the auto- and paracrine control of growth and dissemination of ovarian adenocarcinomas.
Collapse