1
|
Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ. Submicrometer metallic barcodes. Science 2001; 294:137-41. [PMID: 11588257 DOI: 10.1126/science.294.5540.137] [Citation(s) in RCA: 1048] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We synthesized multimetal microrods intrinsically encoded with submicrometer stripes. Complex striping patterns are readily prepared by sequential electrochemical deposition of metal ions into templates with uniformly sized pores. The differential reflectivity of adjacent stripes enables identification of the striping patterns by conventional light microscopy. This readout mechanism does not interfere with the use of fluorescence for detection of analytes bound to particles by affinity capture, as demonstrated by DNA and protein bioassays.
Collapse
|
|
24 |
1048 |
2
|
Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, Baumann G, Kopchick JJ. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A 1997; 94:13215-20. [PMID: 9371826 PMCID: PMC24289 DOI: 10.1073/pnas.94.24.13215] [Citation(s) in RCA: 572] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.
Collapse
|
research-article |
28 |
572 |
3
|
Armstrong DW, He L, Liu YS. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 1999; 71:3873-6. [PMID: 10489532 DOI: 10.1021/ac990443p] [Citation(s) in RCA: 427] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stable room-temperature ionic liquids (RTILs) have been used as novel reaction solvents. They can solubilize complex polar molecules such as cyclodextrins and glycopeptides. Their wetting ability and viscosity allow them to be coated onto fused silica capillaries. Thus, 1-butyl-3-methylimidazolium hexafluorophosphate and the analogous chloride salt can be used as stationary phases for gas chromatography (GC). Using inverse GC, one can examine the nature of these ionic liquids via their interactions with a variety of compounds. The Rohrschneider-McReynolds constants were determined for both ionic liquids and a popular commercial polysiloxane stationary phase. Ionic liquid stationary phases seem to have a dual nature. They appear to act as a low-polarity stationary phase to nonpolar compounds. However, molecules with strong proton donor groups, in particular, are tenaciously retained. The nature of the anion can have a significant effect on both the solubilizing ability and the selectivity of ionic liquid stationary phases. It appears that the unusual properties of ionic liquids could make them beneficial in many areas of separation science.
Collapse
|
|
26 |
427 |
4
|
Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 2009; 107:1193-201. [PMID: 19486396 DOI: 10.1111/j.1365-2672.2009.04303.x] [Citation(s) in RCA: 410] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate antibacterial activities of zinc oxide nanoparticles (ZnO NP) and their mode of action against an important foodborne pathogen, Escherichia coli O157:H7. METHODS AND RESULTS ZnO NP with sizes of 70 nm and concentrations of 0, 3, 6 and 12 mmol l(-1) and NP-free solutions were used in antimicrobial tests against E. coli O157:H7. ZnO NP showed increasing inhibitory effects on the growth of E. coli O157:H7 as the concentrations of ZnO NP increased. A complete inhibition of microbial growth was achieved at the concentration level of 12 mmol l(-1) or higher. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy were used to characterize the changes of morphology and cellular compositions of bacterial cells treated with ZnO NP and study the mode of action of ZnO NP against E. coli O157:H7. The intensity of lipid and protein bands in the Raman spectra of bacterial cells increased after exposure to ZnO NP, while no significant changes in nucleic acid bands were observed. CONCLUSIONS ZnO NP were found to have antibacterial activity against E. coli O157:H7. The inhibitory effects increase as the concentration of ZnO NP increased. Results indicate that ZnO NP may distort and damage bacterial cell membrane, resulting in a leakage of intracellular contents and eventually the death of bacterial cells. SIGNIFICANCE AND IMPACT OF THE STUDY These results suggest that ZnO NP could potentially be used as an effective antibacterial agent to protect agricultural and food safety.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
410 |
5
|
Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM. Prevalence of mitochondrial DNA disease in adults. Ann Neurol 2008; 63:35-9. [PMID: 17886296 DOI: 10.1002/ana.21217] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Diverse and variable clinical features, a loose genotype-phenotype relationship, and presentation to different medical specialties have all hindered attempts to gauge the epidemiological impact of mitochondrial DNA (mtDNA) disease. Nevertheless, a clear understanding of its prevalence remains an important goal, particularly about planning appropriate clinical services. Consequently, the aim of this study was to accurately define the prevalence of mtDNA disease (primary mutation occurs in mtDNA) in the working-age population of the North East of England. METHODS Adults with suspected mitochondrial disease in the North East of England were referred to a single neurology center for investigation from 1990 to 2004. Those with pathogenic mtDNA mutations were identified and pedigree analysis performed. For the midyear period of 2001, we calculated the minimum point prevalence of mtDNA disease for adults of working age (>16 and <60/65 years for female/male patients, respectively). RESULTS In this population, we found that 9.2 in 100,000 people have clinically manifest mtDNA disease, making this one of the commonest inherited neuromuscular disorders. In addition, a further 16.5 in 100,000 children and adults younger than retirement age are at risk for development of mtDNA disease. INTERPRETATION Through detailed pedigree analysis and active family tracing, we have been able to provide revised minimum prevalence figures for mtDNA disease. These estimates confirm that mtDNA disease is a common cause of chronic morbidity and is more prevalent than has been previously appreciated.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
395 |
6
|
Armstrong DW, Zhang LK, He L, Gross ML. Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 2001; 73:3679-86. [PMID: 11510834 DOI: 10.1021/ac010259f] [Citation(s) in RCA: 346] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Room-temperature ionic liquids are useful as solvents for organic synthesis, electrochemical studies, and separations. We wished to examine whether their high solubalizing power, negligible vapor pressure, and broad liquid temperature range are advantageous if they are used as matrixes for UV-MALDI. Several different ionic matrixes were synthesized and tested, using peptides, proteins, and poly(ethylene glycol) (PEG-2000). All ionic liquids tested have excellent solubilizing properties and vacuum stability compared to other commonly used liquid and solid matrixes. However, they varied widely in their ability to produce analyte gas-phase ions. Certain ionic matrixes, however, produce homogeneous solutions of greater vacuum stability, higher ion peak intensity, and equivalent or lower detection limits than currently used solid matrixes. Clearly, ionic liquids and their more amorphous solid analogues merit further investigation as MALDI matrixes.
Collapse
|
|
24 |
346 |
7
|
Hoyt MA, He L, Loo KK, Saunders WS. Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J Cell Biol 1992; 118:109-20. [PMID: 1618897 PMCID: PMC2289527 DOI: 10.1083/jcb.118.1.109] [Citation(s) in RCA: 334] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two Saccharomyces cerevisiae genes, CIN8 and KIP1 (a.k.a. CIN9), were identified by their requirement for normal chromosome segregation. Both genes encode polypeptides related to the heavy chain of the microtubule-based force-generating enzyme kinesin. Cin8p was found to be required for pole separation during mitotic spindle assembly at 37 degrees C, although overproduced Kip1p could substitute. At lower temperatures, the activity of at least one of these proteins was required for cell viability, indicating that they perform an essential but redundant function. Cin8p was observed to be a component of the mitotic spindle, colocalizing with the microtubules that lie between the poles. Taken together, these findings suggest that these proteins interact with spindle microtubules to produce an outwardly directed force acting upon the poles.
Collapse
|
research-article |
33 |
334 |
8
|
He L, Ding Y, Zhang Q, Che X, He Y, Shen H, Wang H, Li Z, Zhao L, Geng J, Deng Y, Yang L, Li J, Cai J, Qiu L, Wen K, Xu X, Jiang S. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006; 210:288-97. [PMID: 17031779 PMCID: PMC7167655 DOI: 10.1002/path.2067] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The authors have previously shown that acute lung injury (ALI) produces a wide spectrum of pathological processes in patients who die of severe acute respiratory syndrome (SARS) and that the SARS coronavirus (SARS‐CoV) nucleoprotein is detectable in the lungs, and other organs and tissues, in these patients. In the present study, immunohistochemistry (IHC) and in situ hybridization (ISH) assays were used to analyse the expression of angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV spike (S) protein, and some pro‐inflammatory cytokines (PICs) including MCP‐1, TGF‐β1, TNF‐α, IL‐1β, and IL‐6 in autopsy tissues from four patients who died of SARS. SARS‐CoV S protein and its RNA were only detected in ACE2+ cells in the lungs and other organs, indicating that ACE2‐expressing cells are the primary targets for SARS‐CoV infection in vivo in humans. High levels of PICs were expressed in the SARS‐CoV‐infected ACE2+ cells, but not in the uninfected cells. These results suggest that cells infected by SARS‐CoV produce elevated levels of PICs which may cause immuno‐mediated damage to the lungs and other organs, resulting in ALI and, subsequently, multi‐organ dysfunction. Therefore application of PIC antagonists may reduce the severity and mortality of SARS. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
322 |
9
|
Hudson G, Amati-Bonneau P, Blakely EL, Stewart JD, He L, Schaefer AM, Griffiths PG, Ahlqvist K, Suomalainen A, Reynier P, McFarland R, Turnbull DM, Chinnery PF, Taylor RW. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. ACTA ACUST UNITED AC 2007; 131:329-37. [PMID: 18065439 DOI: 10.1093/brain/awm272] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mutations in nuclear genes involved in mitochondrial DNA (mtDNA) maintenance cause a wide range of clinical phenotypes associated with the secondary accumulation of multiple mtDNA deletions in affected tissues. The majority of families with autosomal dominant progressive external ophthalmoplegia (PEO) harbour mutations in genes encoding one of three well-characterized proteins--pol gamma, Twinkle or Ant 1. Here we show that a heterozygous mis-sense mutation in OPA1 leads to multiple mtDNA deletions in skeletal muscle and a mosaic defect of cytochrome c oxidase (COX). The disorder presented with visual failure and optic atrophy in childhood, followed by PEO, ataxia, deafness and a sensory-motor neuropathy in adult life. COX-deficient skeletal muscle fibres contained supra-threshold levels of multiple mtDNA deletions, and genetic linkage, sequencing and expression analysis excluded POLG1, PEO1 and SLC25A4, the gene encoding Ant 1, as the cause. This demonstrates the importance of OPA1 in mtDNA maintenance, and implicates OPA1 in diseases associated with secondary defects of mtDNA.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
306 |
10
|
Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, Smertenko T, Alston CL, Neeve VC, Best A, Yarham JW, Kirschner J, Schara U, Talim B, Topaloglu H, Baric I, Holinski-Feder E, Abicht A, Czermin B, Kleinle S, Morris AA, Vassallo G, Gorman GS, Ramesh V, Turnbull DM, Santibanez-Koref M, McFarland R, Horvath R, Chinnery PF. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 2014; 312:68-77. [PMID: 25058219 PMCID: PMC6558267 DOI: 10.1001/jama.2014.7184] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Mitochondrial disorders have emerged as a common cause of inherited disease, but their diagnosis remains challenging. Multiple respiratory chain complex defects are particularly difficult to diagnose at the molecular level because of the massive number of nuclear genes potentially involved in intramitochondrial protein synthesis, with many not yet linked to human disease. OBJECTIVE To determine the molecular basis of multiple respiratory chain complex deficiencies. DESIGN, SETTING, AND PARTICIPANTS We studied 53 patients referred to 2 national centers in the United Kingdom and Germany between 2005 and 2012. All had biochemical evidence of multiple respiratory chain complex defects but no primary pathogenic mitochondrial DNA mutation. Whole-exome sequencing was performed using 62-Mb exome enrichment, followed by variant prioritization using bioinformatic prediction tools, variant validation by Sanger sequencing, and segregation of the variant with the disease phenotype in the family. RESULTS Presumptive causal variants were identified in 28 patients (53%; 95% CI, 39%-67%) and possible causal variants were identified in 4 (8%; 95% CI, 2%-18%). Together these accounted for 32 patients (60% 95% CI, 46%-74%) and involved 18 different genes. These included recurrent mutations in RMND1, AARS2, and MTO1, each on a haplotype background consistent with a shared founder allele, and potential novel mutations in 4 possible mitochondrial disease genes (VARS2, GARS, FLAD1, and PTCD1). Distinguishing clinical features included deafness and renal involvement associated with RMND1 and cardiomyopathy with AARS2 and MTO1. However, atypical clinical features were present in some patients, including normal liver function and Leigh syndrome (subacute necrotizing encephalomyelopathy) seen in association with TRMU mutations and no cardiomyopathy with founder SCO2 mutations. It was not possible to confidently identify the underlying genetic basis in 21 patients (40%; 95% CI, 26%-54%). CONCLUSIONS AND RELEVANCE Exome sequencing enhances the ability to identify potential nuclear gene mutations in patients with biochemically defined defects affecting multiple mitochondrial respiratory chain complexes. Additional study is required in independent patient populations to determine the utility of this approach in comparison with traditional diagnostic methods.
Collapse
|
research-article |
11 |
263 |
11
|
Zierath JR, He L, Gumà A, Odegoard Wahlström E, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 1996; 39:1180-9. [PMID: 8897005 DOI: 10.1007/bf02658504] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the response of the glucose transport system to insulin, in the presence of ambient glucose concentrations, in isolated skeletal muscle from seven patients with non-insulin-dependent diabetes mellitus (NIDDM) (age, 55 +/- 3 years, BMI 27.4 +/- 1.8 kg/m2) and seven healthy control subjects (age, 54 +/- 3 years, BMI 26.5 +/- 1.1 kg/m2). Insulin-mediated whole body glucose utilization was similar between the groups when studied in the presence of ambient glucose concentrations (approximately 10 mmol/l for the NIDDM patients and 5 mmol/l for the control subjects). Samples were obtained from the vastus lateralis muscle, by means of an open muscle biopsy procedure, before and after a 40-min insulin infusion. An increase in serum insulin levels from 54 +/- 12 to 588 +/- 42 pmol/l, induced a 1.6 +/- 0.2-fold increase in glucose transporter protein (GLUT4) in skeletal muscle plasma membranes obtained from the control subjects (p < 0.05), whereas no significant increase was noted in plasma membrane fractions prepared from NIDDM muscles, despite a similar increase in serum insulin levels. At concentrations of 5 mmol/l 3-O-methylglucose in vitro, insulin (600 pmol/l) induced a 2.2-fold (p < 0.05) increase in glucose transport in NIDDM muscles and a 3.4-fold (p < 0.001) increase in the control muscles. Insulin-stimulated 3-O-methylglucose transport was positively correlated with whole body insulin-mediated glucose uptake in all participants (r = 0.78, p < 0.001) and negatively correlated with fasting plasma glucose levels in the NIDDM subjects (r = 0.93, p < 0.001). Muscle fibre type distribution and capillarization were similar between the groups. Our results suggest that insulin-stimulated glucose transport in skeletal muscle from patients with NIDDM is down-regulated in the presence of hyperglycaemia. The increased flux of glucose as a consequence of hyperglycaemia may result in resistance to any further insulin-induced gain of GLUT4 at the level of the plasma membrane.
Collapse
|
|
29 |
261 |
12
|
He L, Chinnery PF, Durham SE, Blakely EL, Wardell TM, Borthwick GM, Taylor RW, Turnbull DM. Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 2002; 30:e68. [PMID: 12136116 PMCID: PMC135769 DOI: 10.1093/nar/gnf067] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2002] [Revised: 05/20/2002] [Accepted: 05/20/2002] [Indexed: 11/13/2022] Open
Abstract
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.
Collapse
|
Comparative Study |
23 |
245 |
13
|
Zu C, Wang WB, He L, Zhang WG, Dai CY, Wang F, Duan LM. Experimental realization of universal geometric quantum gates with solid-state spins. Nature 2014; 514:72-5. [DOI: 10.1038/nature13729] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/31/2014] [Indexed: 12/24/2022]
|
|
11 |
243 |
14
|
Karpova TS, Baumann CT, He L, Wu X, Grammer A, Lipsky P, Hager GL, McNally JG. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Microsc 2003; 209:56-70. [PMID: 12535185 DOI: 10.1046/j.1365-2818.2003.01100.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One manifestation of fluorescence resonance energy transfer (FRET) is an increase in donor fluorescence after photobleaching the acceptor. Published acceptor-photobleaching methods for FRET have mainly used wide-field microscopy. A laser scanning confocal microscope enables faster and targeted bleaching within the field of view, thereby improving speed and accuracy. Here we demonstrate the approach with CFP and YFP, the most versatile fluorescent markers now available for FRET. CFP/YFP FRET imaging has been accomplished with a single laser (argon) available on virtually all laser-scanning confocal microscopes. Accordingly, we also describe the conditions that we developed for dual imaging of CFP and YFP with the 458 and 514 argon lines. We detect FRET in a CFP/YFP fusion and also between signalling molecules (TNF-Receptor-Associated-Factors or TRAFs) that are known to homo- and heterotrimerize. Importantly, we demonstrate that appropriate controls are essential to avoid false positives in FRET by acceptor photobleaching. We use two types of negative control: (a) an internal negative control (non-bleached areas of the cell) and (b) cells with donor in the absence of the acceptor (CFP only). We find that both types of negative control can yield false FRET. Given this false FRET background, we describe a method for distinguishing true positive signals. In summary, we extensively characterize a simple approach to FRET that should be adaptable to most laser-scanning confocal microscopes, and demonstrate its feasibility for detecting FRET between several CFP/YFP partners.
Collapse
|
|
22 |
242 |
15
|
Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001. [PMID: 11544272 DOI: 10.1172/jci200112346] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antigen-specific cancer immunotherapy and antiangiogenesis have emerged as two attractive strategies for cancer treatment. An innovative approach that combines both mechanisms will likely generate the most potent antitumor effect. We tested this approach using calreticulin (CRT), which has demonstrated the ability to enhance MHC class I presentation and exhibit an antiangiogenic effect. We explored the linkage of CRT to a model tumor antigen, human papilloma virus type-16 (HPV-16) E7, for the development of a DNA vaccine. We found that C57BL/6 mice vaccinated intradermally with CRT/E7 DNA exhibited a dramatic increase in E7-specific CD8(+) T cell precursors and an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with wild-type E7 DNA or CRT DNA. Vaccination of CD4/CD8 double-depleted C57BL/6 mice and immunocompromised (BALB/c nu/nu) mice with CRT/E7 DNA or CRT DNA generated significant reduction of lung tumor nodules compared with wild-type E7 DNA, suggesting that antiangiogenesis may have contributed to the antitumor effect. Examination of microvessel density in lung tumor nodules and an in vivo angiogenesis assay further confirmed the antiangiogenic effect generated by CRT/E7 and CRT. Thus, cancer therapy using CRT linked to a tumor antigen holds promise for treating tumors by combining antigen-specific immunotherapy and antiangiogenesis.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
217 |
16
|
Blackwood DH, He L, Morris SW, McLean A, Whitton C, Thomson M, Walker MT, Woodburn K, Sharp CM, Wright AF, Shibasaki Y, St Clair DM, Porteous DJ, Muir WJ. A locus for bipolar affective disorder on chromosome 4p. Nat Genet 1996; 12:427-30. [PMID: 8630499 DOI: 10.1038/ng0496-427] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main clinical feature of bipolar affective disorder is a change of mood to depression or elation. Unipolar disorder, also termed major depressive disorder, describes the occurrence of depression alone without episodes of elevated mood. Little is understood about the underlying causes of these common and severe illnesses which have estimated lifetime prevalences in the region of 0.8% for bipolar and 6% for unipolar disorder. Strong support for a genetic aetiology is found in the familial nature of the condition, the increased concordance of monozygotic over dizygotic twins and adoption studies showing increased rates of illness in children of affected parents. However, linkage studies have met with mixed success. An initial report of linkage on the short arm of chromosome 11 (ref. 4) was revised and remains unreplicated. Reports proposing cosegregation of genes found on the X chromosome with bipolar illness have not been supported by others. More recently bipolar disorder has been reported to be linked with markers on chromosomes 18, 21, 16 and a region on the X chromosome different from those previously suggested. We have carried out a linkage study in twelve bipolar families. In a single family a genome search employing 193 markers indicated linkage on chromosome 4p where the marker D4S394 generated a two-point lod score of 4.1 under a dominant model of inheritance. Three point analyses with neighbouring markers gave a maximum lod score of 4.8. Eleven other bipolar families were typed using D4S394 and in all families combined there was evidence of linkage with heterogeneity with a maximum two-point lod score of 4.1 (theta = 0, alpha = 0.35).
Collapse
|
|
29 |
212 |
17
|
Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C, Wang Y, Huang S, Han J. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol 2000; 20:4543-52. [PMID: 10848581 PMCID: PMC85840 DOI: 10.1128/mcb.20.13.4543-4552.2000] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The p38 group of kinases belongs to the mitogen-activated protein (MAP) kinase superfamily with structural and functional characteristics distinguishable from those of the ERK, JNK (SAPK), and BMK (ERK5) kinases. Although there is a high degree of similarity among members of the p38 group in terms of structure and activation, each member appears to have a unique function. Here we show that activation of p38gamma (also known as ERK6 or SAPK3), but not the other p38 isoforms, is required for gamma-irradiation-induced G(2) arrest. Activation of the MKK6-p38gamma cascade is sufficient to induce G(2) arrest in cells, and expression of dominant negative alleles of MKK6 or p38gamma allows cells to escape the DNA damage-induce G(2) delay. Activation of p38gamma is dependent on ATM and leads to activation of Cds1 (also known as Chk2). These data suggest a model in which activation of ATM by gamma irradiation leads to the activation of MKK6, p38gamma, and Cds1 and that activation of both MKK6 and p38gamma is essential for the proper regulation of the G(2) checkpoint in mammalian cells.
Collapse
|
research-article |
25 |
212 |
18
|
Ojima I, Chakravarty S, Inoue T, Lin S, He L, Horwitz SB, Kuduk SD, Danishefsky SJ. A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc Natl Acad Sci U S A 1999; 96:4256-61. [PMID: 10200249 PMCID: PMC16319 DOI: 10.1073/pnas.96.8.4256] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Taxol (paclitaxel), a complex diterpene obtained from the Pacific yew, Taxus brevifolia, is arguably the most important new drug in cancer chemotherapy. The mechanism of cytotoxic action for paclitaxel-i.e., the stabilization of microtubules leading to mitotic arrest-is now shared by four recently identified natural products, eleutherobin, epothilones A and B, and discodermolide. Their ability to competitively inhibit [3H]paclitaxel binding to microtubules strongly suggests the existence of a common binding site. Recently, we have developed nonaromatic analogues of paclitaxel that maintain high cytotoxicity and tubulin binding (e.g., nonataxel). We now propose a common pharmacophore that unites paclitaxel, nonataxel, the epothilones, eleutherobin, and discodermolide, and rationalizes the extensive structure-activity relationship data pertinent to these compounds. Insights from the common pharmacophore have enabled the development of a hybrid construct with demonstrated cytotoxic and tubulin-binding activity.
Collapse
|
research-article |
26 |
212 |
19
|
He L, Mo H, Hadisusilo S, Qureshi AA, Elson CE. Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 1997; 127:668-74. [PMID: 9164984 DOI: 10.1093/jn/127.5.668] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sundry mevalonate-derived constituents (isoprenoids) of fruits, vegetables and cereal grains suppress the growth of tumors. This study estimated the concentrations of structurally diverse isoprenoids required to inhibit the increase in a population of murine B16(F10) melanoma cells during a 48-h incubation by 50% (IC50 value). The IC50 values for d-limonene and perillyl alcohol, the monoterpenes in Phase I trials, were 450 and 250 micromol/L, respectively; related cyclic monoterpenes (perillaldehyde, carvacrol and thymol), an acyclic monoterpene (geraniol) and the end ring analog of beta-carotene (beta-ionone) had IC50 values in the range of 120-150 micromol/L. The IC50 value estimated for farnesol, the side-chain analog of the tocotrienols (50 micromol/L) fell midway between that of alpha-tocotrienol (110 micromol/L) and those estimated for gamma- (20 micromol/L) and delta- (10 micromol/L) tocotrienol. A novel tocotrienol lacking methyl groups on the tocol ring proved to be extremely potent (IC50, 0.9 micromol/L). In the first of two diet studies, experimental diets were fed to weanling C57BL female mice for 10 d prior to and 28 d following the implantation of the aggressively growing and highly metastatic B16(F10) melanoma. The isomolar (116 micromol/kg diet) and the Vitamin E-equivalent (928 micromol/kg diet) substitution of d-gamma-tocotrienol for dl-alpha-tocopherol in the AIN-76A diet produced 36 and 50% retardations, respectively, in tumor growth (P < 0.05). In the second study, melanomas were established before mice were fed experimental diets formulated with 2 mmol/kg d-gamma-tocotrienol, beta-ionone individually and in combination. Each treatment increased (P < 0.03) the duration of host survival. Our finding that the effects of individual isoprenoids were additive suggests the possibility that one component of the anticarcinogenic action of plant-based diets is the tumor growth-suppressive action of the diverse isoprenoid constituents of fruits, vegetables and cereal grains.
Collapse
|
|
28 |
205 |
20
|
Lin M, He L, Awika J, Yang L, Ledoux DR, Li H, Mustapha A. Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. J Food Sci 2009; 73:T129-34. [PMID: 19019134 DOI: 10.1111/j.1750-3841.2008.00901.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melamine, a nitrogen-rich chemical, was implicated in pet and human food recalls in 2007, which caused enormous economic losses to the food industry. In this study, melamine concentration in wheat gluten, chicken feed, and processed foods (that is, cake and noodle) was measured by surface enhanced Raman spectroscopy (SERS) in combination with SERS-active substrates. SERS was able to rapidly detect 0.1% melamine in wheat gluten, 0.05% in chicken feed, 0.05% in cakes, and 0.07% in noodle, respectively. A partial least squares (PLS) model was established for the quantification of melamine in foods by SERS: R= 0.90, RMSEP = 0.33. In addition, SERS results were verified by HPLC analysis based on a simplified FDA method. Compared with HPLC, the SERS method is much faster and simpler, requires minimum sample preparation, but still yields satisfactory qualitative and quantitative results. These results demonstrate that it is an applicable approach to use SERS to screen foods, eliminate presumptive negative samples of melamine contamination from the sample population, and then verify presumptive positive samples using HPLC protocols. Combining these 2 methods could provide a more rapid and cost-effective way for monitoring melamine contamination in increasingly large numbers of imported foods and feed products.
Collapse
|
Journal Article |
16 |
195 |
21
|
Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, Cao Y, Wang X, Qiu Y, Su M, Zhao A, Wang P, Yang P, Wu J, Feng G, He L, Jia W, Wan C. Potential metabolite markers of schizophrenia. Mol Psychiatry 2013; 18:67-78. [PMID: 22024767 PMCID: PMC3526727 DOI: 10.1038/mp.2011.131] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a severe mental disorder that affects 0.5-1% of the population worldwide. Current diagnostic methods are based on psychiatric interviews, which are subjective in nature. The lack of disease biomarkers to support objective laboratory tests has been a long-standing bottleneck in the clinical diagnosis and evaluation of schizophrenia. Here we report a global metabolic profiling study involving 112 schizophrenic patients and 110 healthy subjects, who were divided into a training set and a test set, designed to identify metabolite markers. A panel of serum markers consisting of glycerate, eicosenoic acid, β-hydroxybutyrate, pyruvate and cystine was identified as an effective diagnostic tool, achieving an area under the receiver operating characteristic curve (AUC) of 0.945 in the training samples (62 patients and 62 controls) and 0.895 in the test samples (50 patients and 48 controls). Furthermore, a composite panel by the addition of urine β-hydroxybutyrate to the serum panel achieved a more satisfactory accuracy, which reached an AUC of 1 in both the training set and the test set. Multiple fatty acids and ketone bodies were found significantly (P<0.01) elevated in both the serum and urine of patients, suggesting an upregulated fatty acid catabolism, presumably resulting from an insufficiency of glucose supply in the brains of schizophrenia patients.
Collapse
|
research-article |
12 |
193 |
22
|
Zhao X, Dou W, He L, Liang S, Tie J, Liu C, Li T, Lu Y, Mo P, Shi Y, Wu K, Nie Y, Fan D. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 2013; 32:1363-1372. [PMID: 22614005 DOI: 10.1038/onc.2012.156] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/27/2012] [Accepted: 03/30/2012] [Indexed: 02/06/2023]
Abstract
Metastasis is a major clinical obstacle in the treatment of gastric cancer (GC) and it accounts for the majority of cancer-related mortality. MicroRNAs have recently emerged as regulators of metastasis by acting on multiple signaling pathways. In this study, we found that miR-7 is significantly downregulated in highly metastatic GC cell lines and metastatic tissues. Both gain-of-function and loss-of-function experiments showed that increased miR-7 expression significantly reduced GC cell migration and invasion, whereas decreased miR-7 expression dramatically enhanced cell migration and invasion. In vivo metastasis assays also demonstrated that overexpression of miR-7 markedly inhibited GC metastasis. Moreover, the insulin-like growth factor-1 receptor (IGF1R) oncogene, which is often mutated or amplified in human cancers and functions as an important regulator of cell growth and tumor invasion, was identified as a direct target of miR-7. Silencing of IGF1R using small interefering RNA (siRNA) recapitulated the anti-metastatic function of miR-7, whereas restoring the IGF1R expression attenuated the function of miR-7 in GC cells. Furthermore, we found that suppression of Snail by miR-7, through targeting IGF1R, increased E-cadherin expression and partially reversed the epithelial-mesenchymal transition (EMT). Finally, analyses of miR-7 and IGF1R levels in human primary GC with matched lymph node metastasis tissue arrays revealed that miR-7 is inversely correlated with IGF1R expression. The present study provides insight into the specific biological behavior of miR-7 in EMT and tumor metastasis. Targeting this novel miR-7/IGF1R/Snail axis would be helpful as a therapeutic approach to block GC metastasis.
Collapse
|
|
12 |
181 |
23
|
Winterthun S, Ferrari G, He L, Taylor RW, Zeviani M, Turnbull DM, Engelsen BA, Moen G, Bindoff LA. Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology 2006; 64:1204-8. [PMID: 15824347 DOI: 10.1212/01.wnl.0000156516.77696.5a] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate three families and one sporadic case with a recessively inherited ataxic syndrome. METHODS Clinical and genetic studies were performed in six individuals. Southern blotting and real time PCR were used to detect deletions of mtDNA and mutations in the POLG gene were identified using a combination of DHPLC and direct DNA sequencing. RESULTS The patients have a distinctive, progressive disorder that starts with episodic symptoms such as migraine-like headache or epilepsy. Ataxia, which is a combination of central and peripheral disease, develops later as does ophthalmoplegia. The commonest form of epilepsy was focal and involved the occipital lobes. Myoclonus was common and patients have a high risk of status epilepticus. MRI typically shows signal changes in the central cerebellum, olivary nuclei, occipital cortex, and thalami. COX negative muscle fibers were found in four of six; in one patient these were rare and in another absent. Multiple mtDNA deletions were identified in all patients, although in two these were not apparent on Southern blotting and real time PCR was required to demonstrate the defect. Two families were homozygous for a previously described POLG mutation, G1399A (A467T). One family and the sporadic case had the same two new mutations, a G to C at position 1491 (Q497H) and a G to C at 2243 (W748S). CONCLUSIONS Mutations in POLG cause a recessively inherited syndrome with episodic features and progressive ataxia. Characteristic changes on MRI are seen and although skeletal muscle may appear morphologically normal, multiple mtDNA deletions can be detected using real-time PCR.
Collapse
MESH Headings
- Adolescent
- Adult
- Ataxia/diagnosis
- Ataxia/enzymology
- Ataxia/genetics
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/genetics
- DNA Mutational Analysis
- DNA Polymerase gamma
- DNA, Mitochondrial/genetics
- DNA-Directed DNA Polymerase/genetics
- Disease Progression
- Epilepsy/genetics
- Female
- Genes, Recessive/genetics
- Genetic Predisposition to Disease/genetics
- Genetic Testing
- Heredodegenerative Disorders, Nervous System/diagnosis
- Heredodegenerative Disorders, Nervous System/enzymology
- Heredodegenerative Disorders, Nervous System/genetics
- Humans
- Magnetic Resonance Imaging
- Male
- Middle Aged
- Migraine Disorders/genetics
- Mitochondrial Diseases/diagnosis
- Mitochondrial Diseases/enzymology
- Mitochondrial Diseases/genetics
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/physiopathology
- Mutation/genetics
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
176 |
24
|
Xu J, Qu J, Cao L, Sai Y, Chen C, He L, Yu L. Mesenchymal stem cell-based angiopoietin-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. J Pathol 2008; 214:472-81. [PMID: 18213733 DOI: 10.1002/path.2302] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) can serve as a vehicle for gene therapy. Angiopoietin-1 (Ang1) is a critical factor for endothelial survival and vascular stabilization via the inhibition of endothelial permeability and leukocyte-endothelium interactions. We hypothesized that MSC-based Ang1 gene therapy might be a potential therapeutic approach for lipopolysaccharide (LPS)-induced lung injury. MSCs were isolated from 6 week-old inbred male mice and transduced with the Ang1 gene, using a lentivirus vector. The MSCs showed no significant phenotypic changes after transduction. In the in vivo mouse model, the LPS-induced lung injury was markedly alleviated in the group treated with MSCs carrying Ang1 (MSCs-Ang1), compared with groups treated with MSCs or Ang1 alone. The expression of Ang1 protein in the recipient lungs was increased after MSCs-Ang1 administration. The histopathological and biochemical indices of LPS-induced lung injury were improved after MSCs-based Ang1 gene treatment. MSCs-Ang1 administration also reduced pulmonary vascular endothelial permeability and the recruitment of inflammatory cells into the lung. Cells of MSC origin could be detected in the recipient lungs for 2 weeks after injection with MSCs. These results suggest that MSCs and Ang1 have a synergistic role in the treatment of LPS-induced lung injury. MSC-based Ang1 gene therapy may be developed as a potential novel strategy for the treatment of acute lung injury.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
174 |
25
|
Geiser JR, Schott EJ, Kingsbury TJ, Cole NB, Totis LJ, Bhattacharyya G, He L, Hoyt MA. Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Mol Biol Cell 1997; 8:1035-50. [PMID: 9201714 PMCID: PMC305712 DOI: 10.1091/mbc.8.6.1035] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kinesin-related Cin8p is the most important spindle-pole-separating motor in Saccharomyces cerevisiae but is not essential for cell viability. We identified 20 genes whose products are specifically required by cell deficient for Cin8p. All are associated with mitotic roles and represent at least four different functional pathways. These include genes whose products act in two spindle motor pathways that overlap in function with Cin8p, the kinesin-related Kip1p pathway and the cytoplasmic dynein pathway. In addition, genes required for mitotic spindle checkpoint function and for normal microtubule stability were recovered. Mutant alleles of eight genes caused phenotypes similar to dyn1 (encodes the dynein heavy chain), including a spindle-positioning defect. We provide evidence that the products of these genes function in concept with dynein. Among the dynein pathway gene products, we found homologues of the cytoplasmic dynein intermediate chain, the p150Glued subunit of the dynactin complex, and human LIS-1, required for normal brain development. These findings illustrate the complex cellular interactions exhibited by Cin8p, a member of a conserved spindle motor family.
Collapse
|
research-article |
28 |
173 |