101
|
Nattel S, Dobrev D. Controversies About Atrial Fibrillation Mechanisms: Aiming for Order in Chaos and Whether it Matters. Circ Res 2019; 120:1396-1398. [PMID: 28450363 DOI: 10.1161/circresaha.116.310489] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
102
|
Nattel S, Lip GYH. Guideline Implications of Prothrombotic State Assessment in Low-Risk Atrial Fibrillation Patients: Consistency With CHA 2DS 2-VASc and Support for CHADS-65. Can J Cardiol 2019; 35:547-549. [PMID: 31030855 DOI: 10.1016/j.cjca.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 11/27/2022] Open
|
103
|
Nattel S. Electrical coupling between cardiomyocytes and fibroblasts: experimental testing of a challenging and important concept. Cardiovasc Res 2019; 114:349-352. [PMID: 29360945 DOI: 10.1093/cvr/cvy003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
104
|
Yamazaki M, Tsuji Y, Niwa R, Tomii N, Arafune T, Honjo H, Dobrev D, Nattel S, Kodama I, Sakuma I, Makita N. Role of Late Sodium Current in Experimental Torsade de Pointes. J Electrocardiol 2019. [DOI: 10.1016/j.jelectrocard.2019.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
105
|
Nattel S. The Canadian Journal of Cardiology: Open and Growing. Can J Cardiol 2019; 35:133-137. [DOI: 10.1016/j.cjca.2018.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022] Open
|
106
|
Linz D, Elliott AD, Hohl M, Malik V, Schotten U, Dobrev D, Nattel S, Böhm M, Floras J, Lau DH, Sanders P. Role of autonomic nervous system in atrial fibrillation. Int J Cardiol 2018; 287:181-188. [PMID: 30497894 DOI: 10.1016/j.ijcard.2018.11.091] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
Atrial fibrillation is the most common sustained arrhythmia and is associated with significant morbidity and mortality. The autonomic nervous system has a significant role in the milieu predisposing to the triggers, perpetuators and substrate for atrial fibrillation. It has direct electrophysiological effects and causes alterations in atrial structure. In a significant portion of patients with atrial fibrillation, the autonomic nervous system activity is likely a composite of reflex excitation due to atrial fibrillation itself and contribution of concomitant risk factors such as hypertension, obesity and sleep-disordered breathing. We review the role of autonomic nervous system activation, with focus on changes in reflex control during atrial fibrillation and the role of combined sympatho-vagal activation for atrial fibrillation initiation, maintenance and progression. Finally, we discuss the potential impact of combined aggressive risk factor management as a strategy to modify the autonomic nervous system in patients with atrial fibrillation and to reverse the arrhythmogenic substrate.
Collapse
|
107
|
Aguilar M, Nattel S. Clarity and controversy around rate control in AF, the orphan child in AF therapeutics. Int J Cardiol 2018; 287:189-194. [PMID: 30501984 DOI: 10.1016/j.ijcard.2018.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022]
Abstract
The vast majority of clinical arrhythmia-management research over the past couple of decades has focused on catheter-based therapeutic advances. There has been much less emphasis on rate-control strategies; however, the majority of patients with atrial fibrillation (AF) will require some form of rate-control management, making AF rate-control the single most widely used therapeutic component in AF-patients. While the general principles governing AF rate-control have remained largely unchanged, they are often underappreciated. In addition, a number of important controversies make optimal rate-control therapy sometimes difficult to choose. In this review, we aim to address a number of important areas of controversy in the application of AF rate-control, as well as to discuss aspects that are well understood but often underappreciated. Specific areas of focus include the following: (i) heart rate-targets in patients with preserved left-ventricular ejection fraction and concomitant AF; (ii) the clinical implications of differences in pharmacological mechanisms of action between beta-adrenoceptor and Ca2+-channel blockers; (iii) controversies regarding the safety and use of digoxin in AF; (iv) the implications cardiac resynchronization therapy for rate-control in AF; and (v) controversies surrounding the benefits of rate-control with beta-blockers in patients with reduced left-ventricular ejection fraction and AF.
Collapse
|
108
|
Yao C, Veleva T, Scott L, Cao S, Li L, Chen G, Jeyabal P, Pan X, Alsina KM, Abu-Taha I, Ghezelbash S, Reynolds CL, Shen YH, LeMaire SA, Schmitz W, Müller FU, El-Armouche A, Eissa NT, Beeton C, Nattel S, Wehrens XH, Dobrev D, Li N. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation 2018; 138:2227-2242. [PMID: 29802206 PMCID: PMC6252285 DOI: 10.1161/circulationaha.118.035202] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is frequently associated with enhanced inflammatory response. The NLRP3 (NACHT, LRR, and PYD domain containing protein 3) inflammasome mediates caspase-1 activation and interleukin-1β release in immune cells but is not known to play a role in cardiomyocytes (CMs). Here, we assessed the role of CM NLRP3 inflammasome in AF. METHODS NLRP3 inflammasome activation was assessed by immunoblot in atrial whole-tissue lysates and CMs from patients with paroxysmal AF or long-standing persistent (chronic) AF. To determine whether CM-specific activation of NLPR3 is sufficient to promote AF, a CM-specific knockin mouse model expressing constitutively active NLRP3 (CM-KI) was established. In vivo electrophysiology was used to assess atrial arrhythmia vulnerability. To evaluate the mechanism of AF, electric activation pattern, Ca2+ spark frequency, atrial effective refractory period, and morphology of atria were evaluated in CM-KI mice and wild-type littermates. RESULTS NLRP3 inflammasome activity was increased in the atrial CMs of patients with paroxysmal AF and chronic AF. CM-KI mice developed spontaneous premature atrial contractions and inducible AF, which was attenuated by a specific NLRP3 inflammasome inhibitor, MCC950. CM-KI mice exhibited ectopic activity, abnormal sarcoplasmic reticulum Ca2+ release, atrial effective refractory period shortening, and atrial hypertrophy. Adeno-associated virus subtype-9-mediated CM-specific knockdown of Nlrp3 suppressed AF development in CM-KI mice. Finally, genetic inhibition of Nlrp3 prevented AF development in CREM transgenic mice, a well-characterized mouse model of spontaneous AF. CONCLUSIONS Our study establishes a novel pathophysiological role for CM NLRP3 inflammasome signaling, with a mechanistic link to the pathogenesis of AF, and establishes the inhibition of NLRP3 as a potential novel AF therapy approach.
Collapse
|
109
|
Yamazaki M, Tsuji Y, Niwa R, Tomii N, Arafune T, Honjo H, Dobrev D, Nattel S, Kodama I, Sakuma I, Makita N. Role of Late Sodium Current in Experimental Torsade de Pointes. J Electrocardiol 2018. [DOI: 10.1016/j.jelectrocard.2018.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
110
|
Raymond-Paquin A, Nattel S, Wakili R, Tadros R. Mechanisms and Clinical Significance of Arrhythmia-Induced Cardiomyopathy. Can J Cardiol 2018; 34:1449-1460. [DOI: 10.1016/j.cjca.2018.07.475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022] Open
|
111
|
Piché J, Gosset N, Legault LM, Pacis A, Oneglia A, Caron M, Chetaille P, Barreiro L, Liu D, Qi X, Nattel S, Leclerc S, Breton-Larrivée M, McGraw S, Andelfinger G. Molecular Signature of CAID Syndrome: Noncanonical Roles of SGO1 in Regulation of TGF-β Signaling and Epigenomics. Cell Mol Gastroenterol Hepatol 2018; 7:411-431. [PMID: 30739867 PMCID: PMC6369230 DOI: 10.1016/j.jcmgh.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS A generalized human pacemaking syndrome, chronic atrial and intestinal dysrhythmia (CAID) (OMIM 616201), is caused by a homozygous SGO1 mutation (K23E), leading to chronic intestinal pseudo-obstruction and arrhythmias. Because CAID patients do not show phenotypes consistent with perturbation of known roles of SGO1, we hypothesized that noncanonical roles of SGO1 drive the clinical manifestations observed. METHODS To identify a molecular signature for CAID syndrome, we achieved unbiased screens in cell lines and gut tissues from CAID patients vs wild-type controls. We performed RNA sequencing along with stable isotope labeling with amino acids in cell culture. In addition, we determined the genome-wide DNA methylation and chromatin accessibility signatures using reduced representative bisulfite sequencing and assay for transposase-accessible chromatin with high-throughput sequencing. Functional studies included patch-clamp, quantitation of transforming growth factor-β (TGF-β) signaling, and immunohistochemistry in CAID patient gut biopsy specimens. RESULTS Proteome and transcriptome studies converge on cell-cycle regulation, cardiac conduction, and smooth muscle regulation as drivers of CAID syndrome. Specifically, the inward rectifier current, an important regulator of cellular function, was disrupted. Immunohistochemistry confirmed overexpression of Budding Uninhibited By Benzimidazoles 1 (BUB1) in patients, implicating the TGF-β pathway in CAID pathogenesis. Canonical TGF-β signaling was up-regulated and uncoupled from noncanonical signaling in CAID patients. Reduced representative bisulfite sequencing and assay for transposase-accessible chromatin with high-throughput sequencing experiments showed significant changes of chromatin states in CAID, pointing to epigenetic regulation as a possible pathologic mechanism. CONCLUSIONS Our findings point to impaired inward rectifier potassium current, dysregulation of canonical TGF-β signaling, and epigenetic regulation as potential drivers of intestinal and cardiac manifestations of CAID syndrome. Transcript profiling and genomics data are as follows: repository URL: https://www.ncbi.nlm.nih.gov/geo; SuperSeries GSE110612 was composed of the following subseries: GSE110309, GSE110576, and GSE110601.
Collapse
|
112
|
Molina CE, Abu-Taha IH, Wang Q, Roselló-Díez E, Kamler M, Nattel S, Ravens U, Wehrens XHT, Hove-Madsen L, Heijman J, Dobrev D. Profibrotic, Electrical, and Calcium-Handling Remodeling of the Atria in Heart Failure Patients With and Without Atrial Fibrillation. Front Physiol 2018; 9:1383. [PMID: 30356673 PMCID: PMC6189336 DOI: 10.3389/fphys.2018.01383] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) are common cardiovascular diseases that often co-exist. Animal models have suggested complex AF-promoting atrial structural, electrical, and Ca2+-handling remodeling in the setting of HF, but data in human samples are scarce, particularly regarding Ca2+-handling remodeling. Here, we evaluated atrial remodeling in patients with severe left ventricular (LV) dysfunction (HFrEF), long-standing persistent ('chronic') AF (cAF) or both (HFrEF-cAF), and sinus rhythm controls with normal LV function (Ctl) using western blot in right-atrial tissue, sharp-electrode action potential (AP) measurements in atrial trabeculae and voltage-clamp experiments in isolated right-atrial cardiomyocytes. Compared to Ctl, expression of profibrotic markers (collagen-1a, fibronectin, periostin) was higher in HFrEF and HFrEF-cAF patients, indicative of structural remodeling. Connexin-43 expression was reduced in HFrEF patients, but not HFrEF-cAF patients. AP characteristics were unchanged in HFrEF, but showed classical indices of electrical remodeling in cAF and HFrEF-cAF (prolonged AP duration at 20% and shorter AP duration at 50% and 90% repolarization). L-type Ca2+ current (ICa,L) was significantly reduced in HFrEF, cAF and HFrEF-cAF, without changes in voltage-dependence. Potentially proarrhythmic spontaneous transient-inward currents were significantly more frequent in HFrEF and HFrEF-cAF compared to Ctl, likely resulting from increased sarcoplasmic reticulum (SR) Ca2+ load (integrated caffeine-induced current) in HFrEF and increased ryanodine-receptor (RyR2) single-channel open probability in HFrEF and HFrEF-cAF. Although expression and phosphorylation of the SR Ca2+-ATPase type-2a (SERCA2a) regulator phospholamban were unchanged in HFrEF and HFrEF-cAF patients, protein levels of SERCA2a were increased in HFrEF-cAF and sarcolipin expression was decreased in both HFrEF and HFrEF-cAF, likely increasing SR Ca2+ uptake and load. RyR2 protein levels were decreased in HFrEF and HFrEF-cAF patients, but junctin levels were higher in HFrEF and relative Ser2814-RyR2 phosphorylation levels were increased in HFrEF-cAF, both potentially contributing to the greater RyR2 open probability. These novel insights into the molecular substrate for atrial arrhythmias in HF-patients position Ca2+-handling abnormalities as a likely trigger of AF in HF patients, which subsequently produces electrical remodeling that promotes the maintenance of the arrhythmia. Our new findings may have important implications for the development of novel treatment options for AF in the context of HF.
Collapse
|
113
|
Laredo M, Waldmann V, Khairy P, Nattel S. Age as a Critical Determinant of Atrial Fibrillation: A Two-sided Relationship. Can J Cardiol 2018; 34:1396-1406. [PMID: 30404745 DOI: 10.1016/j.cjca.2018.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
The incidence of atrial fibrillation (AF), the most common sustained arrhythmia and a major public health burden, increases exponentially with age. However, mechanisms underlying this long-recognized association remain incompletely understood. Experimental and human studies have demonstrated the involvement of aging in several arrhythmogenic processes, including atrial electrical and structural remodelling, disturbed calcium homeostasis, and enhanced atrial ectopic activity/increased vulnerability to re-entry induction. Given this wide range of putative mechanisms, the task of delineating the specific effects of aging responsible for AF promotion is not simple, as aging is itself associated with increasing prevalence of a host of AF-predisposing conditions, including heart failure, coronary artery disease, and hypertension. Although we usually think of old age promoting AF, there is also evidence that young age may actually have a protective effect against AF occurrence. For example, the low AF incidence among populations of young patients with significant structural congenital heart disease and substantial atrial enlargement/remodelling suggests that younger age might protect against fibrillation in the diseased atrium; efforts at understating how younger age may prevent AF might be helpful in elucidating missing mechanistic links between AF and age. The goal of this paper is to review the epidemiologic and pathophysiologic evidence regarding mechanisms underlying age-related AF. Although the therapeutic options for AF have recently improved, major gaps still remain and a better understanding of the special relationship between age and AF may be important for the identification of new targets for therapeutic innovation.
Collapse
|
114
|
Aguilar M, Nattel S. Taking the Pulse of Atrial Fibrillation: A Practical Approach to Rate Control. Can J Cardiol 2018; 34:1526-1530. [PMID: 30404755 DOI: 10.1016/j.cjca.2018.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 11/25/2022] Open
Abstract
Despite major advances in atrial fibrillation (AF) catheter ablation, rate control remains the most widely used management strategy for AF in the general population. In addition to its use as a primary approach to control symptoms and prevent complications of AF, rate control is often a necessary complement to rhythm-control strategies, especially with antiarrhythmic drugs. The value of rate-control therapy is supported by several large randomized clinical trials showing no difference in major cardiovascular outcomes between rate-control and rhythm-control strategies with currently available therapeutic approaches (antiarrhythmic drugs and/or catheter ablation). Despite its extensive use, the rational basis for rate-control therapy is underemphasized in clinical teaching and practice. In this article, we aim to provide evidence-based thoughts on important practical aspects of rate-control therapy in AF by reviewing 5 clinically relevant issues. We (1) highlight the pharmacological differences between the mechanisms of action of β-blockers and Ca2+-channel blockers for AF rate control and the practical implications for therapeutic decision making; (2) review the controversies surrounding the use of digoxin for AF rate control in the light of recently published work; (3) discuss the evidence for rate-control heart rate targets in patients with AF and preserved left-ventricular function; (4) examine how heart rate targets may differ in patients with heart failure and reduced vs preserved left-ventricular ejection fraction and the importance of heart-rate lowering for the effectiveness of cardiac resynchronization therapy in patients with heart failure and AF; (5) discuss the relationship between AF, exercise capacity, and rate-controlling drug class.
Collapse
|
115
|
Voigt N, Nattel S. Prof Niels Voigt talks to Prof Stanley Nattel about advances in atrial fibrillation research and career insights. Cardiovasc Res 2018; 114:e65. [PMID: 30052897 DOI: 10.1093/cvr/cvy142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
116
|
Meijering RAM, Wiersma M, Zhang D, Lanters EAH, Hoogstra-Berends F, Scholma J, Diks S, Qi X, de Groot NMS, Nattel S, Henning RH, Brundel BJJM. Application of kinomic array analysis to screen for altered kinases in atrial fibrillation remodeling. Heart Rhythm 2018; 15:1708-1716. [PMID: 29902583 DOI: 10.1016/j.hrthm.2018.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Dysregulation of protein kinase-mediated signaling is an early event in many diseases, including the most common clinical cardiac arrhythmia, atrial fibrillation (AF). Kinomic profiling represents a promising technique to identify candidate kinases. OBJECTIVE In this study we used kinomic profiling to identify kinases altered in AF remodeling using atrial tissue from a canine model of AF (atrial tachypacing). METHODS Left atrial tissue obtained in a previous canine study was used for kinomic array (containing 1024 kinase pseudosubstrates) analysis. Three groups of dogs were included: nonpaced controls and atrial tachypaced dogs, which were contrasted with geranylgeranylacetone-treated dogs with AF, which are protected from AF promotion, to enhance specificity of detection of putative kinases. RESULTS While tachypacing changed activity of 50 kinases, 40 of these were prevented by geranylgeranylacetone and involved in differentiation and proliferation (SRC), contraction, metabolism, immunity, development, cell cycle (CDK4), and survival (Akt). Inhibitors of Akt (MK2206) and CDK4 (PD0332991) and overexpression of a dominant-negative CDK4 phosphorylation mutant protected against tachypacing-induced contractile dysfunction in HL-1 cardiomyocytes. Moreover, patients with AF show down- and upregulation of SRC and Akt phosphorylation, respectively, similar to findings of the kinome array. CONCLUSION Contrasting kinomic array analyses of controls and treated subjects offer a versatile tool to identify kinases altered in atrial remodeling owing to tachypacing, which include Akt, CDK4, and SRC. Ultimately, pharmacological targeting of altered kinases may offer novel therapeutic possibilities to treat clinical AF.
Collapse
|
117
|
Linz D, McEvoy RD, Cowie MR, Somers VK, Nattel S, Lévy P, Kalman JM, Sanders P. Associations of Obstructive Sleep Apnea With Atrial Fibrillation and Continuous Positive Airway Pressure Treatment. JAMA Cardiol 2018. [DOI: 10.1001/jamacardio.2018.0095] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
118
|
Vigneault P, Naud P, Qi X, Xiao J, Villeneuve L, Davis DR, Nattel S. Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells. J Physiol 2018; 596:2359-2379. [PMID: 29574723 DOI: 10.1113/jp275388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/26/2018] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS Ex vivo proliferated c-Kit+ endogenous cardiac progenitor cells (eCPCs) obtained from mouse and human cardiac tissues have been reported to express a wide range of functional ion channels. In contrast to previous reports in cultured c-Kit+ eCPCs, we found that ion currents were minimal in freshly isolated cells. However, inclusion of free Ca2+ intracellularly revealed a prominent inwardly rectifying current identified as the intermediate conductance Ca2+ -activated K+ current (KCa3.1) Electrical function of both c-Kit+ eCPCs and bone marrow-derived mesenchymal stem cells is critically governed by KCa3.1 calcium-dependent potassium channels. Ca2+ -induced increases in KCa3.1 conductance are necessary to optimize membrane potential during Ca2+ entry. Membrane hyperpolarization due to KCa3.1 activation maintains the driving force for Ca2+ entry that activates stem cell proliferation. Cardiac disease downregulates KCa3.1 channels in resident cardiac progenitor cells. Alterations in KCa3.1 may have pathophysiological and therapeutic significance in regenerative medicine. ABSTRACT Endogenous c-Kit+ cardiac progenitor cells (eCPCs) and bone marrow (BM)-derived mesenchymal stem cells (MSCs) are being developed for cardiac regenerative therapy, but a better understanding of their physiology is needed. Here, we addressed the unknown functional role of ion channels in freshly isolated eCPCs and expanded BM-MSCs using patch-clamp, microfluorometry and confocal microscopy. Isolated c-Kit+ eCPCs were purified from dog hearts by immunomagnetic selection. Ion currents were barely detectable in freshly isolated c-Kit+ eCPCs with buffering of intracellular calcium (Ca2+i ). Under conditions allowing free intracellular Ca2+ , freshly isolated c-Kit+ eCPCs and ex vivo proliferated BM-MSCs showed prominent voltage-independent conductances that were sensitive to intermediate-conductance K+ -channel (KCa3.1 current, IKCa3.1 ) blockers and corresponding gene (KCNN4)-expression knockdown. Depletion of Ca2+i induced membrane-potential (Vmem ) depolarization, while store-operated Ca2+ entry (SOCE) hyperpolarized Vmem in both cell types. The hyperpolarizing SOCE effect was substantially reduced by IKCa3.1 or SOCE blockade (TRAM-34, 2-APB), and IKCa3.1 blockade (TRAM-34) or KCNN4-knockdown decreased the Ca2+ entry resulting from SOCE. IKCa3.1 suppression reduced c-Kit+ eCPC and BM-MSC proliferation, while significantly altering the profile of cyclin expression. IKCa3.1 was reduced in c-Kit+ eCPCs isolated from dogs with congestive heart failure (CHF), along with corresponding KCNN4 mRNA. Under perforated-patch conditions to maintain physiological [Ca2+ ]i , c-Kit+ eCPCs from CHF dogs had less negative resting membrane potentials (-58 ± 7 mV) versus c-Kit+ eCPCs from control dogs (-73 ± 3 mV, P < 0.05), along with slower proliferation. Our study suggests that Ca2+ -induced increases in IKCa3.1 are necessary to optimize membrane potential during the Ca2+ entry that activates progenitor cell proliferation, and that alterations in KCa3.1 may have pathophysiological and therapeutic significance in regenerative medicine.
Collapse
|
119
|
Lau DH, Nattel S, Kalman JM, Sanders P. Response by Lau et al to Letters Regarding Article, “Modifiable Risk Factors and Atrial Fibrillation”. Circulation 2018; 137:1534-1535. [PMID: 29610135 DOI: 10.1161/circulationaha.117.032205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
120
|
|
121
|
|
122
|
Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Nielsen JC, Curtis AB, Davies DW, Day JD, d’Avila A, de Groot NMS(N, Di Biase L, Duytschaever M, Edgerton JR, Ellenbogen KA, Ellinor PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haissaguerre M, Helm RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchlinski FE, Michaud GF, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Tondo C, Tsao HM, Verma A, Wilber DJ, Yamane T. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: Executive summary. Europace 2018; 20:157-208. [PMID: 29016841 PMCID: PMC5892164 DOI: 10.1093/europace/eux275] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
123
|
Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Cosedis Nielsen J, Curtis AB, Davies DW, Day JD, d’Avila A, (Natasja) de Groot NMS, Di Biase L, Duytschaever M, Edgerton JR, Ellenbogen KA, Ellinor PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haissaguerre M, Helm RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchlinski FE, Michaud GF, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Tondo C, Tsao HM, Verma A, Wilber DJ, Yamane T. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2018; 20:e1-e160. [PMID: 29016840 PMCID: PMC5834122 DOI: 10.1093/europace/eux274] [Citation(s) in RCA: 733] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
124
|
Chandrasekar B, Sirois MG, Geoffroy P, Lauzier D, Nattel S, Tanguay JF. Local delivery of 17β-estradiol improves reendothelialization and decreases inflammation after coronary stenting in a porcine model. Thromb Haemost 2017; 94:1042-7. [PMID: 16363248 DOI: 10.1160/th04-12-0823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryIn the current study, we investigated the effect of local intravascular delivery of 17β-estradiol (17β-E) on subsequent instent neointimal hyperplasia. Twenty-seven stents were implanted in coronary arteries of juvenile swine. Coronary arteries were randomized to local treatment with 17β-E or no drug therapy (control-vehicle treated). Twenty-eight days posttreatment, angiographic images revealed an improved minimal lumen diameter (2.2 ± 0.2 vs. 1.3 ± 0.2 mm, P < 0.005) and a reduction of late lumen loss (1.7 ± 0.2 vs. 2.3 ± 0.1 mm, P < 0.01) in 17β-E-treated vessels compared to control-vehicle treated. Histological analyses showed a reduction of stenosis (51.49 ± 6.75 vs.70.86 ± 6.24%, P < 0.05), mean neointimal thickness (0.51 ± 0.07 vs.0.83 ± 0.14 mm, P < 0.05) and inflammation score (1.29 ± 0.28 vs. 2.85 ± 0.40, P < 0.05) in 17β-E-treated arteries compared to control-vehicle treated arteries. Immunohistochemistry analyses revealed a reduction of proliferating smooth muscle cells and increased in-stent reendothelialization in 17β-E-treated arteries. Finally, we observed a correlation between neointimal hyperplasia and inflammation score, which in turn, was inversely related to reendothelialization. Locally delivered, 17β-E is inhibiting the inflammatory response and smooth muscle cells proliferation and improving vascular reendothelialization which together are contributing to reduce instent restenosis in a porcine coronary injury model. Together, these data demonstrate the potential clinical application of 17β-estradiol to improve vascular healing and prevent in-stent restenosis.
Collapse
|
125
|
Brouillette J, Nattel S. A Practical Approach to Avoiding Cardiovascular Adverse Effects of Psychoactive Medications. Can J Cardiol 2017; 33:1577-1586. [DOI: 10.1016/j.cjca.2017.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/30/2022] Open
|