101
|
Mucha O, Podkalicka P, Czarnek M, Biela A, Mieczkowski M, Kachamakova-Trojanowska N, Stepniewski J, Jozkowicz A, Dulak J, Loboda A. Pharmacological versus genetic inhibition of heme oxygenase-1 - the comparison of metalloporphyrins, shRNA and CRISPR/Cas9 system. Acta Biochim Pol 2018; 65:277-286. [PMID: 29694447 DOI: 10.18388/abp.2017_2542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/19/2018] [Accepted: 03/07/2018] [Indexed: 11/10/2022]
Abstract
Inhibition of heme oxygenase-1 (HO-1, encoded by HMOX1), a cytoprotective, anti-apoptotic and anti-inflammatory enzyme, may serve as a valuable therapy in various pathophysiological processes, including tumorigenesis. We compared the effect of chemical inhibitors - metalloporphyrins, with genetic tools - shRNA and CRISPR/Cas9 systems, to knock-down (KD)/knock-out (KO) HO-1 expression/activity. 293T cells were incubated with metalloporphyrins, tin and zinc protoporphyrins (SnPPIX and ZnPPIX, respectively) or were either transduced with lentiviral vectors encoding different shRNA sequences against HO-1 or were modified by CRISPR/Cas9 system targeting HMOX1. Metalloporphyrins decreased HO activity but concomitantly strongly induced HO-1 mRNA and protein in 293T cells. On the other hand, only slight basal HO-1 inhibition in shRNA KD 293T cell lines was confirmed on mRNA and protein level with no significant effect on enzyme activity. Nevertheless, silencing effect was much stronger when CRISPR/Cas9-mediated knock-out was performed. Most of the clones harboring mutations within HMOX1 locus did not express HO-1 protein and failed to increase bilirubin concentration after hemin stimulation. Furthermore, CRISPR/Cas9-mediated HO-1 depletion decreased 293T viability, growth, clonogenic potential and increased sensitivity to H2O2 treatment. In summary, we have shown that not all technologies can be used for inhibition of HO activity in vitro with the same efficiency. In our hands, the most potent and comprehensible results can be obtained using genetic tools, especially CRISPR/Cas9 approach.
Collapse
|
102
|
Yoshida T, Naito Y, Sasaki K, Uchida E, Sato Y, Naito M, Kawanishi T, Obika S, Inoue T. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences. Genes Cells 2018; 23:448-455. [PMID: 29667281 DOI: 10.1111/gtc.12587] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Antisense oligonucleotide (ASO) therapeutics are single-stranded oligonucleotides which bind to RNA through sequence-specific Watson-Crick base pairings. A unique mechanism of toxicity for ASOs is hybridization-dependent off-target effects that can potentially occur due to the binding of ASOs to complementary regions of unintended RNAs. To reduce the off-target effects of ASOs, it would be useful to know the approximate number of complementary regions of ASOs, or off-target candidate sites of ASOs, of a given oligonucleotide length and complementarity with their target RNAs. However, the theoretical number of complementary regions with mismatches has not been reported to date. In this study, we estimated the general number of complementary regions of ASOs with mismatches in human mRNA sequences by mathematical calculation and in silico analysis using several thousand hypothetical ASOs. By comparing the theoretical number of complementary regions estimated by mathematical calculation to the actual number obtained by in silico analysis, we found that the number of complementary regions of ASOs could be broadly estimated by the theoretical number calculated mathematically. Our analysis showed that the number of complementary regions increases dramatically as the number of tolerated mismatches increases, highlighting the need for expression analysis of such genes to assess the safety of ASOs.
Collapse
|
103
|
Gentsch GE, Spruce T, Monteiro RS, Owens NDL, Martin SR, Smith JC. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. Dev Cell 2018; 44:597-610.e10. [PMID: 29478923 PMCID: PMC5861998 DOI: 10.1016/j.devcel.2018.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/21/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects.
Collapse
|
104
|
Long J, Hoban MD, Cooper AR, Kaufman ML, Kuo CY, Campo-Fernandez B, Lumaquin D, Hollis RP, Wang X, Kohn DB, Romero Z. Characterization of Gene Alterations following Editing of the β-Globin Gene Locus in Hematopoietic Stem/Progenitor Cells. Mol Ther 2018; 26:468-479. [PMID: 29221806 PMCID: PMC5835144 DOI: 10.1016/j.ymthe.2017.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 02/09/2023] Open
Abstract
The use of engineered nucleases combined with a homologous DNA donor template can result in targeted gene correction of the sickle cell disease mutation in hematopoietic stem and progenitor cells. However, because of the high homology between the adjacent human β- and δ-globin genes, off-target cleavage is observed at δ-globin when using some endonucleases targeted to the sickle mutation in β-globin. Introduction of multiple double-stranded breaks by endonucleases has the potential to induce intergenic alterations. Using a novel droplet digital PCR assay and high-throughput sequencing, we characterized the frequency of rearrangements between the β- and δ-globin paralogs when delivering these nucleases. Pooled CD34+ cells and colony-forming units from sickle bone marrow were treated with nuclease only or including a donor template and then analyzed for potential gene rearrangements. It was observed that, in pooled CD34+ cells and colony-forming units, the intergenic β-δ-globin deletion was the most frequent rearrangement, followed by inversion of the intergenic fragment, with the inter-chromosomal translocation as the least frequent. No rearrangements were observed when endonuclease activity was restricted to on-target β-globin cleavage. These findings demonstrate the need to develop site-specific endonucleases with high specificity to avoid unwanted gene alterations.
Collapse
|
105
|
Stukenberg D, Zauner S, Dell’Aquila G, Maier UG. Optimizing CRISPR/Cas9 for the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2018; 9:740. [PMID: 29928285 PMCID: PMC5998643 DOI: 10.3389/fpls.2018.00740] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 05/18/2023]
Abstract
CRISPR/Cas9 is a powerful tool for genome editing. We constructed an easy-to-handle expression vector for application in the model organism Phaeodactylum tricornutum and tested its capabilities in order to apply CRISPR/Cas9 technology for our purpose. In our experiments, we targeted two different genes, screened for mutations and analyzed mutated diatoms in a three-step process. In the end, we identified cells, showing either monoallelic or homo-biallelic targeted mutations. Thus, we confirm that application of the CRISPR/Cas9 system for P. tricornutum is very promising, although, as discussed, overlooked pitfalls have to be considered.
Collapse
|
106
|
Domenger C, Allais M, François V, Léger A, Lecomte E, Montus M, Servais L, Voit T, Moullier P, Audic Y, Le Guiner C. RNA-Seq Analysis of an Antisense Sequence Optimized for Exon Skipping in Duchenne Patients Reveals No Off-Target Effect. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:277-291. [PMID: 29499940 PMCID: PMC5785776 DOI: 10.1016/j.omtn.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/16/2017] [Accepted: 12/16/2017] [Indexed: 01/16/2023]
Abstract
Non-coding uridine-rich small nuclear RNAs (UsnRNAs) have emerged in recent years as effective tools for exon skipping for the treatment of Duchenne muscular dystrophy (DMD), a degenerative muscular genetic disorder. We recently showed the high capacity of a recombinant adeno-associated virus (rAAV)-U7snRNA vector to restore the reading frame of the DMD mRNA in the muscles of DMD dogs. We are now moving toward a phase I/II clinical trial with an rAAV-U7snRNA-E53, carrying an antisense sequence designed to hybridize exon 53 of the human DMD messenger. As observed for genome-editing tools, antisense sequences present a risk of off-target effects, reflecting partial hybridization onto unintended transcripts. To characterize the clinical antisense sequence, we studied its expression and explored the occurrence of its off-target effects in human in vitro models of skeletal muscle and liver. We presented a comprehensive methodology combining RNA sequencing and in silico filtering to analyze off-targets. We showed that U7snRNA-E53 induced the effective exon skipping of the DMD transcript without inducing the notable deregulation of transcripts in human cells, neither at gene expression nor at the mRNA splicing level. Altogether, these results suggest that the use of the rAAV-U7snRNA-E53 vector for exon skipping could be safe in eligible DMD patients.
Collapse
|
107
|
Wang Y, Chuai G, Yan J, Shi L, Liu Q. [In silico CRISPR-based sgRNA design]. SHENG WU GONG CHENG XUE BAO = CHINESE JOURNAL OF BIOTECHNOLOGY 2017; 33:1744-1756. [PMID: 29082722 DOI: 10.13345/j.cjb.170182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CRISPR-based genome editing has been widely implemented in various cell types. In-silico single guide RNA (sgRNA) design is a key step for successful gene editing using CRISPR system. Continuing efforts are made to refine in-silico sgRNA design with high on-target efficacy and reduced off-target effects. In this paper, we summarize the present sgRNA design tools, and show that efficient in-silico models can be built that integrate current heterogeneous genome-editing data to derive unbiased sgRNA design rules and identify key features for improving sgRNA design. Our review shows that systematic comparisons and evaluation of on-target and off-target effects of sgRNA will allow more precise genome editing and gene therapies using the CRISPR system.
Collapse
|
108
|
Ogburn RN, Jin L, Meng H, Fitzgerald MC. Discovery of Tamoxifen and N-Desmethyl Tamoxifen Protein Targets in MCF-7 Cells Using Large-Scale Protein Folding and Stability Measurements. J Proteome Res 2017; 16:4073-4085. [PMID: 28927269 DOI: 10.1021/acs.jproteome.7b00442] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The proteins in an MCF-7 cell line were probed for tamoxifen (TAM) and n-desmethyl tamoxifen (NDT) induced stability changes using the Stability of Proteins from Rates of Oxidation (SPROX) technique in combination with two different quantitative proteomics strategies, including one based on SILAC and one based on isobaric mass tags. Over 1000 proteins were assayed for TAM- and NDT-induced protein stability changes, and a total of 163 and 200 protein hits were identified in the TAM and NDT studies, respectively. A subset of 27 high-confidence protein hits were reproducibly identified with both proteomics strategies and/or with multiple peptide probes. One-third of the high-confidence hits have previously established experimental links to the estrogen receptor, and nearly all of the high-confidence hits have established links to breast cancer. One high-confidence protein hit that has known estrogen receptor binding properties, Y-box binding protein 1 (YBX1), was further validated as a direct binding target of TAM using both the SPROX and pulse proteolysis techniques. Proteins with TAM- and/or NDT-induced expression level changes were also identified in the SILAC-SPROX experiments. These proteins with expression level changes included only a small fraction of those with TAM- and/or NDT-induced stability changes.
Collapse
|
109
|
Abstract
Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems employ the dual RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9-DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)-CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.
Collapse
|
110
|
Chang CS, Tsai CY, Yan SL. Hepatitis B reactivation in patients receiving targeted therapies. Hematology 2017; 22:592-598. [DOI: 10.1080/10245332.2017.1321882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
111
|
Cui J, Chew SJL, Shi Y, Gong Z, Shen HM. CRISPR system for genome engineering: the application for autophagy study. BMB Rep 2017; 50:247-256. [PMID: 28288698 PMCID: PMC5458674 DOI: 10.5483/bmbrep.2017.50.5.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 11/20/2022] Open
Abstract
CRISPR/Cas9 is the latest tool introduced in the field of genome engineering and is so far the best genome-editing tool as compared to its precedents such as, meganucleases, zinc finger nucleases (ZFNs) and transcription activator-like effectors (TALENs). The simple design and assembly of the CRISPR/Cas9 system makes genome editing easy to perform as it uses small guide RNAs that correspond to their DNA targets for high efficiency editing. This has helped open the doors for multiplexible genome targeting in many species that were intractable using old genetic perturbation techniques. Currently, The CRISPR system is revolutionizing the way biological researches are conducted and paves a bright future not only in research but also in medicine and biotechnology. In this review, we evaluated the history, types and structure, the mechanism of action of CRISPR/Cas System. In particular, we focused on the application of this powerful tool in autophagy research. [BMB Reports 2017; 50(5): 247-256].
Collapse
|
112
|
Wang L, Rinaldi FC, Singh P, Doyle EL, Dubrow ZE, Tran TT, Pérez-Quintero AL, Szurek B, Bogdanove AJ. TAL Effectors Drive Transcription Bidirectionally in Plants. MOLECULAR PLANT 2017; 10:285-296. [PMID: 27965000 DOI: 10.1016/j.molp.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcriptional activators of host susceptibility genes and sometimes resistance genes. The modularity of DNA recognition by TAL effectors makes them important also as tools for gene targeting and genome editing. Effector binding elements (EBEs) recognized by native TAL effectors in plants have been identified only on the forward strand of target promoters. Here, we demonstrate that TAL effectors can drive plant transcription from EBEs on either strand and in both directions. Furthermore, we show that a native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a target with an EBE on each strand of its promoter. By inserting that promoter and derivatives between two reporter genes oriented head to head, we show that the TAL effector drives expression from either EBE in the respective orientations, and that activity at the reverse-strand EBE also potentiates forward transcription driven by activity at the forward-strand EBE. Our results reveal new modes of action for TAL effectors, suggesting the possibility of yet unrecognized targets important in plant disease, expanding the search space for off-targets of custom TAL effectors, and highlighting the potential of TAL effectors for probing fundamental aspects of plant transcription.
Collapse
|
113
|
Ivanov S, Semin M, Lagunin A, Filimonov D, Poroikov V. In Silico Identification of Proteins Associated with Drug-induced Liver Injury Based on the Prediction of Drug-target Interactions. Mol Inform 2017; 36. [PMID: 28145637 DOI: 10.1002/minf.201600142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is the leading cause of acute liver failure as well as one of the major reasons for drug withdrawal from clinical trials and the market. Elucidation of molecular interactions associated with DILI may help to detect potentially hazardous pharmacological agents at the early stages of drug development. The purpose of our study is to investigate which interactions with specific human protein targets may cause DILI. Prediction of interactions with 1534 human proteins was performed for the dataset with information about 699 drugs, which were divided into three categories of DILI: severe (178 drugs), moderate (310 drugs) and without DILI (211 drugs). Based on the comparison of drug-target interactions predicted for different drugs' categories and interpretation of those results using clustering, Gene Ontology, pathway and gene expression analysis, we identified 61 protein targets associated with DILI. Most of the revealed proteins were linked with hepatocytes' death caused by disruption of vital cellular processes, as well as the emergence of inflammation in the liver. It was found that interaction of a drug with the identified targets is the essential molecular mechanism of the severe DILI for the most of the considered pharmaceuticals. Thus, pharmaceutical agents interacting with many of the identified targets may be considered as candidates for filtering out at the early stages of drug research.
Collapse
|
114
|
Chuai GH, Wang QL, Liu Q. In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol 2017; 35:12-21. [PMID: 27418421 DOI: 10.1016/j.tibtech.2016.06.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/26/2022]
Abstract
CRISPR-based genome editing has been widely implemented in various cell types. In silico single guide RNA (sgRNA) design is a key step for successful gene editing using the CRISPR system, and continuing efforts are aimed at refining in silico sgRNA design with high on-target efficacy and reduced off-target effects. Many sgRNA design tools are available, but careful assessments of their application scenarios and performance benchmarks across different types of genome-editing data are needed. Efficient in silico models can be built that integrate current heterogeneous genome-editing data to derive unbiased sgRNA design rules and identify key features for improving sgRNA design. Comprehensive evaluation of on-target and off-target effects of sgRNA will allow more precise genome editing and gene therapies using the CRISPR system.
Collapse
|
115
|
Jia H, Xu J, Orbović V, Zhang Y, Wang N. Editing Citrus Genome via SaCas9/sgRNA System. FRONTIERS IN PLANT SCIENCE 2017; 8:2135. [PMID: 29312390 PMCID: PMC5732962 DOI: 10.3389/fpls.2017.02135] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/01/2017] [Indexed: 05/22/2023]
Abstract
SaCas9/sgRNA, derived from Staphylococcus aureus, is an alternative system for genome editing to Streptococcus pyogenes SpCas9/sgRNA. The smaller SaCas9 recognizes a different protospacer adjacent motif (PAM) sequence from SpCas9. SaCas9/sgRNA has been employed to edit the genomes of Arabidopsis, tobacco and rice. In this study, we aimed to test its potential in genome editing of citrus. Transient expression of SaCas9/sgRNA in Duncan grapefruit via Xcc-facilitated agroinfiltration showed it can successfully modify CsPDS and Cs2g12470. Subsequently, binary vector GFP-p1380N-SaCas9/35S-sgRNA1:AtU6-sgRNA2 was developed to edit two target sites of Cs7g03360 in transgenic Carrizo citrange. Twelve GFP-positive Carrizo transformants were successfully established, designated as #Cz1 to #Cz12. Based on targeted next generation sequencing results, the mutation rates for the two targets ranged from 15.55 to 39.13% for sgRNA1 and 49.01 to 79.67% for sgRNA2. Therefore, SaCas9/sgRNA can be used as an alternative tool to SpCas9/sgRNA for citrus genome editing.
Collapse
|
116
|
Xue J, Yang J, Luo M, Cho WC, Liu X. MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opin Drug Discov 2016; 12:141-157. [PMID: 27866431 DOI: 10.1080/17460441.2017.1263298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.
Collapse
|
117
|
Hinz JM, Laughery MF, Wyrick JJ. Nucleosomes Selectively Inhibit Cas9 Off-target Activity at a Site Located at the Nucleosome Edge. J Biol Chem 2016; 291:24851-24856. [PMID: 27756838 PMCID: PMC5122757 DOI: 10.1074/jbc.c116.758706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/14/2016] [Indexed: 12/26/2022] Open
Abstract
Nucleosomes affect Cas9 binding and activity at on-target sites, but their impact at off-target sites is unknown. To investigate how nucleosomes affect Cas9 cleavage at off-target sites in vitro, we used a single guide RNA (sgRNA) that has been previously shown to efficiently direct Cas9 cleavage at the edge of the strongly positioned 601 nucleosome. Our data indicate that single mismatches between the sgRNA and DNA target have relatively little effect on Cas9 cleavage of naked DNA substrates, but strongly inhibit cleavage of nucleosome substrates, particularly when the mismatch is in the sgRNA "seed" region. These findings indicate that nucleosomes may enhance Cas9 specificity by inhibiting cleavage of off-target sites at the nucleosome edge.
Collapse
|
118
|
Li C, Liu Z, Yang F, Liu W, Wang D, Dong E, Wang Y, Wu CI, Lu X. siRNAs with decreased off-target effect facilitate the identification of essential genes in cancer cells. Oncotarget 2016; 6:21603-13. [PMID: 26057633 PMCID: PMC4673289 DOI: 10.18632/oncotarget.4269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
Since the essential genes are crucial to the proliferation and survival of cancer cells, the interference of these genes is promising to be an option for cancer therapy to overcome heterogeneity. However, the essential genes are highly overestimated by RNA interference (RNAi) screenings, which is mainly caused by the pervasive off-target effect of small interference RNA (siRNA) and short hairpin RNA (shRNA). In the present study, we designed Match-Mismatch paired siRNAs to discriminate the on-target effect from off-target effect of siRNAs on cell viability. Only one of the 7 potential essential genes was validated as essential to cell viability, which demonstrates the high false positive rate in RNAi screenings. We modified the siRNA by introducing random nucleotides (N) into the guide strand to mitigate the off-target effect, without significantly compromising the on-target effect. The whole transcriptome profile analysis of cells transfected with siRNAs with or without Nindicates that siRNA-dN (with Ns on both the 2nd and the 18th bases of the guide strand) weakens the off-target effect by decreasing the unintended targets. The optimized siRNAs can be applied in the characterization of essential genes in cancer cells.
Collapse
|
119
|
Zuckermann M, Kawauchi D, Gronych J. Applications of the CRISPR/Cas9 system in murine cancer modeling. Brief Funct Genomics 2016; 16:25-33. [PMID: 27273122 DOI: 10.1093/bfgp/elw021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Advanced biological technologies allowing for genetic manipulation of the genome are increasingly being used to unravel the molecular pathogenesis of human diseases. The clustered regulatory interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology started a revolution of this field owing to its flexibility and relative ease of use. Recently, application of the CRISPR/Cas9 system has been extended to in vivo approaches, leveraging its potential for human disease modeling. Particularly in oncological research, where genetic defects in somatic cells are tightly linked to etiology and pathological phenotypes, the CRISPR/Cas technology is being used to recapitulate various types of genetic aberrations. Here we review murine cancer models that have been developed via combining the CRISPR/Cas9 technology with in vivo somatic gene transfer approaches. Exploiting these methodological advances will further accelerate detailed investigations of tumor etiology and treatment.
Collapse
|
120
|
Abstract
In recent years, genome engineering technology has provided unprecedented opportunities for site-specific modification of biological genomes. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 is one such means that can target a specific genome locus. It has been applied in human cells and many other organisms. Meanwhile, to efficiently enrich targeted cells, several surrogate systems have also been developed. However, very limited information exists on the application of CRISPR/Cas9 in chickens. In this study, we employed the CRISPR/Cas9 system to induce mutations in the peroxisome proliferator-activated receptor-γ (PPAR-γ), ATP synthase epsilon subunit (ATP5E), and ovalbumin (OVA) genes in chicken DF-1 cells. The results of T7E1 assays showed that the mutation rate at the three different loci was 0.75%, 0.5%, and 3.0%, respectively. In order to improve the mutation efficiency, we used the PuroR gene for efficient enrichment of genetically modified cells with the surrogate reporter system. The mutation rate, as assessed via the T7E1 assay, increased to 60.7%, 61.3%, and 47.3%, and subsequent sequence analysis showed that the mutation efficiency increased to 94.7%, 95%, and 95%, respectively. In addition, there were no detectable off-target mutations in three potential off-target sites using the T7E1 assay. As noted above, the CRISPR/Cas9 system is a robust tool for chicken genome editing.
Collapse
|
121
|
Michalko J, Glanc M, Perrot-Rechenmann C, Friml J. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000Res 2016; 5:86. [PMID: 26925228 PMCID: PMC4748827 DOI: 10.12688/f1000research.7654.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 01/07/2023] Open
Abstract
The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.
Collapse
|
122
|
Guinea J, Escribano P, Marcos-Zambrano LJ, Peláez T, Kestler M, Muñoz P, Vena A, López-Fabal F, Bouza E. Therapeutic drug monitoring of voriconazole helps to decrease the percentage of patients with off-target trough serum levels. Med Mycol 2016; 54:353-60. [PMID: 26739190 DOI: 10.1093/mmy/myv099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022] Open
Abstract
We monitored trough voriconazole serum concentrations from 107 patients (n = 258 samples) at 6 hospitals in Madrid. Most of the patients were male (67%) and had the following underlying conditions: hematological cancer (42%), solid organ transplantation (15%), chronic obstructive pulmonary disease (14%), human immunodeficiency virus infection (8.4%), solid cancer (5.6%), and other (29%). The indication for voriconazole administration was aspergillosis treatment (74.6%) and prophylaxis (14%). The main reasons for voriconazole trough drug monitoring were initiation of treatment/prophylaxis (33%), patient monitoring (47%), and suspected toxicity (3.5%). Levels (μg/ml) were subtherapeutic (<1; 18.2%), on-target (1-5.5; 71.3%), and high (>5.5; 10.5%). The samples percentage with on-target levels was significantly lower for the first sample than for subsequent samples (62.6% vs. 77.5%). "Subsequent samples," "admission in nonpediatric wards," "voriconazole used for treatment of invasive aspergillosis," and "use of proton pump inhibitors" were predictors of voriconazole therapeutic levels (≥1 μg/ml).
Collapse
|
123
|
Antolin AA, Workman P, Mestres J, Al-Lazikani B. Polypharmacology in Precision Oncology: Current Applications and Future Prospects. Curr Pharm Des 2016; 22:6935-6945. [PMID: 27669965 PMCID: PMC5403974 DOI: 10.2174/1381612822666160923115828] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/19/2016] [Indexed: 02/08/2023]
Abstract
Over the past decade, a more comprehensive, large-scale approach to studying cancer genetics and biology has revealed the challenges of tumor heterogeneity, adaption, evolution and drug resistance, while systems-based pharmacology and chemical biology strategies have uncovered a much more complex interaction between drugs and the human proteome than was previously anticipated. In this mini-review we assess the progress and potential of drug polypharmacology in biomarker-driven precision oncology. Polypharmacology not only provides great opportunities for drug repurposing to exploit off-target effects in a new single-target indication but through simultaneous blockade of multiple targets or pathways offers exciting opportunities to slow, overcome or even prevent inherent or adaptive drug resistance. We highlight the many challenges associated with exploiting known or desired polypharmacology in drug design and development, and assess computational and experimental methods to uncover unknown polypharmacology. A comprehensive understanding of the intricate links between polypharmacology, efficacy and safety is urgently needed if we are to tackle the enduring challenge of cancer drug resistance and to fully exploit polypharmacology for the ultimate benefit of cancer patients.
Collapse
|
124
|
Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W. Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 2015; 16:258. [PMID: 26616834 PMCID: PMC4663725 DOI: 10.1186/s13059-015-0826-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/05/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The RNA-guided Cas9 system represents a flexible approach for genome editing in plants. This method can create specific mutations that knock-out or alter target gene function. It provides a valuable tool for plant research and offers opportunities for crop improvement. RESULTS We investigate the use and target specificity requirements of RNA-guided Cas9 genome editing in barley (Hordeum vulgare) and Brassica oleracea by targeting multicopy genes. In barley, we target two copies of HvPM19 and observe Cas9-induced mutations in the first generation of 23 % and 10 % of the lines, respectively. In B. oleracea, targeting of BolC.GA4.a leads to Cas9-induced mutations in 10 % of first generation plants screened. In addition, a phenotypic screen identifies T0 plants with the expected dwarf phenotype associated with knock-out of the target gene. In both barley and B. oleracea stable Cas9-induced mutations are transmitted to T2 plants independently of the T-DNA construct. We observe off-target activity in both species, despite the presence of at least one mismatch between the single guide RNA and the non-target gene sequences. In barley, a transgene-free plant has concurrent mutations in the target and non-target copies of HvPM19. CONCLUSIONS We demonstrate the use of RNA-guided Cas9 to generate mutations in target genes of both barley and B. oleracea and show stable transmission of these mutations thus establishing the potential for rapid characterisation of gene function in these species. In addition, the off-target effects reported offer both potential difficulties and specific opportunities to target members of multigene families in crops.
Collapse
|
125
|
Cao R, Wang Y. Predicting Molecular Targets for Small-Molecule Drugs with a Ligand-Based Interaction Fingerprint Approach. ChemMedChem 2015. [PMID: 26222196 DOI: 10.1002/cmdc.201500228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The computational prediction of molecular targets for small-molecule drugs remains a great challenge. Herein we describe a ligand-based interaction fingerprint (LIFt) approach for target prediction. Together with physics-based docking and sampling methods, we assessed the performance systematically by modeling the polypharmacology of 12 kinase inhibitors in three stages. First, we examined the capacity of this approach to differentiate true targets from false targets with the promiscuous binder staurosporine, based on native complex structures. Second, we performed large-scale profiling of kinase selectivity on the clinical drug sunitinib by means of computational simulation. Third, we extended the study beyond kinases by modeling the cross-inhibition of bromodomain-containing protein 4 (BRD4) for 10 well-established kinase inhibitors. On this basis, we made prospective predictions by exploring new kinase targets for the anticancer drug candidate TN-16, originally known as a colchicine site binder and microtubule disruptor. As a result, p38α was highlighted from a panel of 187 different kinases. Encouragingly, our prediction was validated by an in vitro kinase assay, which showed TN-16 as a low-micromolar p38α inhibitor. Collectively, our results suggest the promise of the LIFt approach in predicting potential targets for small-molecule drugs.
Collapse
|