101
|
Almeida AACD, Ferreira JRDO, de Carvalho RBF, Rizzo MDS, Lopes LDS, Dittz D, Castro E Souza JMD, Ferreira PMP. Non-clinical toxicity of (+)-limonene epoxide and its physio-pharmacological properties on neurological disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2301-2314. [PMID: 32653979 DOI: 10.1007/s00210-020-01943-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
The compound (+)-limonene epoxide has antioxidant, anxiolytic, and antihelminthic properties. However, investigations to determine its long-term exposure were not performed. We investigated the systemic toxicological profile after chronic exposure as well as the antidepressant and antiepileptic potentialities of (+)-limonene epoxide on mice. Initially, we evaluated acute toxicity on Artemia salina nauplii and cytotoxicity on mice erythrocytes and peripheral blood mononuclear cells (PBMC). Aftterwards, mice were chronically treated for 120 days by gavage with (+)-limonene epoxide (25, 50, and 75 mg/kg/day) and this exposure was assessed by pathophysiological measurements. For antidepressant and anticonvulsivant analysis, we performed the forced swimming and tail suspension protocols and pentylenetetrazol- and picrotoxin-induced seizures, respectively. (+)-Limonene epoxide showed a LC50 value of 318.7 μg/mL on A. salina shrimps, caused lysis of red blood cells at higher concentrations only but did not show cytotoxicity on PMBC, which suggests pharmacological safety if plasma concentrations do not exceed 100 μg/mL. Macroscopic, hematological, clinical chemistry, and nutritional changes were not detected, though focal areas of hepatic necrosis, inflammatory infiltrate, and karyolysis have been detected at 75 mg/kg/day. The compound inhibited the developing of pentylenetetrazol- and picrotoxin-induced seizures, decreased deaths, and reduced immobility times, mainly at 75 mg/kg. So, it reversed reserpine effects, suggesting antidepressant effects should be linked to serotonergic and/or adrenergic transmission. It is feasible that (+)-limonene epoxide plays a benzodiazepine-like anticonvulsive action and may be also recommended as an antidote for poisonings caused by central depressants.
Collapse
|
102
|
Javed R, Rais F, Kaleem M, Jamil B, Ahmad MA, Yu T, Qureshi SW, Ao Q. Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry. Int J Biol Macromol 2020; 167:1452-1467. [PMID: 33212106 DOI: 10.1016/j.ijbiomac.2020.11.099] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
This investigation is vital contribution to the healthcare system utilizing techniques of nanobiotechnology. It interestingly applies chitosan capped CuO nanoparticles in the field of medicine and restorative dentistry. The CuO nanoparticles and CuO-Chitosan nanoparticles are prepared by co-precipitation, and their characterization is performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). The average crystallite size of these nanoparticles has been found to be in the dimensions of <40 nm and <35 nm, respectively. CuO-Chitosan nanoparticles show significant enhancement in in vitro antibacterial, antioxidant, cytotoxic, and antidiabetic activity as compared to CuO nanoparticles. In addition, the successful amalgamation of CuO nanoparticles and CuO-Chitosan nanoparticles into dentine bonding agents results in providing efficient remedy against secondary caries. CuO-Chitosan nanoparticles reinforced dental adhesive discs cause significant upsurge in reduction of Lactobacillus acidophillus and Streptococcus mutans. Also, the augmentation of mechanical properties, water sorption and solubility plus slow and sustained release profile and slight variation of shear bond strength is attained. Taken together, the chemically synthesized CuO nanoparticles and CuO-Chitosan nanoparticles have proven to be promising candidates having enormous potential to be utilized in drug delivery and nanotheranostics.
Collapse
|
103
|
Gul H, Jabeen N, Irum S, Kausar R, Ajab H, Gulfraz M. Chemical profiling and bioactivities on the leaf extracts of Vitex neugundo. PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES 2020; 33:2535-2541. [PMID: 33867327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Vitex negeundo is a widely used medicinal plant which has not been fully investigated in the past. We assessed the in vivo hepatoprotective and in vitro antioxidant, antibacterial, cytotoxicity and anti proliferative study of leaf extracts of V. neugundo. The chemically profiled using HPLC, three flavonoids were quantified and GC-MS analysis revealed the presence of two new compounds those were not reported earlier from the leaf extract of V. neugundo. The animal study was conducted on mice treated with CCl4 using methanolic and chloroform extracts (100, 200 and 300mg/kg b.w), with silymarin as a positive control. Hepatoprotective effects were determined by analyzing blood for liver marker enzymes, direct bilirubins and hematological parameters (RBC, WBC and platelets). The methanolic extract (300mg/kg b.w) has shown the stronger hepatoprotective effects against abnormalities produced by CCl4. The in vivo hepatoprotective effects correlated well with the in vitro antioxidant, cytotoxicity and antiproliferative activities and with high levels of flavonoids and other organic compounds analyzed from plant extracts. The leaf extracts of this plant could be good candidates for lead compound required for the development of antioxidant/anticancer drugs.
Collapse
|
104
|
Zou J, Li Q, Lu S, Dong Y, Chen H, Zheng C, Cui L. The first benthic harmful dinoflagellate bloom in China: Morphology and toxicology of Prorocentrum concavum. MARINE POLLUTION BULLETIN 2020; 158:111313. [PMID: 32568087 DOI: 10.1016/j.marpolbul.2020.111313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
More frequent events and geographic expansion of benthic harmful algal blooms have been reported in recent years. An unexpected bloom of benthic P. concavum occurred in Xincun Bay, Hainan Island, the South China Sea was monitored in August 2018. Species identification, toxin analysis and toxicity test were conducted in the study. Quantitative study revealed that P. concavum had a high cell density on the surface of substrates and in water column. The bloom forming species was identified based on the morphology and phylogeny. Toxin analysis indicated that there were no detectable DSP toxins either in algae or in shellfish samples. The result of toxicity test revealed that the extracts of P. concavum caused the mortality of brine shrimp larvae (Artemia salina). The results from this study may provide more insight into the rising threats of harmful dinoflagellate blooms to marine benthic ecosystems.
Collapse
|
105
|
Varma RR, Pandya JG, Vaidya FU, Pathak C, Bhatt BS, Patel MN. Synthesis, Characterization and Biological Application of Pyrazolo[1,5-a]pyrimidine Based Organometallic Re(I) Complexes. Acta Chim Slov 2020; 67:957-969. [PMID: 33533439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] Open
Abstract
The neutral rhenium(I) complexes (I-VI) of type [ReCl(CO)3Ln-] where L1 = 7-phenyl-5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine, L2 = 7-(4-bromophenyl)-5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimi- dine, L3 = 7-(4-chlorophenyl)-5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine, L4 = 7-(2-chlorophenyl) -5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine, L5 = 7-(4-methoxyphenyl)-5-(pyridin-2-yl)pyrazolo [1,5-a]pyrimidine, L6 = 5-(pyridin-2-yl)-7-(p-tolyl)pyrazolo[1,5-a]pyrimidine were synthesized and characterized by 13C-APT, 1H-NMR, IR, electronic spectra, magnetic moment and conductance measurement. The anti-proliferative activity on HCT116 cells by MTT assay suggests potent cytotoxic nature of complexes, even some complexes have better activity than standard drug cisplatin, oxaliplatin, and carboplatin. The complexes found to have better antimicrobial activity compare to pyrazolo pyrimidine ligands. The theoretical study of compounds-DNA interactions was examined by molecular docking as a supportive tool to the experimental data, which suggests the groove mode of binding. The values of docking energy for compounds-DNA interaction were found in the range of -230.31 to -288.34 kJ/mol. The intrinsic binding constant values of complexes (1.1-3.5×105 M-1) were found higher than the ligands (0.32-1.8×105 M-1).
Collapse
|
106
|
Dobler L, Ferraz HC, Araujo de Castilho LV, Sangenito LS, Pasqualino IP, Souza Dos Santos AL, Neves BC, Oliveira RR, Guimarães Freire DM, Almeida RV. Environmentally friendly rhamnolipid production for petroleum remediation. CHEMOSPHERE 2020; 252:126349. [PMID: 32443257 DOI: 10.1016/j.chemosphere.2020.126349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/25/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Biosurfactants have potential applications in the remediation of petroleum-contaminated sites. Several strategies can be used to reduce the production costs of these surfactants and make the process more environmentally friendly. In this study, we combined some of these strategies to produce the rhamnolipid-type biosurfactant, including the use of the genetically modified strain Pseudomonas aeruginosa-estA, an industrial coproduct as a carbon source, a simple and low-cost medium, and a simple downstream process. The process resulted in a high yield (17.6 g L-1), even using crude glycerin as the carbon source, with substrate in product conversion factor (YRML/s) of 0.444. The cell-free supernatant (CFS) was not toxic to Artemia salina and selected mammalian cell lineages, suggesting that it can be used directly in the environment without further purification steps. Qualitative analysis showed that CFS has excellent dispersion in the oil-displacement test, emulsifying (IE24 = 65.5%), and tensoactive properties. When salinity, temperature and pressure were set to seawater conditions, the values for interfacial tension between crude oil and water were below 1.0 mN m-1. Taken together, these results demonstrate that it is possible to obtain a nontoxic crude rhamnolipid product, with high productivity, to replace petroleum-based surfactants in oil spill cleanups and other environmental applications.
Collapse
|
107
|
Elkeiy MM, Khamis AA, El-Gamal MM, Abo Gazia MM, Zalat ZA, El-Magd MA. Chitosan nanoparticles from Artemia salina inhibit progression of hepatocellular carcinoma in vitro and in vivo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19016-19028. [PMID: 30293105 DOI: 10.1007/s11356-018-3339-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
This study was conducted to evaluate the effect of chitosan nanoparticles (CNPs) isolated from Artemia salina against hepatocellular carcinoma (HCC) both in vitro (HepG2) and in vivo (diethylnitrosamine-induced HCC in rats) and to investigate the involved underlying mechanisms. Administration of CNPs decreased HCC progression as evidenced by (1) induced HepG2 cell death as detected by MTT assay; (2) induced necrosis as indicated by acridine orange/propidium iodide (AO/PI) red staining, annexin V/7-AAD positive staining (detected by flow cytometry), and upregulated expression of necrosis markers (PARP1 and its downstream target, RIP1 genes), but no effect on apoptosis as revealed by insignificant changes in caspase 3 activity and mRNA levels of Bax and AIF; (3) increased intracellular ROS and decreased mitochondrial membrane potential in HepG2; (4) decreased liver relative weight, serum levels of liver enzymes (ALT, AST, and ALP), total bilirubin, and cancer markers (AFP and GGT), number and area of GST-P positive tumor nodules; and (5) reduced oxidative stress (decrease in MDA levels) and increased activities of SOD, CAT, and GPx enzymes in rat liver. The preventive (pre-treatment) effect of CNPs was better than the therapeutic (post-treatment) effect. Collectively, administration of CNPs inhibited HCC progression in vitro and in vivo, possibly through induction of necrosis, rather than apoptosis, and induction of antioxidant enzyme activities in vivo, but with stimulation of ROS production in vitro. Thus, CNPs could be used as a promise agent for treating HCC after application of further confirmatory clinical trials.
Collapse
|
108
|
de Campos Júnior EO, Araújo DF, Souto HN, Campos CF, Pereira BB. Contamination and health risks assessment in a dam in the southeast region of Brazil using ecotoxicological methods. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:404-411. [PMID: 32456603 DOI: 10.1080/15287394.2020.1767250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Concerned with water quality, specialists have resorted to ecotoxicology as a tool to assess suspected contamination, enabling creation of strategies to repair the observed damage. Organisms such as fish and micro crustaceans are widely used in acute tests due to several characteristics in common among them including (1) accessibility of multiple samples, and (2) enhanced sensitivity when exposed to pollutants. Thus, the objective of this investigation was to determine the degree of toxicity at different points of a dam in Coromandel, Minas Gerais, using Artemia salina and Danio rerio as bioindicator organisms. Water was collected at three points of the dam were subsequently used to expose these organisms to different contaminant concentrations. Following exposure mortality and immobility rates were determined and compared to negative control (only distilled water). Results with exposure of A. salina did not present significant pollution affects. However, in the case of D. rerio the mortality frequency, immobility rate and behavioral alterations was increased at point P3; thus, D. rerio demonstrated greater sensitivity than A. salina. The physical-chemical test indicated that there were changes in parameters including biochemical demand of oxygen, dissolved oxygen and total dissolved solids (in sample at points 2 and 3), confirming toxic potential, and evidence of poor water quality at these locations. Therefore, data demonstrated that water from the dam at certain sites is not suitable for human consumption or leisure activities such as swimming that were previously reported to occur in this reservoir by the local community.
Collapse
|
109
|
Cimen ICC, Danabas D, Ates M. Comparative effects of Cu (60-80 nm) and CuO (40 nm) nanoparticles in Artemia salina: Accumulation, elimination and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137230. [PMID: 32062243 DOI: 10.1016/j.scitotenv.2020.137230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, nanotoxicity tests were made by exposure of Artemia salina to copper (Cu 60-80 nm) and copper oxide (CuO 40 nm) nanoparticles (NPs) at different concentrations (0.2, 1, 5, 10, 25, and 50 mg/l) during some exposure duration. Characterization of Cu and CuO NPs were performed using Transmission Electron Microscope (TEM), Dynamic Light Scattering (DLS), Zeta Potential, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transformation Infrared (FT-IR) analyzes. In organisms, the accumulation and elimination rates of NPs was determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analysis and the oxidative stress effects on A. salina were determined by Glutathione (GSH) and Thiobarbituric acid reactive substances (TBARS) analysis methods. Both NPs were found to differ in accumulation and elimination rates at each application time and in parallel with the increase in concentration. In each group, it was determined that ion release increased with application time. The results showed that the accumulation rates in Cu NPs had a tendency to increase at 48 h and to decrease at 72 h in concentrations of 0, 2 and 1 mg/l, respectively. And in the all other concentrations have been seen an increasing trend within the time. In the CuO NPs (40 nm), accumulation rates were a decrease trend at 48th hour and an increase trend at 72nd hour except 10 mg/l concentration. In the 10 mg/l group was an increase trend with the application period. Cu NP, TBARS value increased with increasing concentrations and the highest increase was observed at 24 h of 5 ppm group. The groups showed a tendency to increase-decrease-increase-decrease in TBARS levels in terms of elapsed time (24th, 48th, 72nd hour and elimination) (5 ppm and 10 ppm groups tended to decrease in TBARS level at 72nd hour). TBARS increased with increasing concentration ratios in CuO NPs (40 nm).
Collapse
|
110
|
Danabas D, Ates M, Ertit Tastan B, Cicek Cimen IC, Unal I, Aksu O, Kutlu B. Effects of Zn and ZnO Nanoparticles on Artemia salina and Daphnia magna Organisms: Toxicity, Accumulation and Elimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134869. [PMID: 31818580 DOI: 10.1016/j.scitotenv.2019.134869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/21/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
In the study, Zn in the size of 40-60 nm and 80-100 nm and ZnO in the size of 10-30 nm were applied to A. salina and D. magna individuals in 7 groups with 3 repetitions. Measurements were made at 24th, 48th and 72nd hours and elimination values were examined at +24 h. LC50 values of NPs were determined and chemical analysis (metal accumulation and elimination), ion quantities which were given to the environment and the survival rates of organisms were determined after the exposure. According to the results of phase contrast microscopy, it was found that both experimental organisms absorbed the NPs in the medium level. In the toxicity results of D. magna, it can be said that Zn NP (40-60 nm) has a highly toxic effect only at 50 ppm concentration for 48 h and lethal dose can be accepted as of 5 ppm at the end of 72 h. In A. salina individuals, it is clearly seen that there is an increase in mortality in organisms parallel to the dose increase. Although all NPs were applied to organisms in low doses corresponding to environmental values, it was observed that toxic effect was in parallel with the increase in time. It is clearly known that there is the inverse proportion between the size of NPs and the toxic effect. The smaller the size of NPs is, the higher the toxic effect becomes When the results of Zn accumulation and elimination of A. salina and D. magna individuals exposed to the Zn and ZnO NPs were examined; it was found that accumulation and elimination occurred in parallel with the increase in concentration at each application hour and elimination. Intensive and possible misuse of nanoscale materials is one of the biggest threats to the environment and all living things worldwide.
Collapse
|
111
|
Panthi M, Subba RK, Raut B, Khanal DP, Koirala N. Bioactivity evaluations of leaf extract fractions from young barley grass and correlation with their phytochemical profiles. BMC Complement Med Ther 2020; 20:64. [PMID: 32111207 PMCID: PMC7076879 DOI: 10.1186/s12906-020-2862-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 02/20/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The pressed juice of Barley Grass (BG) has become very popular among people for various assumed benefits along with many testimonies of people who have been healed from various ailments such as anemia, cancer, GI problems by consuming BG. The aim of our research was to validate the claims of its medicinal values such as chemo-protective action, high anti-oxidants, RBC membrane stabilization activity, and toxicity level. METHODS Extracts of hexane, ethyl acetate and methanol were quantitatively estimated for total phenolic contents (TPC) and total flavonoid contents (TFC). The same extracts were assessed for their antioxidative potentials with the use of DPPH free radical scavenging assay followed by determination of HRBC membrane stabilization method, Brine Shrimp Lethality Assay (BSLA) and GC-MS analysis. RESULTS All the extracts showed high TPC and TFC along with the stronger correlation with the antioxidant activity of the extracts suggesting phenolics and flavonoids contents of the extract might be attributed to showing antioxidant activity. The methanolic and ethyl acetate extracts of the plant also showed remarkable anti-inflammatory activity where methanolic extracts had the lowest EC50. During Brine Shrimp Lethality Assay, all extracts of BG were found to be bioactive and the degree of lethality was found to be concentration dependent. The GC-MS analysis of the methanolic extract of BG revealed 23 compounds which are reported to possess different biological activities. CONCLUSION The study reveals the strong antioxidant and RBC membrane stabilization activity of BG. The Brine Shrimp Lethality Assay found extracts to be bioactive suggesting extracts as a promising candidate for plant-derived anti-tumor compounds. Further, studies are needed to validate the data on cancer cell lines.
Collapse
|
112
|
Almeida TS, Arantes MR, Lopes Neto JJ, Souza TM, Pessoa IP, Medeiros JL, Tabosa PMS, Moreira TB, Farias DF, Carvalho AFU. Evaluation of seeds ethanolic extracts of Triplaris gardneriana Wedd. using in vitro and in vivo toxicological methods. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:135-152. [PMID: 32114934 DOI: 10.1080/15287394.2020.1731035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Triplaris gardneriana Wedd. is a tree used in folk medicine to treat venereal diseases and inflammation as well as a source of biological compounds with antioxidant capacity. In order to assess the safety of these bioactive compounds, the present study aimed to determine the toxicity of an ethanolic extract of T. gardneriana, (EETg). Toxicological tests included hemolytic activity, toxicity toward the brine shrimp Artemia, cytotoxicity against breast cancer cells (MCF7) and acute oral toxicity in rodents. In addition, toxicogenomics techniques were used to determine genome expression in MCF7 cells exposed to EETg. The results showed that the extract exhibits approximately 60% of hemolytic activity at the highest tested concentration (64 µg/ml) and toxicity against nauplii of Artemia sp. (LC50 of 67.85 µg/ml). Further, EETg appears to be cytotoxic to MCF7 (cell viability reduced to 40% at 250 µg/ml after 24 hr). Genomic data demonstrated differential expression of 14 genes. Data analysis indicated possible altered pathways (e.g., xenobiotic metabolism), possible adverse health risks (e.g., hepatotoxicity), and drugs with similar gene expression profile (e.g., antimicrobials). The investigation provides important information on potentially adverse aspects of EETg, which need to be considered prior to the therapeutic utilization of this plant.Abbreviations: EETg: ethanolic extract of T. gardneriana seeds; MCF7: michigan cancer foundation-7 which refers to a human breast cell line (adenocarcinoma); NGS: next-generation sequencing; edgeR: empirical analysis of digital gene expression data in R; Consensus: consensus path database; FDR: false discovery rate; NCBI: national center for biotechnology information; KEGG: kyoto encyclopedia of genes and genomes; Ingenuity: ingenuity pathway analysis software; CMAP: connectivity map; OECD: organization for economic co-operation and development; HL-60: human promyelocytic leukemia cells; PC3: prostate cancer cells.
Collapse
|
113
|
Ogbole OO, Ndabai NC, Akinleye TE, Attah AF. Evaluation of peptide-rich root extracts of Calliandria portoriscensis (Jacq.) Benth (Mimosaceae) for in vitro antimicrobial activity and brine shrimp lethality. BMC Complement Med Ther 2020; 20:30. [PMID: 32020886 PMCID: PMC7076830 DOI: 10.1186/s12906-020-2836-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/28/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Several Host defence peptides (HDPs) are low molecular weight (< 50 amino acids residues) peptides detected in several ethnomedicinal plants and have particularly gained research interest in recent times. Due to their wide range of bioactivity, occurrence, abundance and ability to induce very little resistance, they hold promising potentials in drug development. This study investigated the presence of bioactive peptides in the roots of Calliandra portoricensis (CPr) (Mimosaceae) and evaluated its antimicrobial activity against gram-negative and gram-positive bacteria. METHODS The crude peptide extract was obtained and pre-purified on pre-loaded tube of RP-C18 solid phase cartridges (strata giga tube C18-E; 5 g, 20 mL, Phenomenex, Germany). Peptide enriched fraction was chemically analysed for arginine-rich/aromatic amino acid-rich peptides using a modified G-250 analytical stain and ninhydrin on thin layer chromatography (TLC) for a preliminary screening. Furthermore, MALDI TOF/TOF peptidomics was used to detect the presence and masses of the peptides. Extracts from CPr were used to test the ability to inhibit microbial growth using p-INT (Para-iodonitrotetrazolium violet) dye, with 0.1% gentamycin as positive control. The concentration that inhibits the growth of microorganisms by 50% (IC50) were determined. Toxicity of the two extracts was accessed using freshly hatched nauplii of Artemia salina. Data analysis were evaluated using Microsoft excel and GraphPad Prism5. RESULTS Low molecular weight (LMW) peptides were detected in CPr using TLC and MALDI-TOF MS. Generally, the extracts exhibited good inhibition (70-95%) against the gram-negative and gram-positive bacteria, except MRSA6 typed strain. Enhanced activity was observed in the pre-purified peptide fraction than in the methanol crude, except on MRSA6. The greatest antimicrobial inhibition by pre-purified peptide fraction was against MRSA22 (IC50 = 0.69 ± 0.33 μg/mL). The crude methanol extract (LC50 = 5.13 μg/mL) was slightly more toxic than the peptide extract (LC50 = 6.12 μg/mL). CONCLUSIONS This is the first report on detection of bioactive LMW peptides in Mimosaceae family. These peptides appear to be rich in arginine and aromatic amino acids. The peptide extract, in its pre-purified form showed a lower Brine shrimp cytotoxicity and an enhanced antimicrobial activity against the tested gram-negative and gram-positive bacteria.
Collapse
|
114
|
Viega BL, Rocha AM, Düsman E. Cosmetics with hormonal composition for bioindicators Artemia salina L. and Allium cepa L. toxic potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6659-6666. [PMID: 31873903 DOI: 10.1007/s11356-019-07392-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The emerging pollutants cover a wide range of synthetic chemicals that are indispensable to modern society but with little known effects for aquatic animals and for people who consume polluted waters with these products. Gels manipulated with hormones are widely used for hormone replacement, muscle growth, among other purposes. However, only a small part of these hormones are absorbed into the skin, and so these can be transferred to the domestic sewage during the washing of exposed body regions. Thus, the aim of this study was to evaluate the toxicity levels for the bioindicator Artemia salina L., and cytotoxicity and mutagenicity for the bioindicator Allium cepa L. of gels handled with 1% testosterone and 0.1% estradiol. Data from immobile/dead A. salina numbers after 24 h of exposure showed that the highest concentrations of testosterone (10 and 25 μg/mL) and the highest concentration of estradiol (15 μg/mL) were toxic to this bioindicator. For the bioindicator A. cepa, mitotic indices and chromosomal aberrations did not indicate statistical differences between the groups treated with the testosterone gels (1, 10, 50 μg/mL) and estradiol (0.03, 0.30, 1.5 μg/mL) and the control group. However, all concentrations of the testosterone-containing gel decreased the percentage of cell division in relation to the time 0 h of each treatment and to the time 24 h of the negative control. Therefore, it is concluded that rivers or aquatic environments can be polluted if wastewater with the toxic concentrations found of these hormonal gels is discarded without previous treatment, compromising the life of organisms that live there. And, it encourages the development of techniques for treating sewage and water to reduce/eliminate the hormones present in them.
Collapse
|
115
|
Kharsany K, Viljoen A, Leonard C, van Vuuren S. The new buzz: Investigating the antimicrobial interactions between bioactive compounds found in South African propolis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111867. [PMID: 30978456 DOI: 10.1016/j.jep.2019.111867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis, a resinous substance produced by the Apis mellifera bee, contains a number of flavonoids sourced from plants found in the surrounding region. Whilst bees use this substance to seal off and protect the beehive, humans have used propolis therapeutically for centuries, making use of its antibacterial, antiseptic, antipyretic and wound healing properties, among others. South African propolis is rich in the flavonoids pinocembrin, galangin, and chrysin and very little previous research has been conducted on the antimicrobial effects of these compounds. AIM OF THE STUDY To obtain an understanding of the antimicrobial activity of the compounds pinocembrin, galangin, and chrysin, both independently and in combination. MATERIALS AND METHODS The compounds pinocembrin, galangin and chrysin were investigated for interactive antimicrobial activity by determining the minimum inhibitory concentrations (MIC), minimum bactericidal concentrations (MBC), anti-quorum sensing activity, biofilm studies, and toxicity studies (brine shrimp lethality assay). RESULTS Minimum inhibitory concentration results demonstrated that combinations of compounds showed better inhibitory activity than single compounds. When the flavonoids were tested in combination using the MIC assay, synergy was noted for 22% of the 1:1 ratio combinations and for 66% of the triple 1:1:1 ratio combinations. Similarly, MBC results showed bactericidal activity from selected combinations, while the compounds on their own demonstrated no cidal activity. Quorum sensing studies showed that compound combinations are more effective at inhibiting bacterial communication than the individual compounds. Biofilm assays showed that the highest percentage inhibition was observed for the triple combination against E. coli at 24 h. Finally, brine shrimp lethality studies revealed that combinations of the three compounds had reduced cytotoxicity when compared to the individual compounds. CONCLUSION The results obtained in this study demonstrate that the compounds found in South African propolis work synergistically to achieve an optimal antimicrobial effect, whilst simultaneously minimizing cytotoxicity.
Collapse
|
116
|
Casas-Junco PP, Solís-Pacheco JR, Ragazzo-Sánchez JA, Aguilar-Uscanga BR, Bautista-Rosales PU, Calderón-Santoyo M. Cold Plasma Treatment as an Alternative for Ochratoxin a Detoxification and Inhibition of Mycotoxigenic Fungi in Roasted Coffee. Toxins (Basel) 2019; 11:toxins11060337. [PMID: 31200476 PMCID: PMC6628446 DOI: 10.3390/toxins11060337] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/16/2022] Open
Abstract
Ochratoxin A (OTA) produced by mycotoxigenic fungi (Aspergillus and Penicillium spp.) is an extremely toxic and carcinogenic metabolite. The use of cold plasma to inhibit toxin-producing microorganisms in coffee could be an important alternative to avoid proliferation of mycotoxigenic fungi. Roasted coffee samples were artificially inoculated with A. westerdijikiae, A. steynii, A. versicolor, and A. niger, and incubated at 27 °C over 21 days for OTA production. Samples were cold plasma treated at 30 W input power and 850 V output voltage with helium at 1.5 L/min flow. OTA production in coffee was analyzed by high performance liquid chromatography coupled to a mass spectrometer (HPLC-MS). After 6 min of treatment with cold plasma, fungi were completely inhibited (4 log reduction). Cold plasma reduces 50% of OTA content after 30 min of treatment. Toxicity was estimated for extracts of artificially contaminated roasted coffee samples using the brine shrimp (Artemia salina) lethality assay. Toxicity for untreated roasted coffee was shown to be “toxic”, while toxicity for cold plasma treated coffee was reduced to “slightly toxic”. These results suggested that cold plasma may be considered as an alternative method for the degradation and reduction of toxin production by mycotoxigenic fungi in the processing of foods and feedstuffs.
Collapse
|
117
|
Ali S, Khan MR, Batool R, Maryam S, Majid M. Wound healing potential of oil extracted from Parrotiopsis jacquemontiana (Decne) Rehder. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:354-365. [PMID: 30878545 DOI: 10.1016/j.jep.2019.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/30/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oil extracted from Parrotiopsis jacquemontiana stem traditionally used for wound healing, body aches and dermatitis. In this study we have evaluated oil for its phytoconstituents, antioxidant, antimicrobial and wound healing activities. METHODS Phytochemical characterization of oil was determined by standard qualitative procedures, gas chromatography mass spectrometry technique (GC-MS) and Fourier transform infra-red spectroscopy (FT-IR). The in vitro antioxidant aptitude was determined by scavenging of DPPH radical, hydroxyl ion, nitric oxide, inhibition of β-carotene bleaching assay and iron chelation power assay. The antimicrobial potential of oil was investigated by disc diffusion method against multidrug resistant (MDR) bacterial isolates and fungal strains. Wound healing was performed in vivo with determination of wound contraction rates, histopathology, hemostatic potential and hydroxyproline estimation. RESULTS GC-MS analysis indicated that oil was constituted mainly of 2, 6-dimethyl-8-oxoocta-2, 6-dienoic acid, methyl ester (18.2%), syringol (17.8%), catechol (12.4%), guaiacol (5.2%), p-cresol (5.4%) and phenol, 2-propyl- (3.7%). FT-IR analysis revealed several important functional groups in its chemical composition especially phenolic O-H compound stretching. Scavenging of DPPH radical, hydroxyl ion, nitric oxide, inhibition of β-carotene oxidation and iron chelation power assays indicated strong antioxidant activities of oil. Further it efficiently inhibited growth of multidrug resistant isolates of Staphylococcus aureus, S. lugdenesis, Klebsiella pneumoniae, Escherichia coli, Coagulase -ve staphylococci and Pseudomonas aeruginosa. The minimum inhibitory concentrations ranged between (32-256) (μg/mL) of oil. The oil also strongly inhibited the growth of various fungal isolates with low level of minimum inhibitory concentrations (64-256) μg/mL. Remarkable rate for wound closure and epithelization, hemostatic potential and marked increase (p < 0.05) in hydroxyproline content was observed for oil during wound healing in rat. CONCLUSION The results suggested that oil can be used as a potential source of wound healing therapeutics.
Collapse
MESH Headings
- Administration, Cutaneous
- Animals
- Anti-Infective Agents/chemistry
- Anti-Infective Agents/isolation & purification
- Anti-Infective Agents/pharmacology
- Anti-Infective Agents/therapeutic use
- Antioxidants/chemistry
- Antioxidants/isolation & purification
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Artemia
- Bacteria/drug effects
- Bandages
- Disease Models, Animal
- Fungi/drug effects
- Gas Chromatography-Mass Spectrometry
- Hamamelidaceae/chemistry
- Medicine, Traditional
- Microbial Sensitivity Tests
- Oils, Volatile/chemistry
- Oils, Volatile/isolation & purification
- Oils, Volatile/pharmacology
- Oils, Volatile/therapeutic use
- Pakistan
- Plant Components, Aerial/chemistry
- Rats
- Rats, Sprague-Dawley
- Skin/drug effects
- Skin/injuries
- Skin/pathology
- Spectroscopy, Fourier Transform Infrared
- Toxicity Tests
- Wound Healing/drug effects
- Wounds and Injuries/drug therapy
- Wounds and Injuries/microbiology
- Wounds and Injuries/pathology
Collapse
|
118
|
Ashraf Z, Mahmood T, Hassan M, Afzal S, Rafique H, Afzal K, Latip J. Dexibuprofen amide derivatives as potential anticancer agents: synthesis, in silico docking, bioevaluation, and molecular dynamic simulation. Drug Des Devel Ther 2019; 13:1643-1657. [PMID: 31190743 PMCID: PMC6524612 DOI: 10.2147/dddt.s178595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The amide derivatives of nonsteroidal anti-inflammatory drugs have been reported to possess antitumor activity. The present work describes the synthesis of dexibuprofen amide analogues (4a-j) as potential anticancer agents. METHODS The title amides (4a-j) were obtained by simple nucleophilic substitution reaction of dexibuprofen acid chloride with substituted amines in good yield and chemical structures were confirmed by FTIR, 1H NMR, 13C NMR and mass spectral data. RESULTS The brine shrimp lethality assay results showed that all of the synthesized compounds are non-toxic to shrimp larvae. The inhibitory effects on tumor growth were evaluated and it was observed that N-(2,5-dichlorophenyl)-2-(4-isobutylphenyl) propionamide (4e) and N-(2-chlorophenyl)-2-(4-isobutylphenyl) propionamide (4g) exhibited excellent antitumor activity compared to all other derivatives. The compound 4e bearing 2,5-dichloro substituted phenyl ring and 4g possesses 2-chloro substituted phenyl ring exhibited 100% inhibition of the tumor growth. The anticancer activity was evaluated against breast carcinoma cell line (MCF-7) and it was observed that derivative 4e exhibited excellent growth inhibition of cancer cells with IC50 value of 0.01±0.002 µm, which is better than the standard drugs. The docking studies against breast cancer type 1 susceptibility protein BRCA1 (PDBID 3K0H) exhibited good binding affinities, which are in good agreement with the wet lab results. The compounds 4e and 4g showed the binding energy values of -6.39 and -6.34 Kcal/mol, respectively. The molecular dynamic (MD) simulation was also carried out to evaluate the residual flexibility of the best docking complexes of compounds 4e and 4g. The MD simulation analysis assured that the 4e formed a more stable complex with the target protein than the 4g. The synthesized amide derivatives exhibited were devoid of gastrointestinal side effects and no cytotoxic effects against human normal epithelial breast cell line (MCF-12A) were found. CONCLUSION Based upon our wet lab and dry lab findings we propose that dexibuprofen analogue 4e may serve as a lead structure for the design of more potent anticancer drugs.
Collapse
|
119
|
Kachenton S, Jiraungkoorskul W, Kangwanrangsan N, Tansatit T. Cytotoxicity and histopathological analysis of titanium nanoparticles via Artemia salina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14706-14711. [PMID: 29679269 DOI: 10.1007/s11356-018-1856-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The consumption trend of nanoparticles by industry in this moment pays attention to titanium nanoparticles (TiNPs), due to their various applications: personal care products, household products, food industry, electronic devices, and healthcare products. Rising consumption of TiNPs without specific regulatory criteria for control safety releasing quantification leads to concern on the topic of environmental contamination and injurious effect. Therefore, this study investigates TiNP toxicities on aquatic animals representing hazardous effects to natural water resource, by determining 24-h LC50 of TiNPs with histopathology investigation. We select brine shrimp (Artemia salina) as a model. Ten adults A. salina were incubated at room temperature for 24 h with various concentrations of TiNPs in triplicate. The mortality number of A. salina was recorded and LC50 value was calculated. The LC50 result is 1693.43 mg/L. Next, A. salina histopathology investigation was done by selecting the living ones after incubation for 24 h with 25% LC50 of TiNPs. We performed tissue processing, embedding, sectioning, and H&E staining, and observed under light microscope. Histopathology reveals TiNP occlusion throughout the intestinal tract. Epithelial cells show abnormal morphology such as hyperplasia, villus deformation, disorganized arrangement, severe edema, and necrosis area. Consequently, the current study shows the severity of TiNP effects on aquatic microcrustaceans and their negative impact on the ecosystem. Furthermore, this information will aid the elucidation of TiNP toxicity effect and the risk of ecosystem disruptions.
Collapse
|
120
|
Belovsky GE, Perschon WC. A management case study for a new commercial fishery: brine shrimp harvesting in Great Salt Lake, Utah, USA. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01864. [PMID: 30835951 DOI: 10.1002/eap.1864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/06/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
A fishery for brine shrimp (Artemia franciscana) cysts to supply the aquaculture industry considerably expanded in the late 1980s in the Great Salt Lake, Utah, USA. With this expansion, concerns emerged in the 1990s about the fishery's sustainability, especially its impact on the abundant western North American waterbirds that use the lake and feed on brine shrimp. We track the development of management strategies using adaptive management by the Utah Division of Wildlife Resources (UDWR), which focused on the biology of the system and development of biology-based harvesting models. The models and their rationale are presented, their success in forecasting is evaluated, and implications for managing the harvest and conserving waterbirds are examined. We view this as an interesting case study because it transpired over a short time in a relatively simple system. This permitted us to clearly track management from the onset of a harvest market, through realization that the harvest had to be managed in the absence of needed biological knowledge, to the adaptive development of management strategies as biological knowledge was accumulated. The outcome illustrates the success that harvest management can attain with careful monitoring of the resource and terminating the harvest when a necessary escapement stock is attained.
Collapse
|
121
|
Hameed S, Khalil AT, Ali M, Numan M, Khamlich S, Shinwari ZK, Maaza M. Greener synthesis of ZnO and Ag-ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine (Lond) 2019; 14:655-673. [PMID: 30714480 DOI: 10.2217/nnm-2018-0279] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the physical and biological properties of Silybum marianum inspired ZnO nanoparticles (NPs), Ag-ZnO heterostructures. Experiment: Nanoparticles were characterized using ultraviolet-visible and infrared spectroscopy, x-ray diffraction, high resolution electron microscopy, ζ potential and thermo-gravimetric analysis etc. Results: Ag-ZnO-NPs indicated slightly higher antimicrobial potential then ZnO-NPs. Good antileishmanial (IC50 = 246 μg/ml for Ag-ZnO; 341 μg/ml for ZnO) and antioxidant potential while moderate enzyme inhibition is reported. 2, 2-Diphenyl 1-picrylhydrazyl radical scavenging of Ag-ZnO was higher relative to ZnO-NPs. Nanocosmaceutical formulation of nanoparticles indicated stable antimicrobial performance. CONCLUSION Biosynthesized nanoparticles indicated interesting biological properties and should be subjected to further research to establish their pharmacological relevance.
Collapse
|
122
|
Antunes J, Pereira S, Ribeiro T, Plowman JE, Thomas A, Clerens S, Campos A, Vasconcelos V, Almeida JR. A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides. Mar Drugs 2019; 17:E111. [PMID: 30759807 PMCID: PMC6410096 DOI: 10.3390/md17020111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
The cyclic peptides portoamides produced by the cyanobacterium Phormidium sp. LEGE 05292 were previously isolated and their ability to condition microcommunities by allelopathic effect was described. These interesting bioactive properties are, however, still underexplored as their biotechnological applications may be vast. This study aims to investigate the antifouling potential of portoamides, given that a challenge in the search for new environmentally friendly antifouling products is to find non-toxic natural alternatives with the ability to prevent colonization of different biofouling species, from bacteria to macroinvertebrates. A multi-bioassay approach was applied to assess portoamides antifouling properties, marine ecotoxicity and molecular mode of action. Results showed high effectiveness in the prevention of mussel larvae settlement (EC50 = 3.16 µM), and also bioactivity towards growth and biofilm disruption of marine biofouling bacterial strains, while not showing toxicity towards both target and non-target species. Antifouling molecular targets in mussel larvae include energy metabolism modifications (failure in proton-transporting ATPases activity), structural alterations of the gills and protein and gene regulatory mechanisms. Overall, portoamides reveal a broad-spectrum bioactivity towards diverse biofouling species, including a non-toxic and reversible effect towards mussel larvae, showing potential to be incorporated as an active ingredient in antifouling coatings.
Collapse
|
123
|
Chichiriccò G, Ferrante C, Menghini L, Recinella L, Leone S, Chiavaroli A, Brunetti L, Di Simone S, Ronci M, Piccone P, Lanza B, Cesa S, Poma A, Vecchiotti G, Orlando G. Crocus sativus by-products as sources of bioactive extracts: Pharmacological and toxicological focus on anthers. Food Chem Toxicol 2019; 126:7-14. [PMID: 30763684 DOI: 10.1016/j.fct.2019.01.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 11/17/2022]
Abstract
Multiple studies revealed the potential application of high quality saffron byproducts as cheap sources of bioactive compounds endowed with antioxidant activity. In the present study, we analyzed the total fatty acids of the anthers, and explored the pharmacological and toxicological potential of anthers, by evaluating genotoxic and protective effects in multiple cell lines, brine shrimps and isolated rat tissues. The phytochemical analyses showed that anthers are rich in long chain fatty acids most of which are unsaturated (80.51%). Particularly, anther water extract revealed to be well tolerated by multiple cell lines, and able to modulate reactive oxygen species (ROS) levels, without exerting either genotoxic or cytotoxic effects. The same extract was also able to blunt lipopolysaccharide (LPS)-induced nitrite and malondialdehyde (MDA) in isolated rat tissues. On the other hand, considering the concomitant null effect on HCT116 cell migration, in wound healing experimental paradigm, our findings suggest the efficacy of water anther extract as protective agent without any direct reverting effects on lesioned tissues. Concluding, the promising results, deriving from the pharmacological and toxicological evaluations, support the valorization of saffron anthers as a strategy to optimize and develop the productive chain of Abruzzo saffron.
Collapse
|
124
|
Mohammadipanah F, Momenilandi M. Potential of rare actinomycetes in the production of metabolites against multiple oxidant agents. PHARMACEUTICAL BIOLOGY 2018; 56:51-59. [PMID: 29275696 PMCID: PMC6130666 DOI: 10.1080/13880209.2017.1417451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Actinobacteria are a precious source of novel bioactive metabolites with potential pharmaceutical applications. OBJECTIVES Representatives of 11 genera of rare Actinobacteria were selected for the evaluation of antioxidant activity. MATERIAL AND METHODS Fermentation broths of the Actinobacteria were extracted and dosage of 10 to 2000 µg/mL were applied for in vitro antioxidant-related bioassays. Cytotoxicity was assessed at the concentration of 2.5-20 µg/mL. RESULTS In the DPPH scavenging activity, 15 out of 52 extracts showed 17.0-26.8% activity in quantitative evaluation. Metabolites of five prominent antioxidant producing strains protected the DNA (pUC19) against UV-induced photolyzed H2O2-oxidative degradation. The potent antioxidant extracts inhibited two oxidative enzymes of xanthine oxidase in the range of 17.5-45.2% (three extracts had IC50 less than allopurinol) and lipoxygenase in the range of 36-55% (all five extracts had IC50 values less than daidzein). All these extracts could also protect eythrocytes from iron-induced hemolysis with ED50 values in a range of 0.014-1.25 mg/mL. Growth restoration of the yeast cells lacking the sod1 gene was observed by the antioxidant metabolite of Saccharothrix ecbatanensis UTMC 537 at the concentration of 1 mg/mL. CONCLUSIONS The presence of nonidentical metabolites might be responsible for antioxidant and enzyme inhibitory activities of S. ecbatanensis, newly described actinobacterium in family Pseudonocardiaceae. The scavenging of the free electrons, protection of DNA and model yeast cells against oxidative stress, in addition to the inhibition of the oxidating enzymes are the main mechanisms of the antioxidant effect of the introduced resource in this study.
Collapse
|
125
|
Conlan JA, Bay LK, Severati A, Humphrey C, Francis DS. Comparing the capacity of five different dietary treatments to optimise growth and nutritional composition in two scleractinian corals. PLoS One 2018; 13:e0207956. [PMID: 30485343 PMCID: PMC6261599 DOI: 10.1371/journal.pone.0207956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/08/2018] [Indexed: 11/18/2022] Open
Abstract
Developing an optimal heterotrophic feeding regime has the potential to improve captive coral growth and health. This study evaluated the efficacy of three exogenous diets: Artemia nauplii (ART), a commercially available coral diet (Reef Roids) (RR), and a novel, micro-bound diet (ATF), against a comparatively natural, unfiltered seawater treatment (RAW), and an unfed, ultra-filtered seawater treatment (CTL), in adult Acropora millepora and Pocillopora acuta nubbins. After 90 days, both species showed significantly positive weight gain in response to one treatment (A. millepora-RAW, P. acuta-ART), and comparatively low growth in response to another (A. millepora-ATF, P. acuta-RR). The results highlighted substantial differences in the nutritional requirements between species. The nutritional composition of A. millepora in the best performing treatment was dominated by high-energy materials such as storage lipids and saturated and monounsaturated fatty acids. In contrast, the P. acuta nutritional profile in the superior treatment showed a predominance of structural materials, including protein, phospholipids, and polyunsaturated fatty acids. This study demonstrates that Artemia nauplii can successfully replace a natural feeding regime for captive P. acuta, yet highlights the considerable work still required to optimise supplementary feeding regimes for A. millepora.
Collapse
|