101
|
Yang J, Xu R, Luo X. Dynamical analysis of an age-structured multi-group SIVS epidemic model. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2019; 16:636-666. [PMID: 30861660 DOI: 10.3934/mbe.2019031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Host heterogeneities such as space, gender, and age etc are intrinsic characters for investigating diseases mechanisms and transmission routes. First, we incorporate inter-group, intra-group and age structure to propose a multi-group SIVS epidemic model. Then we obtain the basic reproduction number of the system which is the spectral radius of the next generation operator by the renewal equation. Based on some assumptions for parameters, we obtain the existence and uniqueness of endemic equilibrium. By means of integral semigroup theory and Lyapunov methods, we show that the threshold dynamics of the system is completely determined by the basic.
Collapse
|
102
|
Soriano V. Sexually Transmitted Infections in Men having Sex with Men - Rising Numbers and Wider Etiologies. AIDS Rev 2019; 21:50. [PMID: 30899118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
103
|
Fouet C, Kamdem C. Integrated Mosquito Management: Is Precision Control a Luxury or Necessity? Trends Parasitol 2019; 35:85-95. [PMID: 30446394 PMCID: PMC6503858 DOI: 10.1016/j.pt.2018.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
Abstract
The versatility of mosquito species that spread emerging arthropod-borne viruses such as Zika has highlighted the urgent need to re-evaluate mosquito-control standards. The prospect of using precise knowledge of the geographic distribution and vector status of local populations to guide targeted interventions has gained renewed attention, but the feasibility and utility of such an approach remain to be investigated. Using the example of mosquito management in the USA, we present ideas for designing, monitoring, and assessing precision vector control tailored to different environmental and epidemiological settings. We emphasize the technical adjustments that could be implemented in mosquito-control districts to enable targeted control while strengthening traditional management.
Collapse
|
104
|
Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: A review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 67:191-209. [PMID: 30465912 PMCID: PMC8135908 DOI: 10.1016/j.meegid.2018.11.009] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Aedes aegypti is the primary transmitter of the four viruses that have had the greatest impact on human health, the viruses causing yellow fever, dengue fever, chikungunya, and Zika fever. Because this mosquito is easy to rear in the laboratory and these viruses grow in laboratory tissue culture cells, many studies have been performed testing the relative competence of different populations of the mosquito to transmit many different strains of viruses. We review here this large literature including studies on the effect of the mosquito microbiota on competence. Because of the heterogeneity of both mosquito populations and virus strains used, as well as methods measuring potential to transmit, it is very difficult to perform detailed meta-analysis of the studies. However, a few conclusions can be drawn: (1) almost no population of Ae. aegypti is 100% naturally refractory to virus infection. Complete susceptibility to infection has been observed for Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV), but not yellow fever viruses (YFV); (2) the dose of virus used is directly correlated to the rate of infection; (3) Brazilian populations of mosquito are particularly susceptible to DENV-2 infections; (4) the Asian lineage of ZIKV is less infective to Ae. aegypti populations from the American continent than is the African ZIKV lineage; (5) virus adaptation to different species of mosquitoes has been demonstrated with CHIKV; (6) co-infection with more than one virus sometimes causes displacement while in other cases has little effect; (7) the microbiota in the mosquito also has important effects on level of susceptibility to arboviral infection; (8) resistance to virus infection due to the microbiota may be direct (e.g., bacteria producing antiviral proteins) or indirect in activating the mosquito host innate immune system; (9) non-pathogenic insect specific viruses (ISVs) are also common in mosquitoes including genome insertions. These too have been shown to have an impact on the susceptibility of mosquitoes to pathogenic viruses. One clear conclusion is that it would be a great advance in this type of research to implement standardized procedures in order to obtain comparable and reproducible results.
Collapse
|
105
|
Walker JW, Han BA, Ott IM, Drake JM. Transmissibility of emerging viral zoonoses. PLoS One 2018; 13:e0206926. [PMID: 30403733 PMCID: PMC6221319 DOI: 10.1371/journal.pone.0206926] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 01/23/2023] Open
Abstract
Effective public health research and preparedness requires an accurate understanding of which virus species possess or are at risk of developing human transmissibility. Unfortunately, our ability to identify these viruses is limited by gaps in disease surveillance and an incomplete understanding of the process of viral adaptation. By fitting boosted regression trees to data on 224 human viruses and their associated traits, we developed a model that predicts the human transmission ability of zoonotic viruses with over 84% accuracy. This model identifies several viruses that may have an undocumented capacity for transmission between humans. Viral traits that predicted human transmissibility included infection of nonhuman primates, the absence of a lipid envelope, and detection in the human nervous system and respiratory tract. This predictive model can be used to prioritize high-risk viruses for future research and surveillance, and could inform an integrated early warning system for emerging infectious diseases.
Collapse
|
106
|
Berger A, Doerr HW. Preventing vertical virus infections: the role of serologic screening of pregnant women. Med Microbiol Immunol 2018; 207:249-253. [PMID: 29971491 DOI: 10.1007/s00430-018-0549-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/29/2018] [Indexed: 12/28/2022]
Abstract
Several virus infections affect the pregnancy itself as well as the foetal development (rubella, PVB19, VZV, HSV, HCMV, HBV, HIV). Prevention can be established by vaccination or an assessment of the immunity status as well as by chemotherapy. The following review provides an update to current aspects focusing on the role of serologic screening.
Collapse
|
107
|
Im JH, Baek J, Durey A, Kwon HY, Chung MH, Lee JS. Current Status of Tick-Borne Diseases in South Korea. Vector Borne Zoonotic Dis 2018; 19:225-233. [PMID: 30328790 DOI: 10.1089/vbz.2018.2298] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Bites with tick-borne pathogens can cause various bacterial, viral, or parasitic diseases in humans. Tick-transmitted diseases are known as contributing factors to the increasing incidence and burden of diseases. The present article investigated the epidemiology of tick-borne diseases in South Korea. METHODS The incidence and distribution of common tick-borne diseases in Korea (Lyme disease, Q fever, and severe fever with thrombocytopenia syndrome [SFTS]) were investigated and analyzed, using data from the Korea Centers for Disease Control and Prevention (KCDC) infectious disease reporting system. A literature review was compiled on the current status of uncommon tick-borne diseases (Rickettsia, anaplasmosis, ehrlichiosis, bartonellosis, tularemia, tick-borne encephalitis, and babesiosis). RESULTS AND CONCLUSIONS In South Korea, SFTS is an emerging disease, showing a rapid increase in reports since 2012, with high mortality. Likewise, reports of Lyme disease and Q fever cases have also been rapidly increasing during 2012-2017, although caution should be taken when interpreting these results, considering the likely influence of increased physician awareness and reporting of these diseases. Other tick-borne diseases reported in South Korea included spotted fever group rickettsiae, anaplasmosis, ehrlichiosis, tularemia, Bartonella, and babesiosis. Evidences on human infection with tick-borne encephalitis virus and Crimean-Congo hemorrhagic fever were recently unavailable, but both need constant monitoring.
Collapse
|
108
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
|
109
|
Kramer A, Pochhammer J, Walger P, Seifert U, Ruhnke M, Harnoss JC. [Spectrum of pathogens in postoperative complications of visceral surgery : The problem of multidrug resistance]. Chirurg 2018; 88:369-376. [PMID: 28229205 DOI: 10.1007/s00104-017-0382-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In general surgery the etiology of surgical site infections has not significantly changed over the last 30 years. Gram-positive bacteria, e.g. coagulase negative staphylococci (CNS), Staphylococcus aureus and Enterococcus spp. as well as Gram-negative bacteria, e.g. Escherichia coli, Enterobacter spp., Klebsiella spp. and Pseudomonas aeruginosa, are the most common findings. Although in general surgery 10% of the S. aureus causing postoperative wound infections were methicillin resistant (MRSA), no cases of multidrug-resistant Gram-negative (MRGN) bacteria were reported. Yeasts (particularly Candida spp.) are rarely the pathogen causing surgical site infections (≤3%) and concomitant risk factors are typical (e.g. diabetes, chemotherapy, immunosuppression and malnutrition). Viruses are rarely the cause of surgical site infections. Transmission can occur by HBV, HCV or HIV positive surgical staff or in organ transplantations and postoperative reactivation of persistent infections is possible (especially for HBV, HCV, CMV, EBV and HIV). The principles for prevention of surgical site infections are dealt with as consequences of preoperative colonization by MRSA, methicillin-sensitive S. aureus (MSSA) and MRGN and reviewed with respect to screening, perioperative antibiotic prophylaxis and decolonization. In nosocomial peritonitis, the selection of antibiotics should consider previous antibiotic treatment. A single intra-abdominal detection of Candida spp. usually does not require antimycotic treatment in postoperatively stable and immunocompetent patients but is recommended in severe community-acquired or nosocomial peritonitis. Viral infections can be avoided by screening of organ donors and serological surveillance of surgery personnel.
Collapse
|
110
|
Han TH, Park SH, Chung JY, Jeong HW, Jung J, Lee JI, Hwang YO, Kim IY, Lee JH, Jung K. Detection of Pathogenic Viruses in the Ambient Air in Seoul, Korea. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:327-332. [PMID: 29761411 PMCID: PMC7090394 DOI: 10.1007/s12560-018-9348-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The possible transport of pathogenic microorganisms during Asian dust events could be an important concern for health workers; however, this is still uncertain owing to a lack of supporting evidence. The present study aimed to investigate the presence of pathogenic microorganisms in air samples collected during the Asian and non-Asian dust periods. Between March and September 2016, air samples were collected at three weather observation stations in Seoul using a high-volume air sampler. Multiplex PCR was performed using the Allplex™ respiratory and gastrointestinal panel assay kits to detect 46 microorganisms. RT-PCR was performed for klassevirus, Aichivirus, and human parechovirus (HPeV) detection. In total, 71 air samples were collected during the Asian (8 samples) and non-Asian (63 samples) dust events. During an Asian dust event, only one human rhinovirus (HRV)-positive air sample was collected on April 23. During the non-Asian dust period, HRV, HPeV, norovirus (NoV), enteroaggregative Escherichia coli (EAEC), enterotoxigenic E. coli (ETEC), and Blastocystis hominis were detected in four, two, one, one, one, and one air samples, respectively. Pathogenic viruses were mostly detected in ambient air samples during the non-Asian dust period, which suggests a possible air-borne transmission of viral pathogens; however, the role of Asian dust in epidemics caused by pathogenic viruses is unclear.
Collapse
|
111
|
Almutairi MM, Alsalem WS, Hassanain M, Hotez PJ. Hajj, Umrah, and the neglected tropical diseases. PLoS Negl Trop Dis 2018; 12:e0006539. [PMID: 30114210 PMCID: PMC6095481 DOI: 10.1371/journal.pntd.0006539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
112
|
Jiang C, Wang K, Song L. Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2018; 14:1233-1246. [PMID: 29161858 DOI: 10.3934/mbe.2017063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we formulate a virus dynamics model with the recruitment of immune responses, saturation effects and an intracellular time delay. With the help of uniform persistence theory and Lyapunov method, we show that the global stability of the model is totally determined by the basic reproductive number R0. Furthermore, we analyze the effects of the recruitment of immune responses on virus infection by numerical simulation. The results show ignoring the recruitment of immune responses will result in overestimation of the basic reproductive number and the severity of viral infection.
Collapse
|
113
|
Borkenhagen LK, Mallinson KA, Tsao RW, Ha SJ, Lim WH, Toh TH, Anderson BD, Fieldhouse JK, Philo SE, Chong KS, Lindsley WG, Ramirez A, Lowe JF, Coleman KK, Gray GC. Surveillance for respiratory and diarrheal pathogens at the human-pig interface in Sarawak, Malaysia. PLoS One 2018; 13:e0201295. [PMID: 30052648 PMCID: PMC6063427 DOI: 10.1371/journal.pone.0201295] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The large livestock operations and dense human population of Southeast Asia are considered a hot-spot for emerging viruses. OBJECTIVES To determine if the pathogens adenovirus (ADV), coronavirus (CoV), encephalomyocarditis virus (EMCV), enterovirus (EV), influenza A-D (IAV, IBV, ICV, and IDV), porcine circovirus 2 (PCV2), and porcine rotaviruses A and C (RVA and RVC), are aerosolized at the animal-interface, and if humans working in these environments are carrying these viruses in their nasal airways. STUDY This cross-sectional study took place in Sarawak, Malaysia among 11 pig farms, 2 abattoirs, and 3 animal markets in June and July of 2017. Pig feces, pig oral secretions, bioaerosols, and worker nasal wash samples were collected and analyzed via rPCR and rRT-PCR for respiratory and diarrheal viruses. RESULTS In all, 55 pig fecal, 49 pig oral or water, 45 bioaerosol, and 78 worker nasal wash samples were collected across 16 sites. PCV2 was detected in 21 pig fecal, 43 pig oral or water, 3 bioaerosol, and 4 worker nasal wash samples. In addition, one or more bioaerosol or pig samples were positive for EV, IAV, and RVC, and one or more worker samples were positive for ADV, CoV, IBV, and IDV. CONCLUSIONS This study demonstrates that nucleic acids from a number of targeted viruses were present in pig oral secretions and pig fecal samples, and that several viruses were detected in bioaerosol samples or in the nasal passages of humans with occupational exposure to pigs. These results demonstrate the need for future research in strengthening viral surveillance at the human-animal interface, specifically through expanded bioaerosol sampling efforts and a seroepidemiological study of individuals with exposure to pigs in this region for PCV2 infection.
Collapse
|
114
|
Qin F, Liu W, Wu N, Zhang L, Zhang Z, Zhou X, Wang X. Invasion of midgut epithelial cells by a persistently transmitted virus is mediated by sugar transporter 6 in its insect vector. PLoS Pathog 2018; 14:e1007201. [PMID: 30052679 PMCID: PMC6082570 DOI: 10.1371/journal.ppat.1007201] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/08/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Insect transmission is obligatory for persistently transmitted viruses because the vector insect is the only means of virus spread in nature. The insect midgut is the first major barrier limiting virus acquisition, but the mechanisms by which viruses are able to cross the cell membrane and then infect the midgut epithelial cells of the insect have not been elucidated completely. Here, we found that the outer capsid or nucleocapsid protein (NP) of three viruses can interact and colocalize with sugar transporter 6 that is highly expressed in the midgut of Laodelphax striatellus (LsST6). In contrast, LsST6 did not interact with the NP of rice grassy stunt virus, which cannot be transmitted by the same planthopper. LsST6 not only altered the cellular location of viral proteins and then colocalized with them in the cell membrane, but also mediated the entry of rice stripe virus (RSV) particles into Spodoptera frugiperda 9 (Sf9) cells that expressed the heterologous gene LsST6. We further showed that RSV particles initially bound to the cell membrane of midgut epithelial cells where it colocalized with LsST6, and then invaded the cytoplasm. When LsST6 expression was knocked down, viral titre, acquisition percentage and transmission efficiency of the treated insect decreased significantly, but virus replication was not affected. This work thus uncovered a strategy by which LsST6 mediates viral entry into midgut epithelial cells and leads to successful transmission by the insect vector.
Collapse
|
115
|
Abstract
Prions are proteins that can self-propagate, leading to the misfolding of proteins. In addition to the previously demonstrated pathogenic roles of prions during the development of different mammalian diseases, including neurodegenerative diseases, they have recently been shown to represent an important functional component in many prokaryotic and eukaryotic organisms and bacteriophages, confirming the previously unexplored important regulatory and functional roles. However, an in-depth analysis of these domains in eukaryotic viruses has not been performed. Here, we examined the presence of prion-like proteins in eukaryotic viruses that play a primary role in different ecosystems and that are associated with emerging diseases in humans. We identified relevant functional associations in different viral processes and regularities in their presence at different taxonomic levels. Using the prion-like amino-acid composition computational algorithm, we detected 2679 unique putative prion-like domains within 2,742,160 publicly available viral protein sequences. Our findings indicate that viral prion-like proteins can be found in different viruses of insects, plants, mammals, and humans. The analysis performed here demonstrated common patterns in the distribution of prion-like domains across viral orders and families, and revealed probable functional associations with different steps of viral replication and interaction with host cells. These data allow the identification of the viral prion-like proteins as potential novel regulators of viral infections.
Collapse
|
116
|
Almocera AES, Nguyen VK, Hernandez-Vargas EA. Multiscale model within-host and between-host for viral infectious diseases. J Math Biol 2018; 77:1035-1057. [PMID: 29737396 DOI: 10.1007/s00285-018-1241-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/19/2018] [Indexed: 12/14/2022]
Abstract
Multiscale models possess the potential to uncover new insights into infectious diseases. Here, a rigorous stability analysis of a multiscale model within-host and between-host is presented. The within-host model describes viral replication and the respective immune response while disease transmission is represented by a susceptible-infected model. The bridging of scales from within- to between-host considered transmission as a function of the viral load. Consequently, stability and bifurcation analyses were developed coupling the two basic reproduction numbers [Formula: see text] and [Formula: see text] for the within- and the between-host subsystems, respectively. Local stability results for each subsystem, including a unique stable equilibrium point, recapitulate classical approaches to infection and epidemic control. Using a Lyapunov function, global stability of the between-host system was obtained. Our main result was the derivation of the [Formula: see text] as an increasing function of [Formula: see text]. Numerical analyses reveal that a Michaelis-Menten form based on the virus is more likely to recapitulate the behavior between the scales than a form directly proportional to the virus. Our work contributes basic understandings of the two models and casts light on the potential effects of the coupling function on linking the two scales.
Collapse
|
117
|
Niederhauser C. [Transfusion-transmitted Infections: How Useful and Costly is Testing for new Infectious Disease Pathogens?]. PRAXIS 2018; 107:521-529. [PMID: 29690842 DOI: 10.1024/1661-8157/a002967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Zusammenfassung. Bis Anfang der 1990er Jahre waren Blutprodukte nicht selten mit HIV oder HCV kontaminiert, was zu vielen transfusionsbedingten Infektionen führte. Seither wurde die Sicherheit von Blutprodukten in Bezug auf die Infektionsübertragung mit aufwendigen Massnahmen stark erhöht. Aktuell stehen sogenannte (re)emerging-Infektionserreger im Fokus, beispielsweise West Nile-, Zika- und Hepatitis-E-Viren. Ob und wie sich neue Massnahmen, die eine Übertragung dieser Viren verhindern sollen, kosteneffizient einführen lassen, muss mit klar definierten Vorgaben abgeklärt werden. Der entsprechende Entscheid muss gemeinsam mit den involvierten Stakeholdern und auch aufgrund von Kosten-Nutzen-Überlegungen getroffen werden. Grundsätzlich gilt, dass es eine 100-prozentige Sicherheit in Bezug auf die Übertragung von Infektionserregern mit Blutprodukten nie geben wird.
Collapse
|
118
|
Wang H, Sikora P, Rutgersson C, Lindh M, Brodin T, Björlenius B, Larsson DGJ, Norder H. Differential removal of human pathogenic viruses from sewage by conventional and ozone treatments. Int J Hyg Environ Health 2018; 221:479-488. [PMID: 29402695 PMCID: PMC7106402 DOI: 10.1016/j.ijheh.2018.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 11/25/2022]
Abstract
Sewage contains a mixed ecosystem of diverse sets of microorganisms, including human pathogenic viruses. Little is known about how conventional as well as advanced treatments of sewage, such as ozonation, reduce the environmental spread of viruses. Analyses for viruses were therefore conducted for three weeks in influent, after conventional treatment, after additional ozonation, and after passing an open dam system at a full-scale treatment plant in Knivsta, Sweden. Viruses were concentrated by adsorption to a positively charged filter, from which they were eluted and pelleted by ultracentrifugation, with a recovery of about 10%. Ion Torrent sequencing was used to analyze influent, leading to the identification of at least 327 viral species, most of which belonged to 25 families with some having unclear classification. Real-time PCR was used to test for 21 human-related viruses in inlet, conventionally treated, and ozone-treated sewage and outlet waters. The viruses identified in influent and further analyzed were adenovirus, norovirus, sapovirus, parechovirus, hepatitis E virus, astrovirus, pecovirus, picobirnavirus, parvovirus, and gokushovirus. Conventional treatment reduced viral concentrations by one to four log10, with the exception of adenovirus and parvovirus, for which the removal was less efficient. Ozone treatment led to a further reduction by one to two log10, but less for adenovirus. This study showed that the amount of all viruses was reduced by conventional sewage treatment. Further ozonation reduced the amounts of several viruses to undetectable levels, indicating that this is a promising technique for reducing the transmission of many pathogenic human viruses.
Collapse
|
119
|
McMenamin AJ, Flenniken ML. Recently identified bee viruses and their impact on bee pollinators. CURRENT OPINION IN INSECT SCIENCE 2018; 26:120-129. [PMID: 29764651 DOI: 10.1016/j.cois.2018.02.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/22/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Bees are agriculturally and ecologically important plant pollinators. Recent high annual losses of honey bee colonies, and reduced populations of native and wild bees in some geographic locations, may impact the availability of affordable food crops and the diversity and abundance of native and wild plant species. Multiple factors including viral infections affect pollinator health. The majority of well-characterized bee viruses are picorna-like RNA viruses, which may be maintained as covert infections or cause symptomatic infections or death. Next generation sequencing technologies have been utilized to identify additional bee-infecting viruses including the Lake Sinai viruses and Rhabdoviruses. In addition, sequence data is instrumental for defining specific viral strains and characterizing associated pathogenicity, such as the recent characterization of Deformed wing virus master variants (DWV-A, DWV-B, and DWV-C) and their impact on bee health.
Collapse
|
120
|
|
121
|
Che-Mendoza A, Medina-Barreiro A, Koyoc-Cardeña E, Uc-Puc V, Contreras-Perera Y, Herrera-Bojórquez J, Dzul-Manzanilla F, Correa-Morales F, Ranson H, Lenhart A, McCall PJ, Kroeger A, Vazquez-Prokopec G, Manrique-Saide P. House screening with insecticide-treated netting provides sustained reductions in domestic populations of Aedes aegypti in Merida, Mexico. PLoS Negl Trop Dis 2018; 12:e0006283. [PMID: 29543805 PMCID: PMC5870999 DOI: 10.1371/journal.pntd.0006283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 03/27/2018] [Accepted: 01/30/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There is a need for effective methods to control Aedes aegypti and prevent the transmission of dengue, chikungunya, yellow fever and Zika viruses. Insecticide treated screening (ITS) is a promising approach, particularly as it targets adult mosquitoes to reduce human-mosquito contact. METHODOLOGY/PRINCIPAL FINDINGS A cluster-randomised controlled trial evaluated the entomological efficacy of ITS based intervention, which consisted of the installation of pyrethroid-impregnated long-lasting insecticide-treated netting material fixed as framed screens on external doors and windows. A total of 10 treatment and 10 control clusters (100 houses/cluster) were distributed throughout the city of Merida, Mexico. Cross-sectional entomological surveys quantified indoor adult mosquito infestation at baseline (pre-intervention) and throughout four post-intervention (PI) surveys spaced at 6-month intervals corresponding to dry/rainy seasons over two years (2012-2014). A total of 844 households from intervention clusters (86% coverage) were protected with ITS at the start of the trial. Significant reductions in the indoor presence and abundance of Ae. aegypti adults (OR = 0.48 and IRR = 0.45, P<0.05 respectively) and the indoor presence and abundance of Ae. aegypti female mosquitoes (OR = 0.47 and IRR = 0.44, P<0.05 respectively) were detected in intervention clusters compared to controls. This high level of protective effect was sustained for up to 24 months PI. Insecticidal activity of the ITS material declined with time, with ~70% mortality being demonstrated in susceptible mosquito cohorts up to 24 months after installation. CONCLUSIONS/SIGNIFICANCE The strong and sustained entomological impact observed in this study demonstrates the potential of house screening as a feasible, alternative approach to a sustained long-term impact on household infestations of Ae. aegypti. Larger trials quantifying the effectiveness of ITS on epidemiological endpoints are warranted and therefore recommended.
Collapse
|
122
|
|
123
|
Kutter JS, Spronken MI, Fraaij PL, Fouchier RA, Herfst S. Transmission routes of respiratory viruses among humans. Curr Opin Virol 2018; 28:142-151. [PMID: 29452994 PMCID: PMC7102683 DOI: 10.1016/j.coviro.2018.01.001] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 01/03/2023]
Abstract
Respiratory tract infections can be caused by a wide variety of viruses. Airborne transmission via droplets and aerosols enables some of these viruses to spread efficiently among humans, causing outbreaks that are difficult to control. Many outbreaks have been investigated retrospectively to study the possible routes of inter-human virus transmission. The results of these studies are often inconclusive and at the same time data from controlled experiments is sparse. Therefore, fundamental knowledge on transmission routes that could be used to improve intervention strategies is still missing. We here present an overview of the available data from experimental and observational studies on the transmission routes of respiratory viruses between humans, identify knowledge gaps, and discuss how the available knowledge is currently implemented in isolation guidelines in health care settings.
Collapse
|
124
|
Ferreira-de-Lima VH, Lima-Camara TN. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review. Parasit Vectors 2018; 11:77. [PMID: 29391071 PMCID: PMC5793400 DOI: 10.1186/s13071-018-2643-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
Dengue is of great concern in various parts of the world, especially in tropical and subtropical countries where the mosquito vectors Aedes aegypti and Aedes albopictus are present. The transmission of this virus to humans, by what is known as horizontal transmission, occurs through the bite of infected females of one or other of the two mosquito species. Furthermore, an infected female or male parent, by what is known as vertical transmission, can transfer this arbovirus to some part of their offspring. Considering that vertical transmission may represent an important strategy for maintaining the circulation of arboviruses in nature, the verification of this phenomenon worldwide is extremely important and necessary to better understand its dynamic. In the present study, we conducted a literature review of the presence of natural vertical transmission of dengue virus in Ae. aegypti and Ae. albopictus worldwide. Searches were conducted in MEDLINE, sciELO and Lilacs and all the studies published in Portuguese, English and Spanish were read, evaluated and organized by mosquito species, serotype and the location at which the samples were collected. Forty-two studies were included in accordance with the exclusion criteria and methodology. The presence of natural vertical transmission in Ae. aegypti and Ae. albopictus was most clearly evidenced by dengue virus in endemic countries, especially in those in South America and Asia. Despite several African countries being considered endemic for dengue, there is a lack of publications on this subject on that continent, which highlights the importance of conducting studies there. Furthermore, the finding of natural vertical transmission in Ae. albopictus in countries where this species is not yet incriminated as a vector is of great concern as it demonstrates the circulation of this virus in populations of Ae. albopictus and alerts to the possibility of some other mosquito species playing a role in the transmission dynamics of this arbovirus. Parallel to this, the small number of studies of natural vertical transmission of chikungunya and Zika virus in the world may be explained by the recent entry of these arboviruses into most of the countries concerned.
Collapse
|
125
|
Huo Y, Yu Y, Chen L, Li Q, Zhang M, Song Z, Chen X, Fang R, Zhang L. Insect tissue-specific vitellogenin facilitates transmission of plant virus. PLoS Pathog 2018; 14:e1006909. [PMID: 29474489 PMCID: PMC5849359 DOI: 10.1371/journal.ppat.1006909] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/13/2018] [Accepted: 01/28/2018] [Indexed: 12/31/2022] Open
Abstract
Insect vitellogenin (Vg) has been considered to be synthesized in the fat body. Here, we found that abundant Vg protein is synthesized in Laodelphax striatellus hemocytes as well. We also determined that only the hemocyte-produced Vg binds to Rice stripe virus (RSV) in vivo. Examination of the subunit composition of L. striatellus Vg (LsVg) revealed that LsVg was processed differently after its expression in different tissues. The LsVg subunit able to bind to RSV exist stably only in hemocytes, while fat body-produced LsVg lacks the RSV-interacting subunit. Nymph and male L. striatellus individuals also synthesize Vg but only in hemocytes, and the proteins co-localize with RSV. We observed that knockdown of LsVg transcripts by RNA interference decreased the RSV titer in the hemolymph, and thus interfered with systemic virus infection. Our results reveal the sex-independent expression and tissue-specific processing of LsVg and also unprecedentedly connect the function of this protein in mediating virus transmission to its particular molecular forms existing in tissues previously known as non-Vg producing.
Collapse
|