101
|
Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T, Kitamura T, Hayashi Y, Nosaka T. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005; 115:919-29. [PMID: 15761502 PMCID: PMC1062890 DOI: 10.1172/jci22725] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 01/18/2005] [Indexed: 11/17/2022] Open
Abstract
The mechanisms by which mixed-lineage leukemia (MLL) fusion products resulting from in utero translocations in 11q23 contribute to leukemogenesis and infant acute leukemia remain elusive. It is still controversial whether the MLL fusion protein is sufficient to induce acute leukemia without additional genetic alterations, although carcinogenesis in general is known to result from more than 1 genetic disorder accumulating during a lifetime. Here we demonstrate that the fusion partner-mediated homo-oligomerization of MLL-SEPT6 is essential to immortalize hematopoietic progenitors in vitro. MLL-SEPT6 induced myeloproliferative disease with long latency in mice, but not acute leukemia, implying that secondary genotoxic events are required to develop leukemia. We developed in vitro and in vivo model systems of leukemogenesis by MLL fusion proteins, where activated FMS-like receptor tyrosine kinase 3 (FLT3) together with MLL-SEPT6 not only transformed hematopoietic progenitors in vitro but also induced acute biphenotypic or myeloid leukemia with short latency in vivo. In these systems, MLL-ENL, another type of the fusion product that seems to act as a monomer, also induced the transformation in vitro and leukemogenesis in vivo in concert with activated FLT3. These findings show direct evidence for a multistep leukemogenesis mediated by MLL fusion proteins and may be applicable to development of direct MLL fusion-targeted therapy.
Collapse
|
102
|
Wang GG, Pasillas MP, Kamps MP. Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus. Blood 2005; 106:254-64. [PMID: 15755900 PMCID: PMC1895124 DOI: 10.1182/blood-2004-12-4664] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meis1 is a homeodomain transcription factor coexpressed with Hoxa9 in most human acute myeloid leukemias (AMLs). In mouse models of leukemia produced by Hoxa9, Meis1 accelerates leukemogenesis. Because Hoxa9 immortalizes myeloid progenitors in the absence of Meis1 expression, the contribution of Meis1 toward leukemia remains unclear. Here, we describe a cultured progenitor model in which Meis1 programs leukemogenicity. Progenitors immortalized by Hoxa9 in culture are myeloid-lineage restricted and only infrequently caused leukemia after more than 250 days. Coexpressed Meis1 programmed rapid AML-initiating character, maintained multipotent progenitor potential, and induced expression of genes associated with short-term hematopoietic stem cells (HSCs), such as FLT3 and CD34, whose expression also characterizes the leukemia-initiating stem cells of human AML. Meis1 leukemogenesis functions required binding to Pbx, binding to DNA, and a conserved function of its C-terminal tail. We hypothesize that Meis1 is required for the homing and survival of leukemic progenitors within their hematopoietic niches, functions mediated by HSC-specific genes such as CD34 and Fms-like tyrosine kinase 3 (FLT3), respectively. This is the first example of a transcription factor oncoprotein (Meis1) that establishes expression of a tyrosine kinase oncoprotein (FLT3), and explains their coexpression in human leukemia. This cultured progenitor model will be useful to define the genetic basis of leukemogenesis involving Hoxa9 and Meis1.
Collapse
|
103
|
Vey N, Mozziconacci MJ, Groulet-Martinec A, Debono S, Finetti P, Carbuccia N, Beillard E, Devilard E, Arnoulet C, Coso D, Sainty D, Xerri L, Stoppa AM, Lafage-Pochitaloff M, Nguyen C, Houlgatte R, Blaise D, Maraninchi D, Birg F, Birnbaum D, Bertucci F. Identification of new classes among acute myelogenous leukaemias with normal karyotype using gene expression profiling. Oncogene 2005; 23:9381-91. [PMID: 15543237 DOI: 10.1038/sj.onc.1207910] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Conventional cytogenetic analysis currently stratifies acute myelogenous leukaemia (AML) into prognostically relevant groups. However, approximately 50% of adult AMLs have normal cytogenetics (NC-AMLs), and represent a heterogeneous and poorly understood group. We analysed gene expression in 55 AML samples including 53 cases from adult patients with NC-AML (n = 36), trisomy 8, t(15;17), t(8;21), t(11;19), 7q deletion, and two cell lines using 9000-gene DNA microarrays. Global hierarchical clustering showed that NC-AMLs are a heterogeneous group. Supervised analysis distinguished two subgroups of NC-AML: one subgroup constituted a homogeneous NC cluster ('pure NC-AML'), and the other NC-AMLs were close to the AML cases with translocations ('translocation like'). Gene expression signatures were also derived for patients with trisomy 8, as well as FLT3 and MLL gene duplications. Importantly, samples from 24 NC-AML patients who could be evaluated for clinical outcome were analysed. In all, 43 genes that discriminated two classes of patients with significantly different prognosis were identified. The poor prognosis class contained a majority of 'pure NC-AMLs', whereas the 'translocation-like' AMLs were in the good prognosis class. Discriminator genes included genes involved in drug resistance (TOP2B), protein transport (MTX2, SLC35A2), and cell signalling (MAPK1, PRKAB2). Our results demonstrate the transcriptional heterogeneity of NC-AMLs, and suggest the existence of 'translocation-like' NC-AMLs and of a gene expression signature that may predict response to chemotherapy.
Collapse
|
104
|
Bali P, George P, Cohen P, Tao J, Guo F, Sigua C, Vishvanath A, Scuto A, Annavarapu S, Fiskus W, Moscinski L, Atadja P, Bhalla K. Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin Cancer Res 2005; 10:4991-7. [PMID: 15297399 DOI: 10.1158/1078-0432.ccr-04-0210] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Mutant FLT-3 receptor tyrosine kinase is a client protein of the molecular chaperone heat shock protein 90 and is commonly present and contributes to the leukemia phenotype in acute myelogenous leukemia (AML). LAQ824, a cinnamyl hydroxamate histone deacetylase inhibitor, is known to induce acetylation and inhibition of heat shock protein 90. Here, we determined the effects of LAQ824 and/or PKC412 (a FLT-3 kinase inhibitor) on the levels of mutant FLT-3 and its downstream signaling, as well as growth arrest and cell-death of cultured and primary human AML cells. EXPERIMENTAL DESIGN The effect of LAQ824 and/or PKC412 treatment was determined on the levels of FLT-3 and phosphorylated (p)-FLT-3, on downstream pro-growth and pro-survival effectors, e.g., p-STAT5, p-AKT, and p-extracellular signal-regulated kinase (ERK) 1/2, and on the cell cycle status and apoptosis in the cultured MV4-11 and primary AML cells with mutant FLT-3. RESULTS Treatment with LAQ824 promoted proteasomal degradation and attenuation of the levels of FLT-3 and p-FLT-3, associated with cell cycle G(1)-phase accumulation and apoptosis of MV4-11 cells. This was accompanied by attenuation of p-STAT5, p-AKT, and p-ERK1/2 levels. STAT-5 DNA-binding activity and the levels of c-Myc and oncostatin M were also down-regulated. Cotreatment with LAQ824 and PKC412 synergistically induced apoptosis of MV4-11 cells and induced more apoptosis of the primary AML cells expressing mutant FLT-3. This was also associated with more attenuation of p-FLT-3, p-AKT, p-ERK1/2, and p-STAT5. CONCLUSIONS The combination of LAQ824 and PKC412 is highly active against human AML cells with mutant FLT-3, which merits in vivo studies of the combination against human AML.
Collapse
|
105
|
Abstract
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy that is curable in approximately 40% of cases. Activating mutations of the receptor tyrosine kinase FLT3 (FMS-like tyrosine kinase-3) are the single most common molecular abnormalities in AML and are associated with a distinctly worse prognosis. In an effort to target this mutation and improve outcomes in this subgroup of AML patients, several novel small-molecule FLT3 tyrosine kinase inhibitors are currently in development. Some of these FLT3 inhibitors are useful only as laboratory tools, while others clearly have clinical potential. These compounds are derived from a wide variety of chemical classes and differ significantly both in their potency and selectivity. This review summarises these developments and examines these novel agents with regard to both the assays used to characterise them and their clinical potential.
Collapse
|
106
|
Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M, Fey MF, Pabst T. Risk Assessment in Patients with Acute Myeloid Leukemia and a Normal Karyotype. Clin Cancer Res 2005; 11:1416-24. [PMID: 15746041 DOI: 10.1158/1078-0432.ccr-04-1552] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The recognition of a number of leukemia-specific cytogenetic abnormalities and their role as independent prognostic factors have provided considerable insights into leukemia pathogenesis and have paved the way to adopt risk-adapted treatment. However, approximately 50% of newly diagnosed acute myeloid leukemia (AML) have a normal karyotype. There has therefore been much interest in identifying molecular markers that could help to improve the prognostic stratification of patients with normal-karyotype AML. EXPERIMENTAL DESIGN Consecutive untreated AML patients (n = 67) from a single institution all with normal karyotype were analyzed for the presence of mutations in the myeloid transcription factor gene CEBPA (for CCAAT/enhancer binding protein-alpha), for internal tandem duplications (ITD) of the tyrosine kinase receptor gene FLT3 (for fms-like tyrosine kinase 3), and for expression of the BAALC gene (for brain and acute leukemia, cytoplasmic). RESULTS 17.9% of normal-karyotype AML had mutations in the CEBPA gene, and 28.4% had FLT3-ITD; 65.7% (44 of 67) had high BAALC expression and 34.3% (23 of 67) had low BAALC expression. Patients with CEBPA mutations had a very favorable course of their disease. Median disease-free survival (DFS) and overall survival (OS) were 33.5 and 45.5 months, respectively, compared with 10 (e.g., 12 months in patients without CEBPA mutations; P = 0.0017; P = 0.0007). AML patients with FLT3-ITD had significantly shorter median DFS (P = 0.0328) and OS (P = 0.0148) than patients without FLT3-ITD. High BAALC expression predicted for a shorter DFS (P = 0.0152) and OS (P = 0.0210) compared with AML with low BAALC expression; 53.7% of normal-karyotype AML had neither FLT3-ITD nor CEBPA mutations. We found that high BAALC expression in normal-karyotype AML with neither FLT3-ITD nor CEBPA mutations (18 of 67) indicates adverse prognosis for both DFS and OS (P = 0.0001; e.g., P = 0.0001) compared with the group with low BAALC expression and absent FLT3-ITD and CEBPA mutations (18 of 67). Thus, BAALC expression represents a novel prognostic marker particularly for normal-karyotype AML patients with neither FLT3-ITD nor CEBPA mutations. CONCLUSIONS Assessment of CEBPA mutations, FLT3-ITD, and BAALC expression permits to split normal-karyotype AML into clinically distinct subgroups.
Collapse
|
107
|
Lin LI, Chen CY, Lin DT, Tsay W, Tang JL, Yeh YC, Shen HL, Su FH, Yao M, Huang SY, Tien HF. Characterization of CEBPA Mutations in Acute Myeloid Leukemia: Most Patients with CEBPA Mutations Have Biallelic Mutations and Show a Distinct Immunophenotype of the Leukemic Cells. Clin Cancer Res 2005; 11:1372-9. [PMID: 15746035 DOI: 10.1158/1078-0432.ccr-04-1816] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The transcription factor CCAAT/enhancer binding protein alpha, encoded by the CEBPA, is crucial for the differentiation of immature granulocytes. Mutation of the CEBPA may play an important role in leukemogenesis and prognosis. We sought to characterize the CEBPA mutation in acute myeloid leukemia (AML) and to clarify if there is a distinct immunophenotype for leukemic cells with the mutation. EXPERIMENT DESIGN One hundred and four patients with de novo AML were evaluated for the CEBPA mutation and immunophenotype of the leukemic cells. RESULTS Twenty-two distinct mutations were identified in 16 (15%) of 104 AML patients. Fourteen patients had biallelic mutations, mostly involving both the NH(2)-terminal TAD1 region and the COOH-terminal basic leucine zipper domain (bZIP). The mutations in the bZIP region were always tandem duplications and were located at hot-spot regions for topoisomerase II sites. Sequential study of the CEBPA mutations showed that the mutations disappeared at complete remission but the same mutations reappeared at relapse. None of the patients developed novel mutations during the follow-up period. Patients with CEBPA mutations had significantly higher incidences of CD7 (73%), CD15 (100%), CD34 (93%), and HLA-DR (93%) expression on the leukemic cells. CONCLUSION These data revealed that most AML with CEBPA mutations were associated with an immunophenotype of HLA-DR(+)CD7(+)CD13(+)CD14(-)CD15(+)CD33(+)CD34(+). The close relationship of CEBPA mutations with the leukemia status of the patients and the concordance of mutation in presenting and relapse samples implicate the CEBPA mutation as a potential marker for monitoring minimal residue disease.
Collapse
|
108
|
Naito K, Ohnishi K. [Current and new therapeutic strategies in acute myeloid leukemia]. Gan To Kagaku Ryoho 2005; 32:292-6. [PMID: 15791811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Seventy to 80% of patients with acute myeloid leukemia (AML) achieve complete remission (CR) by chemotherapy, but more than 50% of them then relapse. Phase III clinical trials in the treatment of patients with previously untreated AML and acute promyelocytic leukemia (APL) are ongoing in Japan (JALSG AML 201, APL 204). And continuous efforts are being made to improve the efficacy of chemotherapy. We discussed six topics in the treatment of AML. (1) To determine whether adding the MDR-1 modulator to chemotherapy provided clinical benefits to patients with AML and high-risk myelodysplastic syndrome (MDS), a phase III randomized study was performed using PSC 833. CR rates and overall survival (OS) were not improved by using PSC 833 compared to chemotherapy alone. (2) A large randomized study selectively focused on the G-CSF priming was performed. Among patients in this study attaining CR, the probability of relapse was reduced when they had been assigned to treatment with G-CSF along with induction chemotherapy. The benefit of chemotherapy-sensitization by G-CSF was particularly evident among the intermediate-risk. (3) Fludarabine in addition to Ara-C increases the accumulation of Ara-CTP, which is responsible for the cytotoxic effect in leukemic blasts. In a randomized phase III trial, patients with high-risk MDS or patients with AML were randomized to receive 2 induction courses consisting of Ara-C and G-CSF during and after chemotherapy with or without fludarabine (FLAG versus AG). Although Ara-CTP accumulation in leukemic cells after FLAG was enhanced, the clinical outcome in terms of CR rate, OS, event-free survival, and disease-free survival was not significantly improved by combining fludarabine with Ara-C. (4) Calicheamicin-conjugated humanized anti-CD 33 mouse monoclonal antibody, mylotarg, has recently been introduced. In combined phase II studies of 277 patients with CD 33-positive AML in their first relapse, the overall response rate was 26%. (5) Arsenic trioxide (ATO) has been established as a highly effective therapy for patients with APL, even for those with disease refractory to ATRA. ATO was recently approved in Japan. (6) There has been great interest in developing FLT 3 inhibitors because of the high frequency and poor prognosis of AML patients with mutant FLT 3. Some compounds are currently under development.
Collapse
|
109
|
de Labarthe A, Pautas C, Thomas X, de Botton S, Bordessoule D, Tilly H, de Revel T, Bastard C, Preudhomme C, Michallet M, Fenaux P, Bastie JN, Socié G, Cordonnier C, Dombret H. Allogeneic stem cell transplantation in second rather than first complete remission in selected patients with good-risk acute myeloid leukemia. Bone Marrow Transplant 2005; 35:767-73. [PMID: 15735660 DOI: 10.1038/sj.bmt.1704884] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Through two consecutive trials, a policy that considered allogeneic stem cell transplantation (SCT) from a sibling donor in second rather than first complete remission (CR) in selected younger patients with acute myeloid leukemia (AML) with t(8;21)/inv(16) (core binding factor (CBF) group) or a normal karyotype (NN group) was followed by Acute Leukemia French Association (ALFA) centers. The outcome of 92 of these patients in first relapse (32 CBF, 60 NN) was reviewed with the aim of validating this strategy. The presence of an FLT3 internal tandem duplication (ITD) was retrospectively assessed in 50 patients. A total of 61 patients (66%) reached a second CR. Donor availability was an independent prognostic factor for survival in the whole patient population as well as in the CBF subset, but not in NN patients, further supporting this strategy for CBF-AMLs. In NN patients, FLT3-ITD was the main bad-prognosis factor for second CR achievement and survival, leading to consider SCT earlier, at least in FLT3-ITD patients with a donor.
Collapse
|
110
|
Piloto O, Levis M, Huso D, Li Y, Li H, Wang MN, Bassi R, Balderes P, Ludwig DL, Witte L, Zhu Z, Hicklin DJ, Small D. Inhibitory Anti-FLT3 Antibodies Are Capable of Mediating Antibody-Dependent Cell-Mediated Cytotoxicity and Reducing Engraftment of Acute Myelogenous Leukemia Blasts in Nonobese Diabetic/Severe Combined Immunodeficient Mice. Cancer Res 2005; 65:1514-22. [PMID: 15735040 DOI: 10.1158/0008-5472.can-04-3081] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant FLT3 expression and/or mutation plays a significant role in leukemogenesis. This has prompted the development of selective small molecule tyrosine kinase inhibitors against FLT3. However, like most tyrosine kinase inhibitors, those against FLT3 are not completely specific and at the doses required to completely inhibit target, significant toxicities may occur. In addition, tyrosine kinase inhibitors for other kinases have been shown to select for cells that become resistant. To overcome some of these limitations we developed two fully human phage display monoclonal antibodies against FLT3 (IMC-EB10 and IMC-NC7). These antibodies inhibited ligand-mediated activation of wild-type FLT3 and constitutively activated mutant FLT3 and in most cell types affected downstream STAT5, AKT, and mitogen-activated protein kinase activation. In addition to interfering with FLT3 signaling, IMC-EB10 and, to a significantly lesser extent, IMC-NC7 initiated antibody-dependent cell-mediated cytotoxicity on FLT3-expressing cells. When IMC-EB10 was used in vivo to treat nonobese diabetic/severe combined immunodeficient mice given injections of primary FLT3/ITD acute myelogenous leukemia samples or myeloid cell lines with FLT3 expression, it significantly decreased engraftment of leukemic cells and increased survival, respectively. In contrast, IMC-EB10 treatment did not reduce engraftment of normal human CD34+ cord blood cells nor did it show any significant inhibition of normal murine hematopoiesis. Thus, these types of antibodies have the potential to be safe and effective new therapeutic agents for acute myelogenous leukemia and possibly other FLT3-expressing malignancies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody-Dependent Cell Cytotoxicity
- Antigens, CD34/biosynthesis
- Antigens, CD34/immunology
- Fetal Blood/cytology
- Fetal Blood/immunology
- Humans
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Transplantation
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/immunology
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/immunology
- Signal Transduction/immunology
- fms-Like Tyrosine Kinase 3
Collapse
|
111
|
Takahashi S, Harigae H, Ishii KK, Inomata M, Fujiwara T, Yokoyama H, Ishizawa K, Kameoka J, Licht JD, Sasaki T, Kaku M. Over-expression of Flt3 induces NF-kappaB pathway and increases the expression of IL-6. Leuk Res 2005; 29:893-9. [PMID: 15978940 DOI: 10.1016/j.leukres.2005.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
Activating mutations or over-expression of the Flt3 is prevalent in acute myeloblastic leukemia (AML), associated with activation of Ras/MAP kinase and other signaling pathways. In this study, we addressed the role of Flt3 in the activation of nuclear factor-kappa B (NF-kappaB), which is a target molecule of these kinase pathways. In BaF3 cells stably expressing Flt3, a NF-kappaB-responsive reporter was upregulated and its target gene, IL-6, was increased by the involvement of Flt3-ERK/MAPK-NF-kappaB pathway. Furthermore, we found a modest positive correlation (r=0.35, p=0.096) between Flt3 and IL-6 mRNA expression in 24 AML specimens. These results suggest a role of Flt3 over-expression in NF-kappaB pathway.
Collapse
|
112
|
Hieronymus T, Gust TC, Kirsch RD, Jorgas T, Blendinger G, Goncharenko M, Supplitt K, Rose-John S, Müller AM, Zenke M. Progressive and Controlled Development of Mouse Dendritic Cells from Flt3+CD11b+Progenitors In Vitro. THE JOURNAL OF IMMUNOLOGY 2005; 174:2552-62. [PMID: 15728461 DOI: 10.4049/jimmunol.174.5.2552] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) represent key regulators of the immune system, yet their development from hemopoietic precursors is poorly defined. In this study, we describe an in vitro system for amplification of a Flt3(+)CD11b(+) progenitor from mouse bone marrow with specific cytokines. Such progenitor cells develop into both CD11b(+) and CD11b(-) DC, and CD8alpha(+) and CD8alpha(-) DC in vivo. Furthermore, with GM-CSF, these progenitors synchronously differentiated into fully functional DC in vitro. This two-step culture system yields homogeneous populations of Flt3(+)CD11b(+) progenitor cells in high numbers and allows monitoring the consecutive steps of DC development in vitro under well-defined conditions. We used phenotypic and functional markers and transcriptional profiling by DNA microarrays to study the Flt3(+)CD11b(+) progenitor and differentiated DC. We report here on an extensive analysis of the surface Ag expression of Flt3(+)CD11b(+) progenitor cells and relate that to surface Ag expression of hemopoietic stem cells. Flt3(+)CD11b(+) progenitors studied exhibit a broad overlap of surface Ags with stem cells and express several stem cell Ags such as Flt3, IL-6R, c-kit/SCF receptor, and CD93/AA4.1, CD133/AC133, and CD49f/integrin alpha(6). Thus, Flt3(+)CD11b(+) progenitors express several stem cell surface Ags and develop into both CD11b(+) and CD11b(-) DC, and CD8alpha(+) and CD8alpha(-) DC in vivo, and thus into both of the main conventional DC subtypes.
Collapse
|
113
|
Grundler R, Miething C, Thiede C, Peschel C, Duyster J. FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005; 105:4792-9. [PMID: 15718420 DOI: 10.1182/blood-2004-11-4430] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activating mutations of the Fms-like tyrosine kinase 3 (FLT3) receptor are the most common genetic alteration in acute myeloid leukemia (AML). Two distinct groups of FLT3 mutations are found: internal tandem duplications (ITDs) of the juxtamembrane region and point mutations within the tyrosine kinase domain (TKD). Recently, point mutations within the activation loop of FLT3 have also been described in childhood acute lymphoblastic leukemia (ALL). FLT3-ITD has been shown to induce a myeloproliferative syndrome in a murine bone marrow transplantation model. The phenotype of FLT3-TKD in mice has not yet been investigated. We transduced murine bone marrow with retrovirus-expressing FLT3-TKD mutants or FLT3-ITD and transplanted these cells into lethally irradiated mice. Mice that received a transplant of FLT3-ITD developed an oligoclonal myeloproliferative disease as previously described. In contrast, FLT3-TKD mutants induced an oligoclonal lymphoid disorder with longer latency and distinct hematologic manifestations: importantly, induction of the lymphoid phenotype was not due to a low number of transplanted cells. The lymphoid manifestation and longer latency of FLT3-TKD compared with FLT3-ITD mutants together with the lack of influence of FLT3-TKD mutations on the clinical outcome of patients with AML suggest differences in cell signaling between FLT3-TKD mutants and FLT3-ITDs. Indeed strong signal transducers and activators of transcription 5 (STAT5) activation could only be demonstrated for FLT3-ITDs.
Collapse
|
114
|
Smith ML, Arch R, Smith LL, Bainton N, Neat M, Taylor C, Bonnet D, Cavenagh JD, Andrew Lister T, Fitzgibbon J. Development of a human acute myeloid leukaemia screening panel and consequent identification of novel gene mutation in FLT3 and CCND3. Br J Haematol 2005; 128:318-23. [PMID: 15667533 DOI: 10.1111/j.1365-2141.2004.05324.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A study was undertaken to develop an acute myeloid leukaemia (AML) screening panel to uncover novel recurring gene mutations. Analysis was performed on six genes known to be mutated in AML (RUNX1, FLT3, KIT, CEBPA, PTPN11 and NRAS) and an additional two candidate genes (CCND3 and FES) in a panel of 175 primary human AML samples that included all French-American-British types except M3, and all cytogenetic risk groups. One hundred and fifteen mutations were identified in 97 (55%) patients comprising 81 patients (46%) with one mutation, 14 patients (8%) with two mutations and two patients (1%) with three mutations. Fifty-five of 88 (63%) patients with normal karyotype AML had at least one mutation. Correlation was observed between KIT mutation and 'favourable risk' cytogenetics (P <0.001), CEBPA mutation and 'intermediate risk' cytogenetics (P=0.045), and PTPN11 mutation and 'poor risk' disease (P <0.001). The frequency of individual gene mutation was in accordance with previously published studies. Three novel mutations of FLT3 were detected (Y589D, D839G, Y842H) that would have been overlooked by conventional gel electrophoresis. A 51-bp deletion was detected in CCND3 in a patient with normal karyotype AML. This validated panel now provides an important tool to evaluate other candidate genes in the genesis of myeloid malignancy.
Collapse
|
115
|
Gratias EJ, Liu YL, Meleth S, Castleberry RP, Emanuel PD. Activating FLT3 mutations are rare in children with juvenile myelomonocytic leukemia. Pediatr Blood Cancer 2005; 44:142-6. [PMID: 15390271 DOI: 10.1002/pbc.20176] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Activating mutations of FLT3 have been identified in multiple myeloid malignancies. Two types of activating mutations have been described: (1) the internal tandem duplication (FLT3-ITD) and (2) point mutations within the activating loop (FLT3-ALM). Juvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative disorder of early childhood. Mutations and other genetic abnormalities of RAS, NF1, and PTPN11 have been implicated as causative events in JMML, but approximately 25% of JMML patients harbor none of these abnormalities. We investigated whether FLT3 mutations might also contribute to JMML pathogenesis, and if present, whether FLT3 status would correlate with disease natural history and prognosis. PROCEDURES Genomic DNA was isolated from peripheral blood and bone marrow samples of 60 patients meeting international JMML diagnostic criteria. Samples were analyzed for FLT3-ITD and FLT3-ALM using polymerase chain reaction and restriction endonuclease digestion. RESULTS FLT3-ALM was found in 1/60 (1.7%) patients analyzed. Direct sequencing confirmed a C836G mutation. Clinical and laboratory characteristics of the JMML patient with the FLT3-ALM did not differ from the remainder of the cohort. No FLT3-ITD mutations were detected. CONCLUSIONS This first reported mutational analysis for both FLT3-ITD and FLT3-ALM performed in JMML documents the presence of FLT3 mutations within JMML, but at a sufficiently low prevalence as to be clinically insignificant for most patients. Despite the poor prognosis and limited therapeutic options for JMML patients with refractory disease, compassionate therapy with targeted FLT3 inhibitors should not be considered in this patient population until adequate safety and efficacy data become available.
Collapse
|
116
|
Toliver-Kinsky TE, Cui W, Murphey ED, Lin C, Sherwood ER. Enhancement of dendritic cell production by fms-like tyrosine kinase-3 ligand increases the resistance of mice to a burn wound infection. THE JOURNAL OF IMMUNOLOGY 2005; 174:404-10. [PMID: 15611264 DOI: 10.4049/jimmunol.174.1.404] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fms-like tyrosine kinase-3 ligand (Flt3L) is a hemopoietic cytokine that stimulates the production of dendritic cells. This study evaluated the ability of Flt3L-enhanced dendritic cell production to increase the resistance of mice to a burn wound infection with Pseudomonas aeruginosa, a common source of infections in burn patients that have impaired immunity and are susceptible to opportunistic microorganisms. Treatment of mice with Flt3L for 5 days caused a significant increase in dendritic cell numbers in the spleen and significantly increased survival upon a subsequent burn wound infection. Improved survival in Flt3L-treated mice was associated with limited bacterial growth and spread within the burn wounds and a decrease in systemic dissemination of P. aeruginosa. Resistance to burn wound infection could also be conferred to recipient mice by the adoptive transfer of dendritic cells that had been isolated from spleens of Flt3L-treated mice. Adoptive transfer of the same number of splenic dendritic cells from nontreated mice did not confer resistance to burn wound infection. These data indicate that Flt3L can increase the resistance of mice to a P. aeruginosa burn wound infection through both stimulation of dendritic cell production and enhancement of dendritic cell function.
Collapse
|
117
|
Luthra R, Medeiros LJ. Isothermal multiple displacement amplification: a highly reliable approach for generating unlimited high molecular weight genomic DNA from clinical specimens. J Mol Diagn 2005; 6:236-42. [PMID: 15269301 PMCID: PMC1867643 DOI: 10.1016/s1525-1578(10)60516-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Isothermal multiple strand displacement amplification (IMDA) of the whole human genome is a promising method for procuring abundant DNA from valuable and often limited clinical specimens. However, whether DNA generated by this method is of high quality and a faithful replication of the DNA in the original specimen, allowing for subsequent molecular diagnostic testing, requires verification. In this study, we evaluated the suitability of IMDA-generated DNA (IMDA-DNA) for detecting antigen receptor gene rearrangements, chromosomal translocations, and gene mutations using Southern blot analysis, polymerase chain reaction (PCR) methods, or sequencing methods in 28 lymphoma and leukemia clinical specimens. Molecular testing before and after whole genome amplification of these specimens using the IMDA technique showed concordance in 27 of 28 (96%) specimens. Analysis of IMDA-DNA by Southern blot analysis detected restriction fragments >12 kilobases long. No amplification bias was observed at all loci tested demonstrating that this method can be useful in generating large amounts of unbiased, high molecular weight DNA from limited clinical specimens.
Collapse
|
118
|
Vaughn CP, Elenitoba-Johnson KSJ. High-resolution melting analysis for detection of internal tandem duplications. J Mol Diagn 2005; 6:211-6. [PMID: 15269297 PMCID: PMC1867640 DOI: 10.1016/s1525-1578(10)60512-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
High-resolution melting analysis (HRMA) is a recently introduced closed-tube fluorescence-based method for rapid mutation screening and detection. However, all of the targets by which this technique has been validated thus far have had single-base substitutions, deletions, or similarly small mutational deviations from the wild-type sequence. In the current study, we sought to determine the feasibility of utilization of HRMA for the detection of larger sequence aberrations, using internal tandem duplications (ITD) in the juxtamembrane domain of the FLT3 gene as a model system. This gene is important in the growth and differentiation of hematopoietic progenitors and ITDs in this gene have been identified in a subset of poor-prognosis acute myelogenous leukemias (AML). DNA extracted from 62 AML samples was analyzed on a prototype high-resolution melting instrument. The samples interrogated for the FLT3 ITDs were subjected to post-amplification denaturation with frequent and regular fluorescence acquisition. The fluorescence versus temperature melting graphs generated were analyzed for deviation from the profiles reproducibly obtained for the wild-type samples. Results by HRMA were compared to results obtained using capillary electrophoresis-based fragment analysis, temperature gradient capillary electrophoresis detection, and sequencing of ITDs. FLT3 ITDs were detected in 13 of 62 AML samples with 100% concordance between the detection methods. This study demonstrates the utility of HRMA to rapidly and accurately screen samples for the presence of large sequence aberrations including FLT3 ITDs.
Collapse
|
119
|
Kang HJ, Hong SH, Kim IH, Park BK, Han KS, Cho HI, Shin HY, Ahn HS. Prognostic significance of FLT3 mutations in pediatric non-promyelocytic acute myeloid leukemia. Leuk Res 2005; 29:617-23. [PMID: 15863200 DOI: 10.1016/j.leukres.2004.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 11/02/2004] [Indexed: 11/23/2022]
Abstract
FLT3 is a receptor tyrosine kinase involved in the survival of hematopoietic stem cells, and mutations of FLT3 have been reported to be of prognostic significance. This is the first study of FLT3 mutations in pediatric non-promyelocytic AML patients that received the same treatment scheme in single institute. FLT3 internal tandem duplication of the juxtamembrane domain (FLT3/ITD) and a point mutation in the tyrosine kinase domain (FLT3/TKD) were analyzed in 61 patients by PCR of genomic DNA. The incidence of FLT/ITD and FLT/TKD were 6.6% (4/61) and 3.3% (2/61), respectively. Patients with FLT3/TKD remain alive after autologous stem cell transplantation. The disease-free survival (DFS) of patients with FLT3/ITD (0%) was significantly lower than that of the others (52%). FLT3/ITD was the sole adverse prognostic factor for DFS by multivariate analysis (RR=5.6). Patients with FLT3/ITD relapsed early after complete remission even after receiving bone marrow transplantation from a matched related donor with little BuCy conditioning. New therapeutic scheme such as stem cell transplantation with more intensive conditioning just after complete remission could be applied in pediatric non-promyelocytic AML patients with the FLT3/ITD mutation.
Collapse
|
120
|
Brown P, Levis M, Shurtleff S, Campana D, Downing J, Small D. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood 2005; 105:812-20. [PMID: 15374878 DOI: 10.1182/blood-2004-06-2498] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AbstractFMS-like tyrosine kinase 3 (FLT3) is almost universally expressed in B-precursor childhood acute lymphoblastic leukemia (ALL). Cases of ALL with MLL gene rearrangements and those with high hyperdiploidy (> 50 chromosomes) express the highest levels of FLT3, and activating mutations of FLT3 occur in 18% of MLL-rearranged and 28% of hyperdiploid ALL cases. We determined the antileukemic activity of CEP-701, a potent and selective FLT3 inhibitor, in 8 ALL cell lines and 39 bone marrow samples obtained at diagnosis from infants and children with various subtypes of ALL. CEP-701 induced pronounced apoptotic responses in a higher percentage of samples that expressed high levels of FLT3 (74%, n = 23) compared with samples with low levels of expression (8%, n = 13; P = .0003). Sensitivity to FLT3 inhibition was particularly high in samples with MLL gene rearrangements (82%, n = 11; P = .0005), high hyperdiploidy (100%, n = 5; P = .0007), and/or FLT3 mutations (100%, n = 4; P = .0021). Seven of 7 sensitive samples examined by immunoblotting demonstrated constitutively phosphorylated FLT3 that was potently inhibited by CEP-701, whereas 0 of 6 resistant samples expressed constitutively phosphorylated FLT3. We conclude that the FLT3 inhibitor CEP-701 effectively suppresses FLT3-driven leukemic cell survival. Clinical testing of CEP-701 as a novel molecularly targeted agent for the treatment of childhood ALL is warranted.
Collapse
|
121
|
Neben K, Schnittger S, Brors B, Tews B, Kokocinski F, Haferlach T, Müller J, Hahn M, Hiddemann W, Eils R, Lichter P, Schoch C. Distinct gene expression patterns associated with FLT3- and NRAS-activating mutations in acute myeloid leukemia with normal karyotype. Oncogene 2005; 24:1580-8. [PMID: 15674343 DOI: 10.1038/sj.onc.1208344] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In acute myeloid leukemia (AML), constitutive activation of the FLT3 receptor tyrosine kinase, either by internal tandem duplications (FLT3-ITD) of the juxtamembrane region or by point mutations in the second tyrosine kinase domain (FLT3-TKD), as well as point mutations of the NRAS gene (NRAS-PM) are among the most frequent somatic gene mutations. To elucidate whether these mutations cause aberrant signal transduction in AML, we used gene expression profiling in a series of 110 newly diagnosed AML patients with normal karyotype. The different algorithms used for data analysis revealed highly concordant sets of genes, indicating that the identified gene signatures are specific for each analysed subgroup. Whereas samples with FLT3-ITD and FLT3-TKD could be separated with up to 100% accuracy, this did not apply for NRAS-PM and wild-type samples, suggesting that only FLT3-ITD and FLT3-TKD are associated with an apparent signature in AML. The set of discriminating genes included several known genes, which are involved in cell cycle control (CDC14A, WEE1), gene transcription (HOXB5, FOXA1), and signal transduction (SMG1). In conclusion, we showed that unique gene expression patterns can be correlated with FLT3-ITD and FLT3-TKD. This might lead to the identification of further pathogenetic relevant candidate genes particularly in AML with normal karyotype.
Collapse
|
122
|
Kindler T, Breitenbuecher F, Kasper S, Estey E, Giles F, Feldman E, Ehninger G, Schiller G, Klimek V, Nimer SD, Gratwohl A, Choudhary CR, Mueller-Tidow C, Serve H, Gschaidmeier H, Cohen PS, Huber C, Fischer T. Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood 2005; 105:335-40. [PMID: 15345593 DOI: 10.1182/blood-2004-02-0660] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) receptor mutations as internal tandem duplication (ITD) or within the kinase domain are detected in up to 35% of patients with acute myeloid leukemia (AML). N-benzoyl staurosporine (PKC412), a highly effective inhibitor of mutated FLT3 receptors, has significant antileukemic efficacy in patients with FLT3-mutated AML. Mutation screening of FLT3 exon 20 in AML patients (n = 110) revealed 2 patients with a novel mutation (Y842C) within the highly conserved activation loop of FLT3. FLT3-Y842C-transfected 32D cells showed constitutive FLT3 tyrosine phosphorylation and interleukin 3 (IL-3)-independent growth. Treatment with PKC412 led to inhibition of proliferation and apoptotic cell death. Primary AML blasts bearing FLT3-Y842C mutations showed constitutive FLT3 and signal transducer and activator of transcription 5 (STAT-5) tyrosine phosphorylation. Ex vivo PKC412 treatment of primary blasts resulted in suppression of constitutive FLT3 and STAT-5 activation and apoptotic cell death. Inspection of the FLT3 structure revealed that Y842 is the key residue in regulating the switch from the closed to the open (= active) conformation of the FLT3 activation loop. Overall, our data suggest that mutations at Y842 represent a significant new activating mutation in AML blasts. Since FLT3 tyrosine kinase inhibitors (TKIs) such as PKC412 are currently being investigated in clinical trials in AML, extended sequence analysis of FLT3 may be helpful in defining the spectrum of TKI-sensitive FLT3 mutations in AML.
Collapse
|
123
|
Powell H, Curtis A, Bown N, Taylor P. No correlation between trisomy 13 and FLT3 duplication in acute myeloid leukemia. ACTA ACUST UNITED AC 2005; 156:92-3. [PMID: 15588866 DOI: 10.1016/j.cancergencyto.2004.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
124
|
Evans L. The American Society of Hematology--46th Annual Meeting and Exposition. HDAC, Flt and farnesyl transferase inhibitors. IDRUGS : THE INVESTIGATIONAL DRUGS JOURNAL 2005; 8:4-6. [PMID: 15650931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
125
|
Chung KY, Morrone G, Schuringa JJ, Wong B, Dorn DC, Moore MAS. Enforced expression of an Flt3 internal tandem duplication in human CD34+ cells confers properties of self-renewal and enhanced erythropoiesis. Blood 2005; 105:77-84. [PMID: 15242879 DOI: 10.1182/blood-2003-12-4445] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
To investigate the role of constitutively active internal tandem duplication (ITD) mutants of the Fms-like tyrosine kinase 3 (Flt3) receptor in leukemogenesis, we introduced the Flt3-ITD, W51, into human cord blood CD34+ cells and evaluated their phenotype in diverse hematopoietic assays. W51 expression resulted in a strong proliferative advantage and enhanced erythropoiesis as determined by immunophenotyping, colony assays, and molecular analyses. In MS-5 stromal cocultures, numerous early cobblestone areas (CAs) were generated within 10 to 14 days. Such W51-associated early CAs disappeared by 4 weeks, yet retained self-renewal properties as demonstrated by generation of secondary and tertiary CAs upon replating. This phenotype appears related to the expression of W51 since it was abolished by exposure to the FLT3 inhibitor, AG1295, but not to the c-kit inhibitor PD16. Wild-type Flt3–overexpressing CD34+ cells exposed to high levels of its physiologic ligand did not produce early CAs, highlighting differences in intracellular signaling between wild-type Flt3 and W51. W51-associated signal transducer and activator of transcription 5 (Stat5) activation plays a major role in this phenotype, although additional downstream targets of W51 may be relevant. Flt3-ITD+ acute myeloid leukemia (AML) blasts from patients invariably generated early AG1295-sensitive CAs in MS-5 cocultures, further validating the phenotype observed in transduced CD34+ cells.
Collapse
|