1
|
Stepanova L, Leng X, Parker SB, Harper JW. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 1996; 10:1491-502. [PMID: 8666233 DOI: 10.1101/gad.10.12.1491] [Citation(s) in RCA: 374] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CDC37, an essential gene in Saccharomyces cerevisiae, interacts genetically with multiple protein kinases and is required for production of Cdc28p/cyclin complexes through an unknown mechanism. We have identified mammalian p50Cdc37 as a protein kinase-targeting subunit of the molecular chaperone Hsp90. Previously, p50 was observed in complexes with pp60v-src and Raf-1, but its identity and function have remained elusive. In mouse fibroblasts, a primary target of Cdc37 is Cdk4. This kinase is activated by D-type cyclins and functions in passage through G1. In insect cells, Cdc37 is sufficient to target Hsp90 to Cdk4 and both in vitro and in vivo, Cdc37/Hsp90 associates preferentially with the fraction of Cdk4 not bound to D-type cyclins. Cdc37 is coexpressed with cyclin Dl in cells undergoing programmed proliferation in vivo, consistent with a positive role in cell cycle progression. Pharmacological inactivation of Cdc37/Hsp90 function decreases the half-life of newly synthesized Cdk4, indicating a role for Cdc37/Hsp90 in Cdk4 stabilization. This study suggests a general role for p50Cdc37 in signaling pathways dependent on intrinsically unstable protein kinases and reveals a previously unrecognized chaperone-dependent step in the production of Cdk4/cyclin D complexes.
Collapse
|
|
29 |
374 |
2
|
Baniahmad A, Leng X, Burris TP, Tsai SY, Tsai MJ, O'Malley BW. The tau 4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol Cell Biol 1995; 15:76-86. [PMID: 7799971 PMCID: PMC231910 DOI: 10.1128/mcb.15.1.76] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The C terminus of nuclear hormone receptors is a complex structure that contains multiple functions. We are interested in the mechanism by which thyroid hormone converts its receptor from a transcriptional silencer to an activator of transcription. Both regulatory functions are localized in the ligand binding domain of this receptor superfamily member. In this study, we have identified and characterized several functional domains within the ligand binding domain of the human thyroid hormone receptor (TR beta) conferring transactivation. Interestingly, these domains are localized adjacent to hormone binding sites. One activation domain, designated tau 4, is only 17 amino acids in length and is localized at the extreme C terminus of TR. Deletion of six amino acids of tau 4 resulted in a receptor that could still bind hormone but acted as a constitutive silencer, indicating that tau 4 is required for both transactivation and relief of the silencing functions. In addition, we performed in vivo competition experiments, the results of which suggest that in the absence of tau 4 or hormone, TR is bound by a corepressor protein(s) and that one role of hormone is to release corepressor from the receptor. We propose a general model in which the role of hormone is to induce a conformational change in the receptor that subsequently affects the action of tau 4, leading to both relief of silencing and transcriptional activation.
Collapse
|
research-article |
30 |
205 |
3
|
Adams PD, Li X, Sellers WR, Baker KB, Leng X, Harper JW, Taya Y, Kaelin WG. Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes. Mol Cell Biol 1999; 19:1068-80. [PMID: 9891042 PMCID: PMC116037 DOI: 10.1128/mcb.19.2.1068] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/1998] [Accepted: 11/04/1998] [Indexed: 11/20/2022] Open
Abstract
Stable association of certain proteins, such as E2F1 and p21, with cyclin-cdk2 complexes is dependent upon a conserved cyclin-cdk2 binding motif that contains the core sequence ZRXL, where Z and X are usually basic. In vitro phosphorylation of the retinoblastoma tumor suppressor protein, pRB, by cyclin A-cdk2 and cyclin E-cdk2 was inhibited by a short peptide spanning the cyclin-cdk2 binding motif present in E2F1. Examination of the pRB C terminus revealed that it contained sequence elements related to ZRXL. Site-directed mutagenesis of one of these sequences, beginning at residue 870, impaired the phosphorylation of pRB in vitro. A synthetic peptide spanning this sequence also inhibited the phosphorylation of pRB in vitro. pRB C-terminal truncation mutants lacking this sequence were hypophosphorylated in vitro and in vivo despite the presence of intact cyclin-cdk phosphoacceptor sites. Phosphorylation of such mutants was restored by fusion to the ZRXL-like motif derived from pRB or to the ZRXL motifs from E2F1 or p21. Phospho-site-specific antibodies revealed that certain phosphoacceptor sites strictly required a C-terminal ZRXL motif whereas at least one site did not. Furthermore, this residual phosphorylation was sufficient to inactivate pRB in vivo, implying that there are additional mechanisms for directing cyclin-cdk complexes to pRB. Thus, the C terminus of pRB contains a cyclin-cdk interaction motif of the type found in E2F1 and p21 that enables it to be recognized and phosphorylated by cyclin-cdk complexes.
Collapse
|
research-article |
26 |
140 |
4
|
Zhang L, Wu S, Qin Y, Fan F, Zhang Z, Huang C, Ji W, Lu L, Wang C, Sun H, Leng X, Kong D, Zhu D. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy. NANO LETTERS 2019; 19:4237-4249. [PMID: 30868883 DOI: 10.1021/acs.nanolett.9b00030] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Among approaches of current cancer immunotherapy, a dendritic cell (DC)-targeted vaccine based on nanotechnology could be a promising way to efficiently induce potent immune responses. To enhance DC targeting and vaccine efficiency, we included imiquimod (IMQ), a toll-like receptor 7/8 (TLR 7/8) agonist, and monophosphoryl lipid A (MPLA), a TLR4 agonist, to synthesize lipid-polymer hybrid nanoparticles using PCL-PEG-PCL and DOTAP (IMNPs) as well as DSPE-PEG-mannose (MAN-IMNPS). The spatiotemporal delivery of MPLA (within the outer lipid layer) to extracellular TLR4 and IMQ (in the hydrophobic core of NPs) to intracellular TLR7/8 can activate DCs synergistically to improve vaccine efficacy. Ovalbumin (OVA) as a model antigen was readily absorbed by positively charged DOTAP and showed a quick release in vitro. Our results demonstrated that this novel nanovaccine enhanced cellular uptake, cytokine production, and maturation of DCs. Compared with the quick metabolism of free OVA-agonists, the depot effect of OVA-IMNPs was observed, whereas MAN-OVA-IMNPs promoted trafficking to secondary lymphoid organs. After immunization with a subcutaneous injection, the nanovaccine, especially MAN-OVA-IMNPs, induced more antigen-specific CD8+ T cells, greater lymphocyte activation, stronger cross-presentation, and more generation of memory T cells, antibody, IFN-γ, and granzyme B. Prophylactic vaccination of MAN-OVA-IMNPs significantly delayed tumor development and prolonged the survival in mice. The therapeutic tumor challenge indicated that MAN-OVA-IMNPs prohibited tumor progression more efficiently than other formulations, and the combination with an immune checkpoint blockade further enhanced antitumor effects. Hence, the DC-targeted vaccine codelivery with IMQ and MPLA adjuvants by hybrid cationic nanoparticles in a spatiotemporal manner is a promising multifunctional antigen delivery system in cancer immunotherapy.
Collapse
|
|
6 |
111 |
5
|
Li M, Zhang W, Leng X, Li Z, Ye Z, Li C, Li X, Zhu P, Wang Z, Zheng Y, Li X, Zhang M, Zhang F, Zhao Y, Zeng X. Chinese SLE Treatment and Research group (CSTAR) registry: I. Major clinical characteristics of Chinese patients with systemic lupus erythematosus. Lupus 2013; 22:1192-9. [PMID: 23963101 DOI: 10.1177/0961203313499086] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Chinese systemic lupus erythematosus (SLE) treatment and research group (CSTAR) provides major clinical characteristics of SLE in China and establishes a platform to provide resources for future basic and clinical studies. CSTAR originated as a multicentre, consecutive, and prospective design. The data were collected online from 104 rheumatology centers, which covered 30 provinces in China. The registered patients were required to meet four or more of the American College of Rheumatology (ACR) criteria for the classification of SLE. All CSTAR centers use the same protocol-directed methods to provide uniform evaluations, which included demographic data, clinical features, laboratory examinations, and disease activity evaluations. The patient samples, including DNA samples and sera, were also collected for further quality controls and additional studies. Preliminary analysis from 2104 baseline evaluations was available for this analysis. Of 1914 female and 190 male patients (F:M=10.1), the mean age at onset was 29.2 y with confirmed diagnosis one year later at the age of 30.3 y. Eighty four (4.2%) of 2002 patients had a family history of rheumatic diseases, including 34 (1.7%) cases with SLE. In addition, one hundred and seven (5.2%) abnormal pregnancies were recorded among 2026 experiences. The characteristics of the CSTAR cohort were compared to similarly sized cohorts from other studies. We found that 56.1% of patients presented with concurrent hematological disorders compared to only 18.2% of European patients. Moreover, 47.4% of patients presented with nephropathy compared to 27.9% of European patients. Conversely, neurological manifestations were only seen in 4.8% of Chinese SLE patients compared to 19.4% of European patients, 12.1% of U.S. patients, 22.8% of Malaysian patients and 26.4% of Latin Americans. Pulmonary arterial hypertension and interstitial lung diseases were complications identified in 3.8% and 4.2% of Chinese lupus patients, respectively. The CSTAR registry has provided epidemiological data and phenotypes of Chinese patients with SLE, and has demonstrated several differences between ethnicities. Clinical data and biologic samples would be valuable resources for future translational studies with national and international collaboration.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
97 |
6
|
Leng X, Connell-Crowley L, Goodrich D, Harper JW. S-Phase entry upon ectopic expression of G1 cyclin-dependent kinases in the absence of retinoblastoma protein phosphorylation. Curr Biol 1997; 7:709-12. [PMID: 9285720 DOI: 10.1016/s0960-9822(06)00301-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In mammalian cells, the retinoblastoma protein (Rb) is thought to negatively regulate progression through the G1 phase of the cell cycle by its association with the transcription factor E2F [1-3]. Rb-E2F complexes suppress transcription of genes required for DNA synthesis ([4], reviewed in [3,5]), and the prevailing view is that phosphorylation of Rb by complexes of cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits, and the subsequent release of active E2F, is required for S-phase entry [1-3]. This view is based, in part, on the fact that ectopic expression of cyclin-Cdks leads to Rb phosphorylation and that this modification correlates with S-phase entry [6-8]. In Drosophila, however, cyclin E expression can bypass a requirement for E2F, suggesting that cyclins may activate replication independently of the Rb/E2F pathway [9]. We sought to examine whether Rb phosphorylation is a prerequisite for S-phase entry in Rb-deficient SAOS-2 osteosarcoma cells, using a commonly used cotransfection assay [6-8,10]. We find that a G1 arrest in SAOS-2 cells mediated by an Rb mutant lacking all 14 consensus Cdk phosphorylation sites is bypassed by coexpressing G1-specific E-type or D-type cyclin-Cdk complexes, and that injection of purified cyclin-Cdks during G1 accelerates S-phase entry. Our results indicate that Rb phosphorylation is not essential for S-phase entry when G1 cyclin-Cdks are overexpressed, and that other substrates of these kinases can be rate-limiting for the G1 to S-phase transition. These data also reveal that the SAOS-2 cotransfection assay is complicated by Rb-independent effects of the coexpressed Cdks.
Collapse
|
|
28 |
94 |
7
|
Cooney A, Leng X, Tsai S, O'Malley B, Tsai M. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53592-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
32 |
87 |
8
|
Liu L, Cao F, Liu X, Wang H, Zhang C, Sun H, Wang C, Leng X, Song C, Kong D, Ma G. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11969-11979. [PMID: 27088457 DOI: 10.1021/acsami.6b01135] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.
Collapse
|
|
9 |
81 |
9
|
Leng X, Cooney AJ, Tsai SY, Tsai MJ. Molecular mechanisms of COUP-TF-mediated transcriptional repression: evidence for transrepression and active repression. Mol Cell Biol 1996; 16:2332-40. [PMID: 8628300 PMCID: PMC231221 DOI: 10.1128/mcb.16.5.2332] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
COUP-TF, an orphan member of the nuclear receptor superfamily, has been proposed to play a key role in regulating organogenesis, neurogenesis, and cellular differentiation during embryonic development. Since heterodimierization is a common theme within the nuclear receptor superfamily and has been demonstrated to modulate transcriptional properties of heterodimeric partners via allosteric interactions, we have devised a strategy to examine the silencing function of COUP-TF in a heterodimeric context. We find that the intrinsic active repression function of COUP-TF is not affected by heterodimerization. Moreover, COUP-TF can transrepress the ligand-dependent activation of its heterodimeric partners without its own DNA binding site. Using receptor deletion mutants in transfection assays, we show that the region necessary for COUP-TF silencing function is not sufficient for its transrepression activity. Furthermore, our studies indicate that in addition to its active repression function, COUP-TF can repress several different types of activator-dependent transactivation. However, this active repression function of COUP-TF may be differentially regulated by some other activator(s). These studies provide new insights into the molecular mechanism(s) of COUP-TF-mediated repression.
Collapse
|
research-article |
29 |
79 |
10
|
Leng X, Tsai SY, O'Malley BW, Tsai MJ. Ligand-dependent conformational changes in thyroid hormone and retinoic acid receptors are potentially enhanced by heterodimerization with retinoic X receptor. J Steroid Biochem Mol Biol 1993; 46:643-61. [PMID: 8274399 DOI: 10.1016/0960-0760(93)90306-h] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, many lines of evidence have been accumulated indicating that thyroid hormone receptor (TR) and retinoic acid receptor (RAR) undergo a ligand-dependent conformation change. Since most of these results were obtained by either gel-shift assay or circular dichroism spectroscopic studies, it was not clear which part of the receptor bore the major conformational change. Moreover, it is not clear whether the formation of heterodimer between TR or RAR and retinoic X receptor (RXR) has any effects on this structural change. Utilizing partial proteolytic analysis, we demonstrated that thyroid hormone and retinoic acid induce a specific protease-resistant conformation to their cognate receptors. Studies of various deletion mutants reveal that the entire ligand binding domain of these receptors is involved in this change, and suggest that ligand may induce a more compact structure in its binding domain. Evidence from native gel electrophoresis supports this notion. This conformational change occurs in the absence of DNA and occurs independently of other domains in the receptor. Heterodimerization between TR or RAR and the RXR has little effect on receptor conformation in the absence of hormone but does enhance the ligand-dependent structural change. Interestingly, dual hormone treatment, i.e. thyroid hormone and 9-cis RA, intensifies this enhancement. We suggest that the observed protease-resistant conformation may introduce a different configuration to the receptor and therefore may affect the receptor in various ways, but most likely is involved in converting the receptor from a negative regulator to a positive activator.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- DNA-Binding Proteins/metabolism
- Humans
- Ligands
- Macromolecular Substances
- Mutagenesis
- Protein Biosynthesis
- Protein Conformation
- Rabbits
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/biosynthesis
- Receptors, Thyroid Hormone/chemistry
- Receptors, Thyroid Hormone/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Reticulocytes/metabolism
- Retinoid X Receptors
- Retinoids/metabolism
- Sequence Deletion
- Transcription Factors
- Transcription, Genetic
- Tretinoin/metabolism
Collapse
|
|
32 |
77 |
11
|
Leng X, Blanco J, Tsai SY, Ozato K, O'Malley BW, Tsai MJ. Mouse retinoid X receptor contains a separable ligand-binding and transactivation domain in its E region. Mol Cell Biol 1995; 15:255-63. [PMID: 7799932 PMCID: PMC231947 DOI: 10.1128/mcb.15.1.255] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Steroid, thyroid, and retinoid hormones exert their biological functions by interacting with their cognate nuclear receptors. Upon binding receptors, hormones induce a protease-resistant structural change in the receptor ligand-binding domain and subsequently activate the receptors. Utilizing partial proteolysis, we have been able to delineate a region in the mouse retinoid X receptor beta (mRXR beta) required for ligand binding. A separable activation domain within the mRXR beta E region has been identified. The activation domain, which is 21 amino acids in length, is located at the extreme C terminus of mRXR beta. This domain is not required for ligand binding since removal of this sequence neither eliminates the ligand-induced, protease-resistant conformational change nor alters the ligand-enhanced DNA binding. Furthermore, deletion of this activation domain converts the receptor into a transcriptional silencer. Finally, a further truncation of 9 amino acids (for a total of 30 amino acids) from the C terminus results in a mutant which does not undergo the protease-resistant conformational change and cannot bind DNA as a homodimer. Nevertheless, this mutant is still able to form a heterodimer with the thyroid hormone receptor. Therefore, homodimerization and heterodimerization can be distinguished by this nine-amino-acid sequence.
Collapse
|
research-article |
30 |
75 |
12
|
Leng X, Lin H, Ding T, Wang Y, Wu Y, Klumpp S, Sun T, Zhou Y, Monaco P, Belmont J, Aderem A, Akira S, Strong R, Arlinghaus R. Lipocalin 2 is required for BCR-ABL-induced tumorigenesis. Oncogene 2008; 27:6110-9. [PMID: 18663364 DOI: 10.1038/onc.2008.209] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our previous studies indicate that reduction of lipocalin 2 (mouse 24p3) expression by either anti-sense or siRNA approaches strongly reduces the overgrowth of BCR-ABL+ mouse myeloid 32D in marrow and spleen of NOD/SCID mice. In this study, we used the mouse bone marrow transplant model to further explore the role of 24p3 in BCR-ABL-induced leukemia. Consistent with our previous findings, when using non-irradiated mice as recipient, donor marrow cells expressing BCR-ABL but lacking 24p3 did not cause leukemia or any disease after 75 days, whereas all mice receiving wild type BCR-ABL donor cells died with CML-like disease. An agar clone of the BCR-ABL+ human CML cell line K562 (C5) that secretes relatively high levels of lipocalin 2 (human NGAL) induced suppression of hematopoiesis in spleen and marrow of mice, leading to early death in contrast to parental K562 or K562 clone (C6) expressing low amounts of NGAL. Compared with K562 cells, overexpressing NGAL in K562 led to a higher apoptosis rate and an atrophy phenotype in the spleen of the inoculated mice. Plasma from both leukemic mice and CML patients showed elevated lipocalin 2 levels compared with healthy individuals. Moreover, we found that a primary stable cell line from wild-type mouse marrow cells expressing BCR-ABL caused solid tumors in nude mice whereas a similar BCR-ABL+ cell line from 24p3 null mice did not. These findings demonstrate that lipocalin 2 has at least two functions related to tumorigenesis, one involving apoptosis induction of normal hematopoietic cells and the other being tissue invasion by leukemia cells.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
73 |
13
|
Yang J, Zeng Y, Zhang C, Chen YX, Yang Z, Li Y, Leng X, Kong D, Wei XQ, Sun HF, Song CX. The prevention of restenosis in vivo with a VEGF gene and paclitaxel co-eluting stent. Biomaterials 2012. [PMID: 23199742 DOI: 10.1016/j.biomaterials.2012.11.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long-term clinical studies of drug-eluting stents (DES) have reported high incidence of late thrombosis. Given the growing concern over the clinical application of this technology, we have developed a stent coated with bi-layered PLGA nanoparticles (BL-PLGA NPs) containing VEGF plasmid in the outer layer and paclitaxel (PTX) in the inner core (VEGF/PTX NPs). We hypothesized that early release of VEGF gene would promote re-endothelialization, while slow release of PTX would suppress smooth muscle cell proliferation. Using Fc plasmid as a reporter gene, we observed that Fc/PTX NPs successfully expressed Fc protein, but did not show cytotoxicity or anti-proliferative effect during the first 7 days in cell culture. In contrast, PTX NPs showed strong anti-proliferative effect staring from day 1 in culture, suggesting sequential release of gene and PTX from the BL-PLGA NPs. In vivo effects of the treated stent were assessed in mini-swines. Implantation of GFP/PTX NP-coated stents revealed efficient local GFP gene transfection at day 7. VEGF/PTX NP-coated stents showed complete re-endothelialization and significantly suppressed in-stent restenosis after 1 month compared to commercial DES. In conclusion, the VEGF/PTX NP-coated stents promote early endothelium healing while inhibit smooth muscle cell proliferation through sequential release of the VEGF gene and paclitaxel.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
69 |
14
|
Zhu D, Wu S, Hu C, Chen Z, Wang H, Fan F, Qin Y, Wang C, Sun H, Leng X, Kong D, Zhang L. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater 2017. [PMID: 28627436 DOI: 10.1016/j.actbio.2017.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combination chemotherapy is a promising method of improving cancer treatment, but the distinct pharmacokinetics of combined drugs and non-specific drug distribution slow down the development in the clinic. In this study, folate (FA) receptor-targeted polymersomes with apparent bilayered lamellar structure were successfully developed to co-encapsulate a hydrophobic-hydrophilic chemotherapeutic drug pair (PTX and DOX) in a single vesicle for enhancing the combination chemotherapeutic effect. Hydrophobic PTX was loaded into the thick hydrophobic lamellar membrane by the self-assembly of triblock copolymer PCL8000-PEG8000-PCL8000, while hydrophilic DOX was encapsulated into the hydrophilic reservoir using a trans-membrane ammonium sulfate gradient method. In vitro release study indicated that the drugs were released from the polymersomes in a controlled and sustained manner. Cellular uptake study indicated that FA-targeted Co-PS had higher internalization efficiency in FA receptor-overexpressing BEL-7404 cells than non-targeted Co-PS. In vitro cytotoxicity assay demonstrated that FA-targeted Co-PS exhibited less cytotoxic effect than free drug cocktail, but suppressed the growth of tumor cells more efficiently than non-targeted Co-PS. Ex vivo imaging biodistribution studies revealed that FA-targeted Co-PS led to highly efficient targeting and accumulation in the BEL-7404 xenograft tumor. Furthermore, the in vivo antitumor study showed that the combination chemotherapy of polymersomes to BEL-7404 tumor via intravenous injection was superior to free drug cocktail treatment, and the FA-targeted Co-PS exhibited significantly higher tumor growth inhibition than non-targeted Co-PS group. Therefore, the newly developed FA-targeted co-delivery polymersomes hold great promise for simultaneous delivery of multiple chemotherapeutics and would have great potential in tumor-targeting and combination chemotherapy. STATEMENT OF SIGNIFICANCE Combination chemotherapy is a promising method of improving cancer treatment, but the distinct pharmacokinetics of combined drugs and non-specific drug distribution slow down the development in the clinic. In our study, novel folate-targeted co-delivery polymersomes (Co-PS) were successfully developed to encapsulate a hydrophobic-hydrophilic chemotherapeutic drug pair (paclitaxel and doxorubicin) into the different compartments of the vesicle. In vivo studies revealed that the combination chemotherapy of polymersomes to BEL-7404 xenograft tumor via intravenous injection was superior to free drug cocktail treatment, and the FA-targeted Co-PS exhibited significantly higher tumor growth inhibition than non-targeted Co-PS group. Therefore, the newly developed FA-targeted co-delivery polymersomes hold great promise for simultaneous delivery of multiple chemotherapeutics and would have great potential in tumor-targeting and combination chemotherapy.
Collapse
|
|
8 |
65 |
15
|
Liu CK, Leng X, Hsu FC, Kritchevsky SB, Ding J, Earnest CP, Ferrucci L, Goodpaster BH, Guralnik JM, Lenchik L, Pahor M, Fielding RA. The impact of sarcopenia on a physical activity intervention: the Lifestyle Interventions and Independence for Elders Pilot Study (LIFE-P). J Nutr Health Aging 2014; 18:59-64. [PMID: 24402391 PMCID: PMC4111145 DOI: 10.1007/s12603-013-0369-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine if sarcopenia modulates the response to a physical activity intervention in functionally limited older adults. DESIGN Secondary analysis of a randomized controlled trial. SETTING Three academic centers. PARTICIPANTS Elders aged 70 to 89 years at risk for mobility disability who underwent dual-energy x-ray absorptiometry (DXA) for body composition at enrollment and follow-up at twelve months (N = 177). INTERVENTION Subjects participated in a physical activity program (PA) featuring aerobic, strength, balance, and flexibility training, or a successful aging (SA) educational program about healthy aging. MEASUREMENTS Sarcopenia as determined by measuring appendicular lean mass and adjusting for height and total body fat mass (residuals method), Short Physical Performance Battery score (SPPB), and gait speed determined on 400 meter course. RESULTS At twelve months, sarcopenic and non-sarcopenic subjects in PA tended to have higher mean SPPB scores (8.7±0.5 and 8.7±0.2 points) compared to sarcopenic and non-sarcopenic subjects in SA (8.3±0.5 and 8.4±0.2 points, p = 0.24 and 0.10), although the differences were not statistically significant. At twelve months, faster mean gait speeds were observed in PA: 0.93±0.4 and 0.95±0.03 meters/second in sarcopenic and non-sarcopenic PA subjects, and 0.89±0.4 and 0.91±0.03 meters/second in sarcopenic and non-sarcopenic SA subjects (p = 0.98 and 0.26), although not statistically significant. There was no difference between the sarcopenic and non-sarcopenic groups in intervention adherence or number of adverse events. CONCLUSION These data suggest that older adults with sarcopenia, who represent a vulnerable segment of the elder population, are capable of improvements in physical performance after a physical activity intervention.
Collapse
|
Randomized Controlled Trial |
11 |
61 |
16
|
Huang C, Zhang Z, Guo Q, Zhang L, Fan F, Qin Y, Wang H, Zhou S, Ou‐Yang W, Sun H, Leng X, Pan X, Kong D, Zhang L, Zhu D. A Dual-Model Imaging Theragnostic System Based on Mesoporous Silica Nanoparticles for Enhanced Cancer Phototherapy. Adv Healthc Mater 2019; 8:e1900840. [PMID: 31512403 DOI: 10.1002/adhm.201900840] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Indexed: 01/01/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) show great promise to be exploited as versatile multifunctional nanocarriers for effective cancer diagnosis and treatment. In this work, perfluorohexane (PFH)-encapsulated MSNs with indocyanine green (ICG)-polydopamine (PDA) layer and poly(ethylene glycol)-folic acid coating (designated as MSNs-PFH@PDA-ICG-PEG-FA) are successfully fabricated to achieve tumor ultrasonic (US)/near-infrared fluorescence (NIRF) imaging as well as photothermal therapy (PTT)/photodynamic therapy (PDT). MSNs-PFH@PDA-ICG-PEG-FA exhibits good monodispersity with high ICG loading, significantly enhances ICG photostability, and greatly improves cellular uptake. Upon single 808 nm NIR irradiation, the nanocarrier not only efficiently generates hyperthermia to realize PTT, but also produces reactive oxygen species (ROS) for effective PDT. Meanwhile, NIR irradiation can trigger PFH to undergo vaporization and provide a super-resolution US image. Thus, the PTT/PDT combination therapy can be dually guided by PFH-induced US imaging and ICG-induced NIRF imaging. In vivo antitumor studies demonstrate that PTT/PDT from MSNs-PFH@PDA-ICG-PEG-FA significantly inhibits tumor growth and achieves a cure rate of 60% (three out of five mice are completely cured). Hence, the multifunctional MSNs appear to be a promising theragnostic nanoplatform for multimodal cancer imaging and therapy.
Collapse
|
|
6 |
61 |
17
|
Leng X, Lan L, Liu L, Leung TW, Wong KS. Good collateral circulation predicts favorable outcomes in intravenous thrombolysis: a systematic review and meta-analysis. Eur J Neurol 2016; 23:1738-1749. [PMID: 27478977 DOI: 10.1111/ene.13111] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/27/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Baseline collateral status has been correlated with outcomes of acute ischaemic stroke patients receiving intravenous thrombolysis (IVT) in previous studies. We carried out the current systematic review and meta-analysis to synthesize currently available evidence regarding such correlations. METHODS Full-text articles published since 2000 were retrieved and screened. The overall effect sizes of good versus poor collateral status over a series of outcomes and certain baseline features were estimated by random-effects models and presented in risk ratios (RRs) or mean differences. RESULTS Overall, 28 (3057 patients) and 14 (1584 patients) studies were included in qualitative and quantitative synthesis, respectively. Compared with poor pre-treatment collateral status, good collaterals showed a beneficial effect over the primary outcome of a favorable functional outcome at 3 or 6 months [RR, 2.45; 95% confidence interval, 1.94-3.09; P < 0.001] in acute ischaemic stroke patients receiving IVT treatment. However, such an effect tended to be different between studies with prescribed time windows of 3, 4.5 and > 4.5 h (up to 7 h), with the RRs being 2.21, 2.48 and 5.00, respectively (I2 = 53%). Good pre-treatment collaterals were also associated with a smaller infarct size at baseline, and a lower rate of symptomatic intracranial hemorrhage and a higher rate of neurological improvement early after IVT treatment. CONCLUSIONS The present study has demonstrated the prognostic value of baseline collateral circulation for outcomes of acute ischaemic stroke patients receiving intravenous reperfusion therapies, studied with different time windows of up to 7 h after ictus for IVT therapy.
Collapse
|
Systematic Review |
9 |
57 |
18
|
Chang KH, Chen Y, Chen TT, Chou WH, Chen PL, Ma YY, Yang-Feng TL, Leng X, Tsai MJ, O'Malley BW, Lee WH. A thyroid hormone receptor coactivator negatively regulated by the retinoblastoma protein. Proc Natl Acad Sci U S A 1997; 94:9040-5. [PMID: 9256431 PMCID: PMC23019 DOI: 10.1073/pnas.94.17.9040] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The retinoblastoma protein (Rb) plays a critical role in cell proliferation, differentiation, and development. To decipher the mechanism of Rb function at the molecular level, we have systematically characterized a number of Rb-interacting proteins, among which is the clone C5 described here, which encodes a protein of 1,978 amino acids with an estimated molecular mass of 230 kDa. The corresponding gene was assigned to chromosome 14q31, the same region where genetic alterations have been associated with several abnormalities of thyroid hormone response. The protein uses two distinct regions to bind Rb and thyroid hormone receptor (TR), respectively, and thus was named Trip230. Trip230 binds to Rb independently of thyroid hormone while it forms a complex with TR in a thyroid hormone-dependent manner. Ectopic expression of the protein Trip230 in cells, but not a mutant form that does not bind to TR, enhances specifically TR-dependent transcriptional activity. Coexpression of wild-type Rb, but not mutant Rb that fails to bind to Trip230, inhibits such activity. These results not only identify a coactivator molecule that modulates TR activity, but also uncover a role for Rb in a pathway that responds to thyroid hormone.
Collapse
|
research-article |
28 |
56 |
19
|
Liu Z, Dong X, Song L, Zhang H, Liu L, Zhu D, Song C, Leng X. Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway. J Biomed Mater Res A 2013; 102:665-73. [DOI: 10.1002/jbm.a.34729] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/17/2013] [Accepted: 03/12/2013] [Indexed: 11/10/2022]
|
|
12 |
54 |
20
|
Zhang L, Qin Y, Zhang Z, Fan F, Huang C, Lu L, Wang H, Jin X, Zhao H, Kong D, Wang C, Sun H, Leng X, Zhu D. Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy. Acta Biomater 2018; 75:371-385. [PMID: 29777957 DOI: 10.1016/j.actbio.2018.05.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/04/2023]
Abstract
The combination of chemotherapy and photothermal therapy in multifunctional nanovesicles has emerged as a promising strategy to improve cancer therapeutic efficacy. Herein, we designed new pH/reduction dual-responsive and folate decorated polymeric micelles (FA Co-PMs) as theranostic nanocarrier to co-encapsulate doxorubicin (DOX) and indocyanine green (ICG) for targeted NIR imaging and chemo-photothermal combination therapy. The Co-PMs exhibited nano-sized structure (∼100 nm) with good monodispersity, high encapsulation efficiency of both ICG and DOX, triggered DOX release in response to acid pH and reduction environment, and excellent temperature conversion with laser irradiation. In vitro cellular uptake study indicated FA Co-PMs achieved significant targeting to BEL-7404 cells via folate receptor-mediated endocytosis, and laser-induced hyperthermia further enhanced drug accumulation into cancer cells. In vivo biodistribution study indicated that FA Co-PMs prolonged drug circulation and enhanced drug accumulation into the tumor via EPR effect and FA targeting. Furthermore, the ICG-based photo-triggered hyperthermia combined with DOX-based chemotherapy synergistically induced the BEL-7404 cell death and apoptosis, and efficiently suppressed the BEL-7404 xenografted tumor growth while significantly reduced systemic toxicity in vivo. Therefore, the designed dual-responsive Co-PMs were promising theranostic nanocarriers for versatile antitumor drug delivery and imaging-guided cancer chemo-photothermal combination therapy. STATEMENT OF SIGNIFICANCE The combination of chemotherapy and photothermal therapy in multifunctional nanovesicles has emerged as a promising strategy to improve cancer therapeutic efficacy. Herein, we designed novel pH/reduction dual-responsive and folate decorated polymeric micelles (FA Co-PMs) as theranostic nanocarrier to co-encapsulate doxorubicin (DOX) and indocyanine green (ICG) for targeted NIR imaging and chemo-photothermal combination therapy. The Co-PMs triggered DOX release in response to acid pH and reduction environment and exhibited excellent temperature conversion with laser irradiation. The results indicated FA Co-PMs achieved significant targeting to BEL-7404 cells in vitro and efficiently suppressed the BEL-7404 xenografted tumor growth while significantly reduced systemic toxicity in vivo. Therefore, the designed dual-responsive Co-PMs displayed great potential in imaging-guided cancer chemo-photothermal combination therapy as theranostic nanocarriers.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
49 |
21
|
Yang R, Chen L, Zhang T, Yang S, Leng X, Zhao G. Self-assembly of ferritin nanocages into linear chains induced by poly(α, L-lysine). Chem Commun (Camb) 2014; 50:481-3. [PMID: 24263180 DOI: 10.1039/c3cc47847e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The widespread occurrence of protein channels offers a good opportunity to fabricate protein architectures. Herein, we have developed a novel strategy for linear self-assembly of ferritin cages induced by poly(α, L-lysine) through channel-directed electrostatic interactions at pH 7.0. The length of the formed filaments can be controlled.
Collapse
|
|
11 |
48 |
22
|
Zhu D, Hu C, Fan F, Qin Y, Huang C, Zhang Z, Lu L, Wang H, Sun H, Leng X, Wang C, Kong D, Zhang L. Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination. Biomaterials 2019; 206:25-40. [DOI: 10.1016/j.biomaterials.2019.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
|
|
6 |
45 |
23
|
Hu C, Chen Z, Wu S, Han Y, Wang H, Sun H, Kong D, Leng X, Wang C, Zhang L, Zhu D. Micelle or polymersome formation by PCL-PEG-PCL copolymers as drug delivery systems. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
8 |
45 |
24
|
Leng X, Blanco J, Tsai SY, Ozato K, O'Malley BW, Tsai MJ. Mechanisms for synergistic activation of thyroid hormone receptor and retinoid X receptor on different response elements. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31713-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
|
31 |
43 |
25
|
Ma G, Song C, Sun H, Yang J, Leng X. A biodegradable levonorgestrel-releasing implant made of PCL/F68 compound as tested in rats and dogs. Contraception 2006; 74:141-7. [PMID: 16860052 DOI: 10.1016/j.contraception.2006.02.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 02/16/2006] [Accepted: 02/24/2006] [Indexed: 11/23/2022]
Abstract
PURPOSE Our objective was to report preclinical studies on a biodegradable long-acting contraceptive implant. METHODS A poly (epsilon-caprolactone) (PCL)/pluronic F68 (F68) compound was used to construct an implant, which was filled with dry levonorgestrel (LNG) powder (PCL/F68/LNG). LNG release rate, contraceptive efficacy and polymer degradation were evaluated in rats and followed for 2 years. A 2-year toxicity study was conducted in dogs. RESULTS The in vitro and in vivo release of LNG from the implant followed zero-order release kinetics. Serum LNG level in rats was very stable during the 2-year period. Studies on polymer degradation indicated that the molecular weight of PCL dropped from 66,000 to 15,000 Da, but the implant was still in good shape by the end of 2 years. CONCLUSION Toxicological study demonstrated that the PCL/F68 polymer had no adverse effect in all aspects. The contraceptive efficacy in rats showed dose response. The implant was physically and chemically stable for up to 3 years in airproof aluminum foil packing at room temperature.
Collapse
|
|
19 |
43 |