126
|
Kong Y, Liu M, Hu H, Hou Y, Vesztergom S, Gálvez-Vázquez MDJ, Zelocualtecatl Montiel I, Kolivoška V, Broekmann P. Cracks as Efficient Tools to Mitigate Flooding in Gas Diffusion Electrodes Used for the Electrochemical Reduction of Carbon Dioxide. SMALL METHODS 2022; 6:e2200369. [PMID: 35810472 DOI: 10.1002/smtd.202200369] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The advantage of employing gas diffusion electrodes (GDEs) in carbon dioxide reduction electrolyzers is that they allow CO2 to reach the catalyst in gaseous state, enabling current densities that are orders of magnitude larger than what is achievable in standard H-type cells. The gain in the reaction rate comes, however, at the cost of stability issues related to flooding that occurs when excess electrolyte permeates the micropores of the GDE, effectively blocking the access of CO2 to the catalyst. For electrolyzers operated with alkaline electrolytes, flooding leaves clear traces within the GDE in the form of precipitated potassium (hydrogen)carbonates. By analyzing the amount and distribution of precipitates, and by quantifying potassium salts transported through the GDE during operation (electrolyte perspiration), important information can be gained with regard to the extent and means of flooding. In this work, a novel combination of energy dispersive X-ray and inductively coupled plasma mass spectrometry based methods is employed to study flooding-related phenomena in GDEs differing in the abundance of cracks in the microporous layer. It is concluded that cracks play an important role in the electrolyte management of CO2 electrolyzers, and that electrolyte perspiration through cracks is paramount in avoiding flooding-related performance drops.
Collapse
|
127
|
Wei X, Wang X, Bai X, Li C, Mao L, Chi Z, Lian B, Bixia T, Kong Y, Dai J, Andtbacka R, Guo J, Cui CL, Si L. 795P A phase Ib trial of neoadjuvant oncolytic virus OrienX010 (ori) and anti-PD-1 toripalimab (tori) combo in patients (pts) with resectable stage IIIb-IV (M1a) acral melanoma. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
128
|
Liu Z, Lv J, Dang Q, Liu L, Weng S, Wang L, Zhou Z, Kong Y, Li H, Han Y, Han X. Engineering neoantigen vaccines to improve cancer personalized immunotherapy. Int J Biol Sci 2022; 18:5607-5623. [PMID: 36263174 PMCID: PMC9576504 DOI: 10.7150/ijbs.76281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy treatments harnessing the immune system herald a new era of personalized medicine, offering considerable benefits for cancer patients. Over the past years, tumor neoantigens emerged as a rising star in immunotherapy. Neoantigens are tumor-specific antigens arising from somatic mutations, which are proceeded and presented by the major histocompatibility complex on the cell surface. With the advancement of sequencing technology and bioinformatics engineering, the recognition of neoantigens has accelerated and is expected to be incorporated into the clinical routine. Currently, tumor vaccines against neoantigens mainly encompass peptides, DNA, RNA, and dendritic cells, which are extremely specific to individual patients. Due to the high immunogenicity of neoantigens, tumor vaccines could activate and expand antigen-specific CD4+ and CD8+ T cells to intensify anti-tumor immunity. Herein, we introduce the origin and prediction of neoantigens and compare the advantages and disadvantages of multiple types of neoantigen vaccines. Besides, we review the immunizations and the current clinical research status in neoantigen vaccines, and outline strategies for enhancing the efficacy of neoantigen vaccines. Finally, we present the challenges facing the application of neoantigens.
Collapse
|
129
|
Cui CL, Li Z, Wu N, Li M, Chen X, Zheng H, Gao M, Wang D, Lian B, Wang X, Tian H, Si L, Chi Z, Sheng X, Lai Y, Sun T, Zhang Q, Kong Y, Guo J. 796P Neoadjuvant toripalimab plus axitinib in patients (pts) with resectable mucosal melanoma (MuM): Updated findings of a single-arm, phase II trial. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
130
|
Wu L, Pu X, Lin G, Xiao M, Lin J, Wang Q, Kong Y, Yan X, Xu F, Xu Y, Li J, Li K, Chen B, Wen X, Tan Y. EP08.01-094 A Phase II Study of Camrelizumab combined with Apatinib and Albumin Paclitaxel in Advanced Non-squamous NSCLC (CAPAP-lung). J Thorac Oncol 2022. [DOI: 10.1016/j.jtho.2022.07.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
131
|
Wu L, Chen B, Wang J, Pu X, Li J, Wang Q, Liu L, Xu Y, Xu L, Kong Y, Li K, Xu F. EP08.01-093 ICI in Combination With Chemotherapy or Anti-angiogenic Agents as Second-Line Orbeyondtreatment for Advanced Non-small Cell Lung Cancer. J Thorac Oncol 2022. [DOI: 10.1016/j.jtho.2022.07.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
132
|
Wu L, Pu X, Chen L, Wang Z, Liu Y, Li K, Kong Y, Xu F, Li J, Xu L, Xu Y, Tang C, Xiao L, Liu P. EP08.01-095 Efficacy and Safety of Combining Endostar with Camrelizumab plus Chemotherapy in Advanced NSCLC Patients: A Multi-Center Retrospective Study. J Thorac Oncol 2022. [DOI: 10.1016/j.jtho.2022.07.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
133
|
Si L, Qi Z, Dai J, Bai X, Mao L, Li C, Wei X, Cui CL, Chi Z, Sheng X, Kong Y, Bixia T, Zhou L, Lian B, Wang X, Duan R, Guo J. 815P A single-arm, phase II clinical study of imatinib mesylate/toripalimab combo in patients (pts) with advanced melanoma harboring c-Kit mutation or amplification. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
134
|
Wang X, Wu W, Wu X, Si L, Chi Z, Sheng X, Li L, Han W, Li H, Lian B, Zhou L, Mao L, Bai X, Bixia T, Wei X, Cui CL, Kong Y, Guo J. 879P Whole-genome landscape of head and neck melanomas in East Asia (China). Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.07.1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
135
|
Liu Z, Han Y, Dang Q, Xu H, Zhang Y, Duo M, Lv J, Li H, Kong Y, Han X. Roles of circulating tumor DNA in PD-1/PD-L1 immune checkpoint Inhibitors: Current evidence and future directions. Int Immunopharmacol 2022; 111:109173. [PMID: 35998502 DOI: 10.1016/j.intimp.2022.109173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022]
Abstract
Circulating tumor DNA (ctDNA) sequencing holds considerable promise for early diagnosis and detection of surveillance and minimal residual disease. Blood ctDNA monitors specific cancers by detecting the alterations found in cancer cells, such as apoptosis and necrosis. Due to the short half-life, ctDNA reflects the actual burden of other treatments on tumors. In addition, ctDNA might be preferable to monitor tumor development and treatment compared with invasive tissue biopsy. ctDNA-based liquid biopsy brings remarkable strength to targeted therapy and precision medicine. Notably, multiple ctDNA analysis platforms have been broadly applied in clinical immunotherapy. Through targeted sequencing, early variations in ctDNA could predict response to immune checkpoint inhibitor (ICI). Several studies have demonstrated a correlation between ctDNA kinetics and anti-PD1 antibodies. The need for further research and development remains, although this biomarker holds significant prospects for early cancer detection. This review focuses on describing the basis of ctDNA and its current utilities in oncology and immunotherapy, either for clinical management or early detection, highlighting its advantages and inherent limitations.
Collapse
|
136
|
Zheng LW, Lan CN, Kong Y, Liu LH, Fan YM, Zhang CJ. Exosomal miR-150 derived from BMSCs inhibits TNF-α-mediated osteoblast apoptosis in osteonecrosis of the femoral head by GREM1/NF-κB signaling. Regen Med 2022; 17:739-753. [PMID: 35938412 DOI: 10.2217/rme-2021-0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: The purpose of this study was to investigate the functions of exosomal miR-150 derived from bone marrow mesenchymal stem cells in osteonecrosis of the femoral head (ONFH). Materials & methods: Cell viability and apoptosis were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. Alizarin red staining was performed to detect calcium deposits. A rat model was established to assess the effects of exosomal miR-150 on ONFH in vivo. Results: Exosomes or exosomal miR-150 derived from bone marrow mesenchymal stem cells inhibited TNF-α-induced osteoblast apoptosis and promoted osteogenic differentiation and autophagy. Exosomal miR-150 suppressed apoptosis and induced autophagy in TNF-α-treated osteoblasts by regulating the GREM1/NF-κB axis. Exosomal miR-150 also improved the pathological features of ONFH in vivo. Conclusion: Exosomal miR-150 alleviates ONFH by mediating the GREM1/NF-κB axis. This study provides a potential therapeutic strategy for ONFH.
Collapse
|
137
|
Hu H, Liu M, Kong Y, Montiel IZ, Hou Y, Rudnev AV, Broekmann P. Size‐dependent Structural Alterations in Ag Nanoparticles During CO2 Electrolysis in a Gas‐fed Zero‐gap Electrolyzer. ChemElectroChem 2022. [DOI: 10.1002/celc.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
138
|
Yang H, Su Y, Sun Z, Ma B, Liu F, Kong Y, Sun C, Li B, Sang Y, Wang S, Li G, Qiu J, Liu C, Geng Z, Liu H. Gold Nanostrip Array-Mediated Wireless Electrical Stimulation for Accelerating Functional Neuronal Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202376. [PMID: 35618610 PMCID: PMC9353484 DOI: 10.1002/advs.202202376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 05/27/2023]
Abstract
Neural stem cell (NSC)-based therapy holds great promise for the treatment of neurodegenerative diseases. Presently, however, it is hindered by poor functional neuronal differentiation. Electrical stimulation is considered one of the most effective ways to promote neuronal differentiation of NSCs. In addition to surgically implanted electrodes, traditional electrical stimulation includes wires connected to the external power supply, and an additional surgery is required to remove the electrodes or wires following stimulation, which may cause secondary injuries and infections. Herein, a novel method is reported for generation of wireless electrical signals on an Au nanostrip array by leveraging the effect of electromagnetic induction under a rotating magnetic field. The intensity of the generated electrical signals depends on the rotation speed and magnetic field strength. The Au nanostrip array-mediated electric stimulation promotes NSC differentiation into mature neurons within 5 days, at the mRNA, protein, and function levels. The rate of differentiation is faster by at least 5 days than that in cells without treatment. The Au nanostrip array-based wireless device also accelerates neuronal differentiation of NSCs in vivo. The novel method to accelerate the neuronal differentiation of NSCs has the advantages of wireless, timely, localized and precise controllability, and noninvasive power supplementation.
Collapse
|
139
|
Tan Y, Wang K, Kong Y. Circular RNA ZFR promotes cell cycle arrest and apoptosis of colorectal cancer cells via the miR-147a/CACUL1 axis. J Gastrointest Oncol 2022; 13:1793-1804. [PMID: 36092343 PMCID: PMC9459182 DOI: 10.21037/jgo-22-672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background Colorectal cancer (CC) is one of the most prevalent malignancies worldwide. Nonetheless, its pathogenicity and molecular mechanisms have not been completely elucidated yet. The potential clinical value of circular RNAs (circRNAs) in tumor diagnosis, treatment, and prognosis has received considerable attention. Methods Here, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) examined the levels of circular ZFR (circZFR) in CC cells. The expression of circZFR was knocked down in CC cells and cell viability was detected using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cell cycle progression was assessed by flow cytometry and the expression levels of cyclin-associated proteins were detected by western blot analysis. The transferase dUTP nick end labeling (TUNEL) assay was used to detect apoptosis and western blot analysis was used to evaluate the expression levels of apoptosis-associated proteins. Subsequently, the interactions between circZFR and microRNA (miR)-147a and between miR-147a and CDK2 associated cullin domain 1 (CACUL1) were predicted by the Encyclopedia of RNA Interactomes database and verified by luciferase reporter assays. Finally, plasmid transfection, CCK-8, and flow cytometry assays were used to explore the associated mechanism of action. Results CircZFR was highly expressed in CC cell lines. Interference with its expression inhibited proliferation and induced G1/S cell cycle arrest and apoptosis in CC cells. The expression levels of miR-147a and CACUL1 were decreased and increased, respectively, in CC cells. These data demonstrated that circZFR could target miR-147a and CACUL1 to regulate the cell cycle and apoptosis of CC cells and, ultimately, promote the progression of CC. Conclusions Knockdown of the expression of circZFR upregulated miR-147a expression and reduced CACUL1 expression levels, thereby inhibiting the proliferation of CC cells and inducing cell cycle arrest and apoptosis.
Collapse
|
140
|
Zou Y, Li J, Fan Y, Zhang C, Kong Y. Functional near-infrared spectroscopy during motor imagery and motor execution in healthy adults. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:920-927. [PMID: 36039589 PMCID: PMC10930295 DOI: 10.11817/j.issn.1672-7347.2022.210689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Studies on the influence of motor imagery (MI) on brain structure and function are limited to traditional imaging techniques and the mechanism for MI therapy is not clear. By observing the brain activation mode during MI and motor execution (ME) in healthy adults, this study aims to use near-infrared brain imaging technology to provide theoretical basis for the treatment of MI. METHODS A total of 30 healthy adults recruited to the public from June 2021 to August 2021. The MI and ME of the right knee movement served as the task mode. Block design was repeated 5 times alternately in a 20 s task period and a 30 s resting period. The activation patterns of brain regions were compared between the 2 tasks, and the regression coefficient was calculated to reflect the activation intensity of each brain region by Nirspark and SPSS 23.0 softwares. RESULTS Lane 2, 3, 4, 5, 7, 9, 19, 20, 21, 24, 25, 26, 27, 32, 33, and 34 were significantly activated during the ME task (P<0.05, corrected by FDR) and lane 2, 5, 9, 16, 27, 29, 33, 34, and 35 were significantly activated during the MI task (P<0.05, corrected by FDR). According to the channel brain region registration information, the brain region activation pattern was similar during both MI and ME tasks in healthy adults, including left primary motor cortex (LM1), left primary sensory cortex (LS1), prefrontal pole, Broca area, and right supramarginal gyrus. Both LM1 and left pre-motor cortex (LPMC) were activated during MI in healthy adults, whereas dorsolateral prefrontal cortex (DLPFC) and only LM1 of the motor region were activated during ME. Compared to MI, the activation intensity of left sensory and left motor cortex was significantly enhanced in ME, and that of left and right prefrontal cortex especially left and right pars triangularis Broca's area (P<0.001, corrected by FDR) were significantly enhanced. CONCLUSIONS The rationality of MI therapy is proved by functional near-infrared spectroscopy. The involvement of DLPFC in motor decision-making may regulate the two-way feedback of premoter cortex-M1 during ME; and Broca area, closely related to the motor program understanding, participates in MI and ME.
Collapse
|
141
|
Tong T, Fu J, Kong Y. Acute intestinal obstruction caused by paraduodenal hernia. ANZ J Surg 2022; 92:2713-2715. [PMID: 35866494 DOI: 10.1111/ans.17938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
|
142
|
Liao Z, Kong Y, Zeng L, Wan Q, Hu J, Cai Y. Effects of high-fat diet on thyroid autoimmunity in the female rat. BMC Endocr Disord 2022; 22:179. [PMID: 35840950 PMCID: PMC9287994 DOI: 10.1186/s12902-022-01093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While contributions of dyslipidemia to autoimmune diseases have been described, its impact on thyroid autoimmunity (TA) is less clear. Programmed cell death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint is crucial in preventing autoimmune attack while its blockade exacerbates TA. We thus unveiled the effect of high-fat diet (HFD) on TA, focusing on the contribution of PD-1/PD-L1. METHODS Female Sprague Dawley (SD) rats were randomly fed with a regular diet or HFD (60% calories from fat) for 24 weeks. Then, thyroid ultrasonography was performed and samples were collected for lipid and thyroid-related parameter measure. RESULTS HFD rats exhibited hyperlipemia and abnormal biosynthesis of the unsaturated fatty acid in serum detected by lipidomics. These rats displayed a relatively lower echogenicity and increased inflammatory infiltration in thyroid accompanied by rising serum thyroid autoantibody levels and hypothyroidism, mimicking human Hashimoto's thyroiditis. These alterations were concurrent with decreased mRNA and immunostaining of intrathyroidal PD-1 and also serum PD-1 levels but not the PD-L1 expression, suggesting a role of a PD-1 pathway. Meanwhile, the infiltration of B and T cell, a key cellular event inhibited by the PD-1 signals, was enhanced in the thyroid of HFD rats, along with thyroid fibrosis and apoptosis. CONCLUSIONS Our data suggest that HFD triggers TA through a mechanism possibly involving downregulation of PD-1-related immunosuppression, providing a novel insight into the link between dyslipidemia and autoimmune toxicities.
Collapse
|
143
|
Liu Z, Kong Y, Dang Q, Weng S, Zheng Y, Ren Y, Lv J, Li N, Han Y, Han X. Liquid Biopsy in Pre-Metastatic Niche: From Molecular Mechanism to Clinical Application. Front Immunol 2022; 13:958360. [PMID: 35911705 PMCID: PMC9334814 DOI: 10.3389/fimmu.2022.958360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic dissemination represents a hallmark of cancer that is responsible for the high mortality rate. Recently, emerging evidence demonstrates a time-series event—pre-metastatic niche (PMN) has a profound impact on cancer metastasis. Exosomes, cell-free DNA (cfDNA), circulating tumor cells (CTC), and tumor microenvironment components, as critical components in PMN establishment, could be monitored by liquid biopsy. Intensive studies based on the molecular profile of liquid biopsy have made it a viable alternative to tissue biopsy. Meanwhile, the complex molecular mechanism and intercellular interaction are great challenges for applying liquid biopsy in clinical practice. This article reviews the cellular and molecular components involved in the establishment of the PMN and the promotion of metastasis, as well as the mechanisms of their interactions. Better knowledge of the characteristics of the PMN may facilitate the application of liquid biopsy for clinical diagnosis, prognosis, and treatment.
Collapse
|
144
|
Tan S, Kong Y, Xian Y, Gao P, Xu Y, Wei C, Lin P, Ye W, Li Z, Zhu X. The Mechanisms of Ferroptosis and the Applications in Tumor Treatment: Enemies or Friends? Front Mol Biosci 2022; 9:938677. [PMID: 35911967 PMCID: PMC9334798 DOI: 10.3389/fmolb.2022.938677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis, as a newly discovered non-apoptotic cell death mode, is beginning to be explored in different cancer. The particularity of ferroptosis lies in the accumulation of iron dependence and lipid peroxides, and it is different from the classical cell death modes such as apoptosis and necrosis in terms of action mode, biochemical characteristics, and genetics. The mechanism of ferroptosis can be divided into many different pathways, so it is particularly important to identify the key sites of ferroptosis in the disease. Herein, based on ferroptosis, we analyze the main pathways in detail. More importantly, ferroptosis is linked to the development of different systems of the tumor, providing personalized plans for the examination, treatment, and prognosis of cancer patients. Although some mechanisms and side effects of ferroptosis still need to be studied, it is still a promising method for cancer treatment.
Collapse
|
145
|
Lian B, Si L, Chi ZH, Sheng XN, Kong Y, Wang X, Tian H, Li K, Mao LL, Bai X, Tang BX, Yan XQ, Li SM, Zhou L, Dai J, Tang XW, Ran FW, Yao S, Guo J, Cui CL. Toripalimab (anti-PD-1) versus High-Dose Interferon-α2b as Adjuvant Therapy in Resected Mucosal Melanoma: A Phase II Randomized Trial. Ann Oncol 2022; 33:1061-1070. [PMID: 35842199 DOI: 10.1016/j.annonc.2022.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND No standard of care for mucosal melanoma (MM) in the adjuvant setting has been established. Meanwhile, relapse-free survival (RFS) is only about five months after surgery alone. This phase II trial aimed to compare toripalimab vs. high-dose interferon-α2b (HDI) as an adjuvant therapy for resected MM. PATIENTS AND METHODS From July 2017 to May 2019, 145 patients with resected MM were randomized (1:1) to receive HDI (N = 72) or toripalimab (N = 73) for one year until disease relapse/distant metastasis, unacceptable toxicity, or withdrawal of consent. The primary endpoint was RFS. The secondary endpoints included distant metastasis-free survival (DMFS), overall survival (OS), and safety. RESULTS After a median follow-up of 26.3 months, the numbers of RFS, OS, and DMFS events were 51 vs. 46, 33 vs. 29, and 49 vs. 44 in the toripalimab arm and the HDI arm, respectively. The median RFS were 13.6 (95%CI: 8.31-19.02) months and 13.9 (95%CI: 8.28-19.61) months in the toripalimab arm and HDI arm, respectively. The DMFS was not significantly different between the two arms (HR: 1.00, 95%CI: 0.65-1.54). The median OS was 35.1 months (95%CI: 27.93-NR) in the toripalimab arm, with no significant difference in all-cause death (HR: 1.11, 95% CI: 0.66-1.84) for the two arms. The median sums of the patients' actual infusion doses were 3672 mg and 1054.5 MIU in the toripalimab arm and HDI arm, respectively. The incidence of treatment-emergent adverse events with a grade ≥ 3 was much higher in the HDI arm than in the toripalimab arm (87.5% vs. 27.4%). CONCLUSION Toripalimab showed a similar RFS and a more favorable safety profile than HDI, both better than historical data, suggesting that toripalimab might be the better treatment option. However, additional translational studies and better treatment regimens are still warranted to improve the clinical outcome of MM.
Collapse
|
146
|
Kong Y, Xu XC, Hong L. Arteriovenous thrombotic events in a patient with advanced lung cancer following bevacizumab plus chemotherapy: A case report. World J Clin Cases 2022; 10:6507-6513. [PMID: 35979297 PMCID: PMC9294919 DOI: 10.12998/wjcc.v10.i19.6507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/15/2021] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In driver gene-negative non-small cell lung cancer patients who relapse following radical resection, combination chemotherapy using bevacizumab and platinum-based dual drugs is known to increase both progression-free and overall survival. Treatment initially includes bevacizumab, and if patients are able to tolerate it, bevacizumab can continue to be utilized until disease progression. Bevacizumab is a recombinant humanized monoclonal neutralizing antibody that acts against vascular endothelial growth factor (VEGF). Various anti-VEGF monoclonal antibodies, such as bevacizumab, can increase the risk of arterial thromboembolism. Current data indicate that VEGF-targeted treatment does not significantly increase the risk of venous thromboembolism events, except for bevacizumab.
CASE SUMMARY A 55-year-old man underwent radical resection for cancer of the right lung. Six months following surgery, multiple metastases were observed in his left lung. Subsequently, six cycles of bevacizumab combined with pemetrexed/carboplatin chemotherapy was given. Efficacy evaluation continued to be partial relief according to RECIST 1.1 standards, and no noticeable adverse reactions were noted. After three cycles of maintenance therapy using a combination of bevacizumab and pemetrexed, the patient developed dizziness and dyspnea. The patient was diagnosed with acute cerebral infarction and pulmonary embolism following head magnetic resonance imaging, computed tomography (CT) angiography, and chest enhanced CT. Although the patient received low-molecular-weight heparin anticoagulation and other treatment, the patient eventually died of respiratory failure 1 mo later. This case report may offer some insight into fatal arteriovenous embolism, which has not been previously reported.
CONCLUSION Bevacizumab combined with chemotherapy may also increase the risk of arteriovenous thromboembolism. Accordingly, patients who receive angiogenesis inhibitor therapy should be carefully selected. Furthermore, close monitoring and timely intervention are necessary in order to reduce the risk of such toxicities.
Collapse
|
147
|
Wan N, Wang N, Yu S, Zhang H, Tang S, Wang D, Lu W, Li H, Delafield DG, Kong Y, Wang X, Shao C, Lv L, Wang G, Tan R, Wang N, Hao H, Ye H. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat Methods 2022; 19:854-864. [PMID: 35761067 DOI: 10.1038/s41592-022-01523-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/13/2022] [Indexed: 12/18/2022]
Abstract
Lactylation was initially discovered on human histones. Given its nascence, its occurrence on nonhistone proteins and downstream functional consequences remain elusive. Here we report a cyclic immonium ion of lactyllysine formed during tandem mass spectrometry that enables confident protein lactylation assignment. We validated the sensitivity and specificity of this ion for lactylation through affinity-enriched lactylproteome analysis and large-scale informatic assessment of nonlactylated spectral libraries. With this diagnostic ion-based strategy, we confidently determined new lactylation, unveiling a wide landscape beyond histones from not only the enriched lactylproteome but also existing unenriched human proteome resources. Specifically, by mining the public human Meltome Atlas, we found that lactylation is common on glycolytic enzymes and conserved on ALDOA. We also discovered prevalent lactylation on DHRS7 in the draft of the human tissue proteome. We partially demonstrated the functional importance of lactylation: site-specific engineering of lactylation into ALDOA caused enzyme inhibition, suggesting a lactylation-dependent feedback loop in glycolysis.
Collapse
|
148
|
Deng S, Sang B, Li B, Lu H, Zhang L, Tian G, Hao T, Zhang Y, Shi L, Sun K, Ba T, Li F, Kong Y, Qin M, Zhang J, Zhao X, Meng Z. The efficacy and safety of acupuncture combined with language training for motor aphasia after stroke: study protocol for a multicenter randomized sham-controlled trial. Trials 2022; 23:540. [PMID: 35773693 PMCID: PMC9245218 DOI: 10.1186/s13063-022-06280-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Motor aphasia after stroke is a common and intractable complication of stroke. Acupuncture and language training may be an alternative and effective approach. However, the efficacy of acupuncture and language training for motor aphasia after stroke has not been confirmed. The main objectives of this trial are to evaluate the effectiveness and safety of acupuncture and low-intensity, low-dose language training in treating ischemic motor aphasia after stroke from 15 to 90 days. METHODS This is a multicenter randomized sham-controlled clinical trial. We will allocate 252 subjects aged between 45 and 75 years diagnosed with motor aphasia after stroke with an onset time ranging from 15 to 90 days into two groups randomly in a 1:1 ratio. Patients in the experimental group will be treated with "Xing-Nao Kai-Qiao" acupuncture therapy plus language training, and those in the control group will be treated with sham-acupoint (1 cun next to the acupoints) acupuncture therapy plus language training. All the patients will be given acupuncture and language training for 6 weeks, with a follow-up evaluation 6 weeks after the end of the treatment and 6 months after the onset time. The patients will mainly be evaluated using the Western Aphasia Battery and Chinese Functional Communication Profile, and the incidence of treatment-related adverse events at the 2nd, 4th, and 6th weeks of treatment will be recorded. The baseline characteristics of the patients will be summarized by group, the chi-squared test will be used to compare categorical variables, and repeated measures of analysis of variance or a linear mixed model will be applied to analyze the changes measured at different time points. DISCUSSION The present study is designed to investigate the effectiveness and safety of traditional acupuncture therapy and language training in ischemic motor aphasia after stroke and explore the correlation between the treatment time and clinical effect of acupuncture. We hope our results will help doctors understand and utilize acupuncture combined with language training. TRIAL REGISTRATION ChiCTR ChiCTR1900026740 . Registered on 20 October 2019.
Collapse
|
149
|
Xue Y, Yang D, Vogel P, Stabenow J, Zalduondo L, Kong Y, Ravi Y, Sai-Sudhakar CB, Parvathareddy J, Hayes E, Taylor S, Fitzpatrick E, Jonsson CB. Cardiopulmonary Injury in the Syrian Hamster Model of COVID-19. Viruses 2022; 14:v14071403. [PMID: 35891384 PMCID: PMC9316644 DOI: 10.3390/v14071403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The Syrian hamster has proved useful in the evaluation of therapeutics and vaccines for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). To advance the model for preclinical studies, we conducted serial sacrifice of lungs, large pulmonary vessels, and hearts from male and female Syrian hamsters for days 1–4, and 8 post-infection (dpi) following infection with a high dose of SARS-CoV-2. Evaluation of microscopic lung histopathology scores suggests 4 and 8 dpi as prime indicators in the evaluation of moderate pathology with bronchial hyperplasia, alveolar involvement and bronchiolization being key assessments of lung disease and recovery, respectively. In addition, neutrophil levels, red blood cell count and hematocrit showed significant increases during early infection. We present histological evidence of severe damage to the pulmonary vasculature with extensive leukocyte transmigration and the loss of endothelial cells and tunica media. Our evidence of endothelial and inflammatory cell death in the pulmonary vessels suggests endothelialitis secondary to SARS-CoV-2 epithelial cell infection as a possible determinant of the pathological findings along with the host inflammatory response. Lastly, pathological examination of the heart revealed evidence for intracardiac platelet/fibrin aggregates in male and female hamsters on 8 dpi, which might be indicative of a hypercoagulative state in these animals.
Collapse
|
150
|
Lu S, Xie J, Wei X, Kong Y, Chen B, Chen J, Zhang L, Yang M, Xue S, Shi Y, Liu S, Xu T, Dong R, Chen X, Li Y, Wang H. Machine Learning-Based Prediction of the Outcomes of Cochlear Implantation in Patients With Cochlear Nerve Deficiency and Normal Cochlea: A 2-Year Follow-Up of 70 Children. Front Neurosci 2022; 16:895560. [PMID: 35812216 PMCID: PMC9260115 DOI: 10.3389/fnins.2022.895560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cochlear nerve deficiency (CND) is often associated with variable outcomes of cochlear implantation (CI). We assessed previous investigations aiming to identify the main factors that determine CI outcomes, which would enable us to develop predictive models. Seventy patients with CND and normal cochlea who underwent CI surgery were retrospectively examined. First, using a data-driven approach, we collected demographic information, radiographic measurements, audiological findings, and audition and speech assessments. Next, CI outcomes were evaluated based on the scores obtained after 2 years of CI from the Categories of Auditory Performance index, Speech Intelligibility Rating, Infant/Toddler Meaningful Auditory Integration Scale or Meaningful Auditory Integration Scale, and Meaningful Use of Speech Scale. Then, we measured and averaged the audiological and radiographic characteristics of the patients to form feature vectors, adopting a multivariate feature selection method, called stability selection, to select the features that were consistent within a certain range of model parameters. Stability selection analysis identified two out of six characteristics, namely the vestibulocochlear nerve (VCN) area and the number of nerve bundles, which played an important role in predicting the hearing and speech rehabilitation results of CND patients. Finally, we used a parameter-optimized support vector machine (SVM) as a classifier to study the postoperative hearing and speech rehabilitation of the patients. For hearing rehabilitation, the accuracy rate was 71% for both the SVM classification and the area under the curve (AUC), whereas for speech rehabilitation, the accuracy rate for SVM classification and AUC was 93% and 94%, respectively. Our results identified that a greater number of nerve bundles and a larger VCN area were associated with better CI outcomes. The number of nerve bundles and VCN area can predict CI outcomes in patients with CND. These findings can help surgeons in selecting the side for CI and provide reasonable expectations for the outcomes of CI surgery.
Collapse
|