126
|
Xia Y, Wang Q, He XD, Chen Y, JiGe MT, Zi XD. Cloning and expression analysis of the follicle-stimulating hormone receptor (FSHR) gene in the reproductive axis of female yaks (Bos grunniens). Domest Anim Endocrinol 2020; 70:106383. [PMID: 31479928 DOI: 10.1016/j.domaniend.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Follicle-stimulating hormone receptor (FSHR) plays a central role in promoting follicle maturation through the follicle-stimulating hormone (FSH)-mediated cAMP pathway in animals. The objectives of the present study were to clone the FSHR gene of yaks (Bos grunniens) and compare differences in FSHR mRNA expression in the reproductive axis between yaks and cattle. Hypothalamus, anterior pituitary, oviduct, ovary, and uterus tissue samples were collected from adult female yaks (n = 5) and cattle (n = 5) during the follicular phase. Using reverse transcriptase-polymerase chain reaction (RT-PCR), we found that the FSHR coding region of the yak is 2088 bp and encodes 695 amino acids. Its amino acid sequence showed 99.38%-72.22% similarity to the homologous genes of cattle, goats, sheep, cats, donkeys, horses, humans, chickens, monkeys, mice, rats, and wild boar. Real-time PCR analysis revealed that the FSHR gene was expressed in all tissues examined. Expression of the FSHR gene in the yak was higher in the uterus than other tissues (P < 0.05) but, in cattle, was higher in the ovary than other tissues (P < 0.05). The FSHR gene expression level in the cattle ovary was significantly higher than that in the yak ovary (P < 0.01). These results indicate that the FSHR gene is relatively conserved in the course of animal evolution. The variation in sequence and expression level of FSHR between the two species might be associated with the difference in their reproduction.
Collapse
|
127
|
Ma B, He L, Xia Y, Chi L, Piao Z, Sun X, Dai J, Yang C, Shen F. The Value of Serum Amyloid A on Early Diagnosing and Prognosis for Perioperative Patients with Extracorporeal Circulation. Indian J Pharm Sci 2020. [DOI: 10.36468/pharmaceutical-sciences.spl.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
128
|
Liu H, Zhao Y, Xia Y, Wang Z, Chen Y. Detección de osteoma osteoide multicéntrico en hueso parietal y costilla mediante PET/TC con 18F-NaF. Rev Esp Med Nucl Imagen Mol 2020; 39:47-48. [DOI: 10.1016/j.remn.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 11/25/2022]
|
129
|
Liu Y, Xia Y, Chen Y, Cai L. FDG PET/TC vs. NaF PET/TC en policondritis recidivante. Rev Esp Med Nucl Imagen Mol 2020; 39:35-36. [DOI: 10.1016/j.remn.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 10/25/2022]
|
130
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of the Semileptonic D^{+} Decay into the K[over ¯]_{1}(1270)^{0} Axial-Vector Meson. PHYSICAL REVIEW LETTERS 2019; 123:231801. [PMID: 31868427 DOI: 10.1103/physrevlett.123.231801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Indexed: 06/10/2023]
Abstract
By analyzing a 2.93 fb^{-1} data sample of e^{+}e^{-} collisions, recorded at a center-of-mass energy of 3.773 GeV with the BESIII detector operated at the BEPCII collider, we report the first observation of the semileptonic D^{+} transition into the axial-vector meson D^{+}→K[over ¯]_{1}(1270)^{0}e^{+}ν_{e} with a statistical significance greater than 10σ. Its decay branching fraction is determined to be B[D^{+}→K[over ¯]_{1}(1270)^{0}e^{+}ν_{e}]=(2.30±0.26_{-0.21}^{+0.18}±0.25)×10^{-3}, where the first and second uncertainties are statistical and systematic, respectively, and the third originates from the input branching fraction of K[over ¯]_{1}(1270)^{0}→K^{-}π^{+}π^{0}.
Collapse
|
131
|
Bravo-Anaya L, Garbay B, Nando-Rodríguez J, Carvajal Ramos F, Ibarboure E, Bathany K, Xia Y, Rosselgong J, Joucla G, Garanger E, Lecommandoux S. Nucleic acids complexation with cationic elastin-like polypeptides: Stoichiometry and stability of nano-assemblies. J Colloid Interface Sci 2019; 557:777-792. [DOI: 10.1016/j.jcis.2019.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
|
132
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales CM, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of the Leptonic Decay D^{+}→τ^{+}ν_{τ}. PHYSICAL REVIEW LETTERS 2019; 123:211802. [PMID: 31809130 DOI: 10.1103/physrevlett.123.211802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 06/10/2023]
Abstract
We report the first observation of D^{+}→τ^{+}ν_{τ} with a significance of 5.1σ. We measure B(D^{+}→τ^{+}ν_{τ})=(1.20±0.24_{stat}±0.12_{syst})×10^{-3}. Taking the world average B(D^{+}→μ^{+}ν_{μ})=(3.74±0.17)×10^{-4}, we obtain R_{τ/μ}=Γ(D^{+}→τ^{+}ν_{τ})/Γ(D^{+}→μ^{+}ν_{μ})=3.21±0.64_{stat}±0.43_{syst}., which is consistent with the standard model expectation of lepton flavor universality. Using external inputs, our results give values for the D^{+} decay constant f_{D^{+}} and the Cabibbo-Kobayashi-Maskawa matrix element |V_{cd}| that are consistent with, but less precise than, other determinations.
Collapse
|
133
|
Liu DX, Chen XJ, Zhang J, Chen XZ, Luo G, Liu YJ, Xia Y, Tian RB. [Mid-term outcomes of coronary artery bypass surgery with left radial artery bypassed to right main coronary artery of severe stenosis]. ZHONGHUA YI XUE ZA ZHI 2019; 99:3313-3317. [PMID: 31715667 DOI: 10.3760/cma.j.issn.0376-2491.2019.42.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To evaluate the mid-term outcomes of coronary artery bypass grafting (CABG) with left radial artery (RA) graft bypassed to right main coronary artery (RCA) of severe stenosis. Methods: Between September 2014 and April 2019, a total of consecutive 47 patients who had severe stenosis (≥90%) of RCA underwent total arterial revascularization, with left RA bypassed to RCA. There were 31 males and 16 females, with a mean age of (56.5±9.7) years old. The perioperative outcomes were observed and mid-term results were followed up. Results: A total of 46 left internal mammary artery (LIMA) grafts, 47 left radial artery (LRA), and 40 right RA grafts (RRA) were harvested with pedicles. LIMA was bypassed to LAD in 43 patients, RRA was to diagonal branches, ramus or oblique marginal in 37 cases, and LRA was to RCA. All grafts (except 3 composite Y or T grafts) were single. Mean graft number was 2-4 (2.7±0.9). There was one death due to cardiac tamponade. Three patients had postoperative atrial fibrillation, 1 had a forearm hematoma, 1 had acute renal insufficiency, and 2 had acute myocardial infarction. The mean tracheal intubation duration was 3.5-20.3 (8.3±4.7) hours, and the mean hospital stay was 6-13 (7.1±2.9) days. The average follow-up was 3-47 (23.3±7.5) months, with a follow-up rate of 86.96% (40/46). There were no major cardiovascular events during the follow-up. Three month after surgery, the mean left ventricular ejection fraction was significantly improved than that of pre-operation (60.0%±4.0% vs 42.4%±7.5%, P=0.003). Computed tomography angiography (CTA) examination showed that 58.7% (27/46) of patients had patent LRA after a mean follow-up duration of (19.5±7.3) months. Conclusion: CABG with LRA bypassed to RCA of severe stenosis proves to be safe and effective, with good mid-term outcomes.
Collapse
|
134
|
Fu Y, He H, Liu R, Zhu L, Xia Y, Qiu J. Preparation and performance of a BTDA-modified polyurea microcapsule for encapsulating avermectin. Colloids Surf B Biointerfaces 2019; 183:110400. [DOI: 10.1016/j.colsurfb.2019.110400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022]
|
135
|
Wang Z, Xia Y, Zhao Y, Liu H, Chen Y. Fibroma desmoide de la clavícula detectado mediante PET/TC con 18F-NaF. Rev Esp Med Nucl Imagen Mol 2019; 38:391-392. [DOI: 10.1016/j.remn.2019.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 11/16/2022]
|
136
|
Xia Y, Jiang Y. [Thoughts and ideas on the establishment for simultaneous prevention and treatment of brain and heart diseases]. ZHONGHUA YI XUE ZA ZHI 2019; 99:3043-3046. [PMID: 31648446 DOI: 10.3760/cma.j.issn.0376-2491.2019.39.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
137
|
Xia Y, Zhang J, Zhao YH, Liu HP, Wang Z, Chen Y. Detection of potential lesions of Schwannomatosis visualized on 18F-FDG PET/CT. Rev Esp Med Nucl Imagen Mol 2019; 39:49-50. [PMID: 31585798 DOI: 10.1016/j.remn.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/19/2019] [Accepted: 02/05/2019] [Indexed: 11/27/2022]
|
138
|
Ji J, Shen L, Li Z, Gao X, Gong J, Liu D, Wu X, Xu S, Jin X, Li B, Wang M, Xia Y. A phase Ib/II study of AK104, a PD-1/CTLA-4 bispecific antibody, combined with mXELOX as first-line therapy for advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma. Ann Oncol 2019. [DOI: 10.1093/annonc/mdz247.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
139
|
Li KH, Sang T, Chan CP, Gong M, Li G, Liu T, Wu WKK, Chan M, Tse G, Xia Y, Ho J. P2838The impact of anesthesia depth on catheter ablation for atrial fibrillation: a systematic review and meta-analysis of observational studies. Eur Heart J 2019. [DOI: 10.1093/eurheartj/ehz748.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Objectives
This meta-analysis and systematic review seeks to compare both characteristic parameters and procedural outcomes of catheter ablation in patients under GA/deep sedation and mild/moderate sedation.
Background
Catheter ablation has become a widely applied intervention for treating symptomatic AF and arrhythmias that are refractory to medical therapy. It can be conducted through from mild sedation to general anesthesia.
Methods
PubMed and Embase were searched up to July 2018 for randomized controlled trials, cohort and observational studies that assessed the outcomes of catheter ablation under GA/deep sedation or mild/moderate sedation. 12 studies were included in this meta-analysis after screening with the inclusion and exclusion criteria. Heterogeneity between studies and publication bias was evaluated by I2 index and Egger's regression, respectively.
Results
Our meta-analysis found catheter AF ablation with GA/deep sedation to be associated with reduced risk of recurrence (RR: 0.79, 95% CI: 0.56 to 1.13, P=0.20) and complications (RR: 0.95, 95% CI: 0.64 to 1.42, P=0.82), though statistically insignificant. In terms of procedural parameters, there was non-significant difference between the two groups when both procedural time (SMD: −0.13, 95% CI: −0.90 to 0.63, P=0.74) and fluoroscopy time (SMD: −0.41, 95% CI: −1.40 to 0.58, P=0.41) were considered. Multivariate meta-regression demonstrated hypertension as an independent moderating factor for complication risk.
Complications Comparison
Conclusion
Apart from an increased likelihood of procedural success, ablation by GA/deep sedation was found to be non-significantly different from the mild/moderate sedation approach in both procedural parameters and outcome measures.
Collapse
|
140
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khan T, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li XQ, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Richter M, Ripka M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HH, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Complete Measurement of the Λ Electromagnetic Form Factors. PHYSICAL REVIEW LETTERS 2019; 123:122003. [PMID: 31633986 DOI: 10.1103/physrevlett.123.122003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/26/2019] [Indexed: 06/10/2023]
Abstract
The exclusive process e^{+}e^{-}→ΛΛ[over ¯], with Λ→pπ^{-} and Λ[over ¯]→p[over ¯]π^{+}, has been studied at sqrt[s]=2.396 GeV for measurement of the timelike Λ electric and magnetic form factors, G_{E} and G_{M}. A data sample, corresponding to an integrated luminosity of 66.9 pb^{-1}, was collected with the BESIII detector for this purpose. A multidimensional analysis with a complete decomposition of the spin structure of the reaction enables a determination of the modulus of the ratio R=|G_{E}/G_{M}| and, for the first time for any baryon, the relative phase ΔΦ=Φ_{E}-Φ_{M}. The resulting values are R=0.96±0.14(stat)±0.02(syst) and ΔΦ=37°±12°(stat)±6°(syst), respectively. These are obtained using the recently established and most precise value of the asymmetry parameter α_{Λ}=0.750±0.010 measured by BESIII. In addition, the cross section is measured with unprecedented precision to be σ=118.7±5.3(stat)±5.1(syst) pb, which corresponds to an effective form factor of |G|=0.123±0.003(stat)±0.003(syst). The contribution from two-photon exchange is found to be negligible. Our result enables the first complete determination of baryon timelike electromagnetic form factors.
Collapse
|
141
|
Ablikim M, Achasov MN, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai JZ, Bai Y, Bakina O, Baldini Ferroli R, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Boger E, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chelkov G, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Chu XK, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu MH, Gu YT, Guo AQ, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, He XQ, Heinsius FH, Held T, Heng YK, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang ZL, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khan T, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li J, Li KJ, Li K, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XL, Li XN, Li XQ, Li ZB, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu LD, Liu Q, Liu SB, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma T, Ma XN, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Niu XY, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Pellegrino J, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Richter M, Ripka M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Sarantsev A, Savrié M, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Song JJ, Song XY, Sosio S, Sowa C, Spataro S, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Tsednee B, Uman I, Wang B, Wang D, Wang DY, Wang K, Wang LL, Wang LS, Wang M, Wang M, Wang P, Wang PL, Wang WP, Wang XL, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen SP, Wiedner U, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yu JS, Yuan CZ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhou L, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Amplitude Analysis of D_{s}^{+}→π^{+}π^{0}η and First Observation of the W-Annihilation Dominant Decays D_{s}^{+}→a_{0}(980)^{+}π^{0} and D_{s}^{+}→a_{0}(980)^{0}π^{+}. PHYSICAL REVIEW LETTERS 2019; 123:112001. [PMID: 31573268 DOI: 10.1103/physrevlett.123.112001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/25/2019] [Indexed: 06/10/2023]
Abstract
We present the first amplitude analysis of the decay D_{s}^{+}→π^{+}π^{0}η. We use an e^{+}e^{-} collision data sample corresponding to an integrated luminosity of 3.19 fb^{-1} collected with the BESIII detector at a center-of-mass energy of 4.178 GeV. We observe for the first time the W-annihilation dominant decays D_{s}^{+}→a_{0}(980)^{+}π^{0} and D_{s}^{+}→a_{0}(980)^{0}π^{+}. We measure the absolute branching fraction B(D_{s}^{+}→a_{0}(980)^{+(0)}π^{0^{(}+)},a_{0}(980)^{+(0)}→π^{+(0)}η)=(1.46±0.15_{stat}±0.23_{sys})%, which is larger than the branching fractions of other measured pure W-annihilation decays by at least one order of magnitude. In addition, we measure the branching fraction of D_{s}^{+}→π^{+}π^{0}η with significantly improved precision.
Collapse
|
142
|
Li D, Chen Y, Guo C, Yang Q, Wu S, Xia Y, Zeng J, zhang X, Ke C, Sai K, Wang J, Mou Y, Chen Z. P03.09 Real world management and prognosis of glioma patients:SYSUCC report from China. Neuro Oncol 2019. [DOI: 10.1093/neuonc/noz126.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background: The conventional way of patient treatment should be following guidelines. While in clinical practice, patients received treatments very often away from suggested guideline. In this report, we reviewed glioma patients received real world treatment at Sun Yat-sen University Cancer Center (SYSUCC) and results of this patient series.
Methods: Total of 1215 glioma patients received surgery at SYSUCC from 2000 to 2017 were enclosed for analysis. The pathologic diagnosis of patients has followed WHO classification (initially 2007 standard, than 2016 standard).
Results: A total of 1001 newly diagnosed brain glioma patients were analyzed, including 90 cases WHO grade I, 307 grade II, 239 grade III and 365 grade IV. The median age of onset was 14 (1–75), 35 (2–69), 41 (8–82) and 50 (2–86) years old, respectively, for grade I, II, III and IV glioma patients. Tumor total resection was achieved in 567 patients (57.5%). Among all patients, 331 high-grade gliomas (54.8%) and 159 low-grade glioma (40.1%) received radiotherapy, whereas 285 high-grade gliomas (47.1%) and 80 low-grade tumors (20.2%) received chemotherapy. Among high-grade gliomas, the median OS of glioblastoma, anaplastic astrocytoma and anaplastic oligodendroglial tumors were 17.7 months (15.7–19.7 months), 33.7 months (24.0–43.4 months) and 110.6 months (43.5–177.7 months), respectively, whereas the median OS of low-grade gliomas was not reach. The 5-year survival rate of grade I, II, III and IV gliomas was 94.7%, 73.7%, 45.1% and 18.6%, respectively. Multivariate analysis identified that onset age, Karnofsky performance status, tumor location, preoperative seizure, pathological subtype, resection extent and post-surgical treatment were independent predictors of OS for patients with high-grade gliomas. Patients received post-surgical radiotherapy and (or) chemotherapy had better survival than those without adjuvant treatment (grade III: 53.3 vs. 20.6 months, p =0.012; grade IV: 22.9 vs. 12.3 months, p < 0.001). For low-grade gliomas, patients’ age, Ki-67 index, tumor subtype and resection extent were associated with clinical outcomes.
Conclusions: Glioma patients received treatments do not always following guidelines in clinical practice. Although standard care for patients may beneficial for prognosis, personalized treatment may more acceptable for patients and even resulting better outcome which should keep in mind in routine clinical practice.
Collapse
|
143
|
Zheng S, Zhou S, Wang G, Shan L, Huang Z, Liu S, Chen C, Tao Y, Chang H, Ding S, Liao R, Chen C, Xia Y. Is Hepatitis B Viral Infection A Risk Factor for Epstein-Barr Virus-Associated Nasopharyngeal Carcinoma in the Intensity-Modulated Radiotherapy Era? Int J Radiat Oncol Biol Phys 2019. [DOI: 10.1016/j.ijrobp.2019.06.1582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
144
|
Huang Z, Shan L, Zheng S, Wang G, Ding S, Tao Y, Chen C, Yang X, Liu S, Xia Y. The Prognostic Significance of PD-L1 and PD-1 Expression in Patients with Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2019. [DOI: 10.1016/j.ijrobp.2019.06.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
145
|
Xia Y, Huang Y, Huang YY, Yang J. [X-linked neutropenia caused by gain-of-function mutation in WAS gene: two cases report and literature review]. ZHONGHUA ER KE ZA ZHI = CHINESE JOURNAL OF PEDIATRICS 2019; 57:631-635. [PMID: 31352750 DOI: 10.3760/cma.j.issn.0578-1310.2019.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the clinical and genotypic manifestations of X-linked neutropenia caused by gain-of-function mutation in WAS gene. Methods: The clinical history of two patients with X-linked neutropenia caused by gain-of-function mutation in WAS gene in Shenzhen Children's Hospital were analyzed."X-linked neutropenia" and "WAS mutation" were used as key words to search related literatures published from January 2000 to December 2018 in CNKI,Wanfang, and Pubmed databases. Results: The first case was male,1 year old, admitted for 1 year of neutropenia combined with 5 days of cough and 3 days of fever. Persistent neutropenia (0.1×10(9)-0.3×10(9)/L) was reported before admission and during hospitalization (0.4×10(9)-0.5×10(9)/L). The patient was treated with Ciprofloxacin, cefoperazone sulbactam and Vancomycin,and relieved from fever after 4 weeks of hospitalization,yet the neutropenia (0.1×10(9)-0.6×10(9)/L) continued after discharge. Variant in WAS gene (c.T869C (p.I290T) ) was identified, and the percentage of WAS protein on lymphocyte was 97.7%. The second case was male, 42 days old,admitted for fever and neutropenia (0.5×10(9)/L). Similarly,he relieved from fever after 4 weeks of treatment with amoxicillin sulbactam,vancomysin,meropenem,rifampin and isoniacid,yet was discharged with continued neutropenia. Variant in WAS gene (c.T881C (p.I294T)) was identified and the percentage of WAS protein on lymphocyte was 92%. Published literature reported four variants,including I290T, L270P, S272P and I294T, as the pathogenic mutation of X-linked neutropenia in 18 patients from five families. Neutropenia (0.1×10(9)-1.0×10(9)/L) were reported in 15 patients,while normal neutrophil number was found in the rest. Recurrent infection,mainly pneumonia and otitis media,was the most common clinical manifestation. Conclusions: Neutropenia is the prominent presentation in the patients with X-linked neutropenia caused by gain-of-function mutation in WAS gene, but it unnecessarily correlates with the clinical severity in terms of infection. Gene sequencing should be considered for the male patients with persistent neutropenia.
Collapse
|
146
|
Li YX, Xia Y, Zhang XC, Wang YC, Chen T, Jiang Y. [Role and related mechanisms of microRNA-1 in cardiac development]. ZHONGHUA XIN XUE GUAN BING ZA ZHI 2019; 47:581-584. [PMID: 31366003 DOI: 10.3760/cma.j.issn.0253-3758.2019.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
147
|
Xia Y, Tunis MC, Frenette C, Katz K, Amaratunga K, Rose SR, House A, Quach C. Epidemiology of Clostridioides difficile infection in Canada: A six-year review to support vaccine decision-making. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2019; 45:191-211. [PMID: 31355824 PMCID: PMC6615439 DOI: 10.14745/ccdr.v45i78a04] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Two vaccines against Clostridioides difficile infections (CDI) are currently in phase III trials. To enable decision-making on their use in public health programs, national disease epidemiology is necessary. OBJECTIVES To determine the epidemiology of hospital-acquired CDI (HA-CDI) and community-associated CDI (CA-CDI) in Canada using provincial surveillance data and document discrepancies in CDI-related definitions among provincial surveillance programs. METHODS Publicly-available CDI provincial surveillance data from 2011 to 2016 that distinguished between HA-CDI and CA-CDI were included and the most common surveillance definitions for each province were used. The HA-, CA-CDI incidence rates and CA-CDI proportions (%) were calculated for each province. Both HA- and CA-CDI incidence rates were examined for trends. Types of disparities were summarized and detailed discrepancies were documented. RESULTS Canadian data were analyzed from nine provinces. The HA-CDI rates ranged from 2.1/10,000 to 6.5/10,000 inpatient-days, with a decreasing trend over time. Available data on CA-CDI showed that both rates and proportions have been increasing over time. Discrepancies among provincial surveillance definitions were documented in CDI case classifications, surveillance populations and rate calculations. CONCLUSION In Canada overall, the rate of HA-CDI has been decreasing and the rate of CA-CDI has been increasing, although this calculation was impeded by discrepancies in CDI-related definitions among provincial surveillance programs. Nationally-adopted common definitions for CDI would enable better comparisons of CDI rates between provinces and a calculation of the pan-Canadian burden of illness to support vaccine decision-making.
Collapse
|
148
|
Xia Y, Zhang H. 13C NMR chemical shift prediction of diverse chemical compounds. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:477-490. [PMID: 31155931 DOI: 10.1080/1062936x.2019.1619621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Selection of key descriptors is very important in QSPR analysis. Presence of noise in the subset of descriptors reduces the quality of predictions. A complete set is considered as perfect when it does not include irrelevant or redundant elements. This paper reports complete sets of descriptors used to develop QSPR models for 1786 13C NMR chemical shifts (δC parameters) of carbon atoms in 125 diverse chemical compounds. PBE1PBE/6-311G(2d,2p) and B3LYP/6-31G(d) basis sets were used for quantum chemistry calculations after the molecular structures were optimized with semi-empirical AM1 and B3LYP/6-31G(d). The two complete sets consisting of magnetic shielding elements (σXX, σYY, σZZ) and the chemical shift principal values (σ11, σ22, σ33) were used as the inputs for support vector machine (SVM) models of δC parameters. The four SVM models obtained have the mean root mean square (rms) errors of about 4.5-4.6 ppm. The results suggest that SVM models are accurate and acceptable compared with previous models, although our models are based on a relatively large set of compounds. Our approach is valuable in the selection of important descriptors for QSPR studies of δC parameters.
Collapse
|
149
|
He Y, Cao X, Kong Y, Wang S, Xia Y, Bi R, Liu J. Apoptosis-promoting and migration-suppressing effect of alantolactone on gastric cancer cell lines BGC-823 and SGC-7901 via regulating p38MAPK and NF-κB pathways. Hum Exp Toxicol 2019; 38:1132-1144. [PMID: 31203647 DOI: 10.1177/0960327119855128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gastric cancer is a malignant tumor with high incidence rate and mortality rate. PURPOSE In this study, we investigated the anti-cancer effect of alantolactone, a sesquiterpene lactone, on gastric cancer cell lines BGC-823 and SGC-7901. METHODS BGC-823 and SGC-7901 cells were treated with different concentrations of alantolactone, Hoechst 33258 staining, flow cytometry, wound healing assay, invasion assay, colony forming assay, quantative polymerase chain reaction, and western blot analysis were used to evaluate the anticancer activity of alantolactone to gastric cancer. RESULTS Alantolactone induced apoptosis of gastric cancer cells by regulating the expression of Bax, Bcl-2, and p53, which related to intrinsic apoptotic pathway, and suppressed colony formation, migration, and invasion by mediating the expression of matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9. Cell signaling pathway analysis showed that alantolactone enhanced the phosphorylation of p38 and decreased the translocation of nucleus p65, suggesting that the apoptosis-promoting and migration-suppressing effect of alantolactone might at least partially rely on regulating p38 mitogen-activated protein kinase (p38MAPK) pathway and nuclear factor-κB (NF-κB) pathway. CONCLUSIONS Alantolactone can be used as a potential therapeutic agent for treating gastric cancer.
Collapse
|
150
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Ferroli RB, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen JC, Chen ML, Chen SJ, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Dou ZL, Du SX, Fan JZ, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao XL, Gao Y, Gao Y, Gao YG, Gao Z, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang XT, Huang XZ, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khan T, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li C, Li DM, Li F, Li FY, Li G, Li HB, Li HJ, Li JC, Li JW, Li K, Li LK, Li L, Li PL, Li PR, Li QY, Li WD, Li WG, Li XH, Li XL, Li XN, Li XQ, Li ZB, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Lin CX, Lin DX, Lin YJ, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu KY, Liu K, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales CM, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi M, Qi TY, Qian S, Qiao CF, Qin N, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Ripka M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savri M, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HH, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang RM, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang YF, Wang Z, Wang ZG, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu JS, Yuan CZ, Yuan XQ, Yuan Y, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Study of e^{+}e^{-}→γωJ/ψ and Observation of X(3872)→ωJ/ψ. PHYSICAL REVIEW LETTERS 2019; 122:232002. [PMID: 31298909 DOI: 10.1103/physrevlett.122.232002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Indexed: 06/10/2023]
Abstract
We study the e^{+}e^{-}→γωJ/ψ process using 11.6 fb^{-1} e^{+}e^{-} annihilation data taken at center-of-mass energies from sqrt[s]=4.008 GeV to 4.600 GeV with the BESIII detector at the BEPCII storage ring. The X(3872) resonance is observed for the first time in the ωJ/ψ system with a significance of more than 5σ. The relative decay ratio of X(3872)→ωJ/ψ and π^{+}π^{-}J/ψ is measured to be R=1.6_{-0.3}^{+0.4}±0.2, where the first uncertainty is statistical and the second systematic (the same hereafter). The sqrt[s]-dependent cross section of e^{+}e^{-}→γX(3872) is also measured and investigated, and it can be described by a single Breit-Wigner resonance, referred to as the Y(4200), with a mass of 4200.6_{-13.3}^{+7.9}±3.0 MeV/c^{2} and a width of 115_{-26}^{+38}±12 MeV. In addition, to describe the ωJ/ψ mass distribution above 3.9 GeV/c^{2}, we need at least one additional Breit-Wigner resonance, labeled as X(3915), in the fit. The mass and width of the X(3915) are determined. The resonant parameters of the X(3915) agree with those of the Y(3940) in B→KωJ/ψ and of the X(3915) in γγ→ωJ/ψ observed by the Belle and BABAR experiments within errors.
Collapse
|