126
|
Abstract
The electrosensory lobe (ELL) of mormyrid electric fish is a cerebellum-like brainstem structure that receives the primary afferent fibers from electroreceptors in the skin. The ELL and similar sensory structures in other fish receive extensive input from other central sources in addition to the peripheral input. The responses to some of these central inputs are adaptive and serve to minimize the effects of predictable sensory inputs. Understanding the interaction between peripheral and central inputs to the mormyrid ELL requires knowledge of its functional circuitry, and this paper examines this circuitry in the in vitro slice preparation and describes the axonal and dendritic morphology of major ELL cell types based on intracellular labeling with biocytin. The cells described include medium ganglion cells, large ganglion cells, large fusiform cells, thick-smooth dendrite cells, small fusiform cells, granule cells, and primary afferent fibers. The medium ganglion cells are Purkinje-like interneurons that terminate on the two types of efferent cells, i.e., large ganglion and large fusiform cells, as well as on each other. These medium ganglion cells fall into two morphologically distinct types based on the distributions of basal dendrites and axons. These distributions suggest hypotheses about the basic circuit of the ELL that have important functional consequences, such as enhancement of contrast between "on" elements that are excited by increased afferent activity and "off" elements that are inhibited.
Collapse
|
127
|
Hertwig I, Schneider H. Comparative light and electron microscopic study of the auditory organs of two species of fishes (pisces): Hyphessobrycon simulans (Ostariophysi) and Poecilia reticulata (Acanthopterygii). EUROPEAN JOURNAL OF MORPHOLOGY 1999; 37:17-28. [PMID: 10342429 DOI: 10.1076/ejom.37.1.17.4765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hyphessobrycon simulans has a Weberian apparatus for transmission of sound energy to the auditory organ, whereas Poecilia reticulata does not. The fine structure of the auditory organs is identical in the two species. The better hearing - expressed by large bandwidth and high sensitivity - typical of the Ostariophysi - seems to be based exclusively on the presence of the Weberian apparatus. The sensory epithelium of the saccule and the lagena is made up of hair (sensory) cells and supporting cells. The vertically orientated macula sacculi is divided into a dorsal and a ventral cell area with oppositely arranged hair-cell kinocilia. The sagitta takes up the center of the saccule and shows only three small sites with connections to the otolithic membrane. Remarkably, the dorsal sensory cells are connected to the ventral part of the otolith, but the ventral cells are connected to the dorsal part. The macula of the lagena also comprises a dorsal and a ventral cell area with oppositely arranged hair cells. The sensory cells in all maculae are of type II. They exhibit a striking apical cell protrusion, the cuticular villus. It is partially fused with the kinocilium in the contact zones and joined to the otolithic membrane. The cuticular villus probably stabilizes the long kinocilia.
Collapse
|
128
|
Fabian-Fine R, Höger U, Seyfarth EA, Meinertzhagen IA. Peripheral synapses at identified mechanosensory neurons in spiders: three-dimensional reconstruction and GABA immunocytochemistry. J Neurosci 1999; 19:298-310. [PMID: 9870959 PMCID: PMC6782365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The mechanosensory organs of arachnids receive diverse peripheral inputs. Little is known about the origin, distribution, and function of these chemical synapses, which we examined in lyriform slit sense organ VS-3 of the spider Cupiennius salei. The cuticular slits of this organ are each associated with two large bipolar mechanosensory neurons with different adaptation rates. With intracellular recording, we have now been able to correlate directly the staining intensity of a neuron for acetylcholinesterase with its adaptation rate, thus allowing us simply to stain a neuron to identify its functional type. All rapidly adapting neurons stain more heavily than slowly adapting neurons. Immunostaining of whole-mount preparations reveals GABA-like immunoreactive fibers forming numerous varicosities at the surface of all sensory neurons in VS-3; peripheral GABA-like immunoreactive somata are lacking. Sectioning the leg nerve procures rapid degeneration of most fiber profiles, confirming that the fibers are efferent. Punctate synapsin-like immunoreactivity colocalizes to these varicosities, although some synapsin-like immunoreactive puncta are GABA-immunonegative. Fibers with similar immunoreactivities are also associated with trichobothria, tactile hairs, internal joint receptors, i.e. other types of spider mechanosensory organs. In organ VS-3, immunoreactivity is most dense across the initial axon segment. The exact distribution of peripheral synapses was reconstructed from a 10-microm-long electron micrograph series of the dendritic, somatic, and initial axon regions of acetylcholinesterase-stained VS-3 neurons. These reveal a pattern similar to that of the synapsin-like immunoreactivity. Two different types of synapse were distinguished on the basis of their presynaptic vesicle populations. Many peripheral synapses thus appear to derive from efferent GABA-like immunoreactive fibers and probably provide centrifugal inhibitory control of primary mechanosensory activities.
Collapse
|
129
|
Fishelson L, Baranes A. Morphological and cytological ontogenesis of the ampullae of lorenzini and lateral line canals in the Oman shark, Iago omanensis Norman 1939 (Triakidae), from the Gulf of Aqaba, Red Sea. Anat Rec (Hoboken) 1998; 252:532-45. [PMID: 9845204 DOI: 10.1002/(sici)1097-0185(199812)252:4<532::aid-ar4>3.0.co;2-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Oman shark, Iago omanensis, is a small, placental viviparous species encountered in great numbers in the deeper waters of the Gulf of Aqaba, Red Sea. It reproduces year-round, providing an opportunity to study ontogenesis of organ systems at various stages of development. This study examines the morphological and cytological development of the mechanoreceptive lateral line (LL) system and the electrosensory Ampullae of Lorenzini. Female I. omanensis were collected bimonthly from the Gulf of Aqaba at depths of 300-800 m and sacrificed with an overdose of MS222. Their uteri were dissected and the embryos separated and fixed for light and electron microscopy. A total of 260 embryos of varying dimensions were studied. The first primordia of neuroectodermal LL neuromasts are seen in embryos of 18 mm TL. These then sink into the dermis, ripen, and develop tubuli that join to form the LL canal systems, especially developed on the head. In contrast, the primordia of Ampullae of Lorenzini start out as groups of embryonic cells situated subdermally. In embryos of 24-26 mm TL initially they develop into tubuli. With growth, the ampullar alveoli gradually widen at their ends to form the sensory epithelium. The ampullar tubuli elongate, bringing the alveoli to sites over the rostrum and head, where the ampullar capsules are formed. The presynaptic electrosensory cells are attached to afferent neural extensions forming sensory rami which extend, as in adult sharks, to the dorsal nucleus in the medulla. In preterm juveniles of 150-160 mm TL, the LL system and the Ampullae of Lorenzini are fully developed cytologically. The results of this study support the hypothesis that the LL system and electrosensory Ampullae of Lorenzini develop as separate modalities and that their structural similarity is due to the origin from the embryonic neuroectoderm. The dichotomy of their evolution occurred in very early ancestry as an ecomorphological adaptation to different sensory functions.
Collapse
|
130
|
Jacobsen TL, Brennan K, Arias AM, Muskavitch MA. Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila. Development 1998; 125:4531-40. [PMID: 9778511 DOI: 10.1242/dev.125.22.4531] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We find that ectopic expression of Delta or Serrate in neurons within developing bristle organs is capable of non-autonomously inducing the transformation of the pre-trichogen cell into a tormogen cell in a wide variety of developmental contexts. The frequencies at which Delta can induce these transformations are dependent on the level of ectopic Delta expression and the levels of endogenous Notch signalling pathway components. The pre-trichogen cell becomes more responsive to Delta- or Serrate-mediated transformation when the level of endogenous Delta is reduced and less responsive when the dosage of endogenous Delta is increased, supporting the hypothesis that Delta interferes autonomously with the ability of a cell to receive either signal. We also find that a dominant-negative form of Notch, ECN, is capable of autonomously interfering with the ability of a cell to generate the Delta signal. When the region of Notch that mediates trans-interactions between Delta and the Notch extracellular domain is removed from ECN, the ability of Delta to signal is restored. Our findings imply that cell-autonomous interactions between Delta and Notch can affect the ability of a cell to generate and to transduce a Delta-mediated signal. Finally, we present evidence that the Fringe protein can interfere with Delta- and Serrate-mediated signalling within developing bristle organs, in contrast to previous reports of the converse effects of Fringe on Delta signalling in the developing wing.
Collapse
|
131
|
|
132
|
Sandeman R, Clarke D, Sandeman D, Manly M. Growth-related and antennular amputation-induced changes in the olfactory centers of crayfish brain. J Neurosci 1998; 18:6195-206. [PMID: 9698313 PMCID: PMC6793174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Freshwater crayfish increase in size throughout their lives, and this growth is accompanied by an increase in the length of the appendages and number of mechanoreceptive and chemoreceptive sensilla on them. We find that in the Australian freshwater crayfish Cherax destructor, neuropil volumes of the olfactory centers increase linearly with body size over the entire size range of animals found in their natural habitat. The number of cell somata of two groups of interneurons associated with the olfactory centers (projection neurons and small local neurons) also increases linearly with the size of the animals. In contrast, axon counts of interneurons that represent a nonolfactory input to the olfactory centers show that these reach a total number in the very early adult stages that then remains constant regardless of the size of the animal. Only the axon diameter of these interneurons increases linearly with body size. Amputation of the antennule and olfactory sensilla reduces the number of projection and local interneurons on the amputated side. No change in the size of the olfactory centers occurs on the unamputated side. Amputation of the olfactory receptor neurons in crayfish therefore leads not only to a degeneration of the receptor cell endings in the olfactory lobe but also to a trans-synaptic response in which the number of higher order neurons decreases. Reconstitution of the antennule and olfactory receptor neurons in small adult crayfish is accompanied by the reestablishment of the normal number of interneurons and neuropil volume in the olfactory centers.
Collapse
|
133
|
Fishelson L, Baranes A. Distribution, morphology, and cytology of ampullae of Lorenzini in the Oman shark, Iago omanensis (Triakidae), from the Gulf of Aqaba, Red Sea. Anat Rec (Hoboken) 1998; 251:417-30. [PMID: 9713980 DOI: 10.1002/(sici)1097-0185(199808)251:4<417::aid-ar1>3.0.co;2-p] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ampullae of Lorenzini are electrosensitive organs that, together with the olfactory organs, form the main sensory systems for foraging and navigation in skates, rays, and sharks. In sharks, these organs are mainly found on the rostral part of the head. This study describes the morphology and cytology of the ampullar system in the Oman shark, Iago omanensis, which is common in the Red Sea. The sharks were collected in the Gulf of Aqaba, Red Sea, at depths of 300-750 m, by a specially designed net. They were brought to the surface and sacrificed by an overdose of MS222, and their heads were fixed and prepared for LM, TEM, and SEM studies. The ampullae are of the polyvesicular type, and their sensory alveoli are situated on the head only and form groups enclosed in capsules of collagenous connective tissue. The dorsal side of the head features pairs of mediorostral (MRC), laterorostral (LRC), and preorbital (POC) capsules and one frontal capsule (FC), situated at the base of the rostrum in front of the eyes. The ventral side possesses only two, small mandibular (MC) capsules. The number of sensory alveoli differs in each of the capsules, and the largest group of 500 is found in the two mediorostral capsules. Each alveolus is formed by seven to nine sensory vesicles, from which a common tubule, piercing the capsule envelope, extends to a cutaneous pore. Groups of such pores form a pattern typical for Iago. A detailed description is given of the sensory epithelium, kinociliar, and microvillar cells as well as of the supporting cytological elements. The ampullae of Lorenzini in adult I. omanensis are generally similar to those of a number of other studied sharks. However, as the study shows, their number and configuration differ and form a morphological and topographic pattern typical for this species.
Collapse
|
134
|
Culí J, Modolell J. Proneural gene self-stimulation in neural precursors: an essential mechanism for sense organ development that is regulated by Notch signaling. Genes Dev 1998; 12:2036-47. [PMID: 9649507 PMCID: PMC316959 DOI: 10.1101/gad.12.13.2036] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To learn about the acquisition of neural fate by ectodermal cells, we have analyzed a very early sign of neural commitment in Drosophila, namely the specific accumulation of achaete-scute complex (AS-C) proneural proteins in the cell that becomes a sensory organ mother cell (SMC). We have characterized an AS-C enhancer that directs expression specifically in SMCs. This enhancer promotes Scute protein accumulation in these cells, an event essential for sensory organ development in the absence of other AS-C genes. Interspecific sequence comparisons and site-directed mutagenesis show the presence of several conserved motifs necessary for enhancer action, some of them binding sites for proneural proteins. These and other data indicate that the enhancer mediates scute self-stimulation, although only in the presence of additional activating factors, which most likely interact with conserved motifs reminiscent of NF-kappaB-binding sites. Cells neighboring the SMC do not acquire the neural fate because the Notch signaling pathway effectors, the Enhancer of split bHLH proteins, block this proneural gene self-stimulatory loop, possibly by antagonizing the action on the enhancer of the NF-kappaB-like factors or the proneural proteins. These data suggest a mechanism for SMC committment.
Collapse
|
135
|
Gho M, Schweisguth F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature 1998; 393:178-81. [PMID: 9603522 DOI: 10.1038/30265] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During metazoan development, cell-fate diversity is brought about, in part, by asymmetric cell divisions. In Drosophila, bristle mechanosensory organs are composed of four different cells that originate from a single precursor cell, pI, after two rounds of asymmetric division. At each division, distinct fates are conferred on sister cells by the asymmetric segregation of Numb, a negative regulator of Notch signalling. Here we show that the orientation of the mitotic spindles and the localization of the Numb crescent follow a stereotyped pattern. Mitosis of pI is orientated parallel to the anteroposterior axis of the fly. We show that signalling mediated by the Frizzled receptor polarizes pI along this axis, thereby specifying the orientation of the mitotic spindle and positioning the Numb crescent. The mitoses of the two cells produced by mitosis of pI are orientated parallel and orthogonal, respectively, to the division axis of pI. This difference in cell-division orientation is largely independent of the identity of the secondary precursor cells, and is regulated by Frizzled-independent mechanisms.
Collapse
|
136
|
Zeng C, Younger-Shepherd S, Jan LY, Jan YN. Delta and Serrate are redundant Notch ligands required for asymmetric cell divisions within the Drosophila sensory organ lineage. Genes Dev 1998; 12:1086-91. [PMID: 9553038 PMCID: PMC316707 DOI: 10.1101/gad.12.8.1086] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asymmetric divisions allow a precursor to produce four distinct cells of a Drosophila sensory organ lineage (SOL). Whereas this process requires cell-cell communication via Notch (N) receptor, mitotic recombination that removes the N ligand Delta (Dl) or Serrate (Ser) in the SOL had mild or no effect. Removal of both Dl and Ser, however, led to cell fate transformations similar to the N phenotype. Cell fate transformation occurred even when a single SOL cell lost both Dl and Ser. Thus, Dl and Ser are redundant in mediating signaling between daughter cells to specify their distinct cell fates.
Collapse
|
137
|
Moro SD, Huotari M. Clock-spiking cells not only in the eye of the fly, but also in the antenna! Acta Neurobiol Exp (Wars) 1998; 58:277-81. [PMID: 9949554 DOI: 10.55782/ane-1998-1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
During the course of single cell olfactory recordings from the funicular part of the antenna of Drosophila virilis we encountered a pair of cells firing synchronously and consistently at a rate of about 9 to 14 spikes per second. Every spike was seen to consist of a spike complex made up of two separate biphasic components thought to originate from two separate cells. The larger action potential, appearing first, had a peak-to-peak (ptp) amplitude of up to 200 microV followed closely by a smaller spike with an amplitude of about 60 microV. The repetitive firing pattern was not affected by air or odour puffs. This kind of consistent spontaneous spiking activity of two closely associated cells resembles remarkably closely the clock-spikes hitherto known only from the eyes of flies. Our encounter with such cells in a sense organ other than the eye poses many new questions and could lead to a renewed effort to understand the role(s) of the clock-spiking cells as possible oscillatory components of the dipteran pacemaking system in particular and the insect nervous systems, generally.
Collapse
|
138
|
Abstract
Taste sensilla of flies are composed of only a few cells, all of which have different functions. Depending on the species and on the sensillum type, there are from 2-5 neurons, each of which has its own stimulus specificity, and each of which makes a different contribution to the fly's behavior. In addition, taste sensilla include several nonneuronal cells that are important both for the development of the sensillum and for its functioning. The component cells of a sensillum derive from a single epidermal precursor according to a stereotyped sequence of mitoses. This review focuses on the different phenotypes of the component cells of taste sensilla, particularly the stimulus sensitivity and central neuronal anatomy of the receptor neurons, and on the development of this multicellular organ from a single precursor cell.
Collapse
|
139
|
|
140
|
Kylsten P, Saint R. Imaginal tissues of Drosophila melanogaster exhibit different modes of cell proliferation control. Dev Biol 1997; 192:509-22. [PMID: 9441685 DOI: 10.1006/dbio.1997.8770] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The highly conserved regulatory mechanisms that control progression of a cell through the cell cycle do not, alone, explain the programmed control of cell proliferation during animal development. Additional controls must coordinate the cell cycle regulators with developmental regulatory events. Here we report studies of cell cycle control in the imaginal tissues of Drosophila melanogaster, specifically in situations where cell cycle progression is regulated by varying the length of the G2 phase. We show that G2-phase arrest in late larval wing imaginal disks requires transcriptional control of stg, a mitotic inducer that encodes a D. melanogaster homologue of the Schizosaccharomyces pombe p80cdc25 phosphatase. In a second study, string transcriptional regulation was also shown to be important for G2-phase regulation in eye disk cells posterior to the morphogenetic furrow. Finally, unlike all other situations described to date, string transcriptional regulation was found not to be the cause of G2 arrest in abdominal histoblasts, these cells being refractory to ectopic expression of stg. This study further establishes string as an important regulator of G2 phase during D. melanogaster development, but also reveals that at least one additional mechanism is utilized to control G2-phase length and thus cell proliferation in different developmental contexts.
Collapse
|
141
|
Merritt DJ. Transformation of external sensilla to chordotonal sensilla in the cut mutant of Drosophila assessed by single-cell marking in the embryo and larva. Microsc Res Tech 1997; 39:492-505. [PMID: 9438250 DOI: 10.1002/(sici)1097-0029(19971215)39:6<492::aid-jemt4>3.0.co;2-g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cut gene of Drosophila melanogaster is an identity selector gene that establishes the program of development and differentiation of external sense organs. Mutations in the cut gene cause a transformation of the external sense organs into chordotonal organs, originally assessed by the use of immunostaining methods [Bodmer et al. (1987): Cell, 51:293-307]. Because of evidence that axonal projections of the transformed neurons within the central nervous system are not completely switched in cut mutants, the transformation of the four cells making up a sense organ was reassessed using single-cell staining with fluorescent dye and differential interface contrast (DIC) microscopy of the embryo and larva. The results provide strong evidence that all cells of the sense organs are completely transformed, exhibiting the morphologies and organelles characteristic of chordotonal sense organs. A comparison of the structures of external sense organs and chordotonal organs indicates that a number of the differences could be due to the degree of development of common structures, and that cut or downstream genes modulate effector genes that are normally utilized in both receptor types. The possible derivation of insect chordotonal and external sense organs from a receptor type found in crustaceans is discussed in the light of arthropod phylogenetics and the molecular genetics of sense organ development.
Collapse
|
142
|
Abstract
Insects have been favorites for the study of taste perception in the last few decades. They have been used for anatomical, behavioral, developmental, genetic, and physiological studies related to gustation and feeding response. Several genes known to affect the formation of gustatory sensilla or alter the feeding behavior of insects such as Drosophila are known. Studies related to signal transduction, coding of gustatory information, and the nature and constitution of genes involved in taste perception have also been taken up with insects in recent years. The understanding of basic mechanisms of taste perception in insects is likely to lead to better management of useful as well as harmful insects.
Collapse
|
143
|
Wang S, Younger-Shepherd S, Jan LY, Jan YN. Only a subset of the binary cell fate decisions mediated by Numb/Notch signaling in Drosophila sensory organ lineage requires Suppressor of Hairless. Development 1997; 124:4435-46. [PMID: 9409662 DOI: 10.1242/dev.124.22.4435] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In Drosophila, an adult external sensory organ (bristle) consists of four distinct cells which arise from a sensory organ precursor cell via two rounds of asymmetric divisions. The sensory organ precursor cell first divides to generate two secondary precursor cells, IIa and IIb. The IIa cell then divides to produce the hair cell and the socket cell. Shortly after, the IIb cell divides to generate the neuron and the sheath cell. The membrane-associated protein Numb has been shown to be required for the first two asymmetric divisions. We now report that a new hypomorphic numb mutant not only displays a double-socket phenotype, due to a hair cell to socket cell transformation, but also a double-sheath phenotype, due to a neuron to sheath cell transformation. This provides direct evidence that numb functions in the neuron/sheath cell lineage as well. Those results, together with our observation from immunofluorescence analysis that Numb forms a crescent in the dividing IIa and IIb cells suggest that asymmetric localization of Numb is important for the cell fate determination in all three asymmetric cell divisions in the sensory organ lineage. Interestingly, we found that in the hair/socket cell lineage but not the neuron/sheath cell lineage, a Suppressor of Hairless mutation acts as a dominant suppressor of numb mutations whereas Hairless mutations act as enhancers of numb. Moreover, epistasis analysis indicates that Suppressor of Hairless acts downstream of numb, and results from in vitro binding analysis suggest that the genetic interaction between numb and Hairless may occur through direct protein-protein interaction. These studies reveal that Suppressor of Hairless is required for only a subset of the asymmetric divisions that depend on the function of numb and Notch.
Collapse
|
144
|
Fishelson L, Baranes A. Ontogenesis and cytomorphology of the nasal olfactory organs in the Oman shark, Iago omanensis (Triakidae), in the Gulf of Aqaba, Red Sea. Anat Rec (Hoboken) 1997; 249:409-21. [PMID: 9372176 DOI: 10.1002/(sici)1097-0185(199711)249:3<409::aid-ar13>3.0.co;2-s] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sharks (Selachi) are among the largest predators in deep and shallow seas, feeding on live and dead prey. Olfaction is one of the central senses by which they forage, especially at night and in deep water. The organs responsible for this function are the olfactory rosettes, which are situated in their nares. This study follows the ontogenesis and cytological development of the olfactory rosettes of the Oman shark, Iago omanensis, found in the Gulf of Aqaba, Red Sea, at depths of 150-1500 m. METHODS The sharks were collected bimonthly by means of a specially designed vertical standing net and sacrificed by an overdose of MS222. The olfactory rosettes were extracted from the adults and embryos, then fixed and prepared for EM and LM studies. RESULTS Iago is a placental, matrotrophic species with a maximal dimension of 800 mm TL (total length). It reproduces all year round, giving birth to a maximum of four (occasionally five) young of 170-180 mm TL. In newborn and adult fish the nasal olfactory organs are as described for other sharks, composed of olfactory lamellae with secondary folds. The number of lamellae increases during embryogenesis up to a maximum of 28-32 in adults. The primary nasal placodes first appear in larvae of 10-14 mm on the dorso-lateral part of the head and then become gradually displaced to the ventral position, typical for adults. Ontogenesis of the nasal rosettes is characterized by a gradual development of the lamellae and their secondary folds, with a concomitant ripening of the sensory elements (ciliated, microvillar, and rod-like bearing cells), as well as glandular and supporting cells and cells containing kinocilia that agitate the nasal water flow. CONCLUSIONS The released young possess functional olfactory organs and developed neural transmission across the olfactory bulb and tract, to the olfactory lobes in the brain, enabling them to forage from birth. Presented data show the occurrence in I. omanensis of two types of ciliated and microvillar cells. Ciliated and rod-bearing sensory neurons are described for the first time in sharks.
Collapse
|
145
|
Zaitseva OV. Structural organization of receptor elements and organs of the land mollusk Pomatia elegans (Prosobranchia). NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1997; 27:533-40. [PMID: 9353772 DOI: 10.1007/bf02463896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
146
|
Vervoort M, Merritt DJ, Ghysen A, Dambly-Chaudière C. Genetic basis of the formation and identity of type I and type II neurons in Drosophila embryos. Development 1997; 124:2819-28. [PMID: 9226453 DOI: 10.1242/dev.124.14.2819] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The embryonic peripheral nervous system of Drosophila contains two main types of sensory neurons: type I neurons, which innervate external sense organs and chordotonal organs, and type II multidendritic neurons. Here, we analyse the origin of the difference between type I and type II in the case of the neurons that depend on the proneural genes of the achaete-scute complex (ASC). We show that, in Notch- embryos, the type I neurons are missing while type II neurons are produced in excess, indicating that the type I/type II choice relies on Notch-mediated cell communication. In contrast, both type I and type II neurons are absent in numb- embryos and after ubiquitous expression of tramtrack, indicating that the activity of numb and the absence of tramtrack are required to produce both external sense organ and multidendritic neural fates. The analysis of string- embryos reveals that when the precursors are unable to divide they differentiate mostly into type II neurons, indicating that the type II is the default neuronal fate. We also report a new mutant phenotype where the ASC-dependent neurons are converted into type II neurons, providing evidence for the existence of one or more genes required for maintaining the alternative (type I) fate. Our results suggest that the same mechanism of type I/type II specification may operate at a late step of the ASC-dependent lineages, when multidendritic neurons arise as siblings of the external sense organ neurons and, at an early step, when other multidendritic neurons precursors arise as siblings of external sense organ precursors.
Collapse
|
147
|
Reddy GV, Gupta B, Ray K, Rodrigues V. Development of the Drosophila olfactory sense organs utilizes cell-cell interactions as well as lineage. Development 1997; 124:703-12. [PMID: 9043085 DOI: 10.1242/dev.124.3.703] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the mechanisms underlying the development of the olfactory sense organs on the third segment of the antenna of Drosophila. Our studies suggest that a novel developmental strategy is employed. Specification of the founder or precursor cell is not governed by the genes of the achaete-scute complex. Another basic helix-loop-helix encoding gene, atonal, is essential for determination of only a subset of the sensilla types--the sensilla coeloconica. Therefore, we predict the existence of additional proneural genes for the selection of sensilla trichoidea and sensilla basiconica. The choice of a founder cell from the presumed proneural domain is regulated by Notch activity. Soon after delamination of the founder cell, two to three additional neighboring cells also take on a sensory fate and these cells together form a presensillum cluster. The selection of neighbors does not occur when endocytosis is blocked using a temperature sensitive allele of shibire, thus suggesting that cell-cell communication is required for this step. The cells of the cluster divide once before terminal differentiation which is influenced by Notch activity. The final cell number within each sensillum is controlled by programmed cell death.
Collapse
|
148
|
Abstract
A major issue in development is to understand how local heterogeneities are interpreted to determine specific cell fates. The sense organs of Drosophila provide an accessible system for addressing this issue. Most sense organs comprise four types of cells, and their differentiation is the outcome of a complex developmental programme comprising several steps. Recent results illuminate, for several of these steps, the nature of the local heterogeneities and the mechanism used to interpret them in terms of cell fate decisions.
Collapse
|
149
|
|
150
|
Guo M, Jan LY, Jan YN. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 1996; 17:27-41. [PMID: 8755476 DOI: 10.1016/s0896-6273(00)80278-0] [Citation(s) in RCA: 531] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During development of the Drosophila peripheral nervous system, a sensory organ precursor (SOP) cell undergoes rounds of asymmetric divisions to generate four distinct cells of a sensory organ. Numb, a membrane-associated protein, is asymmetrically segregated into one daughter cell during SOP division and acts as an inherited determinant of cell fate. Here, we show that Notch, a transmembrane receptor mediated cell-cell communication, functions as a binary switch in cell fate specification during asymmetric divisions of the SOP and its daughter cells in embryogenesis. Moreover, numb negatively regulates Notch, probably through direct protein-protein interaction that requires the phosphotyrosine-binding (PTB) domain of Numb and either the RAM23 region or the very C-terminal end of Notch. Notch then positively regulates a transcription factor encoded by tramtrack (ttk). This leads to Ttk expression in the daughter cell that does not inherit Numb. Thus, the inherited determinant Numb bestows a bias in the machinery for cell-cell communication to allow the specification of distinct daughter cell fates.
Collapse
|