151
|
Ryan JG, de Koning HD, Beck LA, Booty MG, Kastner DL, Simon A. IL-1 blockade in Schnitzler syndrome: ex vivo findings correlate with clinical remission. J Allergy Clin Immunol 2007; 121:260-2. [PMID: 17936890 DOI: 10.1016/j.jaci.2007.09.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/07/2007] [Accepted: 09/14/2007] [Indexed: 11/26/2022]
|
152
|
Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, Liew A, Khalili H, Chandrasekaran A, Davies LR, Li W, Tan AK, Bonnard C, Ong RT, Thalamuthu A, Pettersson S, Liu C, Tian C, Chen WV, Carulli JP, Beckman EM, Altshuler D, Alfredsson L, Criswell LA, Amos CI, Seldin MF, Kastner DL, Klareskog L, Gregersen PK. TRAF1-C5 as a risk locus for rheumatoid arthritis--a genomewide study. N Engl J Med 2007; 357:1199-209. [PMID: 17804836 PMCID: PMC2636867 DOI: 10.1056/nejmoa073491] [Citation(s) in RCA: 611] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Rheumatoid arthritis has a complex mode of inheritance. Although HLA-DRB1 and PTPN22 are well-established susceptibility loci, other genes that confer a modest level of risk have been identified recently. We carried out a genomewide association analysis to identify additional genetic loci associated with an increased risk of rheumatoid arthritis. METHODS We genotyped 317,503 single-nucleotide polymorphisms (SNPs) in a combined case-control study of 1522 case subjects with rheumatoid arthritis and 1850 matched control subjects. The patients were seropositive for autoantibodies against cyclic citrullinated peptide (CCP). We obtained samples from two data sets, the North American Rheumatoid Arthritis Consortium (NARAC) and the Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA). Results from NARAC and EIRA for 297,086 SNPs that passed quality-control filters were combined with the use of Cochran-Mantel-Haenszel stratified analysis. SNPs showing a significant association with disease (P<1x10(-8)) were genotyped in an independent set of case subjects with anti-CCP-positive rheumatoid arthritis (485 from NARAC and 512 from EIRA) and in control subjects (1282 from NARAC and 495 from EIRA). RESULTS We observed associations between disease and variants in the major-histocompatibility-complex locus, in PTPN22, and in a SNP (rs3761847) on chromosome 9 for all samples tested, the latter with an odds ratio of 1.32 (95% confidence interval, 1.23 to 1.42; P=4x10(-14)). The SNP is in linkage disequilibrium with two genes relevant to chronic inflammation: TRAF1 (encoding tumor necrosis factor receptor-associated factor 1) and C5 (encoding complement component 5). CONCLUSIONS A common genetic variant at the TRAF1-C5 locus on chromosome 9 is associated with an increased risk of anti-CCP-positive rheumatoid arthritis.
Collapse
|
153
|
Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW, de Bakker PIW, Le JM, Lee HS, Batliwalla F, Li W, Masters SL, Booty MG, Carulli JP, Padyukov L, Alfredsson L, Klareskog L, Chen WV, Amos CI, Criswell LA, Seldin MF, Kastner DL, Gregersen PK. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 2007; 357:977-86. [PMID: 17804842 PMCID: PMC2630215 DOI: 10.1056/nejmoa073003] [Citation(s) in RCA: 758] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Rheumatoid arthritis is a chronic inflammatory disease with a substantial genetic component. Susceptibility to disease has been linked with a region on chromosome 2q. METHODS We tested single-nucleotide polymorphisms (SNPs) in and around 13 candidate genes within the previously linked chromosome 2q region for association with rheumatoid arthritis. We then performed fine mapping of the STAT1-STAT4 region in a total of 1620 case patients with established rheumatoid arthritis and 2635 controls, all from North America. Implicated SNPs were further tested in an independent case-control series of 1529 patients with early rheumatoid arthritis and 881 controls, all from Sweden, and in a total of 1039 case patients and 1248 controls from three series of patients with systemic lupus erythematosus. RESULTS A SNP haplotype in the third intron of STAT4 was associated with susceptibility to both rheumatoid arthritis and systemic lupus erythematosus. The minor alleles of the haplotype-defining SNPs were present in 27% of chromosomes of patients with established rheumatoid arthritis, as compared with 22% of those of controls (for the SNP rs7574865, P=2.81x10(-7); odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.32). The association was replicated in Swedish patients with recent-onset rheumatoid arthritis (P=0.02) and matched controls. The haplotype marked by rs7574865 was strongly associated with lupus, being present on 31% of chromosomes of case patients and 22% of those of controls (P=1.87x10(-9); odds ratio for having the risk allele in chromosomes of patients vs. those of controls, 1.55). Homozygosity of the risk allele, as compared with absence of the allele, was associated with a more than doubled risk for lupus and a 60% increased risk for rheumatoid arthritis. CONCLUSIONS A haplotype of STAT4 is associated with increased risk for both rheumatoid arthritis and systemic lupus erythematosus, suggesting a shared pathway for these illnesses.
Collapse
|
154
|
Simon A, Maddipatti R, Park H, Komarow H, Kastner DL, Siegel RM. 141 Mutated TNF-receptor Type 1 in TNF-receptor Associated Periodic Syndrome (TRAPS): TNF-Independent Hyper-responsiveness Through ER-retained, Misfolded Receptors. Cytokine 2007. [DOI: 10.1016/j.cyto.2007.07.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
155
|
Wright DG, Kastner DL, Pollen GB. Challenges and opportunities for systemic amyloidosis research. Summary of an advisory workshop sponsored by the NIH Office of Rare Diseases, Bethesda, Maryland, June 20, 2006. Amyloid 2007; 14:103-12. [PMID: 17577683 DOI: 10.1080/13506120701259689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
156
|
Aksentijevich I, Putnam CD, Remmers EF, Mueller JL, Le J, Kolodner RD, Moak Z, Chuang M, Austin F, Goldbach-Mansky R, Hoffman HM, Kastner DL. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. ACTA ACUST UNITED AC 2007; 56:1273-1285. [PMID: 17393462 PMCID: PMC4321998 DOI: 10.1002/art.22491] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The cryopyrinopathies are a group of rare autoinflammatory disorders that are caused by mutations in CIAS1, encoding the cryopyrin protein. However, cryopyrin mutations are found only in 50% of patients with clinically diagnosed cryopyrinopathies. This study was undertaken to investigate the structural effect of disease-causing mutations on cryopyrin, in order to gain better understanding of the impact of disease-associated mutations on protein function. METHODS We tested for CIAS1 mutations in 22 patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome, 12 with Muckle-Wells syndrome (MWS), 18 with familial cold-induced autoinflammatory syndrome (FCAS), and 3 probands with MWS/FCAS. In a subset of mutation-negative patients, we screened for mutations in proteins that are either homologous to cryopyrin or involved in the caspase 1/interleukin-1beta signaling pathway. CIAS1 and other candidate genes were sequenced, models of cryopyrin domains were constructed using structurally homologous proteins as templates, and disease-causing mutations were mapped. RESULTS Forty patients were mutation positive, and 7 novel mutations, V262A, C259W, L264F, V351L, F443L, F523C, and Y563N, were found in 9 patients. No mutations in any candidate genes were identified. Most mutations mapped to an inner surface of the hexameric ring in the cryopyrin model, consistent with the hypothesis that the mutations disrupt a closed form of cryopyrin, thus potentiating inflammasome assembly. Disease-causing mutations correlated with disease severity only for a subset of known mutations. CONCLUSION Our modeling provides insight into potential molecular mechanisms by which cryopyrin mutations can inappropriately activate an inflammatory response. A significant number of patients who are clinically diagnosed as having cryopyrinopathies do not have identifiable disease-associated mutations.
Collapse
|
157
|
|
158
|
Goldbach-Mansky R, Pucino F, Kastner DL. Treatment of patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome: Comment on the article by Matsubara et al. ACTA ACUST UNITED AC 2007; 56:2099-101; author reply 2101-2. [PMID: 17530657 DOI: 10.1002/art.22561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
159
|
Masters SL, Lobito AA, Chae J, Kastner DL. Recent advances in the molecular pathogenesis of hereditary recurrent fevers. Curr Opin Allergy Clin Immunol 2006; 6:428-33. [PMID: 17088647 DOI: 10.1097/aci.0b013e3280109b57] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To discuss recent developments in the molecular basis of several hereditary recurrent fever syndromes, specifically the cryopyrin-associated periodic syndromes, familial Mediterranean fever and the tumor necrosis factor receptor associated periodic syndrome. RECENT FINDINGS Mutations of CIAS1, the gene encoding cryopyrin/NALP3, lead to a spectrum of disease states termed the cryopyrinopathies. Recently, cryopyrin-deficient mice have been used to show that the protein is a key regulator of interleukin-1beta production that functions by recognizing stimuli such as bacterial RNA and infectious agents. Tumor necrosis factor receptor-associated periodic syndrome was initially thought to be caused by deficient metalloprotease-induced tumor necrosis factor receptor shedding, however new findings suggest that mutations in this receptor may result in inappropriate protein folding, leading to a host of other functional abnormalities that may cause inflammatory disease. Finally, data are emerging that address the possible function of the C-terminal B30.2 domain of pyrin, the familial Mediterranean fever protein. This motif has recently been shown to interact with and inhibit caspase-1, and the modeled structure of this complex highlights how mutations may affect the binding interface. SUMMARY Recent reports have advanced our understanding of the structural and functional biology underlying the hereditary recurrent fevers, and are beginning to suggest possible mechanisms by which specific mutations cause disease.
Collapse
|
160
|
Aksentijevich I, Remmers EF, Goldbach-Mansky R, Reiff A, Kastner DL. Mutational analysis in neonatal-onset multisystem inflammatory disease: comment on the articles by Frenkel et al and Saito et al. ACTA ACUST UNITED AC 2006; 54:2703-4; author reply 2704-5. [PMID: 16871551 DOI: 10.1002/art.22022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
161
|
Brydges S, Kastner DL. The systemic autoinflammatory diseases: inborn errors of the innate immune system. Curr Top Microbiol Immunol 2006; 305:127-60. [PMID: 16724804 DOI: 10.1007/3-540-29714-6_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The autoinflammatory syndromes are a newly recognized group of immune disorders that lack the high titers of self-reactive antibodies and T cells characteristic of classic autoimmune disease. Nevertheless, patients with these illnesses experience unprovoked inflammatory disease in the absence of underlying infection. Here we discuss recent advances in eight Mendelian autoinflammatory diseases. The causative genes and the proteins they encode play a critical role in the regulation of innate immunity. Both pyrin and cryopyrin, the proteins mutated in familial Mediterranean fever and the cryopyrinopathies, respectively, are involved in regulation of the proinflammatory cytokine, IL-1beta, and may influence the activity of the transcription factor, NFkappaB. NOD2, the Blau syndrome protein, shares certain domains with cryopyrin and appears to be a sensor of intracellular bacteria. PSTPIP1, mutated in the syndrome of pyogenic arthritis with pyoderma gangrenosum and acne, interacts both with pyrin and a protein tyrosine phosphatase to regulate innate and adaptive immune responses. Somewhat unexpectedly, mutations in the p55 TNF receptor lead not to immunodeficiency but to dramatic inflammatory disease, the mechanisms of which are still under investigation. Finally, the discovery of the genetic basis of the hyperimmunoglobulinemia D with periodic fever syndrome has provided a fascinating but incompletely understood link between cholesterol biosynthesis and autoinflammation. In this manuscript, we summarize the current state of the art with regard to the diagnosis, pathogenesis, and treatment of these inborn errors of the innate immune system.
Collapse
|
162
|
Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI, Kim HJ, Brewer C, Zalewski C, Wiggs E, Hill S, Turner ML, Karp BI, Aksentijevich I, Pucino F, Penzak SR, Haverkamp MH, Stein L, Adams BS, Moore TL, Fuhlbrigge RC, Shaham B, Jarvis JN, O'Neil K, Vehe RK, Beitz LO, Gardner G, Hannan WP, Warren RW, Horn W, Cole JL, Paul SM, Hawkins PN, Pham TH, Snyder C, Wesley RA, Hoffmann SC, Holland SM, Butman JA, Kastner DL. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 2006; 355:581-92. [PMID: 16899778 PMCID: PMC4178954 DOI: 10.1056/nejmoa055137] [Citation(s) in RCA: 641] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neonatal-onset multisystem inflammatory disease is characterized by fever, urticarial rash, aseptic meningitis, deforming arthropathy, hearing loss, and mental retardation. Many patients have mutations in the cold-induced autoinflammatory syndrome 1 (CIAS1) gene, encoding cryopyrin, a protein that regulates inflammation. METHODS We selected 18 patients with neonatal-onset multisystem inflammatory disease (12 with identifiable CIAS1 mutations) to receive anakinra, an interleukin-1-receptor antagonist (1 to 2 mg per kilogram of body weight per day subcutaneously). In 11 patients, anakinra was withdrawn at three months until a flare occurred. The primary end points included changes in scores in a daily diary of symptoms, serum levels of amyloid A and C-reactive protein, and the erythrocyte sedimentation rate from baseline to month 3 and from month 3 until a disease flare. RESULTS All 18 patients had a rapid response to anakinra, with disappearance of rash. Diary scores improved (P<0.001) and serum amyloid A (from a median of 174 mg to 8 mg per liter), C-reactive protein (from a median of 5.29 mg to 0.34 mg per deciliter), and the erythrocyte sedimentation rate decreased at month 3 (all P<0.001), and remained low at month 6. Magnetic resonance imaging showed improvement in cochlear and leptomeningeal lesions as compared with baseline. Withdrawal of anakinra uniformly resulted in relapse within days; retreatment led to rapid improvement. There were no drug-related serious adverse events. CONCLUSIONS Daily injections of anakinra markedly improved clinical and laboratory manifestations in patients with neonatal-onset multisystem inflammatory disease, with or without CIAS1 mutations. (ClinicalTrials.gov number, NCT00069329 [ClinicalTrials.gov].).
Collapse
|
163
|
Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, Kastner DL. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc Natl Acad Sci U S A 2006; 103:9982-7. [PMID: 16785446 PMCID: PMC1479864 DOI: 10.1073/pnas.0602081103] [Citation(s) in RCA: 401] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Familial Mediterranean fever (FMF) is a recessively inherited autoinflammatory disorder with high carrier frequencies in the Middle East. Pyrin, the protein mutated in FMF, regulates caspase-1 activation and consequently IL-1beta production through cognate interaction of its N-terminal PYRIN motif with the ASC adaptor protein. However, the preponderance of mutations reside in pyrin's C-terminal B30.2 domain. Here we demonstrate direct interaction of this domain with caspase-1. In lysates from cells not expressing ASC, reciprocal GST pull-downs demonstrated the interaction of pyrin with the p20 and p10 catalytic subunits of caspase-1. Coimmunoprecipitations of pyrin and caspase-1 from THP-1 human monocytic cells were consistent with the interaction of endogenous proteins. The C-terminal B30.2 domain of pyrin is necessary and sufficient for the interaction, and binding was reduced by FMF-associated B30.2 mutations. Full-length pyrin attenuated IL-1beta production in cells transfected with a caspase-1/IL-1beta construct, an effect diminished by FMF-associated B30.2 mutations and in B30.2 deletion mutants. Modeling of the crystal structure of caspase-1 with the deduced structure of the pyrin B30.2 domain corroborated both the interaction and the importance of M694V and M680I pyrin mutations. Consistent with a net inhibitory effect of pyrin on IL-1beta activation, small interfering RNA (siRNA)-mediated pyrin knockdown in THP-1 cells augmented IL-1beta production in response to bacterial LPS. Moreover, the IL-1 receptor antagonist anakinra suppressed acute-phase proteins in a patient with FMF and amyloidosis. Our data support a direct, ASC-independent effect of pyrin on IL-1beta activation and suggest heightened IL-1 responsiveness as one factor selecting for pyrin mutations.
Collapse
|
164
|
Lobito AA, Kimberley FC, Muppidi JR, Komarow H, Jackson AJ, Hull KM, Kastner DL, Screaton GR, Siegel RM. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 2006; 108:1320-7. [PMID: 16684962 PMCID: PMC1895878 DOI: 10.1182/blood-2005-11-006783] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is an autosomal dominant systemic autoinflammatory disease associated with heterozygous mutations in TNF receptor 1 (TNFR1). Here we examined the structural and functional alterations caused by 9 distinct TRAPS-associated TNFR1 mutations in transfected cells and a mouse "knock-in" model of TRAPS. We found that these TNFR1 mutants did not generate soluble versions of the receptor, either through membrane cleavage or in exosomes. Mutant receptors did not bind TNF and failed to function as dominant-negative inhibitors of TNFR1-induced apoptosis. Instead, TRAPS mutant TNFR1 formed abnormal disulfide-linked oligomers that failed to interact with wild-type TNFR1 molecules through the preligand assembly domain (PLAD) that normally governs receptor self-association. TRAPS mutant TNFR1 molecules were retained intracellularly and colocalized with endoplasmic reticulum (ER) markers. The capacity of mutant receptors to spontaneously induce both apoptosis and nuclear factor kappaB (NF-kappaB) activity was reduced. In contrast, the R92Q variant of TNFR1 behaved like the wild-type receptor in all of these assays. The inflammatory phenotype of TRAPS may be due to consequences of mutant TNFR1 protein misfolding and ER retention.
Collapse
|
165
|
Ting JPY, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 2006; 6:183-95. [PMID: 16498449 DOI: 10.1038/nri1788] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The newly described CATERPILLER family (also known as NOD-LRR or NACHT-LRR) is comprised of proteins with a nucleotide-binding domain and a leucine-rich region. This family has gained rapid prominence because of its demonstrated and anticipated roles in immunity, cell death and growth, and diseases. CATERPILLER proteins are structurally similar to a subgroup of plant-disease-resistance (R) proteins and to the apoptotic protease activating factor 1 (APAF1). They provide positive and negative signals for the control of immune and inflammatory responses, and might represent intracellular sensors of pathogen products. Most importantly, they are genetically linked to several human immunological disorders.
Collapse
|
166
|
Irigoyen P, Lee AT, Wener MH, Li W, Kern M, Batliwalla F, Lum RF, Massarotti E, Weisman M, Bombardier C, Remmers EF, Kastner DL, Seldin MF, Criswell LA, Gregersen PK. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. ACTA ACUST UNITED AC 2006; 52:3813-8. [PMID: 16320316 DOI: 10.1002/art.21419] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To examine the association between HLA-DRB1 alleles and the production of anti-cyclic citrullinated peptide (anti-CCP) and rheumatoid factor (RF) autoantibodies in patients with rheumatoid arthritis (RA). METHODS We studied 1,723 Caucasian RA patients enrolled in the North American Rheumatoid Arthritis Consortium (NARAC) family cohort and the Study of New Onset Rheumatoid Arthritis (SONORA) cohort. All patients were tested for anti-CCP antibodies (by enzyme-linked immunosorbent assay), RF (by nephelometry), and HLA-DR genotype (by polymerase chain reaction and sequence-specific oligonucleotide hybridization). RESULTS When controlled for the presence of RF, anti-CCP positivity was strongly associated with the HLA-DRB1 shared epitope (SE). In RF+ patients, the presence of the SE was very significantly associated with anti-CCP positivity, with an odds ratio (OR) of 5.8 and a 95% confidence interval (95% CI) of 4.1-8.3. This relationship was also seen in RF- patients (OR 3.1 [95% CI 1.8-5.3]). In contrast, RF positivity was not significantly associated with presence of the SE independently of anti-CCP antibodies. Strikingly, HLA-DRB1*03 was strongly associated with reduced anti-CCP titers, even after controlling for the presence of the SE and restricting the analysis to anti-CCP+ patients. HLA-DR3 was also associated with anti-CCP- RA in our population. CONCLUSION The HLA-DRB1 SE is strongly associated with the production of anti-CCP antibodies, but not RF. In contrast, HLA-DR3 alleles are associated with anti-CCP- disease and with lower levels of anti-CCP antibodies, even when controlling for the SE. These data emphasize the complexity of the genetic effects of the major histocompatibility complex on the RA phenotype.
Collapse
|
167
|
Hu X, Chang M, Saiki RK, Cargill MA, Begovich AB, Ardlie KG, Criswell LA, Seldin MF, Amos CI, Gregersen PK, Kastner DL, Remmers EF. The functional −169T→C single-nucleotide polymorphism inFCRL3 is not associated with rheumatoid arthritis in white North Americans. ACTA ACUST UNITED AC 2006; 54:1022-5. [PMID: 16508985 DOI: 10.1002/art.21636] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
168
|
Lokuta MA, Cooper KM, Aksentijevich I, Kastner DL, Huttenlocher A. Neutrophil chemotaxis in a patient with neonatal-onset multisystem inflammatory disease and Muckle-Wells syndrome. Ann Allergy Asthma Immunol 2005; 95:394-9. [PMID: 16279571 DOI: 10.1016/s1081-1206(10)61159-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Neonatal-onset multisystem inflammatory disease (NOMID)/chronic infantile neurologic, cutaneous, and articular syndrome is an autoinflammatory disease characterized by urticarial rash, arthropathy, and central nervous system inflammation. OBJECTIVE To describe a 13-year-old girl with overlapping symptoms of NOMID and Muckle-Wells syndrome who has a mutation in cryopyrin (NALP3). METHODS We examined neutrophil migration using transwell assay and time-lapse videomicroscopy. We also examined p38 mitogen-activated protein kinase (MAPK) activation in patient and control neutrophils using Western blot analysis. RESULTS Neutrophil defects in chemotactic migration were found to a variety of chemoattractants, including interleukin 8, N-formyl-methionyl-leucyl-phenylalanine, complement C5a, and leukotriene B4. Her neutrophils exhibited elevated basal and stimulated p38 MAPK activation in response to interleukin 8, N-formyl-methionyl-leucyl-phenylalanine, complement C5a, and leukotriene B4. CONCLUSIONS This study is the first, to our knowledge, to demonstrate defects in neutrophil chemotaxis and p38 MAPK signaling in a patient with NOMID and Muckle-Wells syndrome and a cryopyrin mutation.
Collapse
|
169
|
Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW, Wolfe F, Kastner DL, Alfredsson L, Altshuler D, Gregersen PK, Klareskog L, Rioux JD. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet 2005; 77:1044-60. [PMID: 16380915 PMCID: PMC1285162 DOI: 10.1086/498651] [Citation(s) in RCA: 404] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 10/03/2005] [Indexed: 12/24/2022] Open
Abstract
Candidate-gene association studies in rheumatoid arthritis (RA) have lead to encouraging yet apparently inconsistent results. One explanation for the inconsistency is insufficient power to detect modest effects in the context of a low prior probability of a true effect. To overcome this limitation, we selected alleles with an increased probability of a disease association, on the basis of a review of the literature on RA and other autoimmune diseases, and tested them for association with RA susceptibility in a sample collection powered to detect modest genetic effects. We tested 17 alleles from 14 genes in 2,370 RA cases and 1,757 controls from the North American Rheumatoid Arthritis Consortium (NARAC) and the Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA) collections. We found strong evidence of an association of PTPN22 with the development of anti-citrulline antibody-positive RA (odds ratio [OR] 1.49; P=.00002), using previously untested EIRA samples. We provide support for an association of CTLA4 (CT60 allele, OR 1.23; P=.001) and PADI4 (PADI4_94, OR 1.24; P=.001) with the development of RA, but only in the NARAC cohort. The CTLA4 association is stronger in patients with RA from both cohorts who are seropositive for anti-citrulline antibodies (P=.0006). Exploration of our data set with clinically relevant subsets of RA reveals that PTPN22 is associated with an earlier age at disease onset (P=.004) and that PTPN22 has a stronger effect in males than in females (P=.03). A meta-analysis failed to demonstrate an association of the remaining alleles with RA susceptibility, suggesting that the previously published associations may represent false-positive results. Given the strong statistical power to replicate a true-positive association in this study, our results provide support for PTPN22, CTLA4, and PADI4 as RA susceptibility genes and demonstrate novel associations with clinically relevant subsets of RA.
Collapse
|
170
|
Carlton VEH, Hu X, Chokkalingam AP, Schrodi SJ, Brandon R, Alexander HC, Chang M, Catanese JJ, Leong DU, Ardlie KG, Kastner DL, Seldin MF, Criswell LA, Gregersen PK, Beasley E, Thomson G, Amos CI, Begovich AB. PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet 2005; 77:567-81. [PMID: 16175503 PMCID: PMC1275606 DOI: 10.1086/468189] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/19/2005] [Indexed: 01/29/2023] Open
Abstract
The minor allele of the R620W missense single-nucleotide polymorphism (SNP) (rs2476601) in the hematopoietic-specific protein tyrosine phosphatase gene, PTPN22, has been associated with multiple autoimmune diseases, including rheumatoid arthritis (RA). These genetic data, combined with biochemical evidence that this SNP affects PTPN22 function, suggest that this phosphatase is a key regulator of autoimmunity. To determine whether other genetic variants in PTPN22 contribute to the development of RA, we sequenced the coding regions of this gene in 48 white North American patients with RA and identified 15 previously unreported SNPs, including 2 coding SNPs in the catalytic domain. We then genotyped 37 SNPs in or near PTPN22 in 475 patients with RA and 475 individually matched controls (sample set 1) and selected a subset of markers for replication in an additional 661 patients with RA and 1,322 individually matched controls (sample set 2). Analyses of these results predict 10 common (frequency >1%) PTPN22 haplotypes in white North Americans. The sole haplotype found to carry the previously identified W620 risk allele was strongly associated with disease in both sample sets, whereas another haplotype, identical at all other SNPs but carrying the R620 allele, showed no association. R620W, however, does not fully explain the association between PTPN22 and RA, since significant differences between cases and controls persisted in both sample sets after the haplotype data were stratified by R620W. Additional analyses identified two SNPs on a single common haplotype that are associated with RA independent of R620W, suggesting that R620W and at least one additional variant in the PTPN22 gene region influence RA susceptibility.
Collapse
|
171
|
Addo A, Le J, Li W, Aksentijevich I, Balow J, Lee A, Gregersen PK, Kastner DL, Remmers EF. Analysis of CARD15/NOD2 haplotypes fails to identify common variants associated with rheumatoid arthritis susceptibility. Scand J Rheumatol 2005; 34:198-203. [PMID: 16134725 DOI: 10.1080/03009740510018561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The CARD15/NOD2 gene product plays an important role in host response to bacterial lipopolysaccharides and bacterial muramyl dipeptide via activation of NF-kappaB in monocytes. Mutations in CARD15 are associated with Crohn's disease (CD), a chronic inflammatory bowel disease. In this study we sought to determine whether CD-associated mutations or any common variants of this gene might contribute to susceptibility to another chronic inflammatory disease, rheumatoid arthritis (RA). METHODS We genotyped 376 Caucasian RA cases and 376 ethnically matched healthy controls for three CD-associated CARD15 mutations. We also genotyped these 752 individuals for 12 common CARD15 single nucleotide polymorphisms (SNPs), determined the linkage disequilibrium structure of the gene, and compared the frequencies of the common CARD15 haplotypes in the RA cases and controls. RESULTS None of the CD-associated mutations or the CARD15 SNPs was associated with susceptibility to RA. We also found no significant difference in the frequencies of any of the common haplotypes of the CARD15 gene in RA patients and controls. Our haplotype analysis was consistent with earlier observations that all three CD-associated variants independently arose on the same ancestral haplotype. CONCLUSIONS These data suggest that CARD15 variants are not associated with RA susceptibility.
Collapse
|
172
|
Abstract
PURPOSE OF REVIEW The systemic autoinflammatory diseases are characterized by seemingly unprovoked inflammation, without major involvement of the adaptive immune system. This review focuses mainly on a subset of these illnesses, the hereditary recurrent fevers, which include familial Mediterranean fever, the tumor necrosis factor receptor-associated periodic syndrome, the hyperimmunoglobulinemia D with periodic fever syndrome, and cryopyrin-associated periodic syndromes. This review elucidates how recent advances have impacted diagnosis, pathogenesis, and treatment. RECENT FINDINGS More than 170 mutations have been identified in the four genes underlying the six hereditary recurrent fevers. Genetic testing has broadened the clinical and geographic boundaries of these illnesses, given rise to the concept of the cryopyrin-associated periodic syndromes as a disease spectrum, and permitted diagnosis of compound heterozygotes for mutations in two different hereditary recurrent fever genes. Genetics has also advanced our understanding of amyloidosis, a complication of the hereditary recurrent fevers, and suggested a possible role for common hereditary recurrent fever variants in other inflammatory conditions. Recent advances in molecular pathophysiology include the elucidation of the N-terminal PYRIN domain in protein-protein interactions, the description of the NALP3 (cryopyrin) inflammasome as a macromolecular complex for interleukin-1beta activation, and the identification of signaling defects other than defective receptor shedding in patients with tumor necrosis factor receptor-associated periodic syndrome. These molecular insights form the conceptual basis for targeted biologic therapies. SUMMARY Advances in molecular genetics extend our ability to recognize and treat patients with systemic autoinflammatory diseases and inform our understanding of the regulation of innate immunity in humans.
Collapse
|
173
|
Kastner DL. Hereditary periodic fever syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2005:74-81. [PMID: 16304362 DOI: 10.1182/asheducation-2005.1.74] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The hereditary periodic fevers are a group of Mendelian disorders characterized by seemingly unprovoked fever and localized inflammation. Recent data indicate that these illnesses represent inborn errors in the regulation of innate immunity. Pyrin, the protein mutated in familial Mediterranean fever, defines an N-terminal domain found in a large family of proteins involved in inflammation and apoptosis. Through this domain pyrin may play a role in the regulation of interleukin (IL)-1beta, nuclear factor (NF)-kappaB, and leukocyte apoptosis. Cryopyrin/NALP3, another protein in this family, is mutated in three other hereditary febrile syndromes and participates in the inflammasome, a newly recognized macromolecular complex crucial to IL-1beta activation. Somewhat unexpectedly, mutations in the 55 kDa receptor for tumor necrosis factor also give rise to a dominantly inherited periodic fever syndrome, rather than immunodeficiency, a finding that has stimulated important investigations into both pathogenesis and treatment. Finally, the discovery of the genetic basis of the hyperimmunoglobulinemia D with periodic fever syndrome suggests an as yet incompletely understood connection between the mevalonate pathway and the regulation of cytokine production. These insights extend our understanding of the regulation of innate immunity in man, while providing the conceptual basis for the rational design of targeted therapies, both for the hereditary periodic fevers themselves and other inflammatory disorders as well.
Collapse
|
174
|
Diaz A, Hu C, Kastner DL, Schaner P, Reginato AM, Richards N, Gumucio DL. Lipopolysaccharide-induced expression of multiple alternatively spliced MEFV transcripts in human synovial fibroblasts: a prominent splice isoform lacks the C-terminal domain that is highly mutated in familial Mediterranean fever. ACTA ACUST UNITED AC 2004; 50:3679-89. [PMID: 15529356 DOI: 10.1002/art.20600] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the expression of the familial Mediterranean fever (FMF) gene (MEFV) in human synovial fibroblasts. METHODS MEFV messenger RNA in synovial fibroblasts, chondrocytes, and peripheral blood leukocytes (PBLs) was analyzed by semiquantitative and real-time polymerase chain reaction and ribonuclease protection assay. The subcellular localization of pyrin, the MEFV product, was determined in transfected synovial fibroblasts and HeLa cells with plasmids encoding pyrin isoforms. Native pyrin was detected with an antipyrin antibody. RESULTS MEFV was expressed in synovial fibroblasts, but not in chondrocytes. Four alternatively spliced transcripts were identified: an extension of exon 8 (exon 8ext) resulting in a frameshift that predicts a truncated protein lacking exons 9 and 10, the addition of an exon (exon 4a) predicting a truncated protein at exon 5, the in-frame substitution of exon 2a for exon 2, and the previously described removal of exon 2 (exon 2Delta). Exon 8ext transcripts represented 27% of the total message population in synovial fibroblasts. All other alternatively spliced transcripts were rare. Consensus and alternatively spliced transcripts were induced by lipopolysaccharide in synovial fibroblasts and PBLs. In transfected cells, the proteins encoded by all highly expressed splice forms were cytoplasmic. In contrast, native pyrin was predominantly nuclear in synovial fibroblasts, neutrophils, and dendritic cells, but was cytoplasmic in monocytes. CONCLUSION Several MEFV transcripts are expressed and inducible in synovial fibroblasts. A prominent isoform lacks the C-terminal domain that contains the majority of mutations found in patients with FMF. While recombinant forms of all major pyrin isoforms are cytoplasmic, native pyrin is nuclear in several cell types. Thus, mechanisms in addition to splicing patterns must control pyrin's subcellular distribution.
Collapse
|
175
|
Soares ML, Coelho T, Sousa A, Holmgren G, Saraiva MJ, Kastner DL, Buxbaum JN. Haplotypes and DNA sequence variation within and surrounding the transthyretin gene: genotype-phenotype correlations in familial amyloid polyneuropathy (V30M) in Portugal and Sweden. Eur J Hum Genet 2004; 12:225-37. [PMID: 14673473 DOI: 10.1038/sj.ejhg.5201095] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Familial amyloid polyneuropathy (FAP) is a lethal autosomal dominant disorder in which fibrils derived from mutant forms of transthyretin (TTR), the normal plasma carrier of thyroxine (T(4)) and retinol-binding protein, are deposited in tissues. Over 80 TTR sequence variants are associated with FAP, but the amino-acid substitutions alone do not completely explain the variability in disease penetrance, pathology and clinical course. To analyze the factors possibly contributing to this phenotypic variability, we characterized the variations within the wild-type and mutant (Val30Met) TTR genes and their flanking sequences by performing extended microsatellite haplotype analyses, sequencing and single-nucleotide polymorphism haplotyping of genomic DNA from Portuguese and Swedish carriers of V30M. We identified 10 new polymorphisms in the TTR untranslated regions, eight resulting from single-base substitutions and two arising from insertion/deletions in dinucleotide repeat sequences. The data suggest that the onset of symptoms of FAP V30M may be modulated by an interval downstream of TTR on the accompanying noncarrier chromosome (defined by microsatellites D18S457 and D18S456), but not by the immediately 5'- and 3'-flanking sequences of TTR. During the course of these studies, we also encountered the first instance in which the previously described intragenic haplotype III may be associated with V30M FAP in the Portuguese population.
Collapse
|