1
|
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018; 32:1267-1284. [PMID: 30275043 PMCID: PMC6169832 DOI: 10.1101/gad.314617.118] [Citation(s) in RCA: 1352] [Impact Index Per Article: 193.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review, Gonzelez et al. provide an update of recent accomplishments, unifying concepts, and futures challenges to study tumor-associated immune cells, with an emphasis on metastatic carcinomas. The presence of inflammatory immune cells in human tumors raises a fundamental question in oncology: How do cancer cells avoid the destruction by immune attack? In principle, tumor development can be controlled by cytotoxic innate and adaptive immune cells; however, as the tumor develops from neoplastic tissue to clinically detectable tumors, cancer cells evolve different mechanisms that mimic peripheral immune tolerance in order to avoid tumoricidal attack. Here, we provide an update of recent accomplishments, unifying concepts, and future challenges to study tumor-associated immune cells, with an emphasis on metastatic carcinomas.
Collapse
|
Review |
7 |
1352 |
2
|
Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, Ni A, Khodos I, de Stanchina E, Nguyen T, Sage J, Campbell JE, Ribich S, Rekhtman N, Dowlati A, Massion PP, Rudin CM, Poirier JT. Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer Cell 2017; 31:286-299. [PMID: 28196596 PMCID: PMC5313262 DOI: 10.1016/j.ccell.2017.01.006] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
Abstract
Small cell lung cancer is initially highly responsive to cisplatin and etoposide but in almost every case becomes rapidly chemoresistant, leading to death within 1 year. We modeled acquired chemoresistance in vivo using a series of patient-derived xenografts to generate paired chemosensitive and chemoresistant cancers. Multiple chemoresistant models demonstrated suppression of SLFN11, a factor implicated in DNA-damage repair deficiency. In vivo silencing of SLFN11 was associated with marked deposition of H3K27me3, a histone modification placed by EZH2, within the gene body of SLFN11, inducing local chromatin condensation and gene silencing. Inclusion of an EZH2 inhibitor with standard cytotoxic therapies prevented emergence of acquired resistance and augmented chemotherapeutic efficacy in both chemosensitive and chemoresistant models of small cell lung cancer.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
366 |
3
|
Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery. Cell Chem Biol 2017; 24:1092-1100. [PMID: 28757181 DOI: 10.1016/j.chembiol.2017.06.012] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/24/2017] [Accepted: 06/20/2017] [Indexed: 01/21/2023]
Abstract
Tumor organoids are 3D cultures of cancer cells that can be derived on an individual patient basis with a high success rate. This creates opportunities to build large biobanks with relevant patient material that can be used to perform drug screens and facilitate drug development. The high take rate will also allow side-by-side comparison to evaluate the translational potential of this model system to the patient. These tumors-in-a-dish can be established for a variety of tumor types including colorectal, pancreas, stomach, prostate, and breast cancers. In this review, we highlight what is currently known about tumor organoid culture, the advantages and challenges of the model system, compare it with other pre-clinical cancer models, and evaluate its value for drug development.
Collapse
|
Review |
8 |
349 |
4
|
Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, Shi W, Ma AH, De Vere White RW, Airhart S, Liu ET, Banchereau J, Brehm MA, Greiner DL, Shultz LD, Palucka K, Keck JG. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J 2018; 32:1537-1549. [PMID: 29146734 PMCID: PMC5892726 DOI: 10.1096/fj.201700740r] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Establishment of an in vivo small animal model of human tumor and human immune system interaction would enable preclinical investigations into the mechanisms underlying cancer immunotherapy. To this end, nonobese diabetic (NOD).Cg-PrkdcscidIL2rgtm1Wjl/Sz (null; NSG) mice were transplanted with human (h)CD34+ hematopoietic progenitor and stem cells, which leads to the development of human hematopoietic and immune systems [humanized NSG (HuNSG)]. HuNSG mice received human leukocyte antigen partially matched tumor implants from patient-derived xenografts [PDX; non–small cell lung cancer (NSCLC), sarcoma, bladder cancer, and triple-negative breast cancer (TNBC)] or from a TNBC cell line-derived xenograft (CDX). Tumor growth curves were similar in HuNSG compared with nonhuman immune-engrafted NSG mice. Treatment with pembrolizumab, which targets programmed cell death protein 1, produced significant growth inhibition in both CDX and PDX tumors in HuNSG but not in NSG mice. Finally, inhibition of tumor growth was dependent on hCD8+ T cells, as demonstrated by antibody-mediated depletion. Thus, tumor-bearing HuNSG mice may represent an important, new model for preclinical immunotherapy research.—Wang, M., Yao, L.-C., Cheng, M., Cai, D., Martinek, J., Pan, C.-X., Shi, W., Ma, A.-H., De Vere White, R. W., Airhart, S., Liu, E. T., Banchereau, J., Brehm, M. A., Greiner, D. L., Shultz, L. D., Palucka, K., Keck, J. G. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
251 |
5
|
Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, Ben-Zvi I, Stebbing J, McGuire W, Harris W, Maki R, Gaya A, Bedi A, Zacharoulis S, Ravi R, Wexler LH, Hoque MO, Rodriguez-Galindo C, Pass H, Peled N, Davies A, Morris R, Hidalgo M, Sidransky D. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol 2018; 28:2595-2605. [PMID: 28945830 DOI: 10.1093/annonc/mdx416] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background While patient-derived xenografts (PDXs) offer a powerful modality for translational cancer research, a precise evaluation of how accurately patient responses correlate with matching PDXs in a large, heterogeneous population is needed for assessing the utility of this platform for preclinical drug-testing and personalized patient cancer treatment. Patients and methods Tumors obtained from surgical or biopsy procedures from 237 cancer patients with a variety of solid tumors were implanted into immunodeficient mice and whole-exome sequencing was carried out. For 92 patients, responses to anticancer therapies were compared with that of their corresponding PDX models. Results We compared whole-exome sequencing of 237 PDX models with equivalent information in The Cancer Genome Atlas database, demonstrating that tumorgrafts faithfully conserve genetic patterns of the primary tumors. We next screened PDXs established for 92 patients with various solid cancers against the same 129 treatments that were administered clinically and correlated patient outcomes with the responses in corresponding models. Our analysis demonstrates that PDXs accurately replicate patients' clinical outcomes, even as patients undergo several additional cycles of therapy over time, indicating the capacity of these models to correctly guide an oncologist to treatments that are most likely to be of clinical benefit. Conclusions Integration of PDX models as a preclinical platform for assessment of drug efficacy may allow a higher success-rate in critical end points of clinical benefit.
Collapse
|
Journal Article |
7 |
227 |
6
|
Okada S, Vaeteewoottacharn K, Kariya R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells 2019; 8:E889. [PMID: 31412684 PMCID: PMC6721637 DOI: 10.3390/cells8080889] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Patient-derived xenograft (PDX) models are created by engraftment of patient tumor tissues into immunocompetent mice. Since a PDX model retains the characteristics of the primary patient tumor including gene expression profiles and drug responses, it has become the most reliable in vivo human cancer model. The engraftment rate increases with the introduction of Non-obese diabetic Severe combined immunodeficiency (NOD/SCID)-based immunocompromised mice, especially the NK-deficient NOD strains NOD/SCID/interleukin-2 receptor gamma chain(IL2Rγ)null (NOG/NSG) and NOD/SCID/Jak3(Janus kinase 3)null (NOJ). Success rates differ with tumor origin: gastrointestinal tumors acquire a higher engraftment rate, while the rate is lower for breast cancers. Subcutaneous transplantation is the most popular method to establish PDX, but some tumors require specific environments, e.g., orthotropic or renal capsule transplantation. Human hormone treatment is necessary to establish hormone-dependent cancers such as prostate and breast cancers. PDX mice with human hematopoietic and immune systems (humanized PDX) are powerful tools for the analysis of tumor-immune system interaction and evaluation of immunotherapy response. A PDX biobank equipped with patients' clinical data, gene-expression patterns, mutational statuses, tumor tissue architects, and drug responsiveness will be an authoritative resource for developing specific tumor biomarkers for chemotherapeutic predictions, creating individualized therapy, and establishing precise cancer medicine.
Collapse
|
Review |
6 |
154 |
7
|
Nicolle R, Blum Y, Marisa L, Loncle C, Gayet O, Moutardier V, Turrini O, Giovannini M, Bian B, Bigonnet M, Rubis M, Elarouci N, Armenoult L, Ayadi M, Duconseil P, Gasmi M, Ouaissi M, Maignan A, Lomberk G, Boher JM, Ewald J, Bories E, Garnier J, Goncalves A, Poizat F, Raoul JL, Secq V, Garcia S, Grandval P, Barraud-Blanc M, Norguet E, Gilabert M, Delpero JR, Roques J, Calvo E, Guillaumond F, Vasseur S, Urrutia R, de Reyniès A, Dusetti N, Iovanna J. Pancreatic Adenocarcinoma Therapeutic Targets Revealed by Tumor-Stroma Cross-Talk Analyses in Patient-Derived Xenografts. Cell Rep 2017; 21:2458-2470. [PMID: 29186684 PMCID: PMC6082139 DOI: 10.1016/j.celrep.2017.11.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/12/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023] Open
Abstract
Preclinical models based on patient-derived xenografts have remarkable specificity in distinguishing transformed human tumor cells from non-transformed murine stromal cells computationally. We obtained 29 pancreatic ductal adenocarcinoma (PDAC) xenografts from either resectable or non-resectable patients (surgery and endoscopic ultrasound-guided fine-needle aspirate, respectively). Extensive multiomic profiling revealed two subtypes with distinct clinical outcomes. These subtypes uncovered specific alterations in DNA methylation and transcription as well as in signaling pathways involved in tumor-stromal cross-talk. The analysis of these pathways indicates therapeutic opportunities for targeting both compartments and their interactions. In particular, we show that inhibiting NPC1L1 with Ezetimibe, a clinically available drug, might be an efficient approach for treating pancreatic cancers. These findings uncover the complex and diverse interplay between PDAC tumors and the stroma and demonstrate the pivotal role of xenografts for drug discovery and relevance to PDAC.
Collapse
|
research-article |
8 |
149 |
8
|
Namekawa T, Ikeda K, Horie-Inoue K, Inoue S. Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells. Cells 2019; 8:cells8010074. [PMID: 30669516 PMCID: PMC6357050 DOI: 10.3390/cells8010074] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine.
Collapse
|
Review |
6 |
117 |
9
|
Meraz IM, Majidi M, Meng F, Shao R, Ha MJ, Neri S, Fang B, Lin SH, Tinkey PT, Shpall EJ, Morris J, Roth JA. An Improved Patient-Derived Xenograft Humanized Mouse Model for Evaluation of Lung Cancer Immune Responses. Cancer Immunol Res 2019; 7:1267-1279. [PMID: 31186248 PMCID: PMC7213862 DOI: 10.1158/2326-6066.cir-18-0874] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Human tumor xenograft models do not replicate the human immune system and tumor microenvironment. We developed an improved humanized mouse model, derived from fresh cord blood CD34+ stem cells (CD34+ HSC), and combined it with lung cancer cell line-derived human xenografts or patient-derived xenografts (Hu-PDX). Fresh CD34+ HSCs could reconstitute detectable mature human leukocytes (hCD45+) in mice at four weeks without the onset of graft-versus-host disease (GVHD). Repopulated human T cells, B cells, natural killer (NK) cells, dendritic cells (DC), and myeloid-derived suppressor cells (MDSC) increased in peripheral blood, spleen, and bone marrow over time. Although cultured CD34+ HSCs labeled with luciferase could be detected in mice, the cultured HSCs did not develop into mature human immune cells by four weeks, unlike fresh CD34+ HSCs. Ex vivo, reconstituted T cells, obtained from the tumor-bearing humanized mice, secreted IFNγ upon treatment with phorbol myristate acetate (PMA) or exposure to human A549 lung tumor cells and mediated antigen-specific CTL responses, indicating functional activity. Growth of engrafted PDXs and tumor xenografts was not dependent on the human leukocyte antigen status of the donor. Treatment with the anti-PD-1 checkpoint inhibitors pembrolizumab or nivolumab inhibited tumor growth in humanized mice significantly, and correlated with an increased number of CTLs and decreased MDSCs, regardless of the donor HLA type. In conclusion, fresh CD34+HSCs are more effective than their expanded counterparts in humanizing mice, and do so in a shorter time. The Hu-PDX model provides an improved platform for evaluation of immunotherapy.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
106 |
10
|
Wei D, Yu Y, Zhang X, Wang Y, Chen H, Zhao Y, Wang F, Rong G, Wang W, Kang X, Cai J, Wang Z, Yin JY, Hanif M, Sun Y, Zha G, Li L, Nie G, Xiao H. Breaking the Intracellular Redox Balance with Diselenium Nanoparticles for Maximizing Chemotherapy Efficacy on Patient-Derived Xenograft Models. ACS NANO 2020; 14:16984-16996. [PMID: 33283501 DOI: 10.1021/acsnano.0c06190] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Excessive oxidative stress in cancer cells can induce cancer cell death. Anticancer activity and drug resistance of chemotherapy are closely related to the redox state of tumor cells. Herein, five lipophilic Pt(IV) prodrugs were synthesized on the basis of the most widely used anticancer drug cisplatin, whose anticancer efficacy and drug resistance are closely related to the intracellular redox state. Subsequently, a series of cisplatin-sensitive and drug-resistant cell lines as well as three patient-derived primary ovarian cancer cells have been selected to screen those prodrugs. To verify if the disruption of redox balance can be combined with these Pt(IV) prodrugs, we then synthesized a polymer with a diselenium bond in the main chain for encapsulating the most effective prodrug to form nanoparticles (NP(Se)s). NP(Se)s can efficiently break the redox balance via simultaneously depleting GSH and augmenting ROS, thereby achieving a synergistic effect with cisplatin. In addition, genome-wide analysis via RNA-seq was employed to provide a comprehensive understanding of the changes in transcriptome and the alterations in redox-related pathways in cells treated with NP(Se)s and cisplatin. Thereafter, patient-derived xenograft models of hepatic carcinoma (PDXHCC) and multidrug-resistant lung cancer (PDXMDR) were established to evaluate the therapeutic effect of NP(Se)s, and a significant antitumor effect was achieved on both models with NP(Se)s. Overall, this study provides a promising strategy to break the redox balance for maximizing the efficacy of platinum-based cancer therapy.
Collapse
|
|
5 |
104 |
11
|
Rokita JL, Rathi KS, Cardenas MF, Upton KA, Jayaseelan J, Cross KL, Pfeil J, Egolf LE, Way GP, Farrel A, Kendsersky NM, Patel K, Gaonkar KS, Modi A, Berko ER, Lopez G, Vaksman Z, Mayoh C, Nance J, McCoy K, Haber M, Evans K, McCalmont H, Bendak K, Böhm JW, Marshall GM, Tyrrell V, Kalletla K, Braun FK, Qi L, Du Y, Zhang H, Lindsay HB, Zhao S, Shu J, Baxter P, Morton C, Kurmashev D, Zheng S, Chen Y, Bowen J, Bryan AC, Leraas KM, Coppens SE, Doddapaneni H, Momin Z, Zhang W, Sacks GI, Hart LS, Krytska K, Mosse YP, Gatto GJ, Sanchez Y, Greene CS, Diskin SJ, Vaske OM, Haussler D, Gastier-Foster JM, Kolb EA, Gorlick R, Li XN, Reynolds CP, Kurmasheva RT, Houghton PJ, Smith MA, Lock RB, Raman P, Wheeler DA, Maris JM. Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Rep 2019; 29:1675-1689.e9. [PMID: 31693904 PMCID: PMC6880934 DOI: 10.1016/j.celrep.2019.09.071] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/10/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023] Open
Abstract
Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
102 |
12
|
Ma Y, Wang W, Idowu MO, Oh U, Wang XY, Temkin SM, Fang X. Ovarian Cancer Relies on Glucose Transporter 1 to Fuel Glycolysis and Growth: Anti-Tumor Activity of BAY-876. Cancers (Basel) 2018; 11:cancers11010033. [PMID: 30602670 PMCID: PMC6356953 DOI: 10.3390/cancers11010033] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022] Open
Abstract
The recent progresses in understanding of cancer glycolytic phenotype have offered new strategies to manage ovarian cancer and other malignancies. However, therapeutic targeting of glycolysis to treat cancer remains unsuccessful due to complex mechanisms of tumor glycolysis and the lack of selective, potent and safe glycolytic inhibitors. Recently, BAY-876 was identified as a new-generation inhibitor of glucose transporter 1 (GLUT1), a GLUT isoform commonly overexpressed but functionally poorly defined in ovarian cancer. Notably, BAY-876 has not been evaluated in any cell or preclinical animal models since its discovery. We herein took advantage of BAY-876 and molecular approaches to study GLUT1 regulation, targetability, and functional relevance to cancer glycolysis. The anti-tumor activity of BAY-876 was evaluated with ovarian cancer cell line- and patient-derived xenograft (PDX) models. Our results show that inhibition of GLUT1 is sufficient to block basal and stress-regulated glycolysis, and anchorage-dependent and independent growth of ovarian cancer cells. BAY-876 dramatically inhibits tumorigenicity of both cell line-derived xenografts and PDXs. These studies provide direct evidence that GLUT1 is causally linked to the glycolytic phenotype in ovarian cancer. BAY-876 is a potent blocker of GLUT1 activity, glycolytic metabolism and ovarian cancer growth, holding promise as a novel glycolysis-targeted anti-cancer agent.
Collapse
|
Journal Article |
7 |
95 |
13
|
Yu Y, Schleich K, Yue B, Ji S, Lohneis P, Kemper K, Silvis MR, Qutob N, van Rooijen E, Werner-Klein M, Li L, Dhawan D, Meierjohann S, Reimann M, Elkahloun A, Treitschke S, Dörken B, Speck C, Mallette FA, Zon LI, Holmen SL, Peeper DS, Samuels Y, Schmitt CA, Lee S. Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma. Cancer Cell 2018; 33:322-336.e8. [PMID: 29438700 PMCID: PMC5977991 DOI: 10.1016/j.ccell.2018.01.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022]
Abstract
Oncogene-induced senescence, e.g., in melanocytic nevi, terminates the expansion of pre-malignant cells via transcriptional silencing of proliferation-related genes due to decoration of their promoters with repressive trimethylated histone H3 lysine 9 (H3K9) marks. We show here that structurally distinct H3K9-active demethylases-the lysine-specific demethylase-1 (LSD1) and several Jumonji C domain-containing moieties (such as JMJD2C)-disable senescence and permit Ras/Braf-evoked transformation. In mouse and zebrafish models, enforced LSD1 or JMJD2C expression promoted Braf-V600E-driven melanomagenesis. A large subset of established melanoma cell lines and primary human melanoma samples presented with a collective upregulation of related and unrelated H3K9 demethylase activities, whose targeted inhibition restored senescence, even in Braf inhibitor-resistant melanomas, evoked secondary immune effects and controlled tumor growth in vivo.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
93 |
14
|
Wei X, Lai Y, Li J, Qin L, Xu Y, Zhao R, Li B, Lin S, Wang S, Wu Q, Liang Q, Peng M, Yu F, Li Y, Zhang X, Wu Y, Liu P, Pei D, Yao Y, Li P. PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells. Oncoimmunology 2017; 6:e1284722. [PMID: 28405515 DOI: 10.1080/2162402x.2017.1284722] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years, immunotherapies, such as those involving chimeric antigen receptor (CAR) T cells, have become increasingly promising approaches to non-small-cell lung cancer (NSCLC) treatment. In this study, we explored the antitumor potential of prostate stem cell antigen (PSCA)-redirected CAR T and mucin 1 (MUC1)-redirected CAR T cells in tumor models of NSCLC. First, we generated patient-derived xenograft (PDX) mouse models of human NSCLC that maintained the antigenic profiles of primary tumors. Next, we demonstrated the expression of PSCA and MUC1 in NSCLC, followed by the generation and confirmation of the specificity and efficacy of PSCA- and MUC1-targeting CAR T cells against NSCLC cell lines in vitro. Finally, we demonstrated that PSCA-targeting CAR T cells could efficiently suppress NSCLC tumor growth in PDX mice and synergistically eliminate PSCA+MUC1+ tumors when combined with MUC1-targeting CAR T cells. Taken together, our studies demonstrate that PSCA and MUC1 are both promising CAR T cell targets in NSCLC and that the combinatorial targeting of these antigens could further enhance the antitumor efficacy of CAR T cells.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
90 |
15
|
Jiang J, Wang J, Yue M, Cai X, Wang T, Wu C, Su H, Wang Y, Han M, Zhang Y, Zhu X, Jiang P, Li P, Sun Y, Xiao W, Feng H, Qing G, Liu H. Direct Phosphorylation and Stabilization of MYC by Aurora B Kinase Promote T-cell Leukemogenesis. Cancer Cell 2020; 37:200-215.e5. [PMID: 32049046 PMCID: PMC7321798 DOI: 10.1016/j.ccell.2020.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/15/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
Deregulation of MYC plays an essential role in T cell acute lymphoblastic leukemia (T-ALL), yet the mechanisms underlying its deregulation remain elusive. Herein, we identify a molecular mechanism responsible for reciprocal activation between Aurora B kinase (AURKB) and MYC. AURKB directly phosphorylates MYC at serine 67, counteracting GSK3β-directed threonine 58 phosphorylation and subsequent FBXW7-mediated proteasomal degradation. Stabilized MYC, in concert with T cell acute lymphoblastic leukemia 1 (TAL1), directly activates AURKB transcription, constituting a positive feedforward loop that reinforces MYC-regulated oncogenic programs. Therefore, inhibitors of AURKB induce prominent MYC degradation concomitant with robust leukemia cell death. These findings reveal an AURKB-MYC regulatory circuit that underlies T cell leukemogenesis, and provide a rationale for therapeutic targeting of oncogenic MYC via AURKB inhibition.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
78 |
16
|
Romero-Calvo I, Weber CR, Ray M, Brown M, Kirby K, Nandi RK, Long TM, Sparrow SM, Ugolkov A, Qiang W, Zhang Y, Brunetti T, Kindler H, Segal JP, Rzhetsky A, Mazar AP, Buschmann MM, Weichselbaum R, Roggin K, White KP. Human Organoids Share Structural and Genetic Features with Primary Pancreatic Adenocarcinoma Tumors. Mol Cancer Res 2019; 17:70-83. [PMID: 30171177 PMCID: PMC6647028 DOI: 10.1158/1541-7786.mcr-18-0531] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
Abstract
Patient-derived pancreatic ductal adenocarcinoma (PDAC) organoid systems show great promise for understanding the biological underpinnings of disease and advancing therapeutic precision medicine. Despite the increased use of organoids, the fidelity of molecular features, genetic heterogeneity, and drug response to the tumor of origin remain important unanswered questions limiting their utility. To address this gap in knowledge, primary tumor- and patient-derived xenograft (PDX)-derived organoids, and 2D cultures for in-depth genomic and histopathologic comparisons with the primary tumor were created. Histopathologic features and PDAC representative protein markers (e.g., claudin 4 and CA19-9) showed strong concordance. DNA- and RNA-sequencing (RNAseq) of single organoids revealed patient-specific genomic and transcriptomic consistency. Single-cell RNAseq demonstrated that organoids are primarily a clonal population. In drug response assays, organoids displayed patient-specific sensitivities. In addition, the in vivo PDX response to FOLFIRINOX and gemcitabine/abraxane treatments were examined, which was recapitulated in vitro with organoids. This study has demonstrated that organoids are potentially invaluable for precision medicine as well as preclinical drug treatment studies because they maintain distinct patient phenotypes and respond differently to drug combinations and dosage. IMPLICATIONS: The patient-specific molecular and histopathologic fidelity of organoids indicate that they can be used to understand the etiology of the patient's tumor and the differential response to therapies and suggests utility for predicting drug responses.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
77 |
17
|
Shi J, Li Y, Jia R, Fan X. The fidelity of cancer cells in PDX models: Characteristics, mechanism and clinical significance. Int J Cancer 2019; 146:2078-2088. [PMID: 31479514 DOI: 10.1002/ijc.32662] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022]
Abstract
Patient-derived xenograft (PDX) models are widely used as preclinical cancer models and are considered better than cell culture models in recapitulating the histological features, molecular characteristics and intratumoral heterogeneity (ITH) of human tumors. While the PDX model is commonly accepted for use in drug discovery and other translational studies, a growing body of evidence has suggested its limitations. Recently, the fidelity of cancer cells within a PDX has been questioned, which may impede the future application of these models. In this review, we will focus the variable phenotypes of xenograft tumors and the genomic instability and molecular inconsistency of PDX tumors after serial transplantation. Next, we will discuss the underlying mechanism of ITH and its clinical relevance. Stochastic selection bias in the sampling process and/or deterministic clonal dynamics due to murine selective pressure may have detrimental effects on the results of personalized medicine and drug screening studies. In addition, we aim to identify a possible solution for the issue of fidelity in current PDX models and to discuss emerging next-generation preclinical models.
Collapse
|
Review |
6 |
72 |
18
|
Development of a Patient-Derived Xenograft (PDX) of Breast Cancer Bone Metastasis in a Zebrafish Model. Int J Mol Sci 2016; 17:ijms17081375. [PMID: 27556456 PMCID: PMC5000770 DOI: 10.3390/ijms17081375] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is a complex process that needs to be better understood in order to help clinicians prevent and treat it. Xenografts using patient-derived material (PDX) rather than cancer cell lines are a novel approach that guarantees more clinically realistic results. A primary culture of bone metastasis derived from a 67-year-old patient with breast cancer was cultured and then injected into zebrafish (ZF) embryos to study its metastatic potential. In vivo behavior and results of gene expression analyses of the primary culture were compared with those of cancer cell lines with different metastatic potential (MCF7 and MDA-MB-231). The MCF7 cell line, which has the same hormonal receptor status as the bone metastasis primary culture, did not survive in the in vivo model. Conversely, MDA-MB-231 disseminated and colonized different parts of the ZF, including caudal hematopoietic tissues (CHT), revealing a migratory phenotype. Primary culture cells disseminated and in later stages extravasated from the vessels, engrafting into ZF tissues and reaching the CHT. Primary cell behavior reflected the clinical course of the patient’s medical history. Our results underline the potential for using PDX models in bone metastasis research and outline new methods for the clinical application of this in vivo model.
Collapse
|
Journal Article |
9 |
72 |
19
|
Navone NM, van Weerden WM, Vessella RL, Williams ED, Wang Y, Isaacs JT, Nguyen HM, Culig Z, van der Pluijm G, Rentsch CA, Marques RB, de Ridder CMA, Bubendorf L, Thalmann GN, Brennen WN, Santer FR, Moser PL, Shepherd P, Efstathiou E, Xue H, Lin D, Buijs J, Bosse T, Collins A, Maitland N, Buzza M, Kouspou M, Achtman A, Taylor RA, Risbridger G, Corey E. Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patient-derived xenograft (PDX) models. Prostate 2018; 78:1262-1282. [PMID: 30073676 DOI: 10.1002/pros.23701] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND While it has been challenging to establish prostate cancer patient-derived xenografts (PDXs), with a take rate of 10-40% and long latency time, multiple groups throughout the world have developed methods for the successful establishment of serially transplantable human prostate cancer PDXs using a variety of immune deficient mice. In 2014, the Movember Foundation launched a Global Action Plan 1 (GAP1) project to support an international collaborative prostate cancer PDX program involving eleven groups. Between these Movember consortium members, a total of 98 authenticated human prostate cancer PDXs were available for characterization. Eighty three of these were derived directly from patient material, and 15 were derived as variants of patient-derived material via serial passage in androgen deprived hosts. A major goal of the Movember GAP1 PDX project was to provide the prostate cancer research community with a summary of both the basic characteristics of the 98 available authenticated serially transplantable human prostate cancer PDX models and the appropriate contact information for collaborations. Herein, we report a summary of these PDX models. METHODS PDX models were established in immunocompromised mice via subcutaneous or subrenal-capsule implantation. Dual-label species (ie, human vs mouse) specific centromere and telomere Fluorescence In Situ Hybridization (FISH) and immuno-histochemical (IHC) staining of tissue microarrays (TMAs) containing replicates of the PDX models were used for characterization of expression of a number of phenotypic markers important for prostate cancer including AR (assessed by IHC and FISH), Ki67, vimentin, RB1, P-Akt, chromogranin A (CgA), p53, ERG, PTEN, PSMA, and epithelial cytokeratins. RESULTS Within this series of PDX models, the full spectrum of clinical disease stages is represented, including androgen-sensitive and castration-resistant primary and metastatic prostate adenocarcinomas as well as prostate carcinomas with neuroendocrine differentiation. The annotated clinical characteristics of these PDXs were correlated with their marker expression profile. CONCLUSION Our results demonstrate the clinical relevance of this series of PDXs as a platform for both basic science studies and therapeutic discovery/drug development. The present report provides the prostate cancer community with a summary of the basic characteristics and a contact information for collaborations using these models.
Collapse
|
|
7 |
70 |
20
|
Braekeveldt N, Wigerup C, Gisselsson D, Mohlin S, Merselius M, Beckman S, Jonson T, Börjesson A, Backman T, Tadeo I, Berbegall AP, Ora I, Navarro S, Noguera R, Påhlman S, Bexell D. Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours. Int J Cancer 2014; 136:E252-61. [PMID: 25220031 PMCID: PMC4299502 DOI: 10.1002/ijc.29217] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/31/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
Abstract
Neuroblastoma is a childhood tumour with heterogeneous characteristics and children with metastatic disease often have a poor outcome. Here we describe the establishment of neuroblastoma patient-derived xenografts (PDXs) by orthotopic implantation of viably cryopreserved or fresh tumour explants of patients with high risk neuroblastoma into immunodeficient mice. In vivo tumour growth was monitored by magnetic resonance imaging and fluorodeoxyglucose–positron emission tomography. Neuroblastoma PDXs retained the undifferentiated histology and proliferative capacity of their corresponding patient tumours. The PDXs expressed neuroblastoma markers neural cell adhesion molecule, chromogranin A, synaptophysin and tyrosine hydroxylase. Whole genome genotyping array analyses demonstrated that PDXs retained patient-specific chromosomal aberrations such as MYCN amplification, deletion of 1p and gain of chromosome 17q. Thus, neuroblastoma PDXs recapitulate the hallmarks of high-risk neuroblastoma in patients. PDX-derived cells were cultured in serum-free medium where they formed free-floating neurospheres, expressed neuroblastoma gene markers MYCN, CHGA, TH, SYP and NPY, and retained tumour-initiating and metastatic capacity in vivo. PDXs showed much higher degree of infiltrative growth and distant metastasis as compared to neuroblastoma SK-N-BE(2)c cell line-derived orthotopic tumours. Importantly, the PDXs presented with bone marrow involvement, a clinical feature of aggressive neuroblastoma. Thus, neuroblastoma PDXs serve as clinically relevant models for studying and targeting high-risk metastatic neuroblastoma.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
65 |
21
|
Damayanti NP, Budka JA, Khella HWZ, Ferris MW, Ku SY, Kauffman E, Wood AC, Ahmed K, Chintala VN, Adelaiye-Ogala R, Elbanna M, Orillion A, Chintala S, Kao C, Linehan WM, Yousef GM, Hollenhorst PC, Pili R. Therapeutic Targeting of TFE3/IRS-1/PI3K/mTOR Axis in Translocation Renal Cell Carcinoma. Clin Cancer Res 2018; 24:5977-5989. [PMID: 30061365 PMCID: PMC6279468 DOI: 10.1158/1078-0432.ccr-18-0269] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
PURPOSE Translocation renal cell carcinoma (tRCC) represents a rare subtype of kidney cancer associated with various TFE3, TFEB, or MITF gene fusions that are not responsive to standard treatments for RCC. Therefore, the identification of new therapeutic targets represents an unmet need for this disease. EXPERIMENTAL DESIGN We have established and characterized a tRCC patient-derived xenograft, RP-R07, as a novel preclinical model for drug development by using next-generation sequencing and bioinformatics analysis. We then assessed the therapeutic potential of inhibiting the identified pathway using in vitro and in vivo models. RESULTS The presence of a SFPQ-TFE3 fusion [t(X;1) (p11.2; p34)] with chromosomal break-points was identified by RNA-seq and validated by RT-PCR. TFE3 chromatin immunoprecipitation followed by deep sequencing analysis indicated a strong enrichment for the PI3K/AKT/mTOR pathway. Consistently, miRNA microarray analysis also identified PI3K/AKT/mTOR as a highly enriched pathway in RP-R07. Upregulation of PI3/AKT/mTOR pathway in additional TFE3-tRCC models was confirmed by significantly higher expression of phospho-S6 (P < 0.0001) and phospho-4EBP1 (P < 0.0001) in established tRCC cell lines compared with clear cell RCC cells. Simultaneous vertical targeting of both PI3K/AKT and mTOR axis provided a greater antiproliferative effect both in vitro (P < 0.0001) and in vivo (P < 0.01) compared with single-node inhibition. Knockdown of TFE3 in RP-R07 resulted in decreased expression of IRS-1 and inhibited cell proliferation. CONCLUSIONS These results identify TFE3/IRS-1/PI3K/AKT/mTOR as a potential dysregulated pathway in TFE3-tRCC, and suggest a therapeutic potential of vertical inhibition of this axis by using a dual PI3K/mTOR inhibitor for patients with TFE3-tRCC.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
65 |
22
|
Savage P, Blanchet-Cohen A, Revil T, Badescu D, Saleh SMI, Wang YC, Zuo D, Liu L, Bertos NR, Munoz-Ramos V, Basik M, Petrecca K, Asselah J, Meterissian S, Guiot MC, Omeroglu A, Kleinman CL, Park M, Ragoussis J. A Targetable EGFR-Dependent Tumor-Initiating Program in Breast Cancer. Cell Rep 2018; 21:1140-1149. [PMID: 29091754 DOI: 10.1016/j.celrep.2017.10.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/04/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
Therapies targeting epidermal growth factor receptor (EGFR) have variable and unpredictable responses in breast cancer. Screening triple-negative breast cancer (TNBC) patient-derived xenografts (PDXs), we identify a subset responsive to EGFR inhibition by gefitinib, which displays heterogeneous expression of wild-type EGFR. Deep single-cell RNA sequencing of 3,500 cells from an exceptional responder identified subpopulations displaying distinct biological features, where elevated EGFR expression was significantly enriched in a mesenchymal/stem-like cellular cluster. Sorted EGFRhi subpopulations exhibited enhanced stem-like features, including ALDH activity, sphere-forming efficiency, and tumorigenic and metastatic potential. EGFRhi cells gave rise to EGFRhi and EGFRlo cells in primary and metastatic tumors, demonstrating an EGFR-dependent expansion and hierarchical state transition. Similar tumorigenic EGFRhi subpopulations were identified in independent PDXs, where heterogeneous EGFR expression correlated with gefitinib sensitivity. This provides new understanding for an EGFR-dependent hierarchy in TNBC and for patient stratification for therapeutic intervention.
Collapse
|
Journal Article |
7 |
65 |
23
|
Zhang J, Zhao B, Chen S, Wang Y, Zhang Y, Wang Y, Wei D, Zhang L, Rong G, Weng Y, Hao J, Li B, Hou XQ, Kang X, Zhao Y, Wang F, Zhao Y, Yu Y, Wu QP, Liang XJ, Xiao H. Near-Infrared Light Irradiation Induced Mild Hyperthermia Enhances Glutathione Depletion and DNA Interstrand Cross-Link Formation for Efficient Chemotherapy. ACS NANO 2020; 14:14831-14845. [PMID: 33084319 DOI: 10.1021/acsnano.0c03781] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA alkylating agents generally kill tumor cells by covalently binding with DNA to form interstrand or intrastrand cross-links. However, in the case of cisplatin, only a few DNA adducts (<1%) are highly toxic irreparable interstrand cross-links. Furthermore, cisplatin is rapidly detoxified by high levels of intracellular thiols such as glutathione (GSH). Since the discovery of its mechanism of action, people have been looking for ways to directly and efficiently remove intracellular GSH and increase interstrand cross-links to improve drug efficacy and overcome resistance, but there has been little breakthrough. Herein, we hypothesized that the anticancer efficiency of cisplatin can be enhanced through iodo-thiol click chemistry mediated GSH depletion and increased formation of DNA interstrand cross-links via mild hyperthermia triggered by near-infrared (NIR) light. This was achieved by preparing an amphiphilic polymer with platinum(IV) (Pt(IV)) prodrugs and pendant iodine atoms (iodides). The polymer was further used to encapsulate IR780 and assembled into Pt-I-IR780 nanoparticles. Induction of mild hyperthermia (43 °C) at the tumor site by NIR light irradiation had three effects: (1) it accelerated the GSH-mediated reduction of Pt(IV) in the polymer main chain to platinum(II) (Pt(II)); (2) it boosted the iodo-thiol substitution click reaction between GSH and iodide, thereby attenuating the GSH-mediated detoxification of cisplatin; (3) it increased the proportion of highly toxic and irreparable Pt-DNA interstrand cross-links. Therefore, we find that mild hyperthermia induced via NIR irradiation can enhance the killing of cancer cells and reduce the tumor burden, thus delivering efficient chemotherapy.
Collapse
|
|
5 |
63 |
24
|
Morgan KM, Riedlinger GM, Rosenfeld J, Ganesan S, Pine SR. Patient-Derived Xenograft Models of Non-Small Cell Lung Cancer and Their Potential Utility in Personalized Medicine. Front Oncol 2017; 7:2. [PMID: 28154808 PMCID: PMC5243815 DOI: 10.3389/fonc.2017.00002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/05/2017] [Indexed: 12/24/2022] Open
Abstract
Traditional preclinical studies of cancer therapeutics have relied on the use of established human cell lines that have been adapted to grow in the laboratory and, therefore, may deviate from the cancer they were meant to represent. With the emphasis of cancer drug development shifting from non-specific cytotoxic agents to rationally designed molecularly targeted therapies or immunotherapy comes the need for better models with predictive value regarding therapeutic activity and response in clinical trials. Recently, the diversity and accessibility of immunodeficient mouse strains has greatly enhanced the production and utility of patient-derived xenograft (PDX) models for many tumor types, including non-small cell lung cancer (NSCLC). Combined with next-generation sequencing, NSCLC PDX mouse models offer an exciting tool for drug development and for studying targeted therapies while utilizing patient samples with the hope of eventually aiding in clinical decision-making. Here, we describe NSCLC PDX mouse models generated by us and others, their ability to reflect the parental tumors’ histomorphological characteristics, as well as the effect of clonal selection and evolution on maintaining genomic integrity in low-passage PDXs compared to the donor tissue. We also raise vital questions regarding the practical utility of PDX and humanized PDX models in predicting patient response to therapy and make recommendations for addressing those questions. Once collaborations and standardized xenotransplantation and data management methods are established, NSCLC PDX mouse models have the potential to be universal and invaluable as a preclinical tool that guides clinical trials and standard therapeutic decisions.
Collapse
|
Journal Article |
8 |
62 |
25
|
Green AL, Ramkissoon SH, McCauley D, Jones K, Perry JA, Hsu JHR, Ramkissoon LA, Maire CL, Hubbell-Engler B, Knoff DS, Shacham S, Ligon KL, Kung AL. Preclinical antitumor efficacy of selective exportin 1 inhibitors in glioblastoma. Neuro Oncol 2015; 17:697-707. [PMID: 25366336 PMCID: PMC4482855 DOI: 10.1093/neuonc/nou303] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/30/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is poorly responsive to current chemotherapy. The nuclear transporter exportin 1 (XPO1, CRM1) is often highly expressed in GBM, which may portend a poor prognosis. Here, we determine the efficacy of novel selective inhibitors of nuclear export (SINE) specific to XPO1 in preclinical models of GBM. METHODS Seven patient-derived GBM lines were treated with 3 SINE compounds (KPT-251, KPT-276, and Selinexor) in neurosphere culture conditions. KPT-276 and Selinexor were also evaluated in a murine orthotopic patient-derived xenograft (PDX) model of GBM. Cell cycle effects were assayed by flow cytometry in vitro and immunohistochemistry in vivo. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase 3/7 activity assays. RESULTS Treatment of GBM neurosphere cultures with KPT-276, Selinexor, and KPT-251 revealed dose-responsive growth inhibition in all 7 GBM lines [range of half-maximal inhibitory concentration (IC50), 6-354 nM]. In an orthotopic PDX model, treatment with KPT-276 and Selinexor demonstrated pharmacodynamic efficacy, significantly suppressed tumor growth, and prolonged animal survival. Cellular proliferation was not altered with SINE treatment. Instead, induction of apoptosis was apparent both in vitro and in vivo with SINE treatment, without overt evidence of neurotoxicity. CONCLUSIONS SINE compounds show preclinical efficacy utilizing in vitro and in vivo models of GBM, with induction of apoptosis as the mechanism of action. Selinexor is now in early clinical trials in solid and hematological malignancies. Based on these preclinical data and excellent brain penetration, we have initiated clinical trials of Selinexor in patients with relapsed GBM.
Collapse
|
research-article |
10 |
60 |