176
|
Ettinger U, Joober R, DE Guzman R, O'driscoll GA. Schizotypy, attention deficit hyperactivity disorder, and dopamine genes. Psychiatry Clin Neurosci 2006; 60:764-7. [PMID: 17109713 DOI: 10.1111/j.1440-1819.2006.01594.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous research has suggested that there may be overlap between schizophrenia and attention-deficit hyperactivity disorder (ADHD). The relationship between schizotypal personality traits, ADHD features and polymorphisms was evaluated in dopamine-related genes. Thirty-one healthy, Caucasian men completed the Rust Inventory of Schizotypal Cognitions (RISC) and the ADHD Self-Report Scale (ASRS). Catechol-O-methyltransferase (COMT) Val158Met, dopamine receptors of the D3 type (DRD3) Ser9Gly, DRD4 variable number of tandem repeats (VNTR), and SLC6A3 VNTR polymorphisms were analyzed. RISC score was correlated with ASRS score (r = 0.54, P = 0.003). COMT Met homozygotes had higher ASRS scores than Val homozygotes (P = 0.005). These findings are consistent with evidence of overlap between schizophrenia and ADHD and support an involvement of COMT genotype in ADHD features.
Collapse
|
177
|
Broekman BFP, Olff M, Boer F. The genetic background to PTSD. Neurosci Biobehav Rev 2006; 31:348-62. [PMID: 17126903 DOI: 10.1016/j.neubiorev.2006.10.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 11/19/2022]
Abstract
Although extensive research has already been done on the genetic bases of psychiatric disorders, little is known about polygenetic influences in posttraumatic stress disorder (PTSD). This article reviews molecular genetic studies relating to PTSD that were found in a literature search in Medline, Embase and Web of Science. Association studies have investigated 8 major genotypes in connection with PTSD. They have tested hypotheses involving key candidate genes in the serotonin (5-HTT), dopamine (DRD2, DAT), glucocorticoid (GR), GABA (GABRB), apolipoprotein systems (APOE2), brain-derived neurotrophic factor (BDNF) and neuropeptide Y (NPY). The studies have produced inconsistent results, many of which may be attributable to methodological shortcomings and insufficient statistical power. The complex aetiology of PTSD, for which experiencing a traumatic event forms a necessary condition, makes it difficult to identify specific genes that substantially contribute to the disorder. Gene-finding strategies are difficult to apply. Interactions between different genes and between them and the environment probably make certain people vulnerable to developing PTSD. Gene-environmental studies are needed that focus more narrowly on specific, distinct endophenotypes and on influences from environmental factors.
Collapse
|
178
|
Carlson JN, Drew Stevens K. Individual differences in ethanol self-administration following withdrawal are associated with asymmetric changes in dopamine and serotonin in the medial prefrontal cortex and amygdala. Alcohol Clin Exp Res 2006; 30:1678-92. [PMID: 17010135 DOI: 10.1111/j.1530-0277.2006.00203.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Ethanol withdrawal alters brain neurochemistry, causes asymmetric activation of neurons in the medial prefrontal cortex (mPFC) and amygdala (AMY), and increases ethanol craving and drinking. Rats with intrinsic rightward-turning preferences drink more ethanol than those with left or no preferences; they also exhibit an ethanol-induced neurochemical activation that favors the right side of the mPFC. Our experiments used rats with different turning preferences to assess differences in withdrawal effects on mPFC and AMY neurochemistry as well as ethanol self-administration. METHODS AND RESULTS Rats with left-turning, right-turning, and nonturning preferences were fed a 6% ethanol-containing liquid diet (WD) or a pair-fed control diet for 14 days. Differences in dopamine (DA), serotonin (5HT), norepinephrine (NE), and metabolite [3,4-dihydroxphenylacetic acid, homovanillic acid (HVA), and 5-hydroxyindoleacetic acid) concentrations were assessed in each side of the mPFC and AMY during acute withdrawal. Similar groups were fed the same diets and tested for consumption of 10% ethanol versus water and 1% sucrose versus water. WD increased HVA/DA in the mPFC and caused depletions of DA and 5HT in the mPFC and 5HT in the AMY. These effects were greater in the right than in the left side of these structures in rats with right-turning preferences. WD reduced ethanol drinking but right turners drank significantly more than left turners on day 2 of testing and drank more on days 2 and 3 than on day 1. No effects were observed on sucrose drinking. Similar groups were also trained to self-administer ethanol using a sucrose-fade sipper tube procedure that separated measures of ethanol seeking (bar pressing) and consumption. Following 14 days of vapor chamber exposure to ethanol, rats of all turning preferences had a lower rate of bar pressing on the first postwithdrawal day and shorter latencies to begin bar pressing on the third withdrawal day versus prewithdrawal baseline. Only right-turning-preference rats consumed more ethanol following withdrawal. CONCLUSIONS These studies show that individual rats differ in postwithdrawal brain neurochemistry and ethanol consumption and that these differences are associated with differences in functional brain asymmetry.
Collapse
|
179
|
Cevoli S, Mochi M, Scapoli C, Marzocchi N, Pierangeli G, Pini LA, Cortelli P, Montagna P. A genetic association study of dopamine metabolism-related genes and chronic headache with drug abuse. Eur J Neurol 2006; 13:1009-13. [PMID: 16930369 DOI: 10.1111/j.1468-1331.2006.01415.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To assess the role of dopamine metabolism-related genes in the genetic liability to chronic headache with drug abuse (DA). We performed a genetic association study using four functional polymorphisms of the dopamine receptor 4 (DRD4), dopamine transporter (DAT), mono-amino-oxidase A (MAOA) and cathecol-O-methyl-transferase (COMT) genes in 103 patients with chronic daily headache associated with DA (CDHDA). Control samples were 117 individuals without headache or DA (controls) and 101 patients with episodic migraine without aura and without DA (MO). No differences were found at the COMT and MAOA genes among the three groups investigated. Allele 4 of DRD4 was significantly overrepresented in patients with MO compared with both controls and CDHDA. Allele 10 of the DAT gene was significantly underrepresented in patients with CDHDA when compared with the MO group. Genetic variability at the DRD4 gene is involved in the predisposition to episodic MO but not to DA, while liability to CDHDA may involve genetic variability at the DAT gene in comparison with episodic MO.
Collapse
|
180
|
Savitz J, Solms M, Ramesar R. The molecular genetics of cognition: dopamine, COMT and BDNF. GENES BRAIN AND BEHAVIOR 2006; 5:311-28. [PMID: 16716201 DOI: 10.1111/j.1601-183x.2005.00163.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The important contribution of genetic factors to the development of cognition and intelligence is widely acknowledged, but identification of these genes has proven to be difficult. Given a variety of evidence implicating the prefrontal cortex and its dopaminergic circuits in cognition, most of the research conducted to date has focused on genes regulating dopaminergic function. Here we review the genetic association studies carried out on catechol-O-methyltransferase (COMT) and the dopamine receptor genes, D1, D2 and D4. In addition, the evidence implicating another promising candidate gene, brain-derived neurotrophic factor (BDNF) in neuropsychological function, is assessed. Both the COMT val158met polymorphism and the BDNF val66met variant appear to influence cognitive function, but the specific neurocognitive processes involved continue to be a matter of debate. Part of the difficulty is distinguishing between false positives, pleiotropy and the influence of a general intelligence factor, g. Also at issue is the complexity of the relevant neuromolecular pathways, which make the inference of simple causal relationships difficult. The implications of molecular genetic cognitive research for psychiatry are discussed in light of these data.
Collapse
|
181
|
Abstract
Much has been learned in recent years about the genetics of familial Parkinson's disease. However, far less is known about those malfunctioning genes which contribute to the emergence and/or progression of the vast majority of cases, the 'sporadic Parkinson's disease', which is the focus of our current review. Drastic differences in the reported prevalence of Parkinson's disease in different continents and countries suggest ethnic and/or environmental-associated multigenic contributions to this disease. Numerous association studies showing variable involvement of multiple tested genes in these distinct locations support this notion. Also, variable increases in the risk of Parkinson's disease due to exposure to agricultural insecticides indicate complex gene-environment interactions, especially when genes involved in protection from oxidative stress are explored. Further consideration of the brain regions damaged in Parkinson's disease points at the age-vulnerable cholinergic-dopaminergic balance as being involved in the emergence of sporadic Parkinson's disease in general and in the exposure-induced risks in particular. More specifically, the chromosome 7 ACHE/PON1 locus emerges as a key region controlling this sensitive balance, and animal model experiments are compatible with this concept. Future progress in the understanding of the genetics of sporadic Parkinson's disease depends on globally coordinated, multileveled studies of gene-environment interactions.
Collapse
|
182
|
Chen J, Lipska BK, Weinberger DR. Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 2006; 59:1180-8. [PMID: 16631133 DOI: 10.1016/j.biopsych.2006.02.024] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 12/19/2005] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Translation of human genetic mutations into genetic mouse models is an important strategy to study the pathogenesis of schizophrenia, identify potential drug targets, and test new drugs for new antipsychotic treatments. Although it is impossible to recapitulate the full spectrum of schizophrenia symptoms in animal models, hypothesis-driven genetic mouse models have been successful in reproducing several schizophrenia-like behaviors and uncovering the roles of specific genes in dopamine and glutamine neurotransmission systems in mediating schizophrenia-like behaviors. Recent discoveries of susceptibility genes for schizophrenia and recognition of cognitive dysfunction as a core feature of schizophrenia and a phenotype of susceptibility for schizophrenia offer opportunities to develop newer genetic mouse models based on susceptibility. This new generation of genetic mouse models could shed light on the etiology of schizophrenia and lead us to new hypotheses, novel diagnostic tools, and more effective therapy.
Collapse
|
183
|
Li D, Sham PC, Owen MJ, He L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 2006; 15:2276-84. [PMID: 16774975 DOI: 10.1093/hmg/ddl152] [Citation(s) in RCA: 360] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Molecular genetic investigations of attention deficit hyperactivity disorder (ADHD) have found associations with a variable number of tandem repeat (VNTR) situated in the 3'-untranslated region of dopamine transporter gene (DAT1), a VNTR in exon 3 of dopamine receptor 4 gene (DRD4) and a microsatellite polymorphism located at 18.5 kb from the 5' end of dopamine receptor 5 gene (DRD5). A number of independent studies have attempted to replicate these findings but the results have been mixed, possibly reflecting inadequate statistical power and the use of different populations and methodologies. In an attempt to clarify this inconsistency, we have combined all the published studies of European and Asian populations up to October 2005 in a meta-analysis to give a comprehensive picture of the role of the three dopamine-related genes using multiple research methods and models. The DRD4 7-repeat (OR=1.34, 95% CI 1.23-1.45, P= 2 x 10(-12)) and 5-repeat (OR=1.68, 95% CI 1.17-2.41, P=0.005) alleles as well as the DRD5 148-bp allele (OR=1.34, 95% CI 1.21-1.49, P= 8 x 10(-8)) confer increased risk of ADHD, whereas the DRD4 4-repeat (OR=0.90, 95% CI 0.84-0.97, P=0.004) and DRD5 136-bp (OR=0.57, 95% CI 0.34-0.96, P=0.022) alleles have protective effects. In contrast, we found no compelling evidence for association with the 480-bp allele of DAT (OR=1.04, 95% CI 0.98-1.11, P=0.20). No significant publication bias was detected in current studies. In conclusion, there is a statistically significant association between ADHD and dopamine system genes, especially DRD4 and DRD5. These findings strongly implicate the involvement of brain dopamine systems in the pathogenesis of ADHD.
Collapse
|
184
|
Molteni R, Calabrese F, Bedogni F, Tongiorgi E, Fumagalli F, Racagni G, Riva MA. Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Int J Neuropsychopharmacol 2006; 9:307-17. [PMID: 16035958 DOI: 10.1017/s1461145705005766] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 05/02/2005] [Accepted: 05/05/2005] [Indexed: 11/06/2022] Open
Abstract
During the last few years several studies have highlighted the possibility that major depression can be characterized by a general reduction in brain plasticity and an increased vulnerability under challenging situations. Such dysfunction may be the consequence of reduced expression and function of proteins important for neuroplasticity such as brain-derived neurotrophic factor (BDNF). On this basis, by using a sensitive non-radioactive in-situ hybridization, we evaluated the effects of a chronic treatment with fluoxetine on BDNF expression within rat dopaminergic regions. In fact, besides the well-established role of the hippocampus, increasing evidence indicates that other brain regions may be involved in the pathophysiology of depression and consequently be relevant for the therapeutic action of antidepressant drugs. Our results indicate that 3 wk of fluoxetine administration up-regulates BDNF mRNA levels selectively within structures belonging to the meso-cortico-limbic pathway. The expression of the neurotrophin is significantly increased in the ventral tegmental area, prefrontal cortex, and shell region of the nucleus accumbens, whereas no changes were detected in the substantia nigra and striatum. Moreover, in agreement with previous studies, fluoxetine increased BDNF mRNA levels in the hippocampus, an effect that was limited to the cell bodies without any change in its dendritic targeting. These data show that chronic treatment with fluoxetine increases BDNF gene expression not only in limbic areas but also in dopaminergic regions, suggesting that such an effect may contribute to improve the function of the dopaminergic system in depressed subjects.
Collapse
|
185
|
Sher L. Dopamine and the pathophysiology of suicidal behavior in alcoholism. Med Hypotheses 2006; 66:1043-4. [PMID: 16455208 DOI: 10.1016/j.mehy.2005.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Accepted: 12/01/2005] [Indexed: 11/21/2022]
|
186
|
Bertolino A, Blasi G, Latorre V, Rubino V, Rampino A, Sinibaldi L, Caforio G, Petruzzella V, Pizzuti A, Scarabino T, Nardini M, Weinberger DR, Dallapiccola B. Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain. J Neurosci 2006; 26:3918-22. [PMID: 16611807 PMCID: PMC6673886 DOI: 10.1523/jneurosci.4975-05.2006] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) genes modulate dopamine inactivation, which is crucial for determining neuronal signal-to-noise ratios in prefrontal cortex during working memory. We show that the COMT Met158 allele and the DAT 3' variable number of tandem repeat 10-repeat allele are independently associated in healthy humans with more focused neuronal activity (as measured with blood oxygen level-dependent functional magnetic resonance imaging) in the working memory cortical network, including the prefrontal cortex. Moreover, subjects homozygous for the COMT Met allele and the DAT 10-repeat allele have the most focused response, whereas the COMT Val and the DAT 9-repeat alleles have the least. These results demonstrate additive genetic effects of genes regulating dopamine signaling on specific neuronal networks subserving working memory.
Collapse
|
187
|
Vermeulen CJ, Cremers TIFH, Westerink BHC, Van De Zande L, Bijlsma R. Changes in dopamine levels and locomotor activity in response to selection on virgin lifespan in Drosophila melanogaster. Mech Ageing Dev 2006; 127:610-7. [PMID: 16620916 DOI: 10.1016/j.mad.2006.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 01/23/2006] [Accepted: 02/23/2006] [Indexed: 12/11/2022]
Abstract
Among various other mechanisms, genetic differences in the production of reactive oxygen species are thought to underlie genetic variation for longevity. Here we report on possible changes in ROS production related processes in response to selection for divergent virgin lifespan in Drosophila. The selection lines were observed to differ significantly in dopamine levels and melanin pigmentation, which is associated with dopamine levels at eclosion. These findings confirm that variation in dopamine levels is associated with genetic variation for longevity. Dopamine has previously been implied in ROS production and in the occurrence of age-related neurodegenerative diseases. In addition, we propose a possible proximate mechanism by which dopamine levels affect longevity in Drosophila: We tested if increased dopamine levels were associated with a "rate-of-living" syndrome of increased activity and respiration levels, thus aggravating the level of oxidative stress. Findings on locomotor activity and oxygen consumption of short-lived flies were in line with expectations. However, the relation is not straightforward, as flies of the long-lived lines did not show any consistent differences in pigmentation or dopamine levels with respect to the control lines. Moreover, long-lived flies also had increased locomotor activity, but showed no consistent differences in respiration rate. This strongly suggests that the response for increased and decreased lifespan may be obtained by different mechanisms.
Collapse
|
188
|
Mangoura D, Theofilopoulos S, Karouzaki S, Tsirimonaki E. 12-O-tetradecanoyl-phorbol-13-acetate-dependent up-regulation of dopaminergic gene expression requires Ras and neurofibromin in human IMR-32 neuroblastoma. J Neurochem 2006; 97 Suppl 1:97-103. [PMID: 16635257 DOI: 10.1111/j.1471-4159.2005.03483.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dopaminergic transcriptional programme is highly regulated during development and in the adult, in response to activation of membrane receptor signalling cascades. Gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, is known to be regulated by receptors that act through protein kinase C (PKC) or Ras signalling. To investigate possible interactions between these two pathways before they converge on Raf activation, we evaluated whether phorbol ester (12-O-tetradecanoyl-phorbol-13-acetate, TPA)-dependent PKC activation required Ras for regulation of TH expression in IMR-32 cells. We found that long-term treatment with TPA, which induces down-regulation of PKC-alpha, led to induction of both protein and message levels of TH by autocrine factors. This was dependent on endogenous Ras, but independent of the transcription factor Nurr1. Moreover, this mechanism of action mimicked the effects of overexpression of the Ras-GAP domain of neurofibromin, GAP-related domain (GRD) I, which is part of the upstream mechanism for regulation of Ras activation and a PKC-alpha substrate. Overexpression of Ras also led to transcriptional and translational up-regulation of TH, independent of Nurr1 induction, as well as distinct phenotypic changes consistent with cell hypertrophy and increased secretory activity shown by induction of expression of vesicular monoamine transporter 2 and synaptosomal-associated protein-25. Most interestingly, overexpression of GRDI and down-regulation of the endogenous GRDII neurofibromin led to significant increases in Nurr1 message, possibly reflecting a transcriptional hierarchy during development. Taken together, these studies suggest that PKC-alpha, neurofibromin and Ras are essential in regulation of TH gene expression in IMR-32 cells.
Collapse
|
189
|
Li JN, Xu Q, Shen Y, Ji L. [An association study between paranoid schizophrenia and four genes involved in dopamine metabolism]. YI CHUAN = HEREDITAS 2006; 28:403-6. [PMID: 16606590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Schizophrenia is a complex disease caused by interactions among multiple genes. Reports of one of its susceptibility genes, ethyltracatechol-O-mnsferase (COMT) have been conflicting. In the present study on paranoid schizophrenia, we have performed a multilocus association study to analyze the interactions among 4 genes that are involved in dopamine metabolism. Result supports the hypothesis that COMT-136-BclI regulates Val108/158Met. When the genotype of the former is CC, Met (A) is the genotype of susceptibility allele Val108/158Met; and when the genotype of the former is GG, Val (G) is the genotype of susceptibility allele Val108/158Met. This new hypothesis may explain the conflicting results about Val108/158Met (COMT) obtained by single-locus analyses. It also illustrates that multilocus analysis is necessary for the research of complex diseases.
Collapse
|
190
|
Kramer BC, Woodbury D, Black IB. Adult rat bone marrow stromal cells express genes associated with dopamine neurons. Biochem Biophys Res Commun 2006; 343:1045-52. [PMID: 16574067 DOI: 10.1016/j.bbrc.2006.02.191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Accepted: 02/25/2006] [Indexed: 11/25/2022]
Abstract
An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFRalpha1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease.
Collapse
|
191
|
Raushenbakh II, Gruntenko NE, Karpova EK, Adon'eva NV, Alekseev AA, Chentsova NA, Shumnaia LV, Faddeeva NV. [The mechanism of the effect of apterous56f mutation on the reproductive function of Drosophila melanogaster]. GENETIKA 2006; 42:169-76. [PMID: 16583700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The effects of L-dihydroxyphenylalanine (L-DOPA) and 20-hydroxyecdysone (20E) were studied with respect to the content of dopamine (DA), intensity of the juvenile hormone (JH) degradation, and fecundity of the wildtype flies (Canton S) and JH-deficient apterous56f mutants (in young females, carrying this mutation, the levels of DA and 20E production were strongly increased). Fly feeding with L-DOPA proved to increase the level of DA in a dose-dependent manner and reduce JH degradation in 2-day-old females of both strains. Feeding with 20E produced the same effect. Treating the wild-type flies with 2.5 mg L-DOPA caused a 24-h delay in beginning of oviposition and reduction in fecundity throughout the experiment. An L-DOPA dose of 1 mg caused no such changes. An experimental increase in 20E titer led to reduced fecundity of the wild-type flies, though no delay in oviposition was observed. In mutant flies, an increase in DA and 20E levels accelerated beginning of oviposition and increased fecundity of young females, though the latter parameter was reduced in mature individuals. Thus, an increase in endogenous DA and 20E characteristic of young apterous56f females is assumed to be a compensatory response that leads to a higher JH titer and induction of vitellogenesis.
Collapse
|
192
|
Howland RH. Personalized Drug Therapy with PharmacogeneticsPart 2: Pharmadynamics. J Psychosoc Nurs Ment Health Serv 2006; 44:13-6. [PMID: 16526527 DOI: 10.3928/02793695-20060201-04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
193
|
Ryu S, Holzschuh J, Mahler J, Driever W. Genetic analysis of dopaminergic system development in zebrafish. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:61-6. [PMID: 17017510 DOI: 10.1007/978-3-211-45295-0_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Zebrafish have become an important model organism to study the genetic control of vertebrate nervous system development. Here, we present an overview on the formation of dopaminergic neuronal groups in zebrafish and compare the positions of DA neurons in fish and mammals using the neuromere model of the vertebrate brain. Based on mutant analysis, we evaluate the role of several signaling pathways in catecholaminergic neuron specification. We further discuss the prospect of identifying novel genes involved in dopaminergic development through forward genetics mutagenesis screens.
Collapse
|
194
|
Abstract
The road to scientific discovery begins with an awareness of what is unknown. Research in science can in some ways be like putting together the pieces of a puzzle without having the benefit of the box-top picture of the completed puzzle. The "picture" in science is an understanding of how nature works in a particular instance, and it takes many separate pieces of the "puzzle" to put this understanding together. These pieces are always of different kinds of data, often obtained using different approaches and techniques. The challenge of the researcher is to picture or hypothesize each of the missing pieces before actually having them in hand, so they can be sought and tested in the laboratory. This "picturing" is actually having a clear idea of what you don't know: having a clear image of the "shape" of the missing piece. This is easy when the puzzle surrounding the missing piece is already in hand, but more difficult with less of it constrained by what is already known. In putting paper puzzles together, the shape of the pieces is not the only limitation that needs to be satisfied. There is also the picture to satisfy, that is, the picture usually has to make sense. In science these constraints can be manifold, and usually the quality of the research is judged by the number of ways a piece of data integrates into and brings together the rest of the puzzle. The multidimensionality of scientific questions makes it virtually essential that as many different pieces of the puzzle as possible be obtained. The more that is not known about the puzzle, the more pieces you need. Thus it is with the genetics of psychiatric diseases. In this guide, we will explore as many of the domains of the genetic puzzle as we are aware of. We will learn a bit of the language of each and how they fit into the puzzle with at least one anecdote to serve as an example. Mapping unknown territory is always a process, but we hope this guide will increase the reader's awareness of what is unknown.
Collapse
|
195
|
Rissling I, Frauscher B, Kronenberg F, Tafti M, Stiasny-Kolster K, Robyr AC, Körner Y, Oertel WH, Poewe W, Högl B, Möller JC. Daytime sleepiness and the COMT val158met polymorphism in patients with Parkinson disease. Sleep 2006; 29:108-11. [PMID: 16453988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
STUDY OBJECTIVE A preliminary study by our group suggested an association between daytime sleepiness and the catechol-O-methyltransferase (COMT) val158met polymorphism (rs4680) in patients with Parkinson disease (PD). We sought to confirm this association in a large group of patients with PD. DESIGN Genetic association study in patients with PD. SETTING Movement disorder sections at 2 university hospitals. PARTICIPANTS PD patients with and without episodes of suddenly falling asleep matched for antiparkinsonian medication, disease duration, sex, and age, who participated in a previous genetic study on dopamine-receptor polymorphisms. INTERVENTIONS Not applicable. MEASUREMENTS AND RESULTS In this study, 240 patients with PD (154 men; age 65.1 +/- 6.1 years; disease duration 9.4 +/- 6.0 years) were included. Seventy had the met-met (LL), 116 the met-val (LH), and 54 the val-val (HH) genotype. In the combined LL+LH group (featuring reduced COMT activity), the mean Epworth Sleepiness Scale (ESS) score was 9.0 +/- 5.9 versus 11.0 +/- 6.1 in the HH (high COMT activity) group (P = .047). Forty-seven percent of the LL and LH patients had sudden sleep onset compared with 61% of the HH patients (P = .07). Logistic regression, however, showed that both pathologic ESS scores (i.e., > 10) and sudden sleep onset were predicted by subjective disease severity (P < .001 each) but not by the COMT genotype. CONCLUSIONS Our previous finding that the L-allele may be associated with daytime sleepiness could not be confirmed in the present study. Altogether, our data do not support a clinically relevant effect of the COMT genotype on daytime sleepiness in PD.
Collapse
|
196
|
Eells JB, Misler JA, Nikodem VM. Early postnatal isolation reduces dopamine levels, elevates dopamine turnover and specifically disrupts prepulse inhibition in Nurr1-null heterozygous mice. Neuroscience 2006; 140:1117-26. [PMID: 16690213 DOI: 10.1016/j.neuroscience.2005.12.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 11/28/2005] [Accepted: 12/07/2005] [Indexed: 11/27/2022]
Abstract
Sensorimotor gating is a phenomenon that is linked with dopamine neurotransmission in limbic and cortical areas, and disruption of sensorimotor gating has been consistently demonstrated in schizophrenia patients. The nuclear receptor Nurr1 is essential for development of dopamine neurons and, using Nurr1-null heterozygous mice, has been found to be important for normal dopamine neurotransmission as null heterozygous mice have reduced limbic and cortical dopamine levels and elevated open-field locomotor activity. The current investigation compared sensorimotor gating, as measured by prepulse inhibition of the acoustic startle response, in Nurr1 wild-type and null heterozygous mice. When mice were weaned between 19 and 21 days of age either into isolation or groups of three to five and tested 12 weeks later, prepulse inhibition was elevated in group-raised null heterozygous mice and significantly disrupted in isolated null heterozygous mice as compared with isolation-raised wild-type mice and group-raised null heterozygous mice. Isolation had no effect on prepulse inhibition in wild-type mice. Isolation reduced tissue dopamine levels and elevated dopamine turnover in the nucleus accumbens and striatum in both wild-type and null heterozygous mice. In the prefrontal cortex, isolation reduced dopamine and 3,4-dihydroxyphenylacetic acid levels in null heterozygous as compared with isolation-raised wild-type mice, whereas no differences were observed between group-raised wild-type and null heterozygous mice. Neither the null heterozygous genotype nor isolation had any effect on basal or stress-induced corticosterone levels. These data suggest that the Nurr1 null heterozygous genotype predisposes these mice to isolation-induced disruption of prepulse inhibition that may be related to the interactions between intrinsic deficiencies in dopamine neurotransmission as a result of the null heterozygous genotype and isolation-induced changes in dopamine neurotransmission. Post-weaning isolation of Nurr1 null heterozygous mice provides a model to explore the interactions of genetic predisposition and environment/neurodevelopment on dopamine function that has important relevance to neuropsychiatric disorders.
Collapse
|
197
|
Soaje M, Valdez S, Bregonzio C, Penissi A, Deis RP. Dopaminergic mechanisms involved in prolactin release after mifepristone and naloxone treatment during late pregnancy in the rat. Neuroendocrinology 2006; 84:58-67. [PMID: 17090971 DOI: 10.1159/000096825] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 09/08/2006] [Indexed: 02/03/2023]
Abstract
BACKGROUND/AIMS During late pregnancy, the antiprogesterone mifepristone facilitates prolactin release. This effect is enhanced by administration of the opioid antagonist naloxone, suggesting an inhibitory-neuromodulatory role of the opioid system. Since hypothalamic dopamine (DA) is the main regulator of prolactin release, in this study we explored the role of DA on prolactin release induced by mifepristone and naloxone treatment. METHODS/RESULTS Rats on day 19 of pregnancy were used. Naloxone treatment did not modify the 3,4-dihydroxyphenylacetic acid/DA (DOPAC/DA) ratio or serum prolactin concentration in control rats. After mifepristone treatment, DA activity diminished significantly without modifying serum prolactin levels. Naloxone administration to antiprogesterone-treated rats did not change the DOPAC/DA ratio but increased serum prolactin. Tyrosine hydroxylase (TH) expression in medial basal hypothalamus (MBH) protein extracts was lowered by pretreatment with mifepristone, with no additional effect of naloxone. While mifepristone decreased the intensity of TH immunoreactivity in the arcuate and periventricular nuclei and in fibers of the median eminence, naloxone treatment had no further effect. CONCLUSIONS (1) A reduction of tuberoinfundibular dopaminergic (TIDA) neuron activity is suggested by the fall of the DOPAC/DA ratio and the low expression of MBH TH; (2) this reduction facilitates prolactin secretion by naloxone, indicating that progesterone stimulates DA neurons to maintain low serum prolactin; (3) naloxone action seems to depend on a previous decrease of DA tone induced by mifepristone, without involve a direct effect on neuronal DA activity, and (4) endogenous opioids may inhibit prolactin secretion through a non-dopaminergic neuronal system that regulates prolactin secretion in which as yet undetermined prolactin-releasing factors may participate.
Collapse
|
198
|
Epstein LH, Leddy JJ. Food reinforcement. Appetite 2006; 46:22-5. [PMID: 16257474 DOI: 10.1016/j.appet.2005.04.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 01/31/2005] [Accepted: 04/03/2005] [Indexed: 11/17/2022]
Abstract
The reinforcing value of food, measured by how hard someone is willing to work to obtain food, is influenced by food palatability, food deprivation and food variety, and may be a more powerful determinant of food intake than hedonics or liking. The reinforcing value of food is mediated in part by dopaminergic activity. Genotypes that influence dopamine transport and the density of dopamine D2 receptors interact with food reinforcement to influence eating behavior, and D2 receptor genotypes may influence food reinforcement and weight gain after smoking cessation. Inhibition of dopamine transport increases brain dopamine concentrations, which may influence weight gain after smoking cessation and can reduce energy intake in obese adults.
Collapse
|
199
|
Van Den Bogaert A, Del-Favero J, Van Broeckhoven C. Major affective disorders and schizophrenia: a common molecular signature? Hum Mutat 2006; 27:833-53. [PMID: 16917879 DOI: 10.1002/humu.20369] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders, including affective disorders (AD) and schizophrenia (SZ) are among the most common disabling brain diseases in Western populations and result in high costs in terms of morbidity as well as mortality. Although their etiology and pathophysiology is largely unknown, family-, twin-, and adoption studies argue for a strong genetic determination of these disorders. These studies indicate that there is between 40 and 85% heritability for these disorders but point also to the importance of environmental factors. Therefore, any research strategy aiming at the identification of genes involved in the development of AD and SZ should account for the complex nature (multifactorial) of these disorders. During the last decade, molecular genetic studies have contributed a great deal to the identification of genetic factors involved in complex disorders. Here we provide a comprehensive review of the most promising genes for AD and SZ, and the methods and approaches that were used for their identification. Also, we discuss the current knowledge and hypotheses that have been formulated regarding the effect of variations on protein functioning as well as recent observations that point to common molecular mechanisms.
Collapse
|
200
|
Van Craenenbroeck K, De Bosscher K, Vanden Berghe W, Vanhoenacker P, Haegeman G. Role of glucocorticoids in dopamine-related neuropsychiatric disorders. Mol Cell Endocrinol 2005; 245:10-22. [PMID: 16310935 DOI: 10.1016/j.mce.2005.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 10/14/2005] [Indexed: 01/12/2023]
Abstract
'Psychoneuroendocrinology' is now quickly emerging as a hot interdisciplinary research field that addresses the interplay between neuronal and endocrine signaling in psychiatric diseases. Both glucocorticoid hormones and dopamine have an important role in maintaining normal brain functions. In this review, molecular and mechanistic aspects of glucocorticoid effects on brain function and behavior will be discussed with specific reference to dopamine signaling.
Collapse
|