1
|
Yamashita T, Otsuka K, Goto S, Ariyoshi T, Motegi K, Kohmoto M, Saito A, Sato Y, Kishimoto Y, Murakami M. Retrograde transgastric jejunostomy for nutritional management and aspiration prevention in cases with severe malignant esophageal strictures. DEN Open 2024; 4:e321. [PMID: 38023668 PMCID: PMC10661824 DOI: 10.1002/deo2.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Locally advanced esophageal cancer often presents with dysphagia and can be complicated by aspiration pneumonia. Therefore, nutritional management is important to prevent pneumonia. Enteral nutrition via gastrostomies is common in esophageal cancer patients. Here, we describe the efficacy of nutritional management using a gastrojejunostomy tube retrogradely inserted in the esophagus through gastrostomy to simultaneously drain accumulated fluid on the proximal side of a malignant stricture. We performed this procedure for two cases with severe malignant strictures using two types of endoscope insertion. A 57-year-old male patient (Case 1) underwent a retrograde insertion of a gastrojejunostomy tube for severe esophageal malignant stricture with severe nausea and salivary reflux. After a narrow endoscope was inserted through the gastrostomy fistula, a gastrojejunostomy tube was inserted alongside a guidewire allowing the patient to undergo definitive chemoradiotherapy without symptoms. An 82-year-old male patient (Case 2) was scheduled for a minimally invasive esophagectomy following neoadjuvant chemotherapy after gastrostomy. However, the patient developed aspiration pneumonia due to salivary reflux; before surgery, a narrow nasal endoscope was inserted and passed through the strictures. The percutaneous endoscopic transgastric jejunostomy catheter was retrogradely inserted alongside the guidewire. In patients with malignant strictures and salivary reflux, retrograde insertion of gastrojejunostomy tubes can simultaneously provide enteral nutrition and saliva drainage.
Collapse
Affiliation(s)
| | - Koji Otsuka
- Esophageal Cancer CenterShowa University HospitalTokyoJapan
| | - Satoru Goto
- Esophageal Cancer CenterShowa University HospitalTokyoJapan
| | | | - Kentaro Motegi
- Esophageal Cancer CenterShowa University HospitalTokyoJapan
| | | | - Akira Saito
- Esophageal Cancer CenterShowa University HospitalTokyoJapan
| | - Yoshihito Sato
- Esophageal Cancer CenterShowa University HospitalTokyoJapan
| | | | | |
Collapse
|
2
|
Wu Y, Feng Y, Yang A. Endoscopic treatment of a patient with duodenal major papilla adenoma and ansa pancreatica. DEN Open 2024; 4:e240. [PMID: 37180358 PMCID: PMC10167413 DOI: 10.1002/deo2.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
A 35-year-old female who suffered from recurrent pancreatitis was admitted to our hospital. Her magnetic resonance cholangiopancreatography revealed ansa pancreatica. And during endoscopic retrograde cholangiopancreatography, a major duodenal papilla adenoma was identified. Hybrid endoscopic mucosal resection of this lesion was performed with pancreatic stent placement through the minor papilla to prevent recurrent pancreatitis. To our knowledge, this is the first report of a major papilla adenoma associated with ansa pancreatica. These minimally invasive endoscopic treatments solved a difficult clinical problem and avoided traumatic surgery.
Collapse
Affiliation(s)
- Yan‐yan Wu
- Department of GastroenterologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yun‐lu Feng
- Department of GastroenterologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ai‐ming Yang
- Department of GastroenterologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Hirose Y, Saito S, Nishiguchi T, Yamazaki D, Tateishi T, Saito Y, Komeno Y, Kodama M, Iwamoto S, Fukata M, Sako M. A case of intestinal T-cell lymphoma, not otherwise specified, that showed characteristic findings by magnified endoscopy combined with narrow-band imaging. DEN Open 2024; 4:e319. [PMID: 38023667 PMCID: PMC10680999 DOI: 10.1002/deo2.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
T-cell lymphoma in the gastrointestinal tract (intestinal T-cell lymphoma, [ITCL]) is rare. ITCL, not otherwise specified (ITCL, NOS) which is a type of ITCL is particularly rare. There are few case reports of ITCL, NOS but no previous reports describe its endoscopic features. In this report, the 69-year-old man was diagnosed with ITCL, NOS. Colonoscopy revealed the elevated legion and edematous mucosa with focal depressions in the lower rectum. On the depressed legions, magnifying endoscopy combined with narrow-band imaging detected the disappearance of glandular structure and branching abnormal blood vessels like a tree. These findings were similar to the tree-like appearance, which has been described as a unique feature of gastric mucosal-associated lymphoid tissue lymphoma. The targeted biopsy of the tree-like appearance showed abnormal histopathological findings which fit the definition of ITCL, NOS. He was treated with chemotherapy and achieved complete remission. As is the case of gastric mucosal-associated lymphoid tissue lymphoma, the tree-like appearance is possibly the unique sign of ITCL, NOS. We report the endoscopic features of ITCL, NOS and show characteristic findings by magnifying endoscopy combined with narrow-band imaging.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of GastroenterologyTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Satoshi Saito
- Department of GastroenterologyTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Takanori Nishiguchi
- Inflammatory Bowel Disease CenterTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Dai Yamazaki
- Department of GastroenterologyTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Tsubasa Tateishi
- Department of GastroenterologyTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Yuuichi Saito
- Department of GastroenterologyTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Yukiko Komeno
- Department of HematologyTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Makoto Kodama
- Department of PathologyTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Shiho Iwamoto
- Inflammatory Bowel Disease CenterTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Masayuki Fukata
- Inflammatory Bowel Disease CenterTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| | - Minako Sako
- Inflammatory Bowel Disease CenterTokyo Yamate Medical CenterJapan Community Healthcare OrganizationTokyoJapan
| |
Collapse
|
4
|
Iwado T, Honda H, Gotoda T. A case of idiopathic gastroesophageal submucosal hematoma in a patient with no predisposition to bleeding. DEN Open 2024; 4:e284. [PMID: 37614750 PMCID: PMC10442609 DOI: 10.1002/deo2.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Gastroesophageal submucosal hematoma is a disease in which blood vessels in the gastroesophageal submucosa rupture and form a hematoma. In this report, we describe a case of gastroesophageal submucosal hematoma that developed due to vomiting in a patient with no history of bleeding and resolved with conservative treatment. A 69-year-old man presented with precordial pain and hematemesis after vomiting. A diagnosis of idiopathic gastroesophageal submucosal hematoma was made by computed tomography scan, magnetic resonance imaging, and esophagogastroduodenoscopy. Healing was achieved by conservative treatment with fasting, rehydration, and acid suppression. When a patient presents with sudden chest pain, hematemesis, and dysphagia, the possibility of this disease should be considered.
Collapse
Affiliation(s)
- Takaaki Iwado
- Department of Gastroenterology and HepatologyKurashiki Central HospitalOkayamaJapan
| | - Hirokazu Honda
- Department of Gastroenterology and HepatologyKurashiki Central HospitalOkayamaJapan
| | - Tatsuhiro Gotoda
- Department of Gastroenterology and HepatologyKurashiki Central HospitalOkayamaJapan
| |
Collapse
|
5
|
Ahmed N, Bechara R. Endoscopic submucosal dissection and JNET classification for colorectal neoplasia: A North American academic center experience. DEN Open 2024; 4:e322. [PMID: 38023663 PMCID: PMC10681000 DOI: 10.1002/deo2.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Objectives Endoscopic submucosal dissection (ESD) enables minimally invasive resection of superficial gastrointestinal neoplasms en bloc regardless of size. The Japan narrow band imaging expert team (JNET) classification utilizes optical magnification and narrow band imaging (NBI) to predict pathology. In North America, ESD is far from ubiquitous, and regional outcomes are not widely described. To date there are no North American studies describing the application and yield of the JNET classification as applied in the practice of ESD. Methods A retrospective, single-center, cohort analysis was performed on a prospectively maintained database of ESD procedures. Between July 2016 and February 2023, all consecutive patients treated with ESD for colorectal lesions were identified and stratified by lesion location, JNET, NBI International Colorectal Endoscopic, lateral spreading tumors, and Paris classifications. Univariate analysis was used for clinicopathological data. p < 0.05 was considered statistically significant. Results A total of 112 patients were identified. One lesion, a lipoma, was excluded. Overall, 49.5% (55/111) of lesions were colonic and 50.5% (56/111) rectal. Most lesions were lateral spreading tumors (60.4%, 67/111). Overall, 96.4% (107/111) ESDs were successfully completed, 98.1% (105/107) en bloc, and 87.9% (94/107) R0. Adverse events occurred in 1.8% (2/111) of procedures. The median diameter was 4.0 cm and resected in a median time of 62.0 min. Overall, 70.1% (47/67) lesions were upstaged from pre-ESD biopsy. JNET 2B showed 80.2% (95% CI 71.5-87.1) accuracy for high-grade dysplasia or sm1. All JNET type 3 were ≥sm2 (p < 0.001). Conclusions ESD permits safe and effective resection of superficial colorectal neoplasms. JNET classification was more accurate than pre-resection biopsy at predicting histology in this series.
Collapse
Affiliation(s)
- Nabeel Ahmed
- Faculty of Medicine and Health SciencesMcGill UniversityMontrealCanada
| | - Robert Bechara
- Department of GastroenterologyKingston Health Sciences CenterKingstonCanada
| |
Collapse
|
6
|
Kim B, Kim Y, Cho JY, Lee KA. Identification of Potential Genomic Alterations Using Pan-Cancer Cell-Free DNA Next-Generation Sequencing in Patients With Gastric Cancer. Ann Lab Med 2024; 44:164-173. [PMID: 37903652 PMCID: PMC10628753 DOI: 10.3343/alm.2023.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 09/12/2023] [Indexed: 11/01/2023] Open
Abstract
Background Molecular cancer profiling may lead to appropriate trials for molecularly targeted therapies. Cell-free DNA (cfDNA) is a promising diagnostic and/or prognostic biomarker in gastric cancer (GC). We characterized somatic genomic alterations in cfDNA of patients with GC. Methods Medical records and cfDNA data of 81 patients diagnosed as having GC were reviewed. Forty-nine and 32 patients were tested using the Oncomine Pan-Cancer Cell-Free Assay on the Ion Torrent platform and AlphaLiquid 100 kit on the Illumina platform, respectively. Results Tier I or II alterations were detected in 64.2% (52/81) of patients. Biomarkers for potential targeted therapy were detected in 55.6% of patients (45/81), and clinical trials are underway. ERBB2 amplification is actionable and was detected in 4.9% of patients (4/81). Among biomarkers showing potential for possible targeted therapy, TP53 mutation (38.3%, 35 variants in 31 patients, 31/81) and FGFR2 amplification (6.2%, 5/81) were detected the most. Conclusions Next-generation sequencing of cfDNA is a promising technique for the molecular profiling of GC. Evidence suggests that cfDNA analysis can provide accurate and reliable information on somatic genomic alterations in patients with GC, potentially replacing tissue biopsy as a diagnostic and prognostic tool. Through cfDNA analysis for molecular profiling, it may be possible to translate the molecular classification into therapeutic targets and predictive biomarkers, leading to personalized treatment options for patients with GC in the future.
Collapse
Affiliation(s)
- Boyeon Kim
- Division of Biotechnology, Invites BioCore Co. Ltd., Yongin, Korea
- Genome Service Development, Invites Genomics Co. Ltd., Jeju, Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Yong Cho
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Chang J, Li Y, Shan X, Chen X, Yan X, Liu J, Zhao L. Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer's disease. Neural Regen Res 2024; 19:619-628. [PMID: 37721293 PMCID: PMC10581561 DOI: 10.4103/1673-5374.380874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 09/19/2023] Open
Abstract
Recent studies have demonstrated that neuroplasticity, such as synaptic plasticity and neurogenesis, exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer's disease. Hence, promoting neuroplasticity may represent an effective strategy with which Alzheimer's disease can be alleviated. Due to their significant ability to self-renew, differentiate, and migrate, neural stem cells play an essential role in reversing synaptic and neuronal damage, reducing the pathology of Alzheimer's disease, including amyloid-β, tau protein, and neuroinflammation, and secreting neurotrophic factors and growth factors that are related to plasticity. These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain. Consequently, neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer's disease in the clinic.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xi Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuhe Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
8
|
Alford AI, Hankenson KD. Thrombospondins modulate cell function and tissue structure in the skeleton. Semin Cell Dev Biol 2024; 155:58-65. [PMID: 37423854 DOI: 10.1016/j.semcdb.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Thrombospondins (TSPs) belong to a functional class of ECM proteins called matricellular proteins that are not primarily structural, but instead influence cellular interactions within the local extracellular environment. The 3D arrangement of TSPs allow interactions with other ECM proteins, sequestered growth factors, and cell surface receptors. They are expressed in mesenchymal condensations and limb buds during skeletal development, but they are not required for patterning. Instead, when absent, there are alterations in musculoskeletal connective tissue ECM structure, organization, and function, as well as altered skeletal cell phenotypes. Both functional redundancies and unique contributions to musculoskeletal tissue structure and physiology are revealed in mouse models with compound TSP deletions. Crucial roles of individual TSPs are revealed during musculoskeletal injury and regeneration. The interaction of TSPs with mesenchymal stem cells (MSC), and their influence on cell fate, function, and ultimately, musculoskeletal phenotype, suggest that TSPs play integral, but as yet poorly understood roles in musculoskeletal health. Here, unique and overlapping contributions of trimeric TSP1/2 and pentameric TSP3/4/5 to musculoskeletal cell and matrix physiology are reviewed. Opportunities for new research are also noted.
Collapse
Affiliation(s)
- Andrea I Alford
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Ann Arbor, MI 48109, United States.
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Ann Arbor, MI 48109, United States
| |
Collapse
|
9
|
Wang X, Dong Y, Zhang H, Zhao Y, Miao T, Mohseni G, Du L, Wang C. DNA methylation drives a new path in gastric cancer early detection: Current impact and prospects. Genes Dis 2024; 11:847-860. [PMID: 37692483 PMCID: PMC10491876 DOI: 10.1016/j.gendis.2023.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers worldwide. Early detection offers the best chance for curative treatment and reducing its mortality. However, the optimal population-based early screening for GC remains unmet. Aberrant DNA methylation occurs in the early stage of GC, exhibiting cancer-specific genetic and epigenetic changes, and can be detected in the media such as blood, gastric juice, and feces, constituting a valuable biomarker for cancer early detection. Furthermore, DNA methylation is a stable epigenetic alteration, and many innovative methods have been developed to quantify it rapidly and accurately. Nonetheless, large-scale clinical validation of DNA methylation serving as tumor biomarkers is still lacking, precluding their implementation in clinical practice. In conclusion, after a critical analysis of the recent existing literature, we summarized the evolving roles of DNA methylation during GC occurrence, expounded the newly discovered noninvasive DNA methylation biomarkers for early detection of GC, and discussed its challenges and prospects in clinical applications.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Yaqi Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 402774, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China
| | - Tianshu Miao
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong 250033, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong 250033, China
| |
Collapse
|
10
|
Sun L, Chen X, Zhu S, Wang J, Diao S, Liu J, Xu J, Li X, Sun Y, Huang C, Meng X, Lv X, Li J. Decoding m 6A mRNA methylation by reader proteins in liver diseases. Genes Dis 2024; 11:711-726. [PMID: 37692496 PMCID: PMC10491919 DOI: 10.1016/j.gendis.2023.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 09/12/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
Collapse
Affiliation(s)
- Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinjin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Yingyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
11
|
Luo X, Tang X. Single-cell RNA sequencing in juvenile idiopathic arthritis. Genes Dis 2024; 11:633-644. [PMID: 37692495 PMCID: PMC10491939 DOI: 10.1016/j.gendis.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 09/12/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is one of the most common chronic inflammatory rheumatic diseases in children, with onset before age 16 and lasting for more than 6 weeks. JIA is a highly heterogeneous condition with various consequences for health and quality of life. For some JIA patients, early detection and intervention remain challenging. As a result, further investigation of the complex and unknown mechanisms underlying JIA is required. Advances in technology now allow us to describe the biological heterogeneity and function of individual cell populations in JIA. Through this review, we hope to provide novel ideas and potential targets for the diagnosis and treatment of JIA by summarizing the current findings of single-cell RNA sequencing studies and understanding how the major cell subsets drive JIA pathogenesis.
Collapse
Affiliation(s)
- Xiwen Luo
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
12
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
13
|
Yan JN, Wang YQ, Zhang ZJ, Du YN, Wu HT. Improving the physicochemical stability and release properties of curcumin using κ-carrageenan/scallop hydrolysates hydrogel beads. Food Chem 2024; 434:137471. [PMID: 37741237 DOI: 10.1016/j.foodchem.2023.137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Scallop (Patinopecten yessoensis) male gonad hydrolysates (SMGHs)/κ-carrageenan (KC)/KCl beads with SMGHs:KC ratios (0:10-5:5) were investigated. SMGHs/KC/KCl-Cur bead (5:5) exhibited the most intact spherical morphology and highest Cur loading content of 0.063 mg/0.1 g bead, ascribing to a shortened T23 from 1607.9 to 966.4 ms, and red and blueshifts of OH, NH, amide I and II bands. The undetected fingerprint region within 7.82°-28.90° of SMGHs/KC/KCl-Cur beads indicated successful Cur entrapment. Moreover, SMGHs/KC/KCl-Cur beads exhibited shrinkage network backbones and larger void pores as SMGHs increased, with vessel percentage area, total number of junctions, total vessel length decreasing from 52.1, 1446.8, 57931.4 to 39.7, 530.5, 34458.4, and lacunarity increasing from 0.048 to 0.111, respectively. Furthermore, Cur showed approximately 50% release contents in colon phase and above 90% retention rate during 30 days of storage at 4 °C. These results suggested that SMGHs/KC/KCl-Cur beads exhibited sustained-release of Cur and promised stable Cur preservation.
Collapse
Affiliation(s)
- Jia-Nan Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Yu-Qiao Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhu-Jun Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Nan Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Tao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China.
| |
Collapse
|
14
|
Han W, Wang Z, Xie Q, Chen X, Su L, Xie H, Chen J, Fu Z. Plastic protective nets: A significant but neglected "reservoir" for priority chemicals as revealed by composition analysis. J Hazard Mater 2024; 463:132905. [PMID: 37944235 DOI: 10.1016/j.jhazmat.2023.132905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
|