1
|
Wang R, Li X, Long L, Li M, Chen H, Zhang H, Ruan W, Zhang H, Zheng P, Xu S. Novel ALK inhibitors containing DAAP fragments: Rational drug design and anti-tumor activity research. Bioorg Chem 2025; 160:108416. [PMID: 40209355 DOI: 10.1016/j.bioorg.2025.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor subfamily, involved in cellular signaling pathways associated with insulin. While ALK gene remains inactive in normal human tissues, it exhibits high expression specifically in the central nervous system. However, dysregulation of the ALK gene has been implicated in non-small cell lung cancer (NSCLC) development. Although commercially available ALK inhibitors demonstrate favorable clinical efficacy against most Ceritinib-resistant mutants, they exhibit resistance towards G1202R mutants. Therefore, developing novel ALK inhibitors is crucial for addressing drug resistance in patients. We designed and synthesized 48 novel 2,4-diarylpyrimidine-based ALK inhibitors and investigated their antitumor activities. Among them, Ld-10 showed significant inhibitory activity against ALK kinase with an IC50 value of 1135 nM and demonstrated excellent antiproliferative activity against lung cancer cells H2228 with an IC50 value of 1.35 ± 0.13 μM. To further validate the antitumor potential of Ld-10, we conducted a series of in vitro pharmacological experiments. These included a hemolysis assay to confirm its low toxicity profile, an AO assay, a JC-1 staining assay, and a Calcein-AM/PI cell double staining assay for assessing apoptosis induction. Additionally, we performed dose-dependent arrest at G0/G1 phase to evaluate inhibition of cell growth and carried out cell cycle analysis and cloning experiments to provide evidence for significant tumor growth inhibition by compound Ld-10. In vivo pharmacological experiments demonstrated effective tumor growth inhibition without any significant toxic effects on mouse organs caused by Ld-10 administration. Based on these comprehensive findings from our experimental investigations, it can be concluded that Ld-10 holds promising potential as a novel ALK inhibitor.
Collapse
Affiliation(s)
- Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Xiangjing Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Li Long
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Min Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Huijing Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Wei Ruan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Hong Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
2
|
Kaleem M, Azmi L, Shahzad N, Taha M, Kumar S, Mujtaba MA, Hazazi AAH, Kayali A. Epigenetic dynamics and molecular mechanisms in oncogenesis, tumor progression, and therapy resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04217-5. [PMID: 40358685 DOI: 10.1007/s00210-025-04217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Cancer progression is governed by a dynamic interplay of genetic, epigenetic, and molecular mechanisms that regulate tumor initiation, growth, metastasis, and therapy resistance. This review highlights key molecular pathways involved in oncogenesis, focusing on genetic alterations (mutations, amplifications, and translocations) in oncogenes (RAS and MYC) and tumor suppressor genes (TP53 and PTEN). Additionally, genomic instability, resulting from defective DNA repair mechanisms like mismatch repair and homologous recombination (HR), is identified as a critical factor contributing to tumor heterogeneity and clonal evolution. Epigenetic modifications, including DNA methylation, histone acetylation, and non-coding RNA regulation, further remodel chromatin structure and modulate gene expression, influencing tumor initiation, growth, metastasis, and response to treatment. Post-translational modifications, such as the attachment of a Small Ubiquitin-like Modifier (SUMO) to a target protein and ubiquitination, further influence autophagy, apoptosis, and cellular plasticity, enabling cancer cells to survive therapeutic stress. Cutting-edge technologies such as CRISPR-Cas9-mediated epigenome editing and single-cell RNA sequencing have opened new doors to understanding cellular diversity and regulatory networks in cancer. The review further examines the tumor microenvironment, including stromal remodeling, immune evasion, and hypoxia-driven signaling pathways, which are critical modulators of tumor progression and drug resistance to treatment. By integrating molecular, genetic, and epigenetic perspectives, this study underscores the crucial need for innovative, targeted therapeutic approaches to address the complexity and adaptability of cancer, thereby paving the way for more effective treatments.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Science, University of Lucknow, Uttar Pradesh, Lucknow, India
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Murtada Taha
- Department of Clinical Laboratory Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Shiv Kumar
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, Varanasi, India
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | | | - Asaad Kayali
- Department of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Ahmed F, Riza YM. A Systems Bioinformatics Analysis Indicates that Disruption of the lncRNA SFTA1P Network is Consistent with Impairing Surfactant Homeostasis and Respiratory Function Observed in Lung Adenocarcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025. [PMID: 40353598 DOI: 10.1089/omi.2024.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Lung adenocarcinoma (LUAD) is one of the leading global health challenges wherein novel therapeutic targets are much needed. In this systems bioinformatics study, we report that disruption of the long noncoding RNA (lncRNA) SFTA1P-centered network, respiratory gaseous exchange and surfactant-associated Biological Network (rgsBNet), is consistent with impairing surfactant homeostasis and respiratory function, and thus warrants attention for future drug discovery and development. We analyzed data from The Cancer Genome Atlas LUAD cohort to identify differentially expressed mRNAs, lncRNAs, and microRNAs (miRNAs), followed by correlational analysis to examine the coexpression network of lncRNA SFTA1P and its potential role in LUAD pathogenesis. We observed the downregulation of lncRNA SFTA1P and its coexpressed network in LUAD. Intriguingly, this network appears to be associated with disrupting surfactant homeostasis and perturbing respiratory function, suggesting a potential role in LUAD progression. Additionally, we identified key transcription factors that correlate with the expression of genes crucial for respiratory gaseous exchange and surfactant homeostasis. The attendant regulatory mechanisms suggested that SFTA1P may act as a "sponge" for certain miRNAs, sequestering them away from their mRNA targets. In conclusion, this work uncovers novel insights into the molecular mechanisms governing surfactant homeostasis in LUAD and offers a possible avenue for therapeutic interventions aimed at ameliorating lung function and improving disease management. The downregulation of lncRNA SFTA1P and its coexpressed network highlights their potential as regulators of lung function and opens doors for further investigation into their role in LUAD progression and as potential therapeutic targets.
Collapse
Affiliation(s)
- Firoz Ahmed
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Yasir Mohamed Riza
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Voena C, Ambrogio C, Iannelli F, Chiarle R. ALK in cancer: from function to therapeutic targeting. Nat Rev Cancer 2025; 25:359-378. [PMID: 40055571 DOI: 10.1038/s41568-025-00797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 05/01/2025]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that acts as an oncogenic driver in solid and haematological malignancies in both children and adults. Although ALK-expressing (ALK+) tumours show strong initial responses to the series of ALK inhibitors currently available, many patients will develop resistance. In this Review, we discuss recent advances in ALK oncogenic signalling, together with existing and promising new modalities to treat ALK-driven tumours, including currently approved ALK-directed therapies, namely tyrosine kinase inhibitors, and novel approaches such as ALK-specific immune therapies. Although ALK inhibitors have changed the management and clinical history of ALK+ tumours, they are still insufficient to cure most of the patients. Therefore, more effort is needed to further improve outcomes and prevent the tumour resistance, recurrence and metastatic spread that many patients with ALK+ tumours experience. Here, we outline how a multipronged approach directed against ALK and other essential pathways that sustain the persistence of ALK+ tumours, together with potent or specific immunotherapies, could achieve this goal. We envision that the lessons learned from treating ALK+ tumours in the clinic could ultimately accelerate the implementation of innovative combination therapies to treat tumours driven by other tyrosine kinases or oncogenes with similar properties.
Collapse
Affiliation(s)
- Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fabio Iannelli
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- Division of Hematopathology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Xi S, Shan J, Wu X, Wang H, Zhang MR, Oyetunji S, Xu H, Xiao Z, Tolunay T, Carr SR, Hoang CD, Schrump DS. Repression of ZNFX1 by LncRNA ZFAS1 mediates tobacco-induced pulmonary carcinogenesis. Cell Mol Biol Lett 2025; 30:44. [PMID: 40211119 PMCID: PMC11983736 DOI: 10.1186/s11658-025-00705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/18/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Despite exhaustive research efforts, integrated genetic and epigenetic mechanisms contributing to tobacco-induced initiation and progression of lung cancers have yet to be fully elucidated. In particular, limited information is available regarding dysregulation of noncoding RNAs during pulmonary carcinogenesis. METHODS We examined correlations and interactions of long noncoding (lnc) RNAs and protein-coding genes in normal respiratory epithelial cells (NREC) and pulmonary tumor cells following exposure to cigarette smoke condensate (CSC) using gene expression arrays, qRT-PCR, western blot, growth assays, transwell assays, and murine xenograft models, as well as methylated DNA immunoprecipitation, RNA cross-link immunoprecipitation, and quantitative chromatin immunoprecipitation techniques with bioinformatics analyses. RESULTS Among diverse alterations of lncRNA and coding gene expression profiles in NREC exposed to CSC, we observed upregulation of lncRNA ZFAS1 and repression of an adjacent protein-coding gene, ZNFX1, and confirmed these findings in primary lung cancers. Phenotypic experiments indicated that ZFAS1 is an oncogene, whereas ZNFX1 functions as a tumor suppressor in lung cancer cells. Mechanistically, CSC induces ZFAS1 expression via SP1 and NFĸB-associated activation of an enhancer linked to ZFAS1. Subsequently, ZFAS1 interacts with DNA methyltransferases and polycomb group proteins to silence ZNFX1. Mithramycin and methysticin repress ZFAS1 and upregulate ZNFX1 in lung cancer cells in vitro and in vivo. CONCLUSION These studies reveal a novel feedforward lncRNA circuit contributing to pulmonary carcinogenesis and suggest that pharmacologic targeting of SP1 and/or NFĸB may be useful strategies for restoring ZNFX1 expression for lung tumor therapy.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Jigui Shan
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Xinwei Wu
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Haitao Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mary R Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Shakirat Oyetunji
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hong Xu
- Laboratory of Cancer Prevention, National Cancer Institute, Frederick, MD, 21702, USA
| | - Zuoxiang Xiao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tuana Tolunay
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Shamus R Carr
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Chuong D Hoang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Building 10; 4-3942, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Alipour M, Moghanibashi M, Naeimi S, Mohamadynejad P. LINC00894, YEATS2-AS1, and SUGP2 genes as novel biomarkers for N0 status of lung adenocarcinoma. Sci Rep 2025; 15:10628. [PMID: 40148389 PMCID: PMC11950442 DOI: 10.1038/s41598-024-84640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/25/2024] [Indexed: 03/29/2025] Open
Abstract
Research on genes affecting tumors without lymph node metastasis is limited, hence this study employed both bioinformatic and experimental approaches to identify specific genes associated with lung cancer adenocarcinoma (LUAD) before lymph node metastasis occurs. Expression profiles of mRNAs and lncRNAs and LUAD clinical data were downloaded from the Cancer Genome Atlas (TCGA) using R software to identify differentially expressed genes (DEGs) associated with N0 and N + status. TargetScan, miRTarBase, and miRDB databases were used to identify interactions between miRNAs and mRNAs. The DIANA database and lncBase tool were used to find the association between lncRNA and miRNA. After selecting some genes, the expression of candidate genes was confirmed by real-time RT-PCR technique. Following the knockdown LINC00894 gene using the shRNA technique, its effect on invasion, migration, and apoptosis in the calu-3 cell line was investigated. In total, we found 321 specific DEGs not only in N0 vs. normal but also in N0 Vs. N + in LUAD, most of which were lncRNA and we identified a ceRNA network containing nine lncRNAs with the highest degree of connectivity. Among them, in addition to bioinformatic analyses, LINC00894 and YEATS2-AS1 were significantly increased in tumor tissues compared to normal tissues (P = 0.0001). also, SUGP2 that was shared in both lncRNA-related ceRNA subnetworks was significantly upregulated (P = 0.0001). Additionally, following the knockdown of LINC00894 in Calu-3 cell line, a significant decrease in migration and invasion was observed, but early apoptosis was significantly increased in the shLINC00894(48 h) group (P = 0.007). The findings of the present study show that lncRNAs play an important role in the N0 status of LUAD. Moreover, LINC00894, YEATS2-AS1, and SUGP2 can act as biomarkers in patients with N0 LUAD.
Collapse
Affiliation(s)
- Marzyeh Alipour
- Department of Genetics, Colleague of Science, Kazerun Branch, Islamic Azad University, P.O. Code 7319866451, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, P.O. Code 7319866451, Kazerun, Iran.
| | - Sirous Naeimi
- Department of Biology, Zand Institute of Higher Education, Shiraz, Iran.
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
7
|
Suliman M, Saleh RO, Chandra M, Rasool KH, Jabir M, Jawad SF, Hasan TF, Singh M, Singh M, Singh A. Macrophage-derived lncRNAs in cancer: regulators of tumor progression and therapeutic targets. Med Oncol 2025; 42:91. [PMID: 40048034 DOI: 10.1007/s12032-025-02643-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Macrophages are key tumor microenvironment (TME) regulators, exhibiting remarkable plasticity that enables them to either suppress or promote cancer progression. Emerging evidence highlights the critical role of macrophage-derived long non-coding RNAs (lncRNAs) in shaping tumor immunity, influencing macrophage polarization, immune evasion, angiogenesis, metastasis, and therapy resistance. This review comprehensively elucidates the functional roles of M1- and M2-associated lncRNAs, detailing their molecular mechanisms and impact on cancer pathogenesis. In summary, elucidating the roles of lncRNAs derived from macrophages in cancer progression offers new avenues for therapeutic strategies, significantly improving patient outcomes in the fight against the disease. Further research into the functional significance of these lncRNAs and the development of targeted therapies is essential to harness their potential fully in clinical applications. We further explore their potential as biomarkers for cancer prognosis and therapeutic targets for modulating macrophage activity to enhance anti-cancer immunity. Targeting macrophage-derived lncRNAs represents a promising avenue for precision oncology, offering novel strategies to reshape the TME and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Thikra F Hasan
- College of Health & Medical Technology, Uruk University, Baghdad, Iraq
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
8
|
Yang J, Zhou F, Luo X, Fang Y, Wang X, Liu X, Xiao R, Jiang D, Tang Y, Yang G, You L, Zhao Y. Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies. Cell Death Discov 2025; 11:84. [PMID: 40032852 DOI: 10.1038/s41420-025-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/24/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
9
|
Chen K, Chen X, Wang X, Yan B, Liu A, Wang Y, Zhou J, Wei Q, Pan Y, Jiang R. PLCXD3-ALK, a novel ALK rearrangement in lung squamous cell carcinoma and its clinical responses to ALK inhibitors. J Thorac Dis 2025; 17:93-108. [PMID: 39975736 PMCID: PMC11833567 DOI: 10.21037/jtd-24-1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/06/2024] [Indexed: 02/21/2025]
Abstract
Background Lung cancer is the leading cause of cancer-related death worldwide, of which anaplastic lymphoma kinase fusion positive (ALK +) non-small cell lung cancer (NSCLC) accounts for 3-7. Here, we identified a new fusion gene PLCXD3-ALK (P1, A19) from a patient with advanced lung squamous cell carcinoma (LUSC) by next-generation sequencing (NGS). We aimed to evaluate its oncogenic potential by performing functional studies in vitro and tumorigenicity in vivo of this fusion protein. Methods We performed functional experiments in NIH-3T3 cells with stable expression of PLCXD3-ALK including soft agar colony formation assay, cell proliferation and viability assays, and transwell assay. The activation of downstream pathways and the response to ALK inhibitors crizotinib and alectinib were demonstrated by western blotting (WB). In addition, we further evaluated the tumorigenicity of the PLCXD3-ALK mutants in nude mice. Results Similar to EML4-ALK, the PLCXD3-ALK fusion promoted proliferation and the capacity for non-anchorage-dependent growth of NIH-3T3 cells. We demonstrated that PLCXD3-ALK can activate ALK self-phosphorylation and downstream pathways, which could be inhibited by the addition of ALK inhibitors. Moreover, we observed that this gene could provoke oncogenic transformation in nude mice. Meanwhile, the patient was monitored for disease progression with computed tomography (CT) scanning during treatment with alectinib, and a benefit was observed. Conclusions We identified and functionally validated PLCXD3-ALK as a novel rare fusion in NSCLC that has not been previously reported. It can serve as a meaningful therapeutic target for ALK inhibitors of ALK + NSCLC.
Collapse
Affiliation(s)
- Kaidi Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiuqiong Chen
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Bing Yan
- Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Aiqin Liu
- Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Youhui Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Qianhui Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yi Pan
- Department of Pathology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Dastmalchi N, Alipour MR, Safaralizadeh R, Hajiasgharzadeh K. An Updated Review on Dysregulated lncRNAs and their Contribution to the Various Molecular Types of Lung Carcinoma. Anticancer Agents Med Chem 2025; 25:490-498. [PMID: 39754779 DOI: 10.2174/0118715206336608241104065557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 01/06/2025]
Abstract
Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates. This reveals a need to recognize novel techniques to treat malignancy and decrease the burden of lung cancer. Long noncoding RNAs (lncRNAs) manage vital cellular and biochemical functions. lncRNAs play crucial roles in transcriptional and translational processes and signaling cascades. Recently, lncRNAs have been reported to be associated with malignancy where their expression is deregulated, leading to abnormal cellular activities and signaling pathways. In various malignancies, including lung cancer, lncRNA deregulation disrupts normal cellular function, promoting tumorigenesis and influencing patient outcomes and treatment responses. Studies have shown that lncRNAs can act as both oncogenes and tumor suppressors, depending on the lung cancer subtype, specifically in Non-small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC). This dual role of lncRNAs as critical biomarkers might provide insights into lung cancer development and progression. lncRNAs have been discussed as key biomarkers in lung cancer. A comprehensive understanding of the biological activities of lncRNAs in NSCLC and SCLC may improve prognosis, diagnosis, and therapeutic methods. Researchers are increasingly interested in lncRNAs as potential diagnostic biomarkers and therapeutic targets in cancer treatment. As researchers continue to explore lncRNAs, their pivotal roles in lung cancer become increasingly evident. This review highlights the function of lncRNAs in lung carcinogenesis and discusses their molecular mechanisms of function.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
11
|
Bravaccini S, Boldrin E, Gurioli G, Tedaldi G, Piano MA, Canale M, Curtarello M, Ulivi P, Pilati P. The use of platelets as a clinical tool in oncology: opportunities and challenges. Cancer Lett 2024; 607:217044. [PMID: 38876385 DOI: 10.1016/j.canlet.2024.217044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Platelets are small circulating anucleated cells mainly involved in thrombosis and hemostasis processes. Moreover, platelets play an active role in tumorigenesis and cancer progression, stimulating angiogenesis and vascular remodelling, and protecting circulating cancer cells from shear forces and immune surveillance. Several reports indicate that platelet number in the blood circulation of cancer patients is associated with prognosis and response to treatment. However, the mechanisms of platelets "education" by cancer cells and the crosstalk between platelets and tumor are still unclear, and the role of "tumor educated platelets" (TEPs) is achieving growing interest in cancer research. TEPs are a biological source of cancer-derived biomarkers, especially RNAs that are protected by platelets membrane from circulating RNases, and could serve as a non-invasive tool for tumor detection, molecular profiling and evolution during therapy in clinical practice. Moreover, short platelet lifespan offers the possibility to get a snapshot assessment of cancer molecular profile, providing a real-time tool. We review and discuss the potential and the clinical utility, in terms of cancer diagnosis and monitoring, of platelet count together with other morphological parameters and of the more recent and innovative TEP profiling.
Collapse
Affiliation(s)
- Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Elisa Boldrin
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy.
| | - Giorgia Gurioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Gianluca Tedaldi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Maria Assunta Piano
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy.
| | - Matteo Canale
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Matteo Curtarello
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy.
| | - Paola Ulivi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Pierluigi Pilati
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padova, Italy.
| |
Collapse
|
12
|
Dai Y, Bi M, Jiao Q, Du X, Yan C, Jiang H. Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:143. [PMID: 39095480 PMCID: PMC11297325 DOI: 10.1038/s41531-024-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
Apolipoprotein D (ApoD), a lipocalin transporter of small hydrophobic molecules, plays an essential role in several neurodegenerative diseases. It was reported that increased immunostaining for ApoD of glial cells surrounding dopaminergic (DAergic) neurons was observed in the brains of Parkinson's disease (PD) patients. Although preliminary findings supported the role of ApoD in neuroprotection, its derivation and effects on the degeneration of nigral DAergic neurons are largely unknown. In the present study, we observed that ApoD levels released from astrocytes were increased in PD models both in vivo and in vitro. When co-cultured with astrocytes, due to the increased release of astrocytic ApoD, the survival rate of primary cultured ventral midbrain (VM) neurons was significantly increased with 1-methyl-4-phenylpyridillium ion (MPP+) treatment. Increased levels of TAp73 and its phosphorylation at Tyr99 in astrocytes were required for the increased ApoD levels and its release. Conditional knockdown of TAp73 in the nigral astrocytes in vivo could aggravate the neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD mice. Our findings reported that astrocyte-derived ApoD was essential for DAergic neuronal survival in PD models, might provide new therapeutic targets for PD.
Collapse
Affiliation(s)
- Yingying Dai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
13
|
Biyu H, Mengshan L, Yuxin H, Ming Z, Nan W, Lixin G. A miRNA-disease association prediction model based on tree-path global feature extraction and fully connected artificial neural network with multi-head self-attention mechanism. BMC Cancer 2024; 24:683. [PMID: 38840078 PMCID: PMC11151537 DOI: 10.1186/s12885-024-12420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) emerge in various organisms, ranging from viruses to humans, and play crucial regulatory roles within cells, participating in a variety of biological processes. In numerous prediction methods for miRNA-disease associations, the issue of over-dependence on both similarity measurement data and the association matrix still hasn't been improved. In this paper, a miRNA-Disease association prediction model (called TP-MDA) based on tree path global feature extraction and fully connected artificial neural network (FANN) with multi-head self-attention mechanism is proposed. The TP-MDA model utilizes an association tree structure to represent the data relationships, multi-head self-attention mechanism for extracting feature vectors, and fully connected artificial neural network with 5-fold cross-validation for model training. RESULTS The experimental results indicate that the TP-MDA model outperforms the other comparative models, AUC is 0.9714. In the case studies of miRNAs associated with colorectal cancer and lung cancer, among the top 15 miRNAs predicted by the model, 12 in colorectal cancer and 15 in lung cancer were validated respectively, the accuracy is as high as 0.9227. CONCLUSIONS The model proposed in this paper can accurately predict the miRNA-disease association, and can serve as a valuable reference for data mining and association prediction in the fields of life sciences, biology, and disease genetics, among others.
Collapse
Affiliation(s)
- Hou Biyu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Li Mengshan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| | - Hou Yuxin
- College of Computer Science and Engineering, Shanxi Datong University, Datong, Shanxi, 037000, China
| | - Zeng Ming
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Wang Nan
- College of Life Sciences, Jiaying University, Meizhou, Guangdong, 514000, China
| | - Guan Lixin
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
14
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
15
|
Li D, Kok CYL, Wang C, Ray D, Osterburg S, Dötsch V, Ghosh S, Sabapathy K. Dichotomous transactivation domains contribute to growth inhibitory and promotion functions of TAp73. Proc Natl Acad Sci U S A 2024; 121:e2318591121. [PMID: 38739802 PMCID: PMC11127001 DOI: 10.1073/pnas.2318591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73β, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73β's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73β's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73β isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73β to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Catherine Yen Li Kok
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Chao Wang
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Debleena Ray
- Programme in Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Medical School, Singapore169857, Singapore
| | - Susanne Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt am Main60438, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt am Main60438, Germany
| | - Sujoy Ghosh
- Centre for Computational Biology & Programme in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore169857, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore637551, Singapore
| |
Collapse
|
16
|
Li X, Rasul A, Sharif F, Hassan M. PIAS family in cancer: from basic mechanisms to clinical applications. Front Oncol 2024; 14:1376633. [PMID: 38590645 PMCID: PMC10999569 DOI: 10.3389/fonc.2024.1376633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Protein inhibitors of activated STATs (PIAS) are proteins for cytokine signaling that activate activator-mediated gene transcription. These proteins, as versatile cellular regulators, have been described as regulators of approximately 60 proteins. Dysregulation of PIAS is associated with inappropriate gene expression that promotes oncogenic signaling in multiple cancers. Multiple lines of evidence have revealed that PIAS family members show modulated expressions in cancer cells. Most frequently reported PIAS family members in cancer development are PIAS1 and PIAS3. SUMOylation as post-translational modifier regulates several cellular machineries. PIAS proteins as SUMO E3 ligase factor promotes SUMOylation of transcription factors tangled cancer cells for survival, proliferation, and differentiation. Attenuated PIAS-mediated SUMOylation mechanism is involved in tumorigenesis. This review article provides the PIAS/SUMO role in the modulation of transcriptional factor control, provides brief update on their antagonistic function in different cancer types with particular focus on PIAS proteins as a bonafide therapeutic target to inhibit STAT pathway in cancers, and summarizes natural activators that may have the ability to cure cancer.
Collapse
Affiliation(s)
- Xiaomeng Li
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farzana Sharif
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
17
|
Chawra HS, Agarwal M, Mishra A, Chandel SS, Singh RP, Dubey G, Kukreti N, Singh M. MicroRNA-21's role in PTEN suppression and PI3K/AKT activation: Implications for cancer biology. Pathol Res Pract 2024; 254:155091. [PMID: 38194804 DOI: 10.1016/j.prp.2024.155091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
MicroRNA-21 (miR-21) was recognized as a key figure in the intricate web of tumor biology, with a prominent role in regulating the PTEN tumor suppressor gene and the PI3K/AKT cascade. This review elucidates the multifaceted interactions between miR-21, PTEN, and the PI3K/AKT signaling, shedding light on their profound implications in cancer initiation, progression, and therapeutic strategies. The core of this review delves into the mechanical intricacies of miR-21-mediated PTEN suppression and its consequent impact on PI3K/AKT pathway activation. It explores how miR-21, as an oncogenic miRNA, targets PTEN directly or indirectly, resulting in uncontrolled activation of PI3K/AKT, fostering cancerous cell survival, proliferation, and evasion of apoptosis. Furthermore, the abstract emphasizes the clinical relevance of these molecular interactions, discussing their implications in various cancer types, prognostic significance, and potential as therapeutic targets. The review provides insights into ongoing research efforts to develop miR-21 inhibitors and strategies to restore PTEN function, offering new avenues for cancer treatment. This article illuminates the critical function of miR-21 in PTEN suppression and PI3K/AKT activation, offering profound insights into its implications for cancer biology and the potential for targeted interventions.
Collapse
Affiliation(s)
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | | | | | - Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| |
Collapse
|
18
|
Saleh RO, Al-Ouqaili MTS, Ali E, Alhajlah S, Kareem AH, Shakir MN, Alasheqi MQ, Mustafa YF, Alawadi A, Alsaalamy A. lncRNA-microRNA axis in cancer drug resistance: particular focus on signaling pathways. Med Oncol 2024; 41:52. [PMID: 38195957 DOI: 10.1007/s12032-023-02263-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Cancer drug resistance remains a formidable challenge in modern oncology, necessitating innovative therapeutic strategies. The convergence of intricate regulatory networks involving long non-coding RNAs, microRNAs, and pivotal signaling pathways has emerged as a crucial determinant of drug resistance. This review underscores the multifaceted roles of lncRNAs and miRNAs in orchestrating gene expression and cellular processes, mainly focusing on their interactions with specific signaling pathways. Dysregulation of these networks leads to the acquisition of drug resistance, dampening the efficacy of conventional treatments. The review highlights the potential therapeutic avenues unlocked by targeting these non-coding RNAs. Developing specific inhibitors or mimics for lncRNAs and miRNAs, alone or in combination with conventional chemotherapy, emerges as a promising strategy. In addition, epigenetic modulators, immunotherapies, and personalized medicine present exciting prospects in tackling drug resistance. While substantial progress has been made, challenges, including target validation and safety assessment, remain. The review emphasizes the need for continued research to overcome these hurdles and underscores the transformative potential of lncRNA-miRNA interplay in revolutionizing cancer therapy.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Anbar, Iraq
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 11961, Shaqra, Saudi Arabia.
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
19
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
20
|
Kahraman DT, Bozgeyik E, Guven H, Guler S, Saglam E, Cangi S, Oztuzcu S, Bozgeyik I, Isik AF. Long non-coding RNA signatures in non-small cell lung cancer and their clinicopathological significance. Pathol Res Pract 2024; 253:154946. [PMID: 37995424 DOI: 10.1016/j.prp.2023.154946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Lung cancer is the most common type of cancer in our country and worldwide, and it is a leading cause of cancer-related deaths. According to the latest global cancer statistics, lung cancer was identified as the second most common type of cancer, and the leading cause of cancer-related deaths. Long non-coding RNAs (lncRNAs) are a highly heterogeneous class of RNA molecules sharing many characteristics with mRNAs, except for the protein-coding potential. Accumulating mass of evidence suggest that lncRNAs play key regulatory roles during the multistep formation of human cancers including lung cancer. In previous studies, it has been shown that many lncRNA molecules play significant roles in the formation and progression of lung cancer. However, there are still numerous lncRNA molecules in lung cancer whose roles remain unknown. Accordingly, here we sought to ascertain the diagnostic and prognostic value of lncRNAs by analyzing the expression profiles of THRIL, NEAT1, and LOC105376095 in lung cancer. Remarkably, NEAT1 and LOC105376095 but not THRIL were identified to be differentially expressed in tissues of lung tumors. More importantly, LOC105376095, a yet uncharacterized lncRNA molecule, was significantly associated with the disease severity. Collectively, NEAT1 and LOC105376095 hold promise as potential diagnostic and prognostic biomarkers for lung cancer, presenting opportunities for targeted therapeutic interventions in the future.
Collapse
Affiliation(s)
- Demet Tasdemir Kahraman
- Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey; Department of Respiratory Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey.
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| | - Hulya Guven
- Department of Respiratory Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Semih Guler
- Department of Respiratory Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Ebru Saglam
- Department of Respiratory Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Sibel Cangi
- Department of Pathology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Ahmet Ferudun Isik
- Department of Respiratory Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey; Department of Thoracic Surgery, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
21
|
Gram SB, Alosi D, Bagger FO, Østrup O, von Buchwald C, Friborg J, Wessel I, Vogelius IR, Rohrberg K, Rasmussen JH. Clinical implication of genetic intratumor heterogeneity for targeted therapy in head and neck cancer. Acta Oncol 2023; 62:1831-1839. [PMID: 37902999 DOI: 10.1080/0284186x.2023.2272293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Genomic profiling is increasingly used both in therapeutic decision-making and as inclusion criteria for trials testing targeted therapies. However, the mutational landscape may vary across different areas of a tumor and intratumor heterogeneity will challenge treatments or clinical decisions based on single tumor biopsies. The purpose of this study was to assess the clinical relevance of genetic intratumor heterogeneity in head and neck squamous cell carcinomas (HNSCC) using the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT). MATERIALS AND METHODS This prospective study included 33 whole tumor specimens from 28 patients with primary or recurrent HNSCC referred for surgery. Three tumor blocks were selected from central, semi-peripheral, and peripheral positions, mimicking biopsies in three different locations. Genetic analysis of somatic copy number alterations (SCNAs) was performed on the three biopsies using Oncoscan, focusing on 45 preselected HNSCC genes of interest. Clinical relevance was assessed using the ESCAT score to investigate whether and how treatment decisions would change based on the three biopsies from the same tumor. RESULTS The SCNAs identified among 45 preselected genes within the three tumor biopsies derived from the same tumor revealed distinct variations. The detected discrepancies could potentially influence treatment approaches or clinical decisions in 36% of the patients if only one tumor biopsy was used. Recurrent tumors exhibited significantly higher variation in SCNAs than primary tumors (p = .024). No significant correlation between tumor size and heterogeneity (p = .7) was observed. CONCLUSION In 36% of patients diagnosed with HNSCC, clinically significant intratumor heterogeneity was observed which may have implications for patient management. This finding substantiates the need for future studies that specifically investigate the clinical implications associated with intratumor heterogeneity.
Collapse
Affiliation(s)
- Signe Buhl Gram
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Daniela Alosi
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Olga Østrup
- Center for Genomic Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jeppe Friborg
- Department of Oncology, Section of Radiotherapy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Irene Wessel
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ivan Richter Vogelius
- Department of Oncology, Section of Radiotherapy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kristoffer Rohrberg
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jacob Høygaard Rasmussen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
22
|
Kiełbowski K, Żychowska J, Becht R. Anaplastic lymphoma kinase inhibitors-a review of anticancer properties, clinical efficacy, and resistance mechanisms. Front Pharmacol 2023; 14:1285374. [PMID: 37954850 PMCID: PMC10634320 DOI: 10.3389/fphar.2023.1285374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Fusions and mutations of anaplastic lymphoma kinase (ALK), a tyrosine kinase receptor, have been identified in several neoplastic diseases. Rearranged ALK is a driver of tumorigenesis, which activates various signaling pathway associated with proliferation and survival. To date, several agents that target and inhibit ALK have been developed. The most studied ALK-positive disease is non-small cell lung cancer, and three generations of ALK tyrosine kinase inhibitors (TKIs) have been approved for the treatment of metastatic disease. Nevertheless, the use of ALK-TKIs is associated with acquired resistance (resistance mutations, bypass signaling), which leads to disease progression and may require a substitution or introduction of other treatment agents. Understanding of the complex nature and network of resistance mutations may allow to introduce sequential and targeted therapies. In this review, we aim to summarize the efficacy and safety profile of ALK inhibitors, describe off-target anticancer effects, and discuss resistance mechanisms in the context of personalized oncology.
Collapse
Affiliation(s)
| | | | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
23
|
Santini D, Botticelli A, Galvano A, Iuliani M, Incorvaia L, Gristina V, Taffon C, Foderaro S, Paccagnella E, Simonetti S, Fazio F, Scagnoli S, Pomati G, Pantano F, Perrone G, De Falco E, Russo A, Spinelli GP. Network approach in liquidomics landscape. J Exp Clin Cancer Res 2023; 42:193. [PMID: 37542343 PMCID: PMC10401883 DOI: 10.1186/s13046-023-02743-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/06/2023] Open
Abstract
Tissue-based biopsy is the present main tool to explore the molecular landscape of cancer, but it also has many limits to be frequently executed, being too invasive with the risk of side effects. These limits and the ability of cancer to constantly evolve its genomic profile, have recently led to the need of a less invasive and more accurate alternative, such as liquid biopsy. By searching Circulating Tumor Cells and residues of their nucleic acids or other tumor products in body fluids, especially in blood, but also in urine, stools and saliva, liquid biopsy is becoming the future of clinical oncology. Despite the current lack of a standardization for its workflows, that makes it hard to be reproduced, liquid biopsy has already obtained promising results for cancer screening, diagnosis, prognosis, and risk of recurrence.Through a more accessible molecular profiling of tumors, it could become easier to identify biomarkers predictive of response to treatment, such as EGFR mutations in non-small cell lung cancer and KRAS mutations in colorectal cancer, or Microsatellite Instability and Mismatch Repair as predictive markers of pembrolizumab response.By monitoring circulating tumor DNA in longitudinal repeated sampling of blood we could also predict Minimal Residual Disease and the risk of recurrence in already radically resected patients.In this review we will discuss about the current knowledge of limitations and strengths of the different forms of liquid biopsies for its inclusion in normal cancer management, with a brief nod to their newest biomarkers and its future implications.
Collapse
Affiliation(s)
- Daniele Santini
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Andrea Botticelli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | - Antonio Galvano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Michele Iuliani
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Lorena Incorvaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Chiara Taffon
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Simone Foderaro
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Elisa Paccagnella
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
| | - Sonia Simonetti
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Federico Fazio
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy.
| | - Simone Scagnoli
- Oncologia Medica A, Policlinico Umberto 1, La Sapienza Università Di Roma, Rome, Italy
| | | | - Francesco Pantano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Selcetta, Italy
| | - Giuseppe Perrone
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.So Della Repubblica 79, 04100, Latina, Italy
- Mediterranea Cardiocentro, 80122, Naples, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Gian Paolo Spinelli
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy
| |
Collapse
|
24
|
Dou Z, Zhang X, Su W, Zhang T, Ye F, Zhao D, Chen X, Li Q, Zhang H, Di C. Indisulam exerts anticancer effects via modulation of transcription, translation and alternative splicing on human cervical cancer cells. Am J Cancer Res 2023; 13:2922-2937. [PMID: 37559979 PMCID: PMC10408480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023] Open
Abstract
Indisulam is a synthetic sulfonamides drug with anticancer activity in various tumors. However, the effect and molecular mechanism of indisulam have still not been studied in human cervical cancer. We treated human cervical cancer cell lines (HeLa and C33A) with indisulam, evaluated its efficacy, and investigated its molecular targets. Indisulam inhibited tumor growth and induced RBM39 degradation in a dose-dependent manner. RNA-seq and proteomics analysis revealed that indisulam disrupted transcriptional regulation pathways related to mRNA splicing and apoptosis. More importantly, indisulam caused mis-splicing of RNA transcripts including p73 isoforms ΔNp73 and TAp73 which have opposite roles in apoptosis regulation. Indisulam increased TAp73 expression and triggered mitochondrial apoptosis independent of p53 status in HeLa cells. In summary, our data suggests that indisulam has therapeutic potential in cervical cancer, representing an attractive strategy in p53-disrupted cancers and should be further investigated.
Collapse
Affiliation(s)
- Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| | - Xuetian Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| | - Fei Ye
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| | - Dapeng Zhao
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| | - Qiang Li
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of SciencesLanzhou 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhou 730000, Gansu, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing 100039, China
- School of Nuclear Science and Technology, University of Chinese Academy of SciencesBeijing 100039, China
| |
Collapse
|
25
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
26
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
27
|
Kleczko EK, Hinz TK, Nguyen TT, Gurule NJ, Navarro A, Le AT, Johnson AM, Kwak J, Polhac DI, Clambey ET, Weiser-Evans M, Merrick DT, Yang MC, Patil T, Schenk EL, Heasley LE, Nemenoff RA. Durable responses to alectinib in murine models of EML4-ALK lung cancer requires adaptive immunity. NPJ Precis Oncol 2023; 7:15. [PMID: 36739466 PMCID: PMC9899278 DOI: 10.1038/s41698-023-00355-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/18/2023] [Indexed: 02/06/2023] Open
Abstract
Lung cancers bearing oncogenic EML4-ALK fusions respond to targeted tyrosine kinase inhibitors (TKIs; e.g., alectinib), with variation in the degree of shrinkage and duration of treatment (DOT). However, factors that control this response are not well understood. While the contribution of the immune system in mediating the response to immunotherapy has been extensively investigated, less is known regarding the contribution of immunity to TKI therapeutic responses. We previously demonstrated a positive association of a TKI-induced interferon gamma (IFNγ) transcriptional response with DOT in EGFR-mutant lung cancers. Herein, we used three murine models of EML4-ALK lung cancer to test the role for host immunity in the alectinib therapeutic response. The cell lines (EA1, EA2, EA3) were propagated orthotopically in the lungs of immunocompetent and immunodeficient mice and treated with alectinib. Tumor volumes were serially measured by μCT and immune cell content was measured by flow cytometry and multispectral immunofluorescence. Transcriptional responses to alectinib were assessed by RNAseq and secreted chemokines were measured by ELISA. All cell lines were similarly sensitive to alectinib in vitro and as orthotopic tumors in immunocompetent mice, exhibited durable shrinkage. However, in immunodeficient mice, all tumor models rapidly progressed on TKI therapy. In immunocompetent mice, EA2 tumors exhibited a complete response, whereas EA1 and EA3 tumors retained residual disease that rapidly progressed upon termination of TKI treatment. Prior to treatment, EA2 tumors had greater numbers of CD8+ T cells and fewer neutrophils compared to EA1 tumors. Also, RNAseq of cancer cells recovered from untreated tumors revealed elevated levels of CXCL9 and 10 in EA2 tumors, and higher levels of CXCL1 and 2 in EA1 tumors. Analysis of pre-treatment patient biopsies from ALK+ tumors revealed an association of neutrophil content with shorter time to progression. Combined, these data support a role for adaptive immunity in durability of TKI responses and demonstrate that the immune cell composition of the tumor microenvironment is predictive of response to alectinib therapy.
Collapse
Affiliation(s)
- Emily K Kleczko
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Teresa T Nguyen
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Natalia J Gurule
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andre Navarro
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anh T Le
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amber M Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeff Kwak
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diana I Polhac
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric T Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mary Weiser-Evans
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Yang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tejas Patil
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erin L Schenk
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA.
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
28
|
Ko JMY, Guo C, Liu C, Ning L, Dai W, Tao L, Lo AWI, Wong CWY, Wong IYH, Chan FSY, Wong CLY, Chan KK, Law TT, Lee NPY, Liu Z, Jiang H, Li Z, Law S, Lung ML. Clonal relationship and alcohol consumption-associated mutational signature in synchronous hypopharyngeal tumours and oesophageal squamous cell carcinoma. Br J Cancer 2022; 127:2166-2174. [PMID: 36261585 PMCID: PMC9726980 DOI: 10.1038/s41416-022-01995-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The patients with dual oesophageal squamous cell carcinoma (ESCC) and hypopharyngeal cancer (HPC) have poor prognosis; their underlying genetic pathogenesis is unclear. We hypothesise that development of synchronous ESCC/HPC depends on multicentricity or independent origin, rather than multifocality due to local or lateral spreading. METHOD Multiple region whole-exome sequencing (M-WES) and clonality analysis were used to assess clonal relationship and spatial inter- or intra-tumour heterogeneity (ITH) in 62 tumour regions from eight dual ESCC/HPC and ten ESCC patients. RESULTS All synchronous ESCC/HPC patients had COSMIC 16 mutation signatures, compared to only 40% ESCC in the current study (p = 0.013) and public data set (n = 165, p = 0.003). This alcohol consumption-related mutation signature 16, commonly involved in multiple alcohol-related cancers, was significantly associated with drinking and alcohol metabolism-related ADH1B rs1229984. The mutational landscape and copy number profiles were completely distinct between the two primary tumours; clonality analysis further suggested the two primary tumours shared no or only one clone accompanying independent subclone evolution. M-WES strategy demonstrated higher sensitivity and accuracy for detection of mutational prevalence and the late branch mutations among different regions in the ESCC tumours, compared to traditional sequencing analysis based on single biopsy strategy. Patients with high ITH assessed by cancer cell fraction analysis after M-WES were significantly associated with both relapse and survival. CONCLUSIONS Our hypothesis-generating M-WES ITH assessment data have implications for prognostication. Collectively, our findings support multicentric independent clonal evolution, the field cancerisation theory, and suggest novel insights implicating an aetiologic role of alcohol metabolism in dual ESCC/HPC carcinogenesis.
Collapse
Affiliation(s)
- Josephine Mun-Yee Ko
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Chen Guo
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Conghui Liu
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Lvwen Ning
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Wei Dai
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Lihua Tao
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Anthony Wing-Ip Lo
- grid.415550.00000 0004 1764 4144Division of Anatomical Pathology, Queen Mary Hospital, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Carissa Wing-Yan Wong
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Ian Yu-Hong Wong
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Fion Siu-Yin Chan
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Claudia Lai-Yin Wong
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Kwan Kit Chan
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Tsz Ting Law
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Nikki Pui-Yue Lee
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Zhichao Liu
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haoyao Jiang
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Zhigang Li
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Simon Law
- grid.194645.b0000000121742757Department of Surgery, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| | - Maria Li Lung
- grid.194645.b0000000121742757Department of Clinical Oncology, University of Hong Kong, Hong Kong (Special Administrative Region), People’s Republic of China
| |
Collapse
|
29
|
Kukita A, Sone K, Kaneko S, Kawakami E, Oki S, Kojima M, Wada M, Toyohara Y, Takahashi Y, Inoue F, Tanimoto S, Taguchi A, Fukuda T, Miyamoto Y, Tanikawa M, Mori-Uchino M, Tsuruga T, Iriyama T, Matsumoto Y, Nagasaka K, Wada-Hiraike O, Oda K, Hamamoto R, Osuga Y. The Histone Methyltransferase SETD8 Regulates the Expression of Tumor Suppressor Genes via H4K20 Methylation and the p53 Signaling Pathway in Endometrial Cancer Cells. Cancers (Basel) 2022; 14:5367. [PMID: 36358786 PMCID: PMC9655767 DOI: 10.3390/cancers14215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/01/2023] Open
Abstract
The histone methyltransferase SET domain-containing protein 8 (SETD8), which methylates histone H4 lysine 20 (H4K20) and non-histone proteins such as p53, plays key roles in human carcinogenesis. Our aim was to determine the involvement of SETD8 in endometrial cancer and its therapeutic potential and identify the downstream genes regulated by SETD8 via H4K20 methylation and the p53 signaling pathway. We examined the expression profile of SETD8 and evaluated whether SETD8 plays a critical role in the proliferation of endometrial cancer cells using small interfering RNAs (siRNAs). We identified the prognostically important genes regulated by SETD8 via H4K20 methylation and p53 signaling using chromatin immunoprecipitation sequencing, RNA sequencing, and machine learning. We confirmed that SETD8 expression was elevated in endometrial cancer tissues. Our in vitro results suggest that the suppression of SETD8 using siRNA or a selective inhibitor attenuated cell proliferation and promoted the apoptosis of endometrial cancer cells. In these cells, SETD8 regulates genes via H4K20 methylation and the p53 signaling pathway. We also identified the prognostically important genes related to apoptosis, such as those encoding KIAA1324 and TP73, in endometrial cancer. SETD8 is an important gene for carcinogenesis and progression of endometrial cancer via H4K20 methylation.
Collapse
Affiliation(s)
- Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Eiryo Kawakami
- Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Shinya Oki
- National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan
| | - Machiko Kojima
- Tazuke Kofukai, Medical Research Institute, Kitano Hospital, Osaka 530-8480, Japan
| | - Miku Wada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yu Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Futaba Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Saki Tanimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrated Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
30
|
Jiang GL, Song LH, Qiu YF, Liu Y. 3D-QSAR and Docking Studies on Pyrimidine Derivatives of Second-Generation ALK Inhibitors. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1750044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
AbstractAnaplastic lymphoma kinase (ALK) is a promising target for the treatment of non-small cell lung cancer. Under crizotinib treatment, drug resistance and progressive disease appeared after the point mutations arising in the kinase domain of ALK. Second-generation ALK inhibitors can solve the deficiencies of the first generation, especially the drug resistance in cancer chemotherapy. Ceritinib (LDK378), a pyrimidine derivative, for example, can inhibit the activity of ALK with an IC50 value of 40.7 nmol/L, and can experience disease progression after initial treatment with crizotinib. Unfortunately, clear structure–activity relationships have not been identified to date, impeding the rational design of future compounds possessing ALK inhibition activity. To explore interesting insights into the structures of pyrimidine derivatives that influence the activities of the second-generation ALK inhibitors, three-dimensional quantitative structure–activity relationship (3D-QSAR) and molecular docking were performed on a total of 45 derivatives of pyrimidine. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques were used to generate 3D-QSAR models. CoMFA and CoMSIA were performed using the Sybyl X 2.0 package. Molecular docking analysis was performed using the Surflex-Dock module in SYBYL-X 2.0 package. We found in the CoMFA model that the non-cross-validated r2
value was 0.998, the cross-validated q
2 value was 0.663, and the F statistic value was 2,401.970, while the r2
value was 0.988; q
2 value was 0.730, and F value was 542.933 in CoMSIA models, suggesting the good predictability of the CoMFA and CoMSIA models. 3D contour maps and docking results suggested that different groups on the core parts of the compounds could enhance the biological activities. Based on these results, the established 3D-QSAR models and the binding structures of ALK inhibitors obtained favor the prediction of the activity of new inhibitors and will be helpful in the reasonable design of ALK inhibitors in the future.
Collapse
Affiliation(s)
- Gang-Long Jiang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lian-Hua Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yong-Fu Qiu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yu Liu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Karami H, Nomiri S, Ghasemigol M, Mehrvarzian N, Derakhshani A, Fereidouni M, Mirimoghaddam M, Safarpour H. CHAC1 as a novel biomarker for distinguishing alopecia from other dermatological diseases and determining its severity. IET Syst Biol 2022; 16:173-185. [PMID: 35983595 PMCID: PMC9469792 DOI: 10.1049/syb2.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 06/11/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022] Open
Abstract
Alopecia Areata (AA) is characterised by an autoimmune response to hair follicles (HFs) and its exact pathobiology remains unclear. The current study aims to look into the molecular changes in the skin of AA patients as well as the potential underlying molecular mechanisms of AA in order to identify potential candidates for early detection and treatment of AA. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules, hub genes, and mRNA-miRNA regulatory networks associated with AA. Furthermore, Chi2 as a machine-learning algorithm was used to compute the gene importance in AA. Finally, drug-target construction revealed the potential of repositioning drugs for the treatment of AA. Our analysis using four AA data sets established a network strongly correlated to AA pathogenicity based on GZMA, OXCT2, HOXC13, KRT40, COMP, CHAC1, and KRT83 hub genes. Interestingly, machine learning introduced these genes as important in AA pathogenicity. Besides that, using another ten data sets, we showed that CHAC1 could clearly distinguish AA from similar clinical phenotypes, such as scarring alopecia due to psoriasis. Also, two FDA-approved drug candidates and 30 experimentally validated miRNAs were identified that affected the co-expression network. Using transcriptome analysis, suggested CHAC1 as a potential diagnostic predictor to diagnose AA.
Collapse
Affiliation(s)
- Hassan Karami
- Student Research CommitteeFaculty of MedicineBirjand University of Medical SciencesBirjandIran
| | - Samira Nomiri
- Department of BiochemistryFaculty of MedicineBirjand University of Medical SciencesBirjandIran
| | | | - Niloufar Mehrvarzian
- Department of Pharmaceutical NanotechnologyFaculty of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Afshin Derakhshani
- McCaig Institute, Hotchkiss Brain InstituteSnyder Institute for Chronic DiseasesUniversity of CalgaryCalgary, AlbertaCanada,Department of Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Mohammad Fereidouni
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | | | - Hossein Safarpour
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
32
|
Heo H, Kim JH, Lim HJ, Kim JH, Kim M, Koh J, Im JY, Kim BK, Won M, Park JH, Shin YJ, Yun MR, Cho BC, Kim YS, Kim SY, Kim M. DNA methylome and single-cell transcriptome analyses reveal CDA as a potential druggable target for ALK inhibitor-resistant lung cancer therapy. Exp Mol Med 2022; 54:1236-1249. [PMID: 35999456 PMCID: PMC9440127 DOI: 10.1038/s12276-022-00836-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Abstract
Acquired resistance to inhibitors of anaplastic lymphoma kinase (ALK) is a major clinical challenge for ALK fusion-positive non-small-cell lung cancer (NSCLC). In the absence of secondary ALK mutations, epigenetic reprogramming is one of the main mechanisms of drug resistance, as it leads to phenotype switching that occurs during the epithelial-to-mesenchymal transition (EMT). Although drug-induced epigenetic reprogramming is believed to alter the sensitivity of cancer cells to anticancer treatments, there is still much to learn about overcoming drug resistance. In this study, we used an in vitro model of ceritinib-resistant NSCLC and employed genome-wide DNA methylation analysis in combination with single-cell (sc) RNA-seq to identify cytidine deaminase (CDA), a pyrimidine salvage pathway enzyme, as a candidate drug target. CDA was hypomethylated and upregulated in ceritinib-resistant cells. CDA-overexpressing cells were rarely but definitively detected in the naïve cell population by scRNA-seq, and their abundance was increased in the acquired-resistance population. Knockdown of CDA had antiproliferative effects on resistant cells and reversed the EMT phenotype. Treatment with epigenome-related nucleosides such as 5-formyl-2'-deoxycytidine selectively ablated CDA-overexpressing resistant cells via accumulation of DNA damage. Collectively, our data suggest that targeting CDA metabolism using epigenome-related nucleosides represents a potential new therapeutic strategy for overcoming ALK inhibitor resistance in NSCLC.
Collapse
Affiliation(s)
- Haejeong Heo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jong-Hwan Kim
- Korea Bioinformation Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Hyun Jung Lim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joo-Young Im
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Misun Won
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ji-Hwan Park
- Korea Bioinformation Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Yang-Ji Shin
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Mi Ran Yun
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Byoung Chul Cho
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong Sung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Functional Genomics Institute, PDXen Biosystems Co., Daejeon, 34129, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Korea Bioinformation Center, KRIBB, Daejeon, 34141, Republic of Korea.
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
33
|
Liu Z, Dong H, Chen W, Wang B, Ji D, Zhang W, Shi X, Feng X. Case Report: Heterogeneity of Resistance Mechanisms in Different Lesions Co-Mediate Acquired Resistance to First-Line Icotinib in EGFR Mutant Non-Small Cell Lung Cancer. Front Med (Lausanne) 2022; 9:906364. [PMID: 35872785 PMCID: PMC9302584 DOI: 10.3389/fmed.2022.906364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 01/12/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-activating mutations are major oncogenic mechanisms in non-small cell lung cancer (NSCLC). Most patients with NSCLC with EGFR mutations benefit from targeted therapy with EGFR- tyrosine kinase inhibitors (TKIs). One of the main limitations of targeted therapy is that the tumor response is not durable, with the inevitable development of drug resistance. Previous studies demonstrated that the potential resistance mechanisms are diverse, including the presence of EGFR T790M, MET amplification, mesenchymal transformation, and anaplastic lymphoma kinase (ALK) rearrangement. The patient in our report was diagnosed with stage IA lung adenocarcinoma harboring the EGFR L858R mutation and underwent radical surgery. The patient received icotinib for 12 months after recurrence. Subsequent molecular analysis of the left pleural effusion indicated that LCLAT1-ALK fusion might be an underlying mechanism contributing to the acquired resistance to icotinib. Ensartinib was prescribed, but the lesion in the right lung continued to progress. Hence, a re-biopsy and molecular analysis of lesions in the right lung was performed to solve this problem. In contrast to the left pleural effusion, EGFR exon 20 T790M might have mediated the acquired resistance in lesions in the right lung of this patient. The combination of osimertinib and ensartinib has achieved a rapid partial response until now. The complexity and heterogeneity in our case may provide new insights into the resistance mechanisms of targeted therapy.
Collapse
Affiliation(s)
- Zhicong Liu
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Hui Dong
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wenyan Chen
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Dongxiang Ji
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wei Zhang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Wei Zhang
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Xuefei Shi
| | - Xueren Feng
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- *Correspondence: Xueren Feng
| |
Collapse
|
34
|
A Transcriptomic Liquid Biopsy Assay for Predicting Resistance to Neoadjuvant Therapy in Esophageal Squamous Cell Carcinoma. Ann Surg 2022; 276:101-110. [PMID: 35703443 PMCID: PMC9276630 DOI: 10.1097/sla.0000000000005473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to establish a liquid-biopsy assay to predict response to neoadjuvant therapy (NAT) in esophageal squamous cell carcinoma (ESCC) patients. SUMMARY BACKGROUND DATA Pretreatment prediction of resistance to NAT is of great significance for the selection of treatment options in ESCC patients. In this study, we comprehensively translated tissue-based microRNA (miRNA) and messenger RNA (mRNA) expression biomarkers into a liquid biopsy assay. METHODS We analyzed 186 clinical ESCC samples, which included 128 formalin-fixed paraffin-embedded and a matched subset of 58 serum samples, from 2 independent institutions. We performed quantitative reverse-transcription polymerase chain reaction, and developed a resistance-prediction model using the logistic regression analyses. RESULTS We first evaluated the potential of 4-miRNAs and 3-mRNAs panel, which robustly predicted resistance to NAT [area under the curve (AUC): 0.85]. Moreover, addition of tumor size to this panel increased predictive potential to establish a combination signature (AUC: 0.92). We successfully validated this signature performance in independent cohort, and our model was more accurate when the signature was combined with clinical predictors (AUC: 0.81) to establish a NAT resistance risk (NATRR) model. Finally, we successfully translated our NATRR model into a liquid biopsy assay (AUC: 0.78), and a multivariate regression analysis revealed this model as an independent predictor for response to NAT (odds ratio: 6.10; P < 0.01). CONCLUSIONS We successfully developed a liquid biopsy-based assay that allows robust prediction of response to NAT in ESCC patients, and our assay provides fundamentals of developing precision-medicine.
Collapse
|
35
|
Sharifi H, Safarpour H, Moossavi M, Khorashadizadeh M. Identification of Potential Prognostic Markers and Key Therapeutic Targets in Hepatocellular Carcinoma Using Weighted Gene Co-Expression Network Analysis: A Systems Biology Approach. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e2968. [PMID: 36381283 PMCID: PMC9618018 DOI: 10.30498/ijb.2022.269817.2968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND As the most prevalent form of liver cancer, hepatocellular carcinoma (HCC) ranks the fifth highest cause of cancer-related death worldwide. Despite recent advancements in diagnostic and therapeutic techniques, the prognosis for HCC is still unknown. OBJECTIVES This study aimed to identify potential genes contributing to HCC pathogenicity. MATERIALS AND METHODS To this end, we examined the GSE39791 microarray dataset, which included 72 HCC samples and 72 normal samples. An investigation of co-expression networks using WGCNA found a highly conserved blue module with 665 genes that were strongly linked to HCC. RESULTS APOF, NAT2, LCAT, TTC36, IGFALS, ASPDH, and VIPR1 were the blue module's top 7 hub genes. According to the results of hub gene enrichment, the most related issues in the biological process and KEGG were peroxisome organization and metabolic pathways, respectively. In addition, using the drug-target network, we discovered 19 FDA-approved medication candidates for different reasons that might potentially be employed to treat HCC patients through the modulation of 3 hub genes of the co-expression network (LCAT, NAT2, and VIPR1). Our findings also demonstrated that the 3 scientifically validated miRNAs regulated the co-expression network by the VIPR1 hub gene. CONCLUSION We found co-expressed gene modules and hub genes linked with HCC advancement, offering insights into the mechanisms underlying HCC progression as well as some potential HCC treatments.
Collapse
Affiliation(s)
- Hengameh Sharifi
- Department of Molecular Medicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moossavi
- Department of Molecular Medicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Department of Molecular Medicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran,
Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran,
3Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
36
|
Kadhim Salim N, Hasan Mohammed Ali S, Mahdi Al-Sudani I. Chromogenic in Situ-Hybridization of HPV16/18 DNA in Relation to the Over-Expressed Protein of P73-Gene in Tissues from a Group of Thyroid Carcinoma. ARCHIVES OF RAZI INSTITUTE 2022; 77:967-975. [PMID: 36618305 PMCID: PMC9759251 DOI: 10.22092/ari.2022.357622.2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/06/2022] [Indexed: 01/10/2023]
Abstract
Thyroid cancer has been related to many environmental, genetic, and viral factors. Human Papilloma Viruses (HPV) are epitheliotropic viruses infecting cutaneous and mucosal tissues, leading to a variety of benign and malignant tumors. The p73-gene expresses two important isoforms from the N-terminal end with two opposite activities in the regulation of cell fate. The present study aimed to assess the histopathological expression of tissues from thyroid cancers in relation to the over-expression of the p73 gene with HPV 16/18 infection. A total of 116 thyroid tissues were examined for HPV 16/18-DNA and P73-gene protein expression. The samples belonged to 36 patients diagnosed with thyroid carcinoma, 40 thyroid adenoma tissues blocks, and 40 apparently normal thyroid tissues. The detection of HPV 16/18-DNA was performed by in situ hybridization (ISH), whereas P73 gene expression was carried out by immunohistochemistry (IHC). The HPV16/18 DNA-ISH reactions in thyroid cancers were found in 72.2% tissues, 35% HPV16/18- positivity was detected in the thyroid adenoma tissues group, and 27.5% of healthy thyroid tissues revealed ISH reactions. Statistically, the difference of the HPV16/18 in thyroid cancers and control was highly significant. The p73 was detected in 66.7% and 57.5% of thyroid cancer and adenoma thyroid tissues, respectively, while 45% of the examined healthy thyroid tissues revealed IHC-reactions. The difference between the p73-protein expression percentages detected in tissues of thyroid tumors and the control group was non statistically significant. The presence of HPV16/18, as well as an over-expressed p73-gene, in thyroid cancer patients, suggests that the virus, as well as this protein, may play an etiologic role in thyroid carcinogenesis.
Collapse
Affiliation(s)
| | - S Hasan Mohammed Ali
- Clinical Communicable Diseases Research, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - I Mahdi Al-Sudani
- Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq
| |
Collapse
|
37
|
Identification of the Potential Correlation between Tumor Protein 73 and Head and Neck Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:6410113. [PMID: 35756491 PMCID: PMC9217540 DOI: 10.1155/2022/6410113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Background Head and neck squamous cell carcinomas (HNSC) are common malignant tumors with a high occurrence and poor prognosis. Tumor protein P73 (TP73) plays an integral role in a wide range of human malignancies, but its gene expression profile, prognostic value, and potential mechanisms in HNSC remain to be comprehensively explored. Objective This research aimed to elucidate the potential relationship between TP73 and HNSC through bioinformatics analysis. Methods The Cancer Genome Atlas (TCGA) database was queried to investigate the regulatory role of TP73 in HNSC. The survival probabilities linked to TP73 mRNA were determined via the Kaplan-Meier analysis using R packages. Subsequently, the association of TP73 with several clinical subgroups and immunological subtypes was studied using a cohort from the TCGA-HNSC. Functional analyses were used to identify the potential signaling pathways enriched by the correlated genes of TP73. The relationship between TP73 and immunological aspects, including immune cells, immune inhibitor genes, immune stimulator genes, and tumor immune microenvironment, were investigated. Results This study showed that the protein and mRNA levels of TP73 in HNSC patients were significantly higher than those in normal tissues. Elevated TP73 expression was related to a better survival outcome in HNSC patients. The TP73 gene was an independent prognostic factor for overall survival in HNSC samples. TP73 was mainly involved in DNA replication, ribosome, apoptosis, mismatch repair, and folate biosynthesis. TP73 was found to be positively correlated with the majority of tumor infiltrating immune cells and immunoinhibitory genes in HNSC. Conclusions Integrative bioinformatics and statistical analyses displayed that TP73 might serve as a novel marker for the diagnosis and prognosis of HNSC. TP73 modulates immune cells in the tumor microenvironment of HNSC patients, thereby bearing significance for HNSC immunotherapy.
Collapse
|
38
|
P63 and P73 Activation in Cancers with p53 Mutation. Biomedicines 2022; 10:biomedicines10071490. [PMID: 35884795 PMCID: PMC9313412 DOI: 10.3390/biomedicines10071490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
The members of the p53 family comprise p53, p63, and p73, and full-length isoforms of the p53 family have a tumor suppressor function. However, p53, but not p63 or p73, has a high mutation rate in cancers causing it to lose its tumor suppressor function. The top and second-most prevalent p53 mutations are missense and nonsense mutations, respectively. In this review, we discuss possible drug therapies for nonsense mutation and a missense mutation in p53. p63 and p73 activators may be able to replace mutant p53 and act as anti-cancer drugs. Herein, these p63 and p73 activators are summarized and how to improve these activator responses, particularly focusing on p53 gain-of-function mutants, is discussed.
Collapse
|
39
|
Peng L, Zhu L, Sun Y, Stebbing J, Selvaggi G, Zhang Y, Yu Z. Targeting ALK Rearrangements in NSCLC: Current State of the Art. Front Oncol 2022; 12:863461. [PMID: 35463328 PMCID: PMC9020874 DOI: 10.3389/fonc.2022.863461] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) alterations in non-small cell lung cancer (NSCLC) can be effectively treated with a variety of ALK-targeted drugs. After the approval of the first-generation ALK inhibitor crizotinib which achieved better results in prolonging the progression-free survival (PFS) compared with chemotherapy, a number of next-generation ALK inhibitors have been developed including ceritinib, alectinib, brigatinib, and ensartinib. Recently, a potent, third-generation ALK inhibitor, lorlatinib, has been approved by the Food and Drug Administration (FDA) for the first-line treatment of ALK-positive (ALK+) NSCLC. These drugs have manageable toxicity profiles. Responses to ALK inhibitors are however often not durable, and acquired resistance can occur as on-target or off-target alterations. Studies are underway to explore the mechanisms of resistance and optimal treatment options beyond progression. Efforts have also been undertaken to develop further generations of ALK inhibitors. This review will summarize the current situation of targeting the ALK signaling pathway.
Collapse
Affiliation(s)
- Ling Peng
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Yilan Sun
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
40
|
Lin S, Chen Y, Wang J, Cai Y, Chen X, Chen Y, Shi Y, Chen G, Zhu K. Multi-Region Genomic Landscape Analysis for the Preoperative Prediction of Lymph Node Metastasis in Esophageal Carcinoma. Front Genet 2022; 13:830601. [PMID: 35401692 PMCID: PMC8986126 DOI: 10.3389/fgene.2022.830601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Esophageal cancer is an aggressive malignant tumor, with 90 percent of the patients prone to recurrence and metastasis. Although recent studies have identified some potential biomarkers, these biomarkers’ clinical or pathological significance is still unclear. Therefore, it is urgent to further identify and study novel molecular changes occurring in esophageal cancer. It has positive clinical significance to identify a tumor-specific mutation in patients after surgery for an effective intervention to improve the prognosis of patients.Methods: In this study, we performed whole-exome sequencing (WES) on 33 tissue samples from six esophageal cancer patients with lymph node metastasis, compared the differences in the genomic and evolutionary maps in different tissues, and then performed pathway enrichment analysis on non-synonymous mutation genes. Finally, we sorted out the somatic mutation data of all patients to analyze the subclonality of each tumor.Results: There were significant differences in somatic mutations between the metastatic lymph nodes and primary lesions in the six patients. Clustering results of pathway enrichment analysis indicated that the metastatic lymph nodes had certain commonalities. Tumors of the cloned exploration results illustrated that five patients showed substantial heterogeneity.Conclusion: WES technology can be used to explore the differences in regional evolutionary maps, heterogeneity, and detect patients’ tumor-specific mutations. In addition, an in-depth understanding of the ontogeny and phylogeny of tumor heterogeneity can help to further find new molecular changes in esophageal cancer, which can improve the prognosis of EC patients and provide a valuable reference for their diagnosis.
Collapse
Affiliation(s)
- Shaofeng Lin
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Yanping Chen
- Department of Pathology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Jianchao Wang
- Department of Pathology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Yibin Cai
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Yi Shi
- Department of Molecular Pathology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
| | - Gang Chen
- Department of Pathology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
- *Correspondence: Gang Chen, ; Kunshou Zhu,
| | - Kunshou Zhu
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, China
- *Correspondence: Gang Chen, ; Kunshou Zhu,
| |
Collapse
|
41
|
Zou B, Guo D, Kong P, Wang Y, Cheng X, Cui Y. Integrative Genomic Analyses of 1,145 Patient Samples Reveal New Biomarkers in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2022; 8:792779. [PMID: 35127817 PMCID: PMC8814608 DOI: 10.3389/fmolb.2021.792779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Due to the lack of effective diagnostic markers and therapeutic targets, esophageal squamous cell carcinoma (ESCC) shows a poor 5 years survival rate of less than 30%. To explore the potential therapeutic targets of ESCC, we integrated and reanalyzed the mutation data of WGS (whole genome sequencing) or WES (whole exome sequencing) from a total of 1,145 samples in 7 large ESCC cohorts, including 270 ESCC gene expression data. Two new mutation signatures and 20 driver genes were identified in our study. Among them, AP3S1, MUC16, and RPS15 were reported for the first time. We also discovered that the KMT2D was associated with the multiple clinical characteristics of ESCC, and KMT2D knockdown cells showed enhanced cell migration and cell invasion. Furthermore, a few neoantigens were shared between ESCC patients. For ESCC, compared to TMB, neoantigen might be treated as a better immunotherapy biomarker. Our research expands the understanding of ESCC mutations and helps the identification of ESCC biomarkers, especially for immunotherapy biomarkers.
Collapse
Affiliation(s)
- Binbin Zou
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Dinghe Guo
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Yanqiang Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| | - Yongping Cui
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| |
Collapse
|
42
|
Li W, Zhang J, Wang Z, Li L, Ma J, Zhou X, Wang J, Liang Z, Ying J, Experts from the RATICAL study. Guidelines for clinical practice of ALK fusion detection in non-small-cell lung cancer: a proposal from the Chinese RATICAL study group. JOURNAL OF THE NATIONAL CANCER CENTER 2021; 1:123-131. [PMID: 39036803 PMCID: PMC11256616 DOI: 10.1016/j.jncc.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
The presence of anaplastic lymphoma kinase (ALK) rearrangement defines a molecular subtype of non-small cell lung cancer (NSCLC). ALK inhibitors (ALKIs) confer significant clinical benefits in patients with ALK-positive advanced NSCLC; therefore, it is of great clinical significance to select accurate, rapid, and appropriate ALK testing methods to screen for patients who are suitable for anti-ALK treatment. In recent years, great progress has been made in the development and clinical application of ALKIs, as well as in our understanding of acquired drug resistance mechanisms. Meanwhile, new ALK companion diagnostic platforms have been developed and applied in clinical practice. Although many studies have shown that there is a high rate of concordance among these platforms, new problems continue to appear during testing. To maximize the benefit for patients, accurate testing results can be obtained by first selecting the appropriate testing method and then formulating, optimizing, and complying with the standardized testing process in accordance with the testing population and specimen types. With the ongoing accumulation of clinical practice data, experience from quality control of ALK testing, and results from multicenter research, an updated expert consensus is necessary. The experts who participated in the discussion and development of this guideline have a rich background in theoretical and clinical testing experience, which ensures the practical value of the information presented in this guideline.
Collapse
Affiliation(s)
- Wenbin Li
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Zhang
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhijie Wang
- Departments of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Ma
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450000, China
| | - Xiaoyang Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jie Wang
- Departments of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jianming Ying
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Experts from the RATICAL study
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Departments of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450000, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
43
|
Šutić M, Vukić A, Baranašić J, Försti A, Džubur F, Samaržija M, Jakopović M, Brčić L, Knežević J. Diagnostic, Predictive, and Prognostic Biomarkers in Non-Small Cell Lung Cancer (NSCLC) Management. J Pers Med 2021; 11:1102. [PMID: 34834454 PMCID: PMC8624402 DOI: 10.3390/jpm11111102] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite growing efforts for its early detection by screening populations at risk, the majority of lung cancer patients are still diagnosed in an advanced stage. The management of lung cancer has dramatically improved in the last decade and is no longer based on the "one-fits-all" paradigm or the general histological classification of non-small cell versus small cell lung cancer. Emerging options of targeted therapies and immunotherapies have shifted the management of lung cancer to a more personalized treatment approach, significantly influencing the clinical course and outcome of the disease. Molecular biomarkers have emerged as valuable tools in the prognosis and prediction of therapy response. In this review, we discuss the relevant biomarkers used in the clinical management of lung tumors, from diagnosis to prognosis. We also discuss promising new biomarkers, focusing on non-small cell lung cancer as the most abundant type of lung cancer.
Collapse
Affiliation(s)
- Maja Šutić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
| | - Ana Vukić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
| | - Jurica Baranašić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
| | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Feđa Džubur
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (F.D.); (M.S.); (M.J.)
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Samaržija
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (F.D.); (M.S.); (M.J.)
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Jakopović
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (F.D.); (M.S.); (M.J.)
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Brčić
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Jelena Knežević
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
- Faculties for Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
44
|
Wang L, Wang X, Jia Y, Guo F, Zhengjun S, Shao Z. Intratumoural heterogeneity and clone evolution of oral squamous cell carcinoma. Mol Carcinog 2021; 60:758-768. [PMID: 34432915 DOI: 10.1002/mc.23341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancy. Our study uses multipoint materials to explore the heterogeneity and metastasis mechanism of OSCC to find more accurate molecular markers and new therapeutic targets. By using whole-exome capture and sequencing and tumor evolution analysis, we found that most clone-driven mutations were located in the branches of tumor phylogenetic tree, such as COTL1, CASP8, and PROCR. Most clone-driven OSCC mutations occur mainly in tumor suppressor genes, including TP53, SFRP4, and NOTCH1. Our study on intratumor heterogeneity (ITH) and clonal evolution provides an important molecular basis for further understanding of OSCC occurrence and development and metastasis and provides potential targets for the treatment of this disease.
Collapse
Affiliation(s)
- Lin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xinmiao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yulin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shang Zhengjun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
Karami H, Derakhshani A, Ghasemigol M, Fereidouni M, Miri-Moghaddam E, Baradaran B, Tabrizi NJ, Najafi S, Solimando AG, Marsh LM, Silvestris N, De Summa S, Paradiso AV, Racanelli V, Safarpour H. Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection. J Clin Med 2021; 10:3567. [PMID: 34441862 PMCID: PMC8397209 DOI: 10.3390/jcm10163567] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including PGLYRP4 and HEPHL1, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway, IL-17 signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug-target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19.
Collapse
Affiliation(s)
- Hassan Karami
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS-Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (B.B.); (N.J.T.); (S.N.)
| | - Mohammad Ghasemigol
- Department of Computer Engineering, University of Birjand, Birjand 9717434765, Iran;
| | - Mohammad Fereidouni
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Diseases Research Center & Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (B.B.); (N.J.T.); (S.N.)
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (B.B.); (N.J.T.); (S.N.)
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (B.B.); (N.J.T.); (S.N.)
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.G.S.); (N.S.)
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6/VI, 8010 Graz, Austria;
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.G.S.); (N.S.)
- Medical Oncology Unit, IRCCS-Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy;
| | | | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.G.S.); (N.S.)
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| |
Collapse
|
46
|
Guo JC, Lin CY, Lin CC, Huang TC, Lien MY, Lu LC, Kuo HY, Hsu CH. Response to Immune Checkpoint Inhibitors in Recurrent or Metastatic Esophageal Squamous Cell Carcinoma May Be Affected by Tumor Sites. Oncology 2021; 99:652-658. [PMID: 34340231 DOI: 10.1159/000517738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Heterogeneous tumor response has been reported in cancer patients treated with immune checkpoint inhibitors (ICIs). This study investigated whether the tumor site is associated with the response to ICIs in patients with recurrent or metastatic esophageal squamous cell carcinoma (ESCC). METHODS Patients with ESCC who had measurable tumors in the liver, lung, or lymph node (LN) according to the response evaluation criteria in solid tumors (RECIST) 1.1 and received ICIs at 2 medical centers in Taiwan were enrolled. In addition to RECIST 1.1, tumor responses were determined per individual organ basis according to organ-specific criteria modified from RECIST 1.1. Fisher test or χ2 test was used for statistical analysis. RESULTS In total, 37 patients were enrolled. The overall response rate per RECIST 1.1 was 13.5%. Measurable tumors in the LN, lung, and liver were observed in 26, 17, and 13 patients, respectively. The organ-specific response rates were 26.9%, 29.4%, and 15.4% for the LN, lung, and liver tumors, respectively (p = 0.05). The organ-specific disease control rates were 69.2%, 52.9%, and 21.1% for the LN, lung, and liver tumors, respectively (p = 0.024). Five (27.8%) among 18 patients harboring at least 2 involved organs had heterogeneous tumor response. CONCLUSION The response and disease control to ICIs may differ in ESCC tumors located at different metastatic sites, with a lesser likelihood of response and disease control in metastatic liver tumors than in tumors located at the LNs and lung.
Collapse
Affiliation(s)
- Jhe-Cyuan Guo
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan, .,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, .,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan,
| | - Chen-Yuan Lin
- Division of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ta-Chen Huang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Yu Lien
- Division of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan
| | - Li-Chun Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hung-Yang Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
47
|
Horak P, Leichsenring J, Goldschmid H, Kreutzfeldt S, Kazdal D, Teleanu V, Endris V, Gieldon L, Allgäuer M, Volckmar AL, Dikow N, Renner M, Kirchner M, Penzel R, Ploeger C, Brandt R, Seker-Cin H, Budczies J, Heilig CE, Neumann O, Schaaf CP, Schirmacher P, Fröhling S, Stenzinger A. Assigning evidence to actionability: An introduction to variant interpretation in precision cancer medicine. Genes Chromosomes Cancer 2021; 61:303-313. [PMID: 34331337 DOI: 10.1002/gcc.22987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022] Open
Abstract
Modern concepts in precision cancer medicine are based on increasingly complex genomic analyses and require standardized criteria for the functional evaluation and reporting of detected genomic alterations in order to assess their clinical relevance. In this article, we propose and address the necessary steps in systematic variant evaluation consisting of bioinformatic analysis, functional annotation and clinical interpretation, focusing on the latter two aspects. We discuss the role and clinical application of current variant classification systems and point out their scope and limitations. Finally, we highlight the significance of the molecular tumor board as a platform for clinical decision-making based on genomic analyses.
Collapse
Affiliation(s)
- Peter Horak
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Jonas Leichsenring
- Institut für Pathologie, Zytologie und molekulare Diagnostik, Regiomed Klinikum Coburg, Coburg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hannah Goldschmid
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Kreutzfeldt
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Veronica Teleanu
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura Gieldon
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Marcus Renner
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Roland Penzel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolin Ploeger
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Regine Brandt
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Huriye Seker-Cin
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Budczies
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| | - Christoph E Heilig
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Peter Schirmacher
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Albrecht Stenzinger
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,Center for Personalized Medicine (ZPM), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
| |
Collapse
|
48
|
Abboud HS, Camuzi D, Rapozo DC, Fernandes PV, Nicolau-Neto P, Guaraldi S, Simão TA, Ribeiro Pinto LF, Gonzaga IM, Soares-Lima SC. MET overexpression and intratumor heterogeneity in esophageal squamous cell carcinoma. ACTA ACUST UNITED AC 2021; 54:e10877. [PMID: 34037097 PMCID: PMC8148886 DOI: 10.1590/1414-431x2020e10877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the ten most frequent and deadly cancers, without effective therapies for most patients. More recently, drugs targeting deregulated growth factor signaling receptors have been developed, such as HGF-MET targeted therapy. We assessed MET and HGF genetic alterations and gene and protein expression profiles in ESCC patients from the Brazilian National Cancer Institute and publicly available datasets, as well as the intratumor heterogeneity of the alterations found. Our analyses showed that HGF and MET genetic alterations, both copy number and mutations, are not common in ESCC, affecting 5 and 6% of the cases, respectively. HGF showed a variable mRNA expression profile between datasets, with no alterations (GSE20347), downregulation (GSE45670), and upregulation in ESCC (our dataset and GSE75241). On the other hand, MET was found consistently upregulated in ESCC compared to non-tumor surrounding tissue, with median fold-changes of 5.96 (GSE20347), 3.83 (GSE45670), 6.02 (GSE75241), and 5.0 (our dataset). Among our patients, 84% of the tumors showed at least a two-fold increase in MET expression. This observation was corroborated by protein levels, with 55% of cases exhibiting positivity in 100% of the tumor cells. Intratumor heterogeneity was evaluated in at least four tumor biopsies from five patients and two cases showed a consistent increase in MET expression (at least two-fold) in all tumor samples. Our data suggested that HGF-MET signaling pathway was likely to be overactivated in ESCC, representing a potential therapeutic target, but eligibility for this therapy should consider intratumor heterogeneity.
Collapse
Affiliation(s)
- H S Abboud
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rio de Janeiro, RJ, Brasil
| | - D Camuzi
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rio de Janeiro, RJ, Brasil
| | - D C Rapozo
- Divisão de Patologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil
| | - P V Fernandes
- Divisão de Patologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil
| | - P Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rio de Janeiro, RJ, Brasil
| | - S Guaraldi
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rio de Janeiro, RJ, Brasil
| | - T A Simão
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - L F Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rio de Janeiro, RJ, Brasil.,Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - I M Gonzaga
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rio de Janeiro, RJ, Brasil
| | - S C Soares-Lima
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer, Coordenação de Pesquisa, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
49
|
Shanmugam A, Hariharan AK, Hasina R, Nair JR, Katragadda S, Irusappan S, Ravichandran A, Veeramachaneni V, Bettadapura R, Bhati M, Ramaswamy V, Rao VUS, Bagadia RK, Manjunath A, NML M, Solomon MC, Maji S, Bahadur U, Bettegowda C, Papadopoulos N, Lingen MW, Hariharan R, Gupta V, Agrawal N, Izumchenko E. Ultrasensitive detection of tumor-specific mutations in saliva of patients with oral cavity squamous cell carcinoma. Cancer 2021; 127:1576-1589. [PMID: 33405231 PMCID: PMC8084899 DOI: 10.1002/cncr.33393] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/16/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oral cavity squamous cell carcinoma (OCSCC) is the most common head and neck malignancy. Although the survival rate of patients with advanced-stage disease remains approximately 20% to 60%, when detected at an early stage, the survival rate approaches 80%, posing a pressing need for a well validated profiling method to assess patients who have a high risk of developing OCSCC. Tumor DNA detection in saliva may provide a robust biomarker platform that overcomes the limitations of current diagnostic tests. However, there is no routine saliva-based screening method for patients with OCSCC. METHODS The authors designed a custom next-generation sequencing panel with unique molecular identifiers that covers coding regions of 7 frequently mutated genes in OCSCC and applied it on DNA extracted from 121 treatment-naive OCSCC tumors and matched preoperative saliva specimens. RESULTS By using stringent variant-calling criteria, mutations were detected in 106 tumors, consistent with a predicted detection rate ≥88%. Moreover, mutations identified in primary malignancies were also detected in 93% of saliva samples. To ensure that variants are not errors resulting in false-positive calls, a multistep analytical validation of this approach was performed: 1) re-sequencing of 46 saliva samples confirmed 88% of somatic variants; 2) no functionally relevant mutations were detected in saliva samples from 11 healthy individuals without a history of tobacco or alcohol; and 3) using a panel of 7 synthetic loci across 8 sequencing runs, it was confirmed that the platform developed is reproducible and provides sensitivity on par with droplet digital polymerase chain reaction. CONCLUSIONS The current data highlight the feasibility of somatic mutation identification in driver genes in saliva collected at the time of OCSCC diagnosis.
Collapse
Affiliation(s)
| | | | - Rifat Hasina
- University of Chicago, Section of Otolaryngology-Head and Neck Surgery, Chicago, USA
| | | | | | | | | | | | | | | | | | - Vishal US Rao
- HealthCare Global (HCG) Cancer Centre, Bangalore, India
| | | | | | - Manjunath NML
- HealthCare Global (HCG) Cancer Centre, Bangalore, India
| | | | | | | | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mark W. Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | | | - Nishant Agrawal
- University of Chicago, Section of Otolaryngology-Head and Neck Surgery, Chicago, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Jiang Y, Jiang YY, Lin DC. Super-enhancer-mediated core regulatory circuitry in human cancer. Comput Struct Biotechnol J 2021; 19:2790-2795. [PMID: 34093993 PMCID: PMC8138668 DOI: 10.1016/j.csbj.2021.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022] Open
Abstract
Super-enhancers (SEs) are congregated enhancer clusters with high level of loading of transcription factors (TFs), cofactors and epigenetic modifications. Through direct co-occupancy at their own SEs as well as each other's, a small set of so called "master" TFs form interconnected core regulatory circuitry (CRCs) to orchestrate transcriptional programs in both normal and malignant cells. These master TFs can be predicted mathematically using epigenomic methods. In this Review, we summarize the identification of SEs and CRCs in cancer cells, the mechanisms by which master TFs and SEs cooperatively regulate cancer-type-specific expression programs, and the cancer-type- and subtype-specificity of CRC and the significance in cancer biology.
Collapse
Affiliation(s)
- Yuan Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan-Yi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Corresponding authors at: Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China (Y.-Y. Jiang); Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA (D.-C. Lin).
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding authors at: Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China (Y.-Y. Jiang); Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA (D.-C. Lin).
| |
Collapse
|