1
|
Lalezadeh A, Fadaee M, Saedi S, Nezhadi J, Ozma MA, Ahmadi S, Mobaseri M, Kafil HS. A Critical Review on the Potential of Inactivated Bacteria in Counteracting Human Pathogens. Curr Microbiol 2025; 82:295. [PMID: 40394322 DOI: 10.1007/s00284-025-04282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
Bacterial infections are a major global public health challenge, especially with increasing antibiotic resistance. Postbiotics, bioactive compounds produced by probiotics, have been proposed as a novel strategy to inhibit the growth of pathogenic bacteria and address antibiotic resistance. Similar to probiotics and certain food ingredients, postbiotics can also modulate beneficial microbial communities and ultimately contribute to host health. Postbiotics derived from probiotics may affect the physical and chemical conditions of the intestinal environment, and by enhancing the host's immune system, directly interfere with the metabolic pathways and signaling of pathogenic bacteria. Postbiotics inhibit biofilm formation, reduce the expression of antibiotic resistance genes, and enhance the efficacy of antibiotic therapies. They are effective against resistant bacteria such as Escherichia coli and Clostridium difficile and reduce the risk of dental infections caused by Streptococcus mutans. Some postbiotics, such as lactic acid and antimicrobial peptides derived from Lactobacillus and Bifidobacterium genus, help the immune system dealing resistant bacteria such as Pseudomonas aeruginosa, Staphylococcus aureus, and Helicobacter pylori. The review investigates the mechanisms of action and applications of postbiotics in the control of pathogenic bacteria and their role as a complement to existing treatments.
Collapse
Affiliation(s)
- Aidin Lalezadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Saedi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Asghari Ozma
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Ahmadi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mobaseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Yarahmadi A, Najafiyan H, Yousefi MH, Khosravi E, Shabani E, Afkhami H, Aghaei SS. Beyond antibiotics: exploring multifaceted approaches to combat bacterial resistance in the modern era: a comprehensive review. Front Cell Infect Microbiol 2025; 15:1493915. [PMID: 40176987 PMCID: PMC11962305 DOI: 10.3389/fcimb.2025.1493915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/23/2025] [Indexed: 04/05/2025] Open
Abstract
Antibiotics represent one of the most significant medical breakthroughs of the twentieth century, playing a critical role in combating bacterial infections. However, the rapid emergence of antibiotic resistance has become a major global health crisis, significantly complicating treatment protocols. This paper provides a narrative review of the current state of antibiotic resistance, synthesizing findings from primary research and comprehensive review articles to examine the various mechanisms bacteria employ to counteract antibiotics. One of the primary sources of antibiotic resistance is the improper use of antibiotics in the livestock industry. The emergence of drug-resistant microorganisms from human activities and industrial livestock production has presented significant environmental and public health concerns. Today, resistant nosocomial infections occur following long-term hospitalization of patients, causing the death of many people, so there is an urgent need for alternative treatments. In response to this crisis, non-antibiotic therapeutic strategies have been proposed, including bacteriophages, probiotics, postbiotics, synbiotics, fecal microbiota transplantation (FMT), nanoparticles (NPs), antimicrobial peptides (AMPs), antibodies, traditional medicines, and the toxin-antitoxin (TA) system. While these approaches offer innovative solutions for addressing bacterial infections and preserving the efficacy of antimicrobial therapies, challenges such as safety, cost-effectiveness, regulatory hurdles, and large-scale implementation remain. This review examines the potential and limitations of these strategies, offering a balanced perspective on their role in managing bacterial infections and mitigating the broader impact of antibiotic resistance.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamide Najafiyan
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Elham Khosravi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Seyed Soheil Aghaei
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
3
|
Dubey D, Kar B, Biswaroy P, Rath G, Mishra D, Ghosh G. The prospect of probiotics in -induced peptic ulcer disease: A perspective review. IP INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY AND TROPICAL DISEASES 2024; 10:87-94. [DOI: 10.18231/j.ijmmtd.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/05/2025]
Abstract
The relationship between the human host and the intestinal microbiota is dynamic and symbiotic. This review examines whether there is a correlation between a disruption in host-microbial interactions caused by an alternative composition of gut microbiota and an increased susceptibility to peptic ulcer disease, mainly when hazardous bacteria are present in the coexistence. Peptic ulcers frequently arise from infections caused by (), a pathogen that evades the host's immune system and establishes a lifelong colony. This protracted infection gives rise to chronic inflammation, which substantially raises the risk of developing gastric ulcers and gastric cancer. One of the significant obstacles in the treatment of infection is antibiotic resistance, which develops as a result of improper antibiotic treatment for bacterial infections. Such misuse of antibiotics also results in dysbiosis. In such cases, probiotics become an essential tool that restores the balance of the normal flora in the body and eliminates critical infections. This results in probiotics being utilized extensively for ulcer treatment and potentially serving a dual purpose in combating infection; consequently, antibiotic usage will be reduced, and human health will advance.
Collapse
Affiliation(s)
| | - Biswakanth Kar
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Prativa Biswaroy
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Goutam Rath
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| | | | - Goutam Ghosh
- Siksha O Anusandhan Deemed to be University, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Odisha, India
| |
Collapse
|
4
|
Aragona SE, Fabbri C, Cammarota G, Ciprandi G. Probiotic mixture in patients after Helicobacter pylori eradication: a real-life experience. Minerva Gastroenterol (Torino) 2024; 70:197-207. [PMID: 38536095 DOI: 10.23736/s2724-5985.24.03634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND Eradication for Helicobacter pylori usually induces digestive dysbiosis that, in turn, elicits symptoms. Consequently, probiotic supplementation may counterbalance the disturbed microbiota after this procedure. So, probiotics may restore microbiota homeostasis quickly relieve complaints. METHODS The current study evaluated the efficacy and safety of Abivisor®, a food supplement containing Lacticaseibacillus rhamnosus LR06 (3 billion living cells), Lactiplantibacillus pentosus LPS01(100 million living cells), Lactiplantibacillus plantarum LP01 (1 billion living cells), and N-acetyl cysteine (60 mg). Patients were randomized into two groups (2:1). Group A took one stick/daily for 60 days after eradication. Group B was considered as control. Patients were evaluated at baseline (T0) and after 15 (T1), 30 (T2), and 60 (T3) days. The severity of digestive symptoms was measured by patients using a Visual Analog Scale. The percentage of patients with each symptom was also evaluated. RESULTS Abivisor® has significantly and progressively diminished intestinal symptoms' presence and severity at T1, T2, and even more at T3. Accordingly, the percentage of symptomatic patients diminished more rapidly and significantly in group A than in B. All patients well tolerated the food supplement. CONCLUSIONS The present study suggests that Abivisor® may be an effective and safe therapeutic option for managing patients undergoing H. pylori eradication.
Collapse
Affiliation(s)
- Salvatore E Aragona
- Unit of General Surgery, ASST Melegnano Martesana Presidio Melzo, Milan, Italy
| | - Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, Forlì-Cesena Hospitals, Ausl Romagna, Forlì-Cesena, Italy
| | - Giovanni Cammarota
- Unit of Internal Medicine and Gastroenterology, Department of Medical Surgical Sciences, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | | |
Collapse
|
5
|
Rampedi PN, Ogunrombi MO, Adeleke OA. Leading Paediatric Infectious Diseases-Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions. Pharmaceutics 2024; 16:712. [PMID: 38931836 PMCID: PMC11206886 DOI: 10.3390/pharmaceutics16060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments.
Collapse
Affiliation(s)
- Penelope N. Rampedi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Modupe O. Ogunrombi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa; (P.N.R.); (M.O.O.)
| | - Oluwatoyin A. Adeleke
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS B3H 4R2, Canada
- School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3J5, Canada
- School of Pharmacy, Sefako Makgatho Health Science University, Pretoria 0208, South Africa
| |
Collapse
|
6
|
Ermolenko E, Baryshnikova N, Alekhina G, Zakharenko A, Ten O, Kashchenko V, Novikova N, Gushchina O, Ovchinnikov T, Morozova A, Ilina A, Karaseva A, Tsapieva A, Gladyshev N, Dmitriev A, Suvorov A. Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period. Microorganisms 2024; 12:980. [PMID: 38792809 PMCID: PMC11124500 DOI: 10.3390/microorganisms12050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Despite great advances in the treatment of oncological diseases, the development of medical technologies to prevent or reduce complications of therapy, in particular, those associated with surgery and the introduction of antibiotics, remains relevant. The aim of this study is to evaluate the effectiveness of the use of autoprobiotics based on indigenous non-pathogenic strains of Enterococcus faecium and Enterococcus hirae as a personalized functional food product (PFFP) in the complex therapy of colorectal cancer (CRC) in the early postoperative period. A total of 36 patients diagnosed with CRC were enrolled in the study. Study group A comprised 24 CRC patients who received autoprobiotic therapy in the early postoperative period, while the control group C included 12 CRC patients without autoprobiotic therapy. Prior to surgery and between days 14 and 16 post-surgery, comprehensive evaluations were conducted on all patients, encompassing the following: stool and gastroenterological complaints analysis, examination of the gut microbiota (bacteriological study, quantitative polymerase chain reaction, metagenome analysis), and analysis of interleukins in the serum. Results: The use of autoprobiotics led to a decrease in dyspeptic complaints after surgery. It was also associated with the absence of postoperative complications, did not cause any side effects, and led to a decrease in the level of pro-inflammatory cytokines (IL-6 and IL-18) in the blood serum. The use of autoprobiotics led to positive changes in the structure of escherichia and enterococci populations, the elimination of Parvomonas micra and Fusobacterium nucleatum, and a decrease in the quantitative content of Clostridium perfringens and Akkermansia muciniphila. Metagenomic analysis (16S rRNA) revealed an increase in alpha diversity. Conclusion: The introduction of autoprobiotics in the postoperative period is a highly effective and safe approach in the complex treatment of CRC. Future studies will allow the discovery of additional fine mechanisms of autoprobiotic therapy and its impact on the digestive, immune, endocrine, and neural systems.
Collapse
Affiliation(s)
- Elena Ermolenko
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Natalia Baryshnikova
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
- Department of Internal Disease of Stomatology Faculty, Pavlov First St-Petersburg State Medical University, 197022 St-Petersburg, Russia
- Laboratory of Medico-Social Problems of Pediatry, St-Petersburg State Pediatric Medical University, 194100 St-Petersburg, Russia
| | - Galina Alekhina
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Alexander Zakharenko
- Oncology Department, Pavlov First St-Petersburg State Medical University, 197022 St-Petersburg, Russia;
| | - Oleg Ten
- North-Western District Scientific and Clinical Center Named after L. G. Sokolov, 194291 St-Petersburg, Russia (O.G.)
| | - Victor Kashchenko
- Department of Faculty Surgery, St-Petersburg State University, 199034 St-Petersburg, Russia;
- Beloostrov High Technology Clinic (MMC VT LLC), 188652 Leningrad Region, Russia
| | - Nadezhda Novikova
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Olga Gushchina
- North-Western District Scientific and Clinical Center Named after L. G. Sokolov, 194291 St-Petersburg, Russia (O.G.)
| | - Timofey Ovchinnikov
- North-Western District Scientific and Clinical Center Named after L. G. Sokolov, 194291 St-Petersburg, Russia (O.G.)
| | - Anastasia Morozova
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Anastasia Ilina
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Alena Karaseva
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
- Microbiology Department, St-Petersburg State University, 199034 St-Petersburg, Russia
| | - Anna Tsapieva
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Nikita Gladyshev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| | - Alexander Dmitriev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
- Department of Molecular Biotechnology, Saint-Petersburg State Institute of Technology, 190013 St-Petersburg, Russia
| | - Alexander Suvorov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human”, World-Class Research Center “Center for Personalized Medicine”, Institute of Experimental Medicine, 197376 St-Petersburg, Russia; (E.E.); (A.M.); (A.T.); (N.G.)
| |
Collapse
|
7
|
Elghannam MT, Hassanien MH, Ameen YA, Turky EA, ELattar GM, ELRay AA, ELTalkawy MD. Helicobacter pylori and oral-gut microbiome: clinical implications. Infection 2024; 52:289-300. [PMID: 37917397 PMCID: PMC10954935 DOI: 10.1007/s15010-023-02115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
More than half of the world's population are colonized with H. pylori; however, the prevalence varies geographically with the highest incidence in Africa. H. pylori is probably a commensal organism that has been associated with the development of gastritis, ulcers, and gastric cancer. H. pylori alone is most probably not enough for the development of gastric carcinoma, but evidence for its association with the disease is high and has, therefore, been classified by the International Agency for Research on Cancer as a Class 1 carcinogen. Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection along the oral-gut axis. The eradication therapy required to treat H. pylori infection can also have detrimental consequences for the gut microbiota, leading to a decreased alpha diversity. Therefore, therapy regimens integrated with probiotics may abolish the negative effects of antibiotic therapy on the gut microbiota. These eradication therapies combined with probiotics have also higher rates of eradication, when compared to standard treatments, and are associated with reduced side effects, improving the patient's compliance. The eradication therapy not only affects gut microbiome but also affects the oral microbiome with robust predominance of harmful bacteria. However, there have been reports of a protective role of H. pylori in Barrett's esophagus, esophageal adenocarcinoma, eosinophilic esophagitis, IBD, asthma, and even multiple sclerosis. Therefore, eradication therapy should be carefully considered, and test to treat policy should be tailored to specific communities especially in highly endemic areas. Supplementation of probiotics, prebiotics, herbals, and microbial metabolites to reduce the negative effects of eradication therapy should be considered. After failure of many eradication attempts, the benefits of H. pylori eradication should be carefully balanced against the risk of adverse effects especially in the elderly, persons with frailty, and intolerance to antibiotics.
Collapse
Affiliation(s)
- Maged T Elghannam
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Moataz H Hassanien
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Yosry A Ameen
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Emad A Turky
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Gamal M ELattar
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed A ELRay
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohammed D ELTalkawy
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
8
|
Zaman T, Haq A, Ahmad R, Sinha S, Chowdhury K, Parvin S, Imran M, Humayra ZU, Kumar S, Haque M. The Role of Probiotics in the Eradication of Helicobacter pylori and Overall Impact on Management of Peptic Ulcer: A Study Involving Patients Undergoing Triple Therapy in Bangladesh. Cureus 2024; 16:e56283. [PMID: 38495972 PMCID: PMC10944298 DOI: 10.7759/cureus.56283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 03/19/2024] Open
Abstract
Background Helicobacter pylori infection has been identified to cause constantly recurring inflammation, leading to gastrointestinal tract disorders, including carcinoma. The standard triple therapy (STT), used to eradicate H. pylori, includes two antimicrobials and a proton pump inhibitor for two weeks. Other drug regimens have also been developed since H. pylori exhibits antimicrobial resistance. These regimens, including probiotics, have been shown to lower adverse drug reactions (ADR), improve drug adherence, exert bacteriostatic effect, and reduce inflammation. Objective This study intended to explore probiotic intervention for improving eradication rates and mitigating adverse effects while administrating STT. Methods This prospective study was conducted from May to December, 2021, in the Department of Gastroenterology of Ship International Hospital, Dhaka, Bangladesh, to observe the effects of probiotics inclusion along with STT on H. pylori eradication. A total of 100 patients aged ≥18 years who tested positive for H. pylori were included. The experimental group (n=50) was given STT and probiotics, and the control group (n=50) was given only STT without probiotics for 14 days. Necessary follow-up was done six weeks after treatment. An independent sample t-test, chi-square test, and multiple regression analysis were used for statistical analysis. Result The odds of getting rapid urease test (RUT) negative results from positive were 2.06 times higher (95%CI= 0.95, 3.22, p=0.054) in the experimental group. ADRs were crucially towering in the control group (p=0.045) compared to the probiotics group. The probiotics group had a lower risk of having adverse effects by 0.54 times (95%CI=0.19, 0.84, p=0.032) than the control group. Conclusion Using probiotics and STT together to eradicate H. pylori may lower ADR and improve treatment adherence. It may also help terminate H. pylori infection more effectively. More research is required as H. pylori is very contagious and can ultimately cause life-threatening gastric cancer.
Collapse
Affiliation(s)
- Taslima Zaman
- Department of Gastroenterology, United Hospital Ltd, Dhaka, BGD
| | - Ahsanul Haq
- Department of Biostatistics, RNA Biotech Limited, Dhaka, BGD
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women & Hospital, Dhaka, BGD
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Sultana Parvin
- Department of Medical Gastroenterology, Sheikh Russel National Gastroliver Institute & Hospital, Dhaka, BGD
| | - Mostofa Imran
- Department of Gastroenterology, Ibn Sina Medical College & Hospital, Dhaka, BGD
| | - Zaman U Humayra
- Department of Plastic and Reconstructive Surgery, Ship International Hospital, Dhaka, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Karnavati Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Unit of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
9
|
Liu M, Gao H, Miao J, Zhang Z, Zheng L, Li F, Zhou S, Zhang Z, Li S, Liu H, Sun J. Helicobacter pylori infection in humans and phytotherapy, probiotics, and emerging therapeutic interventions: a review. Front Microbiol 2024; 14:1330029. [PMID: 38268702 PMCID: PMC10806011 DOI: 10.3389/fmicb.2023.1330029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
The global prevalence of Helicobacter pylori (H. pylori) infection remains high, indicating a persistent presence of this pathogenic bacterium capable of infecting humans. This review summarizes the population demographics, transmission routes, as well as conventional and novel therapeutic approaches for H. pylori infection. The prevalence of H. pylori infection exceeds 30% in numerous countries worldwide and can be transmitted through interpersonal and zoonotic routes. Cytotoxin-related gene A (CagA) and vacuolar cytotoxin A (VacA) are the main virulence factors of H. pylori, contributing to its steep global infection rate. Preventative measures should be taken from people's living habits and dietary factors to reduce H. pylori infection. Phytotherapy, probiotics therapies and some emerging therapies have emerged as alternative treatments for H. pylori infection, addressing the issue of elevated antibiotic resistance rates. Plant extracts primarily target urease activity and adhesion activity to treat H. pylori, while probiotics prevent H. pylori infection through both immune and non-immune pathways. In the future, the primary research focus will be on combining multiple treatment methods to effectively eradicate H. pylori infection.
Collapse
Affiliation(s)
- Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hui Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jinlai Miao
- First Institute of Oceanography Ministry of Natural Resources, Qingdao, China
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Lili Zheng
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical and Electronic Engineering, Qingdao University, Qingdao, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|