1
|
Maaz M, Sultan MT, Noman AM, Zafar S, Tariq N, Hussain M, Imran M, Mujtaba A, Yehuala TF, Mostafa EM, Selim S, Al Jaouni SK, Alsagaby SA, Al Abdulmonem W. Anthocyanins: From Natural Colorants to Potent Anticancer Agents. Food Sci Nutr 2025; 13:e70232. [PMID: 40321606 PMCID: PMC12048707 DOI: 10.1002/fsn3.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/15/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Cancer is a prevalent global disease affecting ~20 million individuals, and this burden causes the death of ~9.7 million people in 2024. The prevalence rate is continuously increasing due to exposure to harmful environmental and occupational contaminants (toxins and chemicals), compromised immune response, genetic modifications, and poor lifestyle and dietary practices. The management of cancer is challenging and demands cost-effective and safe therapeutic strategies. This review accentuates the anticancer potential of anthocyanins and its associated underlying mechanism. Anthocyanins, the active components extracted from grapes, berries, black chokeberries, eggplants, black currants, sweet cherries, strawberries, black grapes, plums, and red onions, hold antioxidant and anti-inflammatory potential. The bioavailability of anthocyanins is a crucial factor in imposing their anticancer effect, and this bioavailability can be improved by microbial phenolic catabolites, provision of α-casein, and nano delivery systems. Anthocyanins hinder cell migration, invasion, and proliferation by inducing apoptosis, suppressing cell cycle at G0/G1, S, or G2/M stages, and modulating signaling pathways such as apoptotic cascades, PI3K/Akt, MAPK, and NF-κB. Moreover, anthocyanins downregulate oncogenes (Bcl-2, MYC, and HER2) and improve the activity of tumor suppressor genes (TP53, BRCA1, and RB1). Anthocyanins, particularly cyanidin-3-O-glucoside, suppress inflammation and production of pro-inflammatory cytokines (COX-2, TNF-α, and IL-6) in colorectal cancer and hepatocellular carcinoma. Moreover, it causes cell cycle inhibition and mitochondrial dysfunction in ovarian and cervical malignancies. Although pre-clinical studies have proved anticancer activities, further clinical trials are required to validate its therapeutic impact and standard dose regimens.
Collapse
Affiliation(s)
- Muhammad Maaz
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Muhammad Tauseef Sultan
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Ahmad Mujtaba Noman
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
- TIMES Institute MultanMultanPakistan
| | - Shehnshah Zafar
- Department of Human Nutrition, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Naima Tariq
- Department of Food Science and Technology, Faculty of Food Science and NutritionBahauddin Zakariya UniversityMultanPakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering Sciences and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food EngineeringBahir Dar Institute of Technology, Bahir Dar UniversityBahir DarEthiopia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| |
Collapse
|
2
|
He S, Luo S, Cai B, Chen J, Zhang Y, Zhao F, Liu Q, Liu T, Wang W, Peng T, Lu X, Zheng S. Divergent roles of PKM2 in regulating PD-L1 and PD-L2 expression and their implications in human and mouse cancer models. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39980348 DOI: 10.3724/abbs.2025019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Cancer cells evade immune detection through checkpoint molecules like PD-L1 and PD-L2 which suppress T-cell activation. While PD-L1 is well-studied, the role of PD-L2 remains unclear. Pyruvate kinase M2 (PKM2), a metabolic enzyme, influences immune checkpoint regulation, but its role in PD-L1 and PD-L2 modulation is not well defined. Here, we investigate the role of pyruvate kinase M2 (PKM2) in modulating the immune checkpoint molecules PD-L1 and PD-L2 via GATA3 in cancer cells, with insights from both human and mouse models. We find that PKM2 enhances PD-L1 expression while inhibiting PD-L2, a dual regulatory mechanism that facilitates immune evasion. Knockdown and overexpression experiments revealed GATA3 as a key mediator. PKM2 knockout reduced GATA3 level, leading to decreased PD-L1 and increased PD-L2 expression. Chromatin immunoprecipitation (ChIP)-qPCR demonstrates that GATA3 functions as a direct transcription factor capable of binding to the promoters of PD-L1 and PD-L2. In silico analyses of 81 esophageal squamous cell carcinoma (ESCC) cases from the TCGA database demonstrate that PKM2 mRNA is unrelated to PD-L1 and PD-L2 expression but is negatively correlated with CD8 + T-cell infiltration in ESCC. To further validate these findings, we establish a xenograft model using immune-competent C57/BL6N mice, where knockdown of PKM2 results in significant downregulation of both PD-L1 and PD-L2 expression. Collectively, these findings underscore the divergent roles of PKM2 in regulating immune checkpoint expression in human and mouse cancer models and suggest that targeting the PKM2-GATA3 axis could enhance cancer immunotherapy by fine-tuning PD-L1 and PD-L2 levels.
Collapse
Affiliation(s)
- Shuo He
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| | - Shujuan Luo
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| | - Bangwu Cai
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| | - Jiao Chen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
| | - Yao Zhang
- Beijing Beanstalk International Bilingual School, Beijing, 100016
| | - Feng Zhao
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Disease, Operation Management Department, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
| | - Wei Wang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
| | - Tianyuan Peng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
3
|
Hatawsh A, Al-Haddad RH, Okafor UG, Diab LM, Dekanoidze N, Abdulwahab AA, Mohammed OA, Doghish AS, Moussa R, Elimam H. Mitoepigenetics pathways and natural compounds: a dual approach to combatting hepatocellular carcinoma. Med Oncol 2024; 41:302. [PMID: 39465473 DOI: 10.1007/s12032-024-02538-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading liver cancer that significantly impacts global life expectancy and remains challenging to treat due to often late diagnoses. Despite advances in treatment, the prognosis is still poor, especially in advanced stages. Studies have pointed out that investigations into the molecular mechanisms underlying HCC, including mitochondrial dysfunction and epigenetic regulators, are potentially important targets for diagnosis and therapy. Mitoepigenetics, or the epigenetic modifications of mitochondrial DNA, have drawn wide attention for their role in HCC progression. Besides, molecular biomarkers such as mitochondrial DNA alterations and non-coding RNAs showed early diagnosis and prognosis potential. Additionally, natural compounds like alkaloids, resveratrol, curcumin, and flavonoids show promise in HCC show promise in modulating mitochondrial and epigenetic pathways involved in cancer-related processes. This review discusses how mitochondrial dysfunction and epigenetic modifications, especially mitoepigenetics, influence HCC and delves into the potential of natural products as new adjuvant treatments against HCC.
Collapse
Affiliation(s)
- Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Roya Hadi Al-Haddad
- Research and Technology Center of Environment, Water and Renewable Energy, Scientific Research Commission, Baghdad, Iraq
| | | | - Lamis M Diab
- Department of Medical Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | | | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Helwan, Cairo, 11795, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sādāt, 32897, Egypt.
| |
Collapse
|
4
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Ali M, Kamel HFM, Hamid MSAEL, ELsawi HA, Habib EK, Youssef I. Integrating molecular, biochemical, and immunohistochemical features as predictors of hepatocellular carcinoma drug response using machine-learning algorithms. Front Mol Biosci 2024; 11:1430794. [PMID: 39479501 PMCID: PMC11521808 DOI: 10.3389/fmolb.2024.1430794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Liver cancer, particularly Hepatocellular carcinoma (HCC), remains a significant global health concern due to its high prevalence and heterogeneous nature. Despite the existence of approved drugs for HCC treatment, the scarcity of predictive biomarkers limits their effective utilization. Integrating diverse data types to revolutionize drug response prediction, ultimately enabling personalized HCC management. Method In this study, we developed multiple supervised machine learning models to predict treatment response. These models utilized classifiers such as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN), support vector machines (SVM), and random forests (RF) using a comprehensive set of molecular, biochemical, and immunohistochemical features as targets of three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set of performance metrics for the complete and reduced models were reported including accuracy, precision, recall (sensitivity), specificity, and the Matthews Correlation Coefficient (MCC). Results and Discussion Notably, (NN) achieved the best prediction accuracy where the combined model using molecular and biochemical features exhibited exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105 and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from three cross-validation iterations. Also, found seven molecular features, seven biochemical features, and one immunohistochemistry feature as promising biomarkers of treatment response. This comprehensive method has the potential to significantly advance personalized HCC therapy by allowing for more precise drug response estimation and assisting in the identification of effective treatment strategies.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Faculty of Oral and Dental Medicine, Misr International University (MIU), Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala F. M. Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ibrahim Youssef
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Sun J, Li Y, Bie B, Tian H, Li J, Yang L, Zhou Z, Mu Y, Li Z. Dystrobrevin beta is a promising prognostic biomarker and therapeutic target for hepatocellular carcinoma. Am J Transl Res 2024; 16:6072-6096. [PMID: 39544815 PMCID: PMC11558408 DOI: 10.62347/fcfo5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/25/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES Dystrobrevin beta (DTNB) is a constituent of the dystrophin-associated protein complex (DPC). Our previous RNA sequencing (RNA-seq) study revealed that knockdown of the oncogenic long noncoding RNA (lncRNA) HOXD cluster antisense RNA 1 (HOXD-AS1) in hepatocellular carcinoma (HCC) cells could reduce the expression levels of DTNB. However, the association between DTNB and HCC remains uncertain. METHODS The upregulation of DTNB in HCC cell lines and the regulatory effect of HOXD-AS1 on its expression were verified using quantitative real-time PCR (qRT-PCR). The potential clinical significance, biological functions and underlying mechanisms of DTNB in HCC were investigated through bioinformatics analysis. The high expression of DTNB was validated in HCC tissues, and its biological function in HCC was investigated by performing loss-of-function assays in vitro. RESULTS DTNB was highly expressed in HCC cells and was positively regulated by the lncRNA HOXD-AS1 in several HCC cell lines. The upregulation of DTNB was significantly associated with T stage, histologic grade, tumour status, adjacent hepatic tissue inflammation, alpha-fetoprotein (AFP) level, and unfavorable prognosis, serving as an independent risk indicator associated with overall survival with substantial diagnostic and prognostic implications for HCC. DTNB was also closely linked to immune cell infiltration, immunotherapy, and sensitivity to anti-HCC drugs. Genes co-expressed with DTNB in HCC were identified, and functional enrichment analysis indicated that DTNB may function in HCC by regulating the cell cycle. A potential ceRNA (competing endogenous RNA) regulatory axis of HOXD-AS1/miR-139-3p/DTNB in HCC was predicted and validated. The high expression of DTNB was validated in our HCC cohort and loss-of-function assays revealed that DTNB knockdown can suppress the proliferation, migration, and invasion of HCC cells and trigger cell cycle arrest at the G0/G1 phase. CONCLUSIONS DTNB, a downstream target of the lncRNA HOXD-AS1, has potential utility as a prognostic biomarker and a target for the treatment of HCC.
Collapse
Affiliation(s)
- Jin Sun
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Yingnan Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Beibei Bie
- Department of Pharmacy, Medical School, Xi’an Peihua UniversityXi’an 710125, Shaanxi, China
| | - Hongwei Tian
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Jun Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Lan Yang
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Zhe Zhou
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Yanhua Mu
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| |
Collapse
|
6
|
Kowalczyk T, Muskała M, Merecz-Sadowska A, Sikora J, Picot L, Sitarek P. Anti-Inflammatory and Anticancer Effects of Anthocyanins in In Vitro and In Vivo Studies. Antioxidants (Basel) 2024; 13:1143. [PMID: 39334802 PMCID: PMC11428540 DOI: 10.3390/antiox13091143] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Anthocyanins, a class of flavonoid compounds responsible for the vibrant colors of many fruits and vegetables, have received considerable attention in recent years due to their potential health benefits. This review, focusing on evidence from both in vitro and in vivo studies, provides a comprehensive overview of the current state of knowledge regarding the health-promoting properties of anthocyanins. The chemical structure and diversity of anthocyanins, their bioavailability, and their mechanisms of action at the cellular and molecular level are examined. Research on the antioxidant, anti-inflammatory, anticancer, and neuroprotective effects of anthocyanins is critically reviewed. Special emphasis is placed on the role of anthocyanins in the prevention and treatment of chronic diseases such as cardiovascular diseases, diabetes, and neurodegenerative diseases. This review also discusses the challenges of translating in vitro findings to in vivo and highlights the importance of considering dose, bioavailability, and metabolism when assessing the therapeutic potential of anthocyanins. This review concludes with the identification of gaps in current research and suggestions for future directions for anthocyanin studies, including the need for more long-term clinical trials and investigations into potential synergistic effects with other phytochemicals. This comprehensive analysis highlights the promising role of anthocyanins in promoting human health and provides valuable insights for researchers, health professionals, and the nutraceutical industry. This study provides new insights, as it comprehensively investigates the dual anti-inflammatory and anticancer effects of anthocyanins in both in vitro and in vivo models. By uncovering the biological properties of anthocyanins from a variety of natural sources, this research not only expands our knowledge of the action of these compounds at the cellular level, but also enhances their clinical relevance through in vivo validation. Furthermore, the innovative use of anthocyanins may lead to important advances in their therapeutic application in the future.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Martyna Muskała
- Students Research Group, Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Laurent Picot
- Littoral Environnement et Sociétés UMRi CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France;
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
7
|
Zhang B, Li Z, Ye G, Hu K. Biologic activity and treatment resistance to gastrointestinal cancer: the role of circular RNA in autophagy regulation. Front Oncol 2024; 14:1393670. [PMID: 39281375 PMCID: PMC11392687 DOI: 10.3389/fonc.2024.1393670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Circular RNAs (circRNAs) lack the 5'-end methylated guanine cap structure and 3' polyadenylate tail structure, classifying it as a non-coding RNA. With the extensive investigation of circRNA, its role in regulating cell death has garnered significant attention in recent years, establishing it as a recognized participant in cancer's biological processes. Autophagy, an essential pathway in programmed cell death (PCD), involves the formation of autophagosomes using lysosomes to degrade cellular contents under the regulation of various autophagy-related (ATG) genes. Numerous studies have demonstrated that circRNA can modulate the biological activity of cancer cells by influencing the autophagy pathway, exhibiting a dualistic role in suppressing or promoting carcinogenesis. In this review, we comprehensively analyze how autophagy-related circRNA impacts the progression of gastrointestinal cancer (GIC). Additionally, we discuss drug resistance phenomena associated with autophagy regulation in GIC. This review offers valuable insights into exploring potential biological targets for prognosis and treatment strategies related to GIC.
Collapse
Affiliation(s)
- Bo Zhang
- Health Science Center, Ningbo University, Ningbo, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhe Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Sanches VL, de Souza Mesquita LM, Viganó J, Contieri LS, Pizani R, Chaves J, da Silva LC, de Souza MC, Breitkreitz MC, Rostagno MA. Insights on the Extraction and Analysis of Phenolic Compounds from Citrus Fruits: Green Perspectives and Current Status. Crit Rev Anal Chem 2024; 54:1173-1199. [PMID: 35993795 DOI: 10.1080/10408347.2022.2107871] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Citrus fruits (CF) are highly consumed worldwide, fresh, processed, or prepared as juices and pies. To illustrate the high economic importance of CF, the global production of these commodities in 2021 was around 98 million tons. CF's composition is considered an excellent source of phenolic compounds (PC) as they have a large amount and variety. Since ancient times, PC has been highlighted to promote several benefits related to oxidative stress disorders, such as chronic diseases and cancer. Recent studies suggest that consuming citrus fruits can prevent some of these diseases. However, due to the complexity of citrus matrices, extracting compounds of interest from these types of samples, and identifying and quantifying them effectively, is not a simple task. In this context, several extractive and analytical proposals have been used. This review discusses current research involving CF, focusing mainly on PC extraction and analysis methods, regarding advantages and disadvantages from the perspective of Green Chemistry.
Collapse
Affiliation(s)
- Vitor L Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Buri, São Paulo, Brazil
| | - Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Jaísa Chaves
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Laíse Capelasso da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | | | | | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| |
Collapse
|
9
|
Pulakuntla S, Singh SA, Reddy VD. Hub gene identification and immune infiltration analysis in hepatocellular carcinoma: Computational approach. In Silico Pharmacol 2024; 12:39. [PMID: 38721057 PMCID: PMC11074094 DOI: 10.1007/s40203-024-00215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2025] Open
Abstract
In the case of hepatocellular carcinoma, there is a need to find novel immune biomarkers to predict cancer prognosis, which will help prolong patient survival. On the basis of these findings, we explored the role of the hub genes in hepatocellular carcinoma via computational analysis for future immunotherapy. To study this phenomenon, we selected three datasets downloaded from the GEO database (GSE25097, GSE76427 and GSE84402). The gene expression analysis platform (GEAP) online tool was used for the data analysis to identify the DEGs. Functional enrichment analysis was performed by GO and KEGG enrichment analysis. The genes associated with these genes were identified via Cytoscape software. Immune cell infiltration and correlation analysis were used to screen the hub genes. The results revealed that the PTTG1, NCAPG, RACGAP1, PBK, ASPM, AURKA, CDCA5, KIF20A, MELK and PRC1 genes were correlated with immune targets, and these hub gene biomarkers will aid in future cancer prognosis and immunotherapy targeting in hepatocellular carcinoma patients. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00215-2.
Collapse
Affiliation(s)
- Swetha Pulakuntla
- School of Applied Sciences, REVA University, Bangalore, Karnataka 560064 India
| | - Shri Abhiav Singh
- Department of ISRM, Indian Council of Medical Research, Delhi, UP 110029 India
| | | |
Collapse
|
10
|
Kurter H, Basbinar Y, Ellidokuz H, Calibasi-Kocal G. The Role of Cyanidin-3- O-glucoside in Modulating Oxaliplatin Resistance by Reversing Mesenchymal Phenotype in Colorectal Cancer. Nutrients 2023; 15:4705. [PMID: 38004099 PMCID: PMC10674439 DOI: 10.3390/nu15224705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) plays an important role in the biological and biochemical processes of cells, and it is a critical process in the malignant transformation, and mobility of cancer. Additionally, EMT is one of the main mechanisms contributing to chemoresistance. Resistance to oxaliplatin (OXA) poses a momentous challenge in the chemotherapy of advanced colorectal cancer (CRC) patients, highlighting the need to reverse drug resistance and improve patient survival. In this study, we explored the response of cyanidin-3-O-glucoside (C3G), the most abundant anthocyanin in plants, on the mechanisms of drug resistance in cancer, with the purpose of overcoming acquired OXA resistance in CRC cell lines. METHODS We generated an acquired OXA-resistant cell line, named HCT-116-ROx, by gradually exposing parental HCT-116 cells to increasing concentrations of OXA. To characterize the resistance, we performed cytotoxicity assays and shape factor analyses. The apoptotic rate of both resistant and parental cells was determined using Hoechst 33342/Propidium Iodide (PI) fluorescence staining. Migration capacity was evaluated using a wound-healing assay. The mesenchymal phenotype was assessed through qRT-PCR and immunofluorescence staining, employing E-cadherin, N-cadherin, and Vimentin markers. RESULTS Resistance characterization announced decreased OXA sensitivity in resistant cells compared to parental cells. Moreover, the resistant cells exhibited a spindle cell morphology, indicative of the mesenchymal phenotype. Combined treatment of C3G and OXA resulted in an augmented apoptotic rate in the resistant cells. The migration capacity of resistant cells was higher than parental cells, while treatment with C3G decreased the migration rate of HCT-116-ROx cells. Analysis of EMT markers showed that HCT-116-ROx cells exhibited loss of the epithelial phenotype (E-cadherin) and gain of the mesenchymal phenotype (N-cadherin and Vimentin) compared to HCT-116 cells. However, treatment of resistant cells with C3G reversed the mesenchymal phenotype. CONCLUSION The morphological observations of cells acquiring oxaliplatin resistance indicated the loss of the epithelial phenotype and the acquisition of the mesenchymal phenotype. These findings suggest that EMT may contribute to acquired OXA resistance in CRC. Furthermore, C3G decreased the mobility of resistant cells, and reversed the EMT process, indicating its potential to overcome acquired OXA resistance.
Collapse
Affiliation(s)
- Hasan Kurter
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, Izmir 35330, Turkey;
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir 35330, Turkey;
| | - Hulya Ellidokuz
- Department of Preventive Oncology, Institute of Oncology, Dokuz Eylul University, Izmir 35330, Turkey;
| | - Gizem Calibasi-Kocal
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir 35330, Turkey;
| |
Collapse
|
11
|
Li X, Zhang F, Wang J, Feng Y, Zhang S, Li L, Tan J, Shen W. LncRNA profiles of Cyanidin-3-O-glucoside ameliorated Zearalenone-induced damage in porcine granulosa cells. Gene 2023; 884:147693. [PMID: 37549855 DOI: 10.1016/j.gene.2023.147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Long non-coding RNA (lncRNA), a class of RNA molecules with transcripts longer than 200 nt, is crucial for maintaining animal reproductive function. Zearalenone (ZEN) damaged animal reproduction by targeting ovarian granulosa cells (GCs), especially in pigs. Nonetheless, it is not quite clear that whether Cyanidin-3-O-glucoside (C3G) exert effects on porcine GCs (pGCs) after ZEN exposure by altering lncRNA expression. Here, we sought to gain novel information regarding C3G protect against damages induced by ZEN in pGCs. The pGCs were divided into control (Ctrl), ZEN, ZEN + C3G (Z + C), and C3G groups. Results revealed that C3G effectively increased cell viability and suppressed ZEN-induced apoptosis in pGCs. 87 and 82 differentially expressed lncRNAs (DELs) were identified in ZEN vs. Ctrl and Z + C vs. ZEN group, respectively. Gene Ontology (GO) analysis observed that the DELs were related to cell metabolism and cell-matrix adhesion biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DELs were associated with the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) signaling pathway. In brief, we demonstrated that C3G could shield apoptosis induced by ZEN, which may be connected with the changes of lncRNA expression profiles in pGCs. This study complemented our understanding of the genetic basis and molecular mechanisms by which C3G mitigated the toxicity of ZEN in pGCs.
Collapse
Affiliation(s)
- Xiuxiu Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Fali Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jingya Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- Animal Husbandry General Station of Shandong Province, Jinan 250010, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinghe Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
12
|
Gradel KO. Interpretations of the Role of Plasma Albumin in Prognostic Indices: A Literature Review. J Clin Med 2023; 12:6132. [PMID: 37834777 PMCID: PMC10573484 DOI: 10.3390/jcm12196132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
This review assesses how publications interpret factors that influence the serum or plasma albumin (PA) level in prognostic indices, focusing on inflammation and nutrition. On PubMed, a search for "albumin AND prognosis" yielded 23,919 results. From these records, prognostic indices were retrieved, and their names were used as search strings on PubMed. Indices found in 10 or more original research articles were included. The same search strings, restricted to "Review" or "Systematic review", retrieved yielded on the indices. The data comprised the 10 latest original research articles and up to 10 of the latest reviews. Thirty indices had 294 original research articles (6 covering two indices) and 131 reviews, most of which were from recent years. A total of 106 articles related the PA level to inflammation, and 136 related the PA level to nutrition. For the reviews, the equivalent numbers were 54 and 65. In conclusion, more publications mention the PA level as a marker of nutrition rather than inflammation. This is in contrast to several general reviews on albumin and nutritional guidelines, which state that the PA level is a marker of inflammation but not nutrition. Hypoalbuminemia should prompt clinicians to focus on the inflammatory aspects in their patients.
Collapse
Affiliation(s)
- Kim Oren Gradel
- Center for Clinical Epidemiology, Odense University Hospital, 5000 Odense, Denmark; ; Tel.: +45-21-15-80-85
- Research Unit of Clinical Epidemiology, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
13
|
Ugonabo O, Udoh UAS, Rajan PK, Reeves H, Arcand C, Nakafuku Y, Joshi T, Finley R, Pierre SV, Sanabria JR. The Current Status of the Liver Liquid Biopsy in MASH Related HCC: Overview and Future Directions. Biomolecules 2023; 13:1369. [PMID: 37759769 PMCID: PMC10526956 DOI: 10.3390/biom13091369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is one of the major risk factors for chronic liver disease and hepatocellular carcinoma (HCC). The incidence of MASH in Western countries continues to rise, driving HCC as the third cause of cancer-related death worldwide. HCC has become a major global health challenge, partly from the obesity epidemic promoting metabolic cellular disturbances but also from the paucity of biomarkers for its early detection. Over 50% of HCC cases are clinically present at a late stage, where curative measures are no longer beneficial. Currently, there is a paucity of both specific and sensitive biological markers for the early-stage detection of HCC. The search for biological markers in the diagnosis of early HCC in high-risk populations is intense. We described the potential role of surrogates for a liver biopsy in the screening and monitoring of patients at risk for nesting HCC.
Collapse
Affiliation(s)
- Onyinye Ugonabo
- Department of Medicine, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (O.U.); (T.J.)
| | - Utibe-Abasi Sunday Udoh
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Pradeep Kumar Rajan
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Heather Reeves
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Christina Arcand
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Yuto Nakafuku
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Tejas Joshi
- Department of Medicine, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (O.U.); (T.J.)
| | - Rob Finley
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
| | - Juan Ramon Sanabria
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Omar MA, Omran MM, Farid K, Tabll AA, Shahein YE, Emran TM, Petrovic A, Lucic NR, Smolic R, Kovac T, Smolic M. Biomarkers for Hepatocellular Carcinoma: From Origin to Clinical Diagnosis. Biomedicines 2023; 11:1852. [PMID: 37509493 PMCID: PMC10377276 DOI: 10.3390/biomedicines11071852] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) and HCC-related deaths has increased over the last few decades. There are several risk factors of HCC such as viral hepatitis (B, C), cirrhosis, tobacco and alcohol use, aflatoxin-contaminated food, pesticides, diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and metabolic and genetic diseases. Diagnosis of HCC is based on different methods such as imaging ultrasonography (US), multiphasic enhanced computed tomography (CT), magnetic resonance imaging (MRI), and several diagnostic biomarkers. In this review, we examine the epidemiology of HCC worldwide and in Egypt as well as risk factors associated with the development of HCC and, finally, provide the updated diagnostic biomarkers for the diagnosis of HCC, particularly in the early stages of HCC. Several biomarkers are considered to diagnose HCC, including downregulated or upregulated protein markers secreted during HCC development, circulating nucleic acids or cells, metabolites, and the promising, recently identified biomarkers based on quantitative proteomics through the isobaric tags for relative and absolute quantitation (iTRAQ). In addition, a diagnostic model used to improve the sensitivity of combined biomarkers for the diagnosis of early HCC is discussed.
Collapse
Affiliation(s)
- Mona A. Omar
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Khaled Farid
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35524, Egypt;
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, National Research Centre, Cairo 12622, Egypt
- Immunology Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Yasser E. Shahein
- Molecular Biology Department, National Research Centre, Cairo 12622, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta 34517, Egypt;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Nikola R. Lucic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Tanja Kovac
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| |
Collapse
|
15
|
EL-shqnqery HE, Mohamed RH, Samir O, Ayoub I, El-Sayed WM, Sayed AA. miRNome of Child A hepatocellular carcinoma in Egyptian patients. Front Oncol 2023; 13:1137585. [PMID: 37168369 PMCID: PMC10164962 DOI: 10.3389/fonc.2023.1137585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) has different etiologies that contribute to its heterogeneity. In regards to the number of HCC patients, Egypt ranks third in Africa and fifteenth worldwide. Despite significant advancements in HCC diagnosis and treatment, the precise biology of the tumor is still not fully understood, which has a negative impact on patient outcomes. METHODS Advances in next-generation sequencing (NGS) have increased our knowledge of the molecular complexity of HCC. RESULTS & DISCUSSION In this research, 16 HCC and 6 tumor adjacent tissues (control) of Child A Egyptian patients were successfully profiled for the expression profile of miRNAs by NGS. Forty-one differentially expressed miRNAs (DEMs) were found by differential expression analysis, with 31 being upregulated and 10 being downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was then conducted on these differentially expressed miRNAs revealing that Sensitivity and specificity analysis showed that hsa-miR-4488, hsa-miR-3178, and hsa-miR-3182 were unique miRNAs as they are expressed in HCC tissues only. These miRNAs were all highly involved in AMPK signaling pathways. However, hsa-miR-214-3p was expressed in control tissues about eight times higher than in cancer tissues and was most abundant in "pathways in cancer and PI3K-Akt signaling pathway" KEGG terms. As promising HCC diagnostic markers, we here suggest hsa-miR-4488, hsa-miR-3178, hsa-miR-3182, and hsa-miR-214-3p. We further urge future research to confirm these markers' diagnostic and prognostic potential as well as their roles in the pathophysiology of HCC.
Collapse
Affiliation(s)
- Hend E. EL-shqnqery
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Cairo, Egypt
- Genomics and Epigenomics Program, Department of Basic Research, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Omar Samir
- Genomics and Epigenomics Program, Department of Basic Research, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Islam Ayoub
- Department of Hepatopancreato Biliary Surgery, National Liver Institute, Menoufia University, Cairo, Egypt
| | - Wael M. El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed A. Sayed
- Genomics and Epigenomics Program, Department of Basic Research, Children’s Cancer Hospital Egypt, Cairo, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Alhawsawi SM, Mohany M, Baabbad AA, Almoutiri ND, Maodaa SN, Al-Shaebi EM, Yaseen KN, Wadaan MAM, Hozzein WN. Streptomyces Bioactive Metabolites Prevent Liver Cancer through Apoptosis, Inhibiting Oxidative Stress and Inflammatory Markers in Diethylnitrosamine-Induced Hepatocellular Carcinoma. Biomedicines 2023; 11:biomedicines11041054. [PMID: 37189672 DOI: 10.3390/biomedicines11041054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
A safe and effective treatment for liver cancer is still elusive despite all attempts. Biomolecules produced from natural products and their derivatives are potential sources of new anticancer medications. This study aimed to investigate the anticancer potential of a Streptomyces sp. bacterial extract against diethylnitrosamine (DEN)-induced liver cancer in Swiss albino mice and explore the underlying cellular and molecular mechanisms. The ethyl acetate extract of a Streptomyces sp. was screened for its potential anticancer activities against HepG-2 using the MTT assay, and the IC50 was also determined. Gas chromatography-mass spectrometric analysis was used to identify the chemical constituents of the Streptomyces extract. Mice were administered DEN at the age of 2 weeks, and from week 32 until week 36 (4 weeks), they received two doses of Streptomyces extract (25 and 50 mg/kg body weight) orally daily. The Streptomyces extract contains 29 different compounds, according to the GC-MS analysis. The rate of HepG-2 growth was dramatically reduced by the Streptomyces extract. In the mice model. Streptomyces extract considerably lessened the negative effects of DEN on liver functions at both doses. Alpha-fetoprotein (AFP) levels were significantly (p < 0.001) decreased, and P53 mRNA expression was increased, both of which were signs that Streptomyces extract was suppressing carcinogenesis. This anticancer effect was also supported by histological analysis. Streptomyces extract therapy additionally stopped DEN-induced alterations in hepatic oxidative stress and enhanced antioxidant activity. Additionally, Streptomyces extract reduced DEN-induced inflammation, as shown by the decline in interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) levels. Additionally, the Streptomyces extract administration dramatically boosted Bax and caspase-3 levels while decreasing Bcl-2 expressions in the liver according to the Immunohistochemistry examination. In summary, Streptomyces extract is reported here as a potent chemopreventive agent against hepatocellular carcinoma through multiple mechanisms, including inhibiting oxidative stress, cell apoptosis, and inflammation.
Collapse
Affiliation(s)
- Sana M Alhawsawi
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Almohannad A Baabbad
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Nawaf D Almoutiri
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Saleh N Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Khadijah N Yaseen
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Mohammed A M Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Wael N Hozzein
- Department of Zoology, College of Science, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Safdar MA, Aslam RMN, Shakeel A, Shiza, Waqar M, Jmail A, Mehmood MH, Gul H. Cyanidin as potential anticancer agent targeting various proliferative pathways. Chem Biol Drug Des 2023; 101:438-452. [PMID: 36326796 DOI: 10.1111/cbdd.14173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
A natural compound cyanidin, which is a type of anthocyanin present in pigmented leaves, fruits, and flowers; distributed widely in berries, apples, and oranges possess anticancer activities, thus curing various types of cancer such as breast, liver, lung, prostate, and thyroid cancer. The article provides an insight into the potential of using a single phytochemical, cyanidin to treat various cancer types including breast, liver, lung, prostate, and thyroid cancer. Information about cyanidin and its pharmacological impact on cancer was collected from books, scientific journals, and reports through electronic data search (Web of Science, Scifinder, PubMed, Scopus, Google Scholar, Elsevier, Springer, Wiley, ACS, Science Direct, CNKI as well as Kew Plants of the Word Online) and library. Cyanidin produces its effects against cancer probably by inhibiting (RAS, MAPK) and activating (caspases-3 and P-38) innovative molecular pathways. It may cause cell cycle arrest, cell differentiation processes and changes in redox status which trigger the cytotoxic chemotherapeutic effects. However, it also optimizes the chemotherapeutic targets which are cancer cells less responsive to chemotherapy. Cancer is considered the most widely spread disease and cyanidin from natural origin provides an essential role in treatment of cancer by approaching various mechanistic pathways.
Collapse
Affiliation(s)
- Muhammad Azhaf Safdar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Rana Muhammad Nabeel Aslam
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Amna Shakeel
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Shiza
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Mashael Waqar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Abdullah Jmail
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| | - Humaira Gul
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government, College University, Faisalabad, Pakistan
| |
Collapse
|
18
|
Zhu H, Chen Q, Zhang Y, Zhao L. Glutathione S-transferase zeta 1 alters the HMGB1/GPX4 axis to drive ferroptosis in bladder cancer cells. Hum Exp Toxicol 2023; 42:9603271231161606. [PMID: 36905252 DOI: 10.1177/09603271231161606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
OBJECTIVE The ability of glutathione S-transferase zeta 1 (GSTZ1) to modulate homeostasis of cellular redox and induce ferroptosis was explored in bladder cancer cells, and the involvement of the high mobility group protein 1/glutathione peroxidase 4 (HMGB1/GPX4) in these effects was studied. METHODS BIU-87 cells stably overexpressing GSTZ1 were transfected with appropriate plasmids to deplete HMGB1 or overexpress GPX4, then treated with deferoxamine and ferrostatin-1. Antiproliferative effects were assessed by quantifying levels of ferroptosis markers, such as iron, glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS), GPX4, transferrin, and ferritin. RESULTS GSTZ1 was significantly downregulated in bladder cancer cells. GSTZ1 overexpression downregulated GPX4 and GSH, while greatly increasing levels of iron, MDA, ROS, and transferrin. GSTZ1 overexpression also decreased proliferation of BIU-87 cells and activated HMGB1/GPX4 signaling. The effects of GSTZ1 on ferroptosis and proliferation were antagonized by HMGB1 knockdown or GPX4 overexpression. CONCLUSION GSTZ1 induces ferroptotic cell death and alters cellular redox homeostasis in bladder cancer cells, and these effects involve activation of the HMGB1/GPX4 axis.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Oncology, 584878Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Qitian Chen
- Department of Oncology, 584878Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yang Zhang
- Department of Anesthesiology, 584878Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Lingling Zhao
- Department of Oncology, 584878Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
19
|
Guo H, Punvittayagul C, Vachiraarunwong A, Phannasorn W, Wongpoomchai R. Cancer chemopreventive potential of cooked glutinous purple rice on the early stages of hepatocarcinogenesis in rats. Front Nutr 2022; 9:1032771. [PMID: 36618678 PMCID: PMC9812574 DOI: 10.3389/fnut.2022.1032771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer prevention using dietary phytochemicals holds great potential, particularly in the alternative treatment of liver cancer. Our previous study found that the methanol extract of cooked purple rice performed various biological functions including antioxidant, anti-inflammatory, and antimutagenic activities in in vitro assays. This study aimed to evaluate the chemopreventive effects of cooked glutinous purple rice extract (CRE) obtained from routine rice cooking method on diethylnitrosamine (DEN)-induced hepatic preneoplastic lesions in rats, along with its inhibitory mechanisms. CRE containing γ-oryzanols and high amounts of polyphenolic compounds, particularly cyanidin-3-glucoside, was fed to rats over a period 15 weeks. Additionally, injections of triple DEN at a concentration of 100 mg/kg BW were administered to rats once a week during the second, third, and fourth weeks of the experiment. The results revealed that CRE did not induce the formation of glutathione S-transferase placental form (GST-P) positive foci as a precancerous lesion during rat hepatocarcinogenesis, indicating non-carcinogenicity. Furthermore, CRE significantly reduced the number and size of GST-P positive foci in DEN-initiated rats. It also modulated microenvironment homeostasis by reducing the number of PCNA positive hepatocytes and by enhancing the number of apoptotic positive hepatocytes in the livers of DEN-initiated rats. Using RT-PCR analysis, CRE decreased the mRNA expression of some proinflammatory mediators, including interleukin-6, interleukin-1 beta, inducible nitric oxide synthase and cyclooxygenase 2, by attenuating the expression of cyclin E, the proliferation marker, while also inducing the expression of the apoptotic gene, Bcl2 associated X. The inhibitory mechanism at the early stages of hepatocarcinogenesis of CRE may be involved with the attenuation of cell proliferation, the enhancement of apoptosis, and the modulation of the proinflammatory system. Anthocyanins, flavonoids, and γ-oryzanol represent a group of promising chemopreventive agents in cooked glutinous purple rice extract. The outcomes of this study can provide an improved understanding of the potential role of the phytochemicals contained in cooked purple glutinous rice with regard to cancer alleviation.
Collapse
Affiliation(s)
- Huina Guo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Charatda Punvittayagul
- Center of Veterinary Diagnosis and Technology Transfer, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arpamas Vachiraarunwong
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Warunyoo Phannasorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand,*Correspondence: Rawiwan Wongpoomchai,
| |
Collapse
|
20
|
Reider S, Binder L, Fürst S, Hatzl S, Blesl A. Hematopoietic Stem Cell Transplantation in Refractory Crohn's Disease: Should It Be Considered? Cells 2022; 11:3463. [PMID: 36359859 PMCID: PMC9656531 DOI: 10.3390/cells11213463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 08/06/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is widely used in benign and malignant hematological diseases. During the last decade, HSCT, mainly autologous, also gained increasing attention in the treatment of refractory autoimmune diseases. Crohn's disease (CD) is an inflammatory bowel disease leading to transmural inflammation potentially affecting all parts of the luminal gastrointestinal tract. Despite improving therapeutic options, including various biologics, some patients are refractory to all lines of available conservative therapy, leading to increased morbidity and reduced quality of life. Apart from surgery, HSCT might be a reasonable treatment alternative for refractory CD patients. This review aims to describe the current role of HSCT in CD and discusses the procedure, the correct patient selection, the clinical efficacy from initial remission to following relapse rates, and complications of this treatment.
Collapse
Affiliation(s)
- Simon Reider
- Christian Doppler Laboratory for Mucosal Immunology, Johannes Kepler University Linz, 4020 Linz, Austria
- Department of Internal Medicine 2 (Gastroenterology and Hepatology), Faculty of Medicine, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria
| | - Lukas Binder
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Stefan Fürst
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Stefan Hatzl
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Andreas Blesl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
21
|
Liang Y, Guo GL, Zhang L. Current and Emerging Molecular Markers of Liver Diseases: A Pathogenic Perspective. Gene Expr 2022; 21:9-19. [PMID: 38911667 PMCID: PMC11192043 DOI: 10.14218/gejlr.2022.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the past decade, with the rapid development of molecular medicine and the application of more sophisticated methods for disease diagnosis and treatment, a number of molecular markers have become available for liver diseases. Pathogenesis-related markers are likely to be effectively discovered and rigorously validated, due to the unique biological links to diseases. The present study reviews the predominant clinical and research articles in the previous decade to provide a pathogenic perspective of current and emerging biomarkers for liver diseases, including hepatocellular neoplasms (e.g. hepatocellular carcinoma), non-neoplastic hepatocellular diseases, intrahepatic biliary diseases, and other liver diseases. Although it remains challenging to cover all markers for the diagnosis and prognosis of liver diseases, current and emerging molecular markers in clinical practice and under investigation are reviewed in a wide spectrum of liver diseases, in order to help clinicians and researchers identify liver disease markers for reference.
Collapse
Affiliation(s)
- Yuanxin Liang
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernst Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Research and Development Service, Veterans Health Administration, New Jersey Health Care System, East Orange, New Jersey, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical Center, Plainsboro, New Jersey, USA
- Department of Chemical Biology, Ernst Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
22
|
Peniche-Pavía HA, Guzmán TJ, Magaña-Cerino JM, Gurrola-Díaz CM, Tiessen A. Maize Flavonoid Biosynthesis, Regulation, and Human Health Relevance: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165166. [PMID: 36014406 PMCID: PMC9413827 DOI: 10.3390/molecules27165166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Maize is one of the most important crops for human and animal consumption and contains a chemical arsenal essential for survival: flavonoids. Moreover, flavonoids are well known for their beneficial effects on human health. In this review, we decided to organize the information about maize flavonoids into three sections. In the first section, we include updated information about the enzymatic pathway of maize flavonoids. We describe a total of twenty-one genes for the flavonoid pathway of maize. The first three genes participate in the general phenylpropanoid pathway. Four genes are common biosynthetic early genes for flavonoids, and fourteen are specific genes for the flavonoid subgroups, the anthocyanins, and flavone C-glycosides. The second section explains the tissue accumulation and regulation of flavonoids by environmental factors affecting the expression of the MYB-bHLH-WD40 (MBW) transcriptional complex. The study of transcription factors of the MBW complex is fundamental for understanding how the flavonoid profiles generate a palette of colors in the plant tissues. Finally, we also include an update of the biological activities of C3G, the major maize anthocyanin, including anticancer, antidiabetic, and antioxidant effects, among others. This review intends to disclose and integrate the existing knowledge regarding maize flavonoid pigmentation and its relevance in the human health sector.
Collapse
Affiliation(s)
- Héctor A. Peniche-Pavía
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| | - Tereso J. Guzmán
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jesús M. Magaña-Cerino
- División Académica de Ciencias de la Salud, Centro de Investigación y Posgrado, Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez Magaña 2838-A, Col. Tamulté de las Barrancas, Villahermosa 86150, Tabasco, Mexico
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Enfermedades Crónico Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Universidad de Guadalajara, C. Sierra Mojada 950. Col. Independencia, Guadalajara 44340, Jalisco, Mexico
- Correspondence: ; Tel.: +52-33-10585200 (ext. 33930)
| | - Axel Tiessen
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
23
|
Khan S, Zhang DY, Zhang JY, Hayat MK, Ren J, Nasir S, Fawad M, Bai Q. The Key Role of microRNAs in Initiation and Progression of Hepatocellular Carcinoma. Front Oncol 2022; 12:950374. [PMID: 35924150 PMCID: PMC9341471 DOI: 10.3389/fonc.2022.950374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the main type of primary liver malignancy and the fourth leading cause of cancer-related death worldwide. MicroRNAs (miRNAs), a type of non-coding RNA that regulates gene expression mainly on post-transcriptional level has a confirmed and important role in numerous biological process. By regulating specific target genes, miRNA can act as oncogene or tumor suppressor. Recent evidence has indicated that the deregulation of miR-NAs is closely associated with the clinical pathological features of HCC. However, the precise regulatory mechanism of each miRNA and its targets in HCC has yet to be illuminated. This study demonstrates that both oncogenic and tumor suppressive miRNAs are crucial in the formation and development of HCC. miRNAs influence biological behavior including proliferation, invasion, metastasis and apoptosis by targeting critical genes. Here, we summarize current knowledge about the expression profile and function of miRNAs in HCC and discuss the potential for miRNA-based therapy for HCC.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - De-Yu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji-Yu Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mian Khizar Hayat
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adopations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingli Ren
- Zhengzhou Key Laboratory of Big Data Analysis and Application, Henan Academy of Big Data, Zhengzhou University, Zhengzhou, China
| | - Safyan Nasir
- Allied District Headquarter Hospital, Faisalabad, Pakistan
| | - Muhammad Fawad
- Zhengzhou Key Laboratory of Big Data Analysis and Application, Henan Academy of Big Data, Zhengzhou University, Zhengzhou, China
- School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China
- *Correspondence: Muhammad Fawad, ; Qian Bai,
| | - Qian Bai
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Muhammad Fawad, ; Qian Bai,
| |
Collapse
|
24
|
El-Nakeep S. Molecular and genetic markers in hepatocellular carcinoma: In silico analysis to clinical validation (current limitations and future promises). World J Gastrointest Pathophysiol 2022; 13:1-14. [PMID: 35116176 PMCID: PMC8788164 DOI: 10.4291/wjgp.v13.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/15/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second cause of cancer-related mortality. The diagnosis of HCC depends mainly on -fetoprotein, which is limited in its diagnostic and screening capabilities. There is an urgent need for a biomarker that detects early HCC to give the patients a chance for curative treatment. New targets of therapy could enhance survival and create future alternative curative methods. In silico analysis provides both; discovery of biomarkers, and understanding of the molecular pathways, to pave the way for treatment development. This review discusses the role of in silico analysis in the discovery of biomarkers, molecular pathways, and the role the author has contributed to this area of research. It also discusses future aspirations and current limitations. A literature review was conducted on the topic using various databases (PubMed, Science Direct, and Wiley Online Library), searching in various reviews, and editorials on the topic, with overviewing the author's own published and unpublished work. This review discussed the steps of the validation process from in silico analysis to in vivo validation, to incorporation into clinical practice guidelines. In addition, reviewing the recent lines of research of bioinformatic studies related to HCC. In conclusion, the genetic, molecular and epigenetic markers discoveries are hot areas for HCC research. Bioinformatics will enhance our ability to accomplish this understanding in the near future. We face certain limitations that we need to overcome.
Collapse
Affiliation(s)
- Sarah El-Nakeep
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| |
Collapse
|
25
|
El-Nakeep S. Stem Cell Therapy For The Treatment Of Crohn's Disease; Current Obstacles And Future Hopes. (Mini-Review). Curr Stem Cell Res Ther 2021; 17:727-733. [PMID: 34514993 DOI: 10.2174/1574888x16666210910112403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Crohn's disease (CD) is an autoimmune disease of the gastrointestinal tract, characterized by relapsing and remitting courses. The disease is debilitating in nature with three prominent phenotypic clinical presentations; fistulizing, stenosing, and inflammatory. Stem cells offer a new hope for CD patients with modifying the immune response and progression of the healing process. AIM This mini-review discusses the role of stem cells in treating CD, their effectiveness as a new therapy and their current limitations faced. METHODS The author conducted a literature review on recent randomized controlled trials and cohort studies concerned with the topic in question using the following keywords (Crohn's Disease, perianal fistula, Stem cell therapy, mesenchymal stem cells, remission). RESULTS Clinical trials show that the stem cells are more effective in the CD associated complex perianal fistula than the CD enteritis. Till the time being, there are no standardized guidelines regarding; dose of stem cells used, number of doses administered, route of administration, type of stem cells used. Only one group of researchers proposed a standardized procedure for injecting mesenchymal stem cells in complex perianal fistula, according to their own experience in clinical trials. Moreover, mesenchymal stem cells and their related types (placental, adipose tissue, umbilical tissue, etc.) are the most safe and effective in clinical trials. Currently; the commercially available mesenchymal stem cells preparation (Darvadstrocel (Cx601)) is the only one approved by The United States Food and Drug Administration (FDA) for clinical use in refractory CD associated complex perianal fistula. CONCLUSIONS Stem cell therapy (SCT) shows promise in; inducing remission in refractory Crohn's colitis, and perianal fistula, but further research is required before SCT could be applied to clinical practice guidelines.
Collapse
Affiliation(s)
- Sarah El-Nakeep
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo. Egypt
| |
Collapse
|