1
|
Bozorgchami N, Ahmadzadeh M, Hatamabadi D, Yazdani A, Shahhosseini S, Mohit E. Preparation, Characterization, and Radiolabeling of Anti-HER2 scFv With Technetium Tricarbonyl and Stability Studies. J Labelled Comp Radiopharm 2024; 67:168-179. [PMID: 38485465 DOI: 10.1002/jlcr.4090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 05/14/2024]
Abstract
Breast cancer is the most common diagnosed cancer, and the second cause of cancer death among women, worldwide. HER2 overexpression occurred in approximately 15% to 20% of breast cancers. Invasive biopsy method has been used for detection of HER2 overexpression. HER2-targeted imaging via an appropriate radionuclide is a promising method for sensitive and accurate identification of HER2+ primary and metastatic lesions. 99mTc-anti-HER2 scFv can specifically target malignancies and be used for diagnosis of the cancer type and metastasis as well as treatment of breast cancer. We radiolabeled anti-HER2 scFv that was expressed in Escherichia coli and purified through Ni-NTA resin under native condition with 99mTc-tricarbonyl formed from boranocarbonate. HER2-based ELISA, BCA, TLC, and HPLC were used in this study. In the current study, anti-HER2 scFv was lyophilized before radiolabeling. It was found that freeze-drying did not change the binding activity of anti-HER2 scFv to HER2. Results demonstrated direct anti-HER2 scFv radiolabeling by 99mTc-tricarbonyl to hexahistidine sequence (His-tag) without any changes in biological activity and radiochemical purity of around 98%. Stability analysis revealed that 99mTc-anti-HER2 scFv is stable for at least 24 h in PBS buffer, normal saline, human plasma proteins, and histidine solution.
Collapse
Affiliation(s)
- Negar Bozorgchami
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ahmadzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food and Drug Laboratory Research Center, Food and Drug Administration, The Ministry of Health and Medical Education, Tehran, Iran
| | - Dara Hatamabadi
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Yazdani
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Eissler N, Altena R, Alhuseinalkhudhur A, Bragina O, Feldwisch J, Wuerth G, Loftenius A, Brun N, Axelsson R, Tolmachev V, Sörensen J, Frejd FY. Affibody PET Imaging of HER2-Expressing Cancers as a Key to Guide HER2-Targeted Therapy. Biomedicines 2024; 12:1088. [PMID: 38791050 PMCID: PMC11118066 DOI: 10.3390/biomedicines12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a major prognostic and predictive marker overexpressed in 15-20% of breast cancers. The diagnostic reference standard for selecting patients for HER2-targeted therapy is based on the analysis of tumor biopsies. Previously patients were defined as HER2-positive or -negative; however, with the approval of novel treatment options, specifically the antibody-drug conjugate trastuzumab deruxtecan, many breast cancer patients with tumors expressing low levels of HER2 have become eligible for HER2-targeted therapy. Such patients will need to be reliably identified by suitable diagnostic methods. Biopsy-based diagnostics are invasive, and repeat biopsies are not always feasible. They cannot visualize the heterogeneity of HER2 expression, leading to a substantial number of misdiagnosed patients. An alternative and highly accurate diagnostic method is molecular imaging with radiotracers. In the case of HER2, various studies demonstrate the clinical utility and feasibility of such approaches. Radiotracers based on Affibody® molecules, small, engineered affinity proteins with a size of ~6.5 kDa, are clinically validated molecules with favorable characteristics for imaging. In this article, we summarize the HER2-targeted therapeutic landscape, describe our experience with imaging diagnostics for HER2, and review the currently available clinical data on HER2-Affibody-based molecular imaging as a novel diagnostic tool in breast cancer and beyond.
Collapse
Affiliation(s)
| | - Renske Altena
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna, Sweden
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, 17164 Solna, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
| | - Ali Alhuseinalkhudhur
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Olga Bragina
- Department of Nuclear Therapy and Diagnostic, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634055 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | | | | | | | | | - Rimma Axelsson
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Jens Sörensen
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
| | - Fredrik Y. Frejd
- Affibody AB, 17165 Solna, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| |
Collapse
|
3
|
Gao F, Liu F, Wang J, Bi J, Zhai L, Li D. Molecular probes targeting HER2 PET/CT and their application in advanced breast cancer. J Cancer Res Clin Oncol 2024; 150:118. [PMID: 38466436 PMCID: PMC10927773 DOI: 10.1007/s00432-023-05519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/12/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-positive breast cancer cases are among the most aggressive breast tumor subtypes. Accurately assessing HER2 expression status is vital to determining whether patients will benefit from targeted anti-HER2 treatment. HER2-targeted positron emission tomography (PET/CT) is noninvasive, enabling the real-time evaluation of breast cancer patient HER2 status with accuracy. METHODS We summarize the research progress of PET/CT targeting HER2 in breast cancer, focusing on PET/CT molecular probes targeting HER2 and their clinical application in the management of advanced breast cancer. RESULTS At present, a variety of different HER2 targeted molecular probes for PET/CT imaging have been developed, including nucleolin-labeled antibodies, antibody fragments, nanobodies, and peptides of various affinities, among others. HER2-targeted PET/CT can relatively accurately evaluate HER2 expression status in advanced breast cancer patients. It has good performance in the early detection of small HER2-positive lesions, evaluation of HER2 status in lesions that cannot be readily biopsied, evaluation of the heterogeneity of multiple metastases, identification of lesions with altered HER2 status, and evaluation of the efficacy of anti-HER2 drugs. CONCLUSION HER2-targeted PET/CT offers a promising noninvasive approach for real-time assessment of HER2 status,which can be guide targeted treatment for HER2-positive breast cancer patients. Future prospective clinical studies will be invaluable for fully evaluating the importance of HER2-targeted molecular imaging in the management of breast cancer.
Collapse
Affiliation(s)
- Fang Gao
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Fengxu Liu
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Jun Wang
- Department of Anesthesia, Armed Police Corps Hospital in Shanxi Province, Xiaodian District, Taiyuan, Shanxi, People's Republic of China
| | - Junfang Bi
- Department of Combined Traditional Chinese Medicine and West Medicine, Traditional Chinese Medicine Hospital of Shijiazhuang City, 233 Zhongshan West Road, Qiaoxi District, Shijiazhuang, Hebei, China
| | - Luoping Zhai
- Department of Nuclear Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
| | - Dong Li
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Design, Synthesis and Activity of New N1-Alkyl Tryptophan Functionalized Dendrimeric Peptides against Glioblastoma. Biomolecules 2022; 12:biom12081116. [PMID: 36009010 PMCID: PMC9406037 DOI: 10.3390/biom12081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Due to resistance to conventional therapy, a blood–brain barrier that results in poor drug delivery, and a high potential for metastasis, glioblastoma (GBM) presents a great medical challenge. Since the repertoire of the possible therapies is very limited, novel therapeutic strategies require new drugs as well as new approaches. The multiple roles played by L-tryptophan (Trp) in tumorigenesis of GBM and the previously found antiproliferative properties of Trp-bearing dendrimers against this malignancy prompted us to design novel polyfunctional peptide-based dendrimers covalently attached to N1-alkyl tryptophan (Trp) residues. Their antiproliferative properties against GBM and normal human astrocytes (NHA) and their antioxidant potential were tested. Methods: Two groups of amphiphilic peptide dendrimers terminated with N1-butyl and N1-aminopentane tryptophan were designed. The influence of dendrimers on viability of NHA and human GBM cell lines, displaying different genetic backgrounds and tumorigenic potentials, was determined by the MTT test. The influence of compounds on the clonogenic potential of GBM cells was assessed by colony-formation assay. Dendrimers were tested for radical scavenging potency as well as redox capability (DPPH, ABTS, and FRAP models). Results: Several peptide dendrimers functionalized with N1-alkyl-tryptophan at 5 µM concentration exhibited high selectivity towards GBM cells retaining 85–95% viable NHA cells while killing cancer cells. In both the MTT and colony-formation assays, compounds 21 (functionalized with N1-butyl-Trp and (+)8 charged) and 25 (functionalized with N1-aminopentane-Trp and (+)12 charged) showed the most promise for their development into anticancer drugs. According to ABTS, DPPH, and FRAP antioxidant tests, dendrimers functionalized with N1-alkylated Trp expressed higher ROS-scavenging capacity (ABTS and DPPH) than those with unsubstituted Trp. Conclusions: Peptide dendrimers functionalized with N1-alkyl-tryptophan showed varying toxicity to NHA, while all were toxic to GBM cells. Based on their activity towards inhibition of GBM viability and relatively mild effect on NHA cells the most advantageous were derivatives 21 and 25 with the respective di-dodecyl and dodecyl residue located at the C-terminus. As expected, peptide dendrimers functionalized with N1-alkyl-tryptophan expressed higher scavenging potency against ROS than dendrimers with unsubstituted tryptophan.
Collapse
|
5
|
Hu X, Li D, Fu Y, Zheng J, Feng Z, Cai J, Wang P. Advances in the Application of Radionuclide-Labeled HER2 Affibody for the Diagnosis and Treatment of Ovarian Cancer. Front Oncol 2022; 12:917439. [PMID: 35785201 PMCID: PMC9240272 DOI: 10.3389/fonc.2022.917439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a highly expressed tumor marker in epithelial ovarian cancer, and its overexpression is considered to be a potential factor of poor prognosis. Therefore, monitoring the expression of HER2 receptor in tumor tissue provides favorable conditions for accurate localization, diagnosis, targeted therapy, and prognosis evaluation of cancer foci. Affibody has the advantages of high affinity, small molecular weight, and stable biochemical properties. The molecular probes of radionuclide-labeled HER2 affibody have recently shown broad application prospects in the diagnosis and treatment of ovarian cancer; the aim is to introduce radionuclides into the cancer foci, display systemic lesions, and kill tumor cells through the radioactivity of the radionuclides. This process seamlessly integrates the diagnosis and treatment of ovarian cancer. Current research and development of new molecular probes of radionuclide-labeled HER2 affibody should focus on overcoming the deficiencies of non-specific uptake in the kidney, bone marrow, liver, and gastrointestinal tract, and on reducing the background of the image to improve image quality. By modifying the amino acid sequence; changing the hydrophilicity, surface charge, and lipid solubility of the affibody molecule; and using different radionuclides, chelating agents, and labeling conditions to optimize the labeling method of molecular probes, the specific uptake of molecular probes at tumor sites will be improved, while reducing radioactive retention in non-target organs and obtaining the best target/non-target value. These measures will enable the clinical use of radionuclide-labeled HER2 affibody molecular probes as soon as possible, providing a new clinical path for tumor-specific diagnosis, targeted therapy, and efficacy evaluation. The purpose of this review is to describe the application of radionuclide-labeled HER2 affibody in the imaging and treatment of ovarian cancer, including its potential clinical value and dilemmas.
Collapse
Affiliation(s)
- Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Yujie Fu
- Research and Development Department, Jiangsu Yuanben Biotechnology Co., Ltd., Zunyi, China
| | - Jiashen Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zelong Feng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| |
Collapse
|
6
|
Altunay B, Morgenroth A, Mottaghy FM. Use of Radionuclide-Based Imaging Methods in Breast Cancer. Semin Nucl Med 2022; 52:561-573. [PMID: 35624034 DOI: 10.1053/j.semnuclmed.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/21/2022]
Abstract
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. Thus, early and effective breast cancer diagnosis is crucial for enhancing the survival rate. Current standard diagnostic techniques to assess the hormone receptor status in biopsies include immunohistochemistry and fluorescence in situ hybridization. However, in recent years, there has been an increase in research on noninvasive techniques for molecular imaging of hormone receptors. These methods offer many advantages over conventional imaging, as repeated measurements can be used to capture heterogeneous tumor expression throughout the body, as well as transformations in receptor status during disease progression. Thus, the noninvasive method, as an adjunct to conventional imaging, offers the potential to improve patient selection, optimize dose and schedule, and streamline the assessment of response.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.
| |
Collapse
|
7
|
Junk L, Papadopoulos E, Kazmaier U. Tryptophan N
1-Alkylation: Quick and Simple Access to Diversely Substituted Tryptophans. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1404-5079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe diversification of amino acid sidechains is a major challenge in the synthesis and derivatization of peptides for pharmaceutical applications. We herein present a new protocol to alkylate the indole-nitrogen (N1) of N
α-protected tryptophans. This method provides quick and epimerization-free access to tryptophan derivatives, which can directly be incorporated into peptides. Depending on the functionalities introduced in the side chain, different options for the late-stage modification of peptides are possible.
Collapse
|
8
|
Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, Biersack HJ, Stickeler E, Mottaghy FM. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging 2021; 48:1371-1389. [PMID: 33179151 PMCID: PMC8113197 DOI: 10.1007/s00259-020-05094-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the present paper is to review the role of HER2 antibodies, affibodies and nanobodies as vehicles for imaging and therapy approaches in breast cancer, including a detailed look at recent clinical data from antibody drug conjugates and nanobodies as well as affibodies that are currently under development. RESULTS Clinical and preclinical studies have shown that the use of monoclonal antibodies in molecular imaging is impaired by slow blood clearance, associated with slow and low tumor uptake and with limited tumor penetration potential. Antibody fragments, such as nanobodies, on the other hand, can be radiolabelled with short-lived radioisotopes and provide high-contrast images within a few hours after injection, allowing early diagnosis and reduced radiation exposure of patients. Even in therapy, the small radioactively labeled nanobodies prove to be superior to radioactively labeled monoclonal antibodies due to their higher specificity and their ability to penetrate the tumor. CONCLUSION While monoclonal antibodies are well established drug delivery vehicles, the current literature on molecular imaging supports the notion that antibody fragments, such as affibodies or nanobodies, might be superior in this approach.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Division of Molecular PET-Imaging and Theranostics , Paracelsus Medical University , Salzburg, 5020, Austria
| | - Andreas Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | | | - Hong Hoi Ting
- Nanomab Technology Limited, Shanghai, People's Republic of China
| | | | - Elmar Stickeler
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Department of Gynecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Venkatachalam T, Stimson D, Frisch K, Pierens G, Bhalla R, Reutens D. Radiolabeling of protected tryptophan with [18F]fluoromethyl tosylate: Formation of [18F]fluoromethyl ester of tryptophan instead of 1-N-[18F]fluoromethyl tryptophan methylester. Appl Radiat Isot 2019; 152:172-179. [DOI: 10.1016/j.apradiso.2019.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
|
10
|
Venkatachalam TK, Stimson DHR, Pierens GK, Bhalla R, Reutens DC. Challenges in the automated synthesis of [ 18F]-1-fluoroethyl tryptophan: Formation of both O- and N-alkylated products. Appl Radiat Isot 2017; 131:41-48. [PMID: 29112889 DOI: 10.1016/j.apradiso.2017.10.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022]
Abstract
[18F]Fluoroethyl tosylate was synthesized using an automated "Synthra" module using ethylene di-tosylate and [18F]fluoride/K222/K2CO3 in acetonitrile. [18F]Fluoroethyl tosylate was purified by semi-preparative HPLC followed by reformulation using a C18 Sep-Pak cartridge and eluted with DMF. Using this [18F]fluoroethyl tosylate, we attempted to alkylate protected tryptophan aiming to obtain the N-[18F]fluoroethyl-t-Boc-tryptophan methyl ester. Initial attempts resulted in the formation of the O-alkylated, rather than N-alkylated product. Manual removal of the cartridge from the automated module, followed by an extended drying of the cartridge under high flow nitrogen, was required to form the desired N-alkylated product. This demonstrates that the drying process in automated modules requires modification for sensitive N-alkylation of compounds and may be essential for compounds like tryptophan methyl ester that have multiple potential sites of alkylation in their chemical structure.
Collapse
Affiliation(s)
- T K Venkatachalam
- Centre for Advanced Imaging, University of Queensland, St. Lucia Campus, Building 57, Research Road, Brisbane 4072, Australia.
| | - D H R Stimson
- Centre for Advanced Imaging, University of Queensland, St. Lucia Campus, Building 57, Research Road, Brisbane 4072, Australia
| | - G K Pierens
- Centre for Advanced Imaging, University of Queensland, St. Lucia Campus, Building 57, Research Road, Brisbane 4072, Australia
| | - R Bhalla
- Centre for Advanced Imaging, University of Queensland, St. Lucia Campus, Building 57, Research Road, Brisbane 4072, Australia
| | - D C Reutens
- Centre for Advanced Imaging, University of Queensland, St. Lucia Campus, Building 57, Research Road, Brisbane 4072, Australia
| |
Collapse
|
11
|
Sun T, Tian H, Xin Y. 1-butyltryptophan inhibits cell proliferation, migration, and invasion through the Akt pathway in human gastric cancer cells. Tumour Biol 2014; 36:2517-22. [PMID: 25433499 DOI: 10.1007/s13277-014-2865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/17/2014] [Indexed: 11/26/2022] Open
Abstract
We have previously demonstrated that novel 1-alkyl-tryptophan analogs 1-butyltryptophan (1-BT) can serve as a potential antitumor agent. However, the molecular mechanisms of 1-BT on cancer cells remain to be elucidated. The effect of 1-BT on cell proliferation was detected by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and clone formation assay in SGC7901 and AGS cells. Cell cycle was determined by flow cytometry. Cell migration and invasion was determined by wound healing assay and transwell assay. The expression of cyclin-dependent kinase 4 (CDK4), cyclin D1, p16, PCNA, phosphorylated Akt, total Akt, phosphorylated ERK1/2, and total ERK1/2 was examined using Western blotting. Our data demonstrated that 1-BT inhibited cell proliferation in a dose- and time-dependent manner by the downregulation of expression of cyclin D1 and CDK4 and by the upregulation of p16 expression. The inhibition of cell growth was also demonstrated by cell cycle arrest at the G1/S phase. Furthermore, 1-BT inhibited cell migration and invasion in SGC7901 cells. In addition, we found that phosphorylated Akt was suppressed in 1-BT treated SGC7901 cells. Overexpression of activated Akt reversed the effects of 1-BT on cell migration and invasion in SGC7901 cells. These results indicated that 1-BT inhibited gastric cancer cells proliferation and migration through the Akt pathway, which has the potential clinical significance in the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Ting Sun
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China,
| | | | | |
Collapse
|
12
|
López-García J, Lehocký M, Humpolíček P, Sáha P. HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. J Funct Biomater 2014; 5:43-57. [PMID: 24956439 PMCID: PMC4099973 DOI: 10.3390/jfb5020043] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/07/2014] [Accepted: 04/02/2014] [Indexed: 02/04/2023] Open
Abstract
The effective and widely tested biocides: Benzalkonium chloride, bronopol, chitosan, chlorhexidine and irgasan were added in different concentrations to atelocollagen matrices. In order to assess how these antibacterial agents influence keratinocytes cell growth, cell viability and proliferation were determined by using MTT assay. Acquired data indicated a low toxicity by employing any of these chemical substances. Furthermore, cell viability and proliferation were comparatively similar to the samples where there were no biocides. It means that regardless of the agent, collagen-cell-attachment properties are not drastically affected by the incorporation of those biocides into the substrate. Therefore, these findings suggest that these atelocollagen substrates enhanced by the addition of one or more of these agents may render effectiveness against bacterial stains and biofilm formation, being the samples referred to herein as “antimicrobial substrates” a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.
Collapse
Affiliation(s)
- Jorge López-García
- Centre of Polymer Systems, Polymer Centre, Tomas Bata University in Zlin, T.G.Masaryk Sq. 5555, 76005 Zlin, Czech Republic.
| | - Marián Lehocký
- Centre of Polymer Systems, Polymer Centre, Tomas Bata University in Zlin, T.G.Masaryk Sq. 5555, 76005 Zlin, Czech Republic.
| | - Petr Humpolíček
- Centre of Polymer Systems, Polymer Centre, Tomas Bata University in Zlin, T.G.Masaryk Sq. 5555, 76005 Zlin, Czech Republic.
| | - Petr Sáha
- Centre of Polymer Systems, Polymer Centre, Tomas Bata University in Zlin, T.G.Masaryk Sq. 5555, 76005 Zlin, Czech Republic.
| |
Collapse
|
13
|
Novel 1-alkyl-tryptophan derivatives downregulate IDO1 and IDO2 mRNA expression induced by interferon-gamma in dendritic cells. Mol Cell Biochem 2010; 342:29-34. [DOI: 10.1007/s11010-010-0465-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
|