1
|
Neto LAA, Freire AM, Silva LP. Advancing Hydrogel-Based 3D Cell Culture Systems: Histological Image Analysis and AI-Driven Filament Characterization. Biomedicines 2025; 13:208. [PMID: 39857791 PMCID: PMC11761273 DOI: 10.3390/biomedicines13010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Machine learning is used to analyze images by training algorithms on data to recognize patterns and identify objects, with applications in various fields, such as medicine, security, and automation. Meanwhile, histological cross-sections, whether longitudinal or transverse, expose layers of tissues or tissue mimetics, which provide crucial information for microscopic analysis. Objectives: This study aimed to employ the Google platform "Teachable Machine" to apply artificial intelligence (AI) in the interpretation of histological cross-section images of hydrogel filaments. Methods: The production of 3D hydrogel filaments involved different combinations of sodium alginate and gelatin polymers, as well as a cross-linking agent, and subsequent stretching until rupture using an extensometer. Cross-sections of stretched and unstretched filaments were created and stained with hematoxylin and eosin. Using the Teachable Machine platform, images were grouped and trained for subsequent prediction. Results: Over six hundred histological cross-section images were obtained and stored in a virtual database. Each hydrogel combination exhibited variations in coloration, and some morphological structures remained consistent. The AI efficiently identified and differentiated images of stretched and unstretched filaments. However, some confusion arose when distinguishing among variations in hydrogel combinations. Conclusions: Therefore, the image prediction tool for biopolymeric hydrogel histological cross-sections using Teachable Machine proved to be an efficient strategy for distinguishing stretched from unstretched filaments.
Collapse
Grants
- Finance Code 001 and 23038.019088/2009-58 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- 311825/2021-4, 307853/2018-7, 408857/2016-1, 306413/2014-0, and 563802/2010-3 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- 193.001.392/2016 Fundação de Apoio à Pesquisa do Distrito Federal
- 10.20.03.009.00.00, 23.17.00.069.00.02, 13.17.00.037.00.00, 21.14.03.001.03.05, 13.14.03.010.00.02, 12.16.04.010.00.06, 22.16.05.016.00.04, and 11.13.06.001.06.03 Empresa Brasileira de Pesquisa Agropecuária
- Universidade Federal do Paraná
Collapse
Affiliation(s)
- Lucio Assis Araujo Neto
- Embrapa Genetic Resources and Biotechnology, Laboratory of Nanobiotechnology (LNANO), Brasília 70770-917, DF, Brazil; (L.A.A.N.); (A.M.F.)
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná (UFPR), Curitiba 80210-170, PR, Brazil
| | - Alessandra Maia Freire
- Embrapa Genetic Resources and Biotechnology, Laboratory of Nanobiotechnology (LNANO), Brasília 70770-917, DF, Brazil; (L.A.A.N.); (A.M.F.)
- Postgraduate Program in Nanoscience and Nanobiotechnology, University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Luciano Paulino Silva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Nanobiotechnology (LNANO), Brasília 70770-917, DF, Brazil; (L.A.A.N.); (A.M.F.)
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná (UFPR), Curitiba 80210-170, PR, Brazil
- Postgraduate Program in Nanoscience and Nanobiotechnology, University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| |
Collapse
|
2
|
Islam MS, Al Farid F, Shamrat FMJM, Islam MN, Rashid M, Bari BS, Abdullah J, Nazrul Islam M, Akhtaruzzaman M, Nomani Kabir M, Mansor S, Abdul Karim H. Challenges issues and future recommendations of deep learning techniques for SARS-CoV-2 detection utilising X-ray and CT images: a comprehensive review. PeerJ Comput Sci 2024; 10:e2517. [PMID: 39896401 PMCID: PMC11784792 DOI: 10.7717/peerj-cs.2517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/24/2024] [Indexed: 02/04/2025]
Abstract
The global spread of SARS-CoV-2 has prompted a crucial need for accurate medical diagnosis, particularly in the respiratory system. Current diagnostic methods heavily rely on imaging techniques like CT scans and X-rays, but identifying SARS-CoV-2 in these images proves to be challenging and time-consuming. In this context, artificial intelligence (AI) models, specifically deep learning (DL) networks, emerge as a promising solution in medical image analysis. This article provides a meticulous and comprehensive review of imaging-based SARS-CoV-2 diagnosis using deep learning techniques up to May 2024. This article starts with an overview of imaging-based SARS-CoV-2 diagnosis, covering the basic steps of deep learning-based SARS-CoV-2 diagnosis, SARS-CoV-2 data sources, data pre-processing methods, the taxonomy of deep learning techniques, findings, research gaps and performance evaluation. We also focus on addressing current privacy issues, limitations, and challenges in the realm of SARS-CoV-2 diagnosis. According to the taxonomy, each deep learning model is discussed, encompassing its core functionality and a critical assessment of its suitability for imaging-based SARS-CoV-2 detection. A comparative analysis is included by summarizing all relevant studies to provide an overall visualization. Considering the challenges of identifying the best deep-learning model for imaging-based SARS-CoV-2 detection, the article conducts an experiment with twelve contemporary deep-learning techniques. The experimental result shows that the MobileNetV3 model outperforms other deep learning models with an accuracy of 98.11%. Finally, the article elaborates on the current challenges in deep learning-based SARS-CoV-2 diagnosis and explores potential future directions and methodological recommendations for research and advancement.
Collapse
Affiliation(s)
- Md Shofiqul Islam
- Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Warun Ponds, Victoria, Australia
| | - Fahmid Al Farid
- Faculty of Engineering, Multimedia University, Cyeberjaya, Selangor, Malaysia
| | | | - Md Nahidul Islam
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia
| | - Mamunur Rashid
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia
- Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, United States
| | - Bifta Sama Bari
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia
- Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, United States
| | - Junaidi Abdullah
- Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Selangor, Malaysia
| | - Muhammad Nazrul Islam
- Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Md Akhtaruzzaman
- Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Muhammad Nomani Kabir
- Department of Computer Science & Engineering, United International University (UIU), Dhaka, Bangladesh
| | - Sarina Mansor
- Faculty of Engineering, Multimedia University, Cyeberjaya, Selangor, Malaysia
| | - Hezerul Abdul Karim
- Faculty of Engineering, Multimedia University, Cyeberjaya, Selangor, Malaysia
| |
Collapse
|
3
|
Sohrabi MA, Zare-Mirakabad F, Ghidary SS, Saadat M, Sadegh-Zadeh SA. A novel data augmentation approach for influenza A subtype prediction based on HA proteins. Comput Biol Med 2024; 172:108316. [PMID: 38503091 DOI: 10.1016/j.compbiomed.2024.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Influenza, a pervasive viral respiratory illness, remains a significant global health concern. The influenza A virus, capable of causing pandemics, necessitates timely identification of specific subtypes for effective prevention and control, as highlighted by the World Health Organization. The genetic diversity of influenza A virus, especially in the hemagglutinin protein, presents challenges for accurate subtype prediction. This study introduces PreIS as a novel pipeline utilizing advanced protein language models and supervised data augmentation to discern subtle differences in hemagglutinin protein sequences. PreIS demonstrates two key contributions: leveraging pre-trained protein language models for influenza subtype classification and utilizing supervised data augmentation to generate additional training data without extensive annotations. The effectiveness of the pipeline has been rigorously assessed through extensive experiments, demonstrating a superior performance with an impressive accuracy of 94.54% compared to the current state-of-the-art model, the MC-NN model, which achieves an accuracy of 89.6%. PreIS also exhibits proficiency in handling unknown subtypes, emphasizing the importance of early detection. Pioneering the classification of HxNy subtypes solely based on the hemagglutinin protein chain, this research sets a benchmark for future studies. These findings promise more precise and timely influenza subtype prediction, enhancing public health preparedness against influenza outbreaks and pandemics. The data and code underlying this article are available in https://github.com/CBRC-lab/PreIS.
Collapse
Affiliation(s)
- Mohammad Amin Sohrabi
- Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Shiri Ghidary
- Department of Computing, School of Digital, Technologies, and Arts, Staffordshire University, Stoke-On-Trent, UK
| | - Mahsa Saadat
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Seyed-Ali Sadegh-Zadeh
- Department of Computing, School of Digital, Technologies, and Arts, Staffordshire University, Stoke-On-Trent, UK.
| |
Collapse
|
4
|
Saleh AI, Hussien SA. Disease Diagnosis Based on Improved Gray Wolf Optimization (IGWO) and Ensemble Classification. Ann Biomed Eng 2023; 51:2579-2605. [PMID: 37452216 DOI: 10.1007/s10439-023-03303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
This paper introduces a simple strategy for diagnosing disease, which is called improved gray wolf optimization (IGWO) and ensemble classification. The proposed strategy consists of two sequential phases, which are; (i) Feature Selection Phase (FSP) and (ii) Ensemble Classification Phase (ECP). During the former, the most effective features for diagnosing disease are selected, while during the latter, the actual diagnosis takes place depending on voting of five different classifiers. The main contribution of this paper is a suggested modification for the traditional Gray Wolf Optimization (GWO), which is called Improved Gray Wolf Optimization (IGWO). As an optimization technique, the proposed IGWO is employed in the FSP for selecting the effective features. For evaluating, IGWO has been implemented using recent feature selection techniques as well as the proposed method. To accomplish the classification phase; ensemble classification has been used which uses several classification techniques such as; Naïve Bayes (NB), Support Vector Machines (SVM), Deep Neural Network (DNN), Decision Tree (DT), and K-Nearest Neighbors (KNN). Ensemble classification integrate several classifiers for improving prediction performance. Experimental results have shown that employing IGWO promotes the performance of the diagnosing strategy of different diseases in terms of precision, recall, and accuracy.
Collapse
Affiliation(s)
- Ahmed I Saleh
- Computers and Control Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Shaimaa A Hussien
- Delta Higher Institute for Engineering and Technology, Mansoura, Egypt.
| |
Collapse
|
5
|
Ghassemi N, Shoeibi A, Khodatars M, Heras J, Rahimi A, Zare A, Zhang YD, Pachori RB, Gorriz JM. Automatic diagnosis of COVID-19 from CT images using CycleGAN and transfer learning. Appl Soft Comput 2023; 144:110511. [PMID: 37346824 PMCID: PMC10263244 DOI: 10.1016/j.asoc.2023.110511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/23/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
The outbreak of the corona virus disease (COVID-19) has changed the lives of most people on Earth. Given the high prevalence of this disease, its correct diagnosis in order to quarantine patients is of the utmost importance in the steps of fighting this pandemic. Among the various modalities used for diagnosis, medical imaging, especially computed tomography (CT) imaging, has been the focus of many previous studies due to its accuracy and availability. In addition, automation of diagnostic methods can be of great help to physicians. In this paper, a method based on pre-trained deep neural networks is presented, which, by taking advantage of a cyclic generative adversarial net (CycleGAN) model for data augmentation, has reached state-of-the-art performance for the task at hand, i.e., 99.60% accuracy. Also, in order to evaluate the method, a dataset containing 3163 images from 189 patients has been collected and labeled by physicians. Unlike prior datasets, normal data have been collected from people suspected of having COVID-19 disease and not from data from other diseases, and this database is made available publicly. Moreover, the method's reliability is further evaluated by calibration metrics, and its decision is interpreted by Grad-CAM also to find suspicious regions as another output of the method and make its decisions trustworthy and explainable.
Collapse
Affiliation(s)
- Navid Ghassemi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jonathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Alireza Rahimi
- Computer Engineering department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, UK
| | - Ram Bilas Pachori
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - J Manuel Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Spain
- Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
6
|
Shi Y, Wan J, Zhang X, Yin Y. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data. Comput Biol Med 2023; 164:107263. [PMID: 37531858 DOI: 10.1016/j.compbiomed.2023.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Single-cell RNA-sequencing (scRNA-seq) technology has revolutionized the study of cell heterogeneity and biological interpretation at the single-cell level. However, the dropout events commonly present in scRNA-seq data can markedly reduce the reliability of downstream analysis. Existing imputation methods often overlook the discrepancy between the established cell relationship from dropout noisy data and reality, which limits their performances due to the learned untrustworthy cell representations. METHOD Here, we propose a novel approach called the CL-Impute (Contrastive Learning-based Impute) model for estimating missing genes without relying on preconstructed cell relationships. CL-Impute utilizes contrastive learning and a self-attention network to address this challenge. Specifically, the proposed CL-Impute model leverages contrastive learning to learn cell representations from the self-perspective of dropout events, whereas the self-attention network captures cell relationships from the global-perspective. RESULTS Experimental results on four benchmark datasets, including quantitative assessment, cell clustering, gene identification, and trajectory inference, demonstrate the superior performance of CL-Impute compared with that of existing state-of-the-art imputation methods. Furthermore, our experiment reveals that combining contrastive learning and masking cell augmentation enables the model to learn actual latent features from noisy data with a high rate of dropout events, enhancing the reliability of imputed values. CONCLUSIONS CL-Impute is a novel contrastive learning-based method to impute scRNA-seq data in the context of high dropout rate. The source code of CL-Impute is available at https://github.com/yuchen21-web/Imputation-for-scRNA-seq.
Collapse
Affiliation(s)
- Yuchen Shi
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China; Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education, Ministry of Education, China
| | - Jian Wan
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China; School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Xin Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China; Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education, Ministry of Education, China.
| | - Yuyu Yin
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China; Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education, Ministry of Education, China.
| |
Collapse
|
7
|
Mehrdad S, Shamout FE, Wang Y, Atashzar SF. Deep learning for deterioration prediction of COVID-19 patients based on time-series of three vital signs. Sci Rep 2023; 13:9968. [PMID: 37339986 PMCID: PMC10282033 DOI: 10.1038/s41598-023-37013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Unrecognized deterioration of COVID-19 patients can lead to high morbidity and mortality. Most existing deterioration prediction models require a large number of clinical information, typically collected in hospital settings, such as medical images or comprehensive laboratory tests. This is infeasible for telehealth solutions and highlights a gap in deterioration prediction models based on minimal data, which can be recorded at a large scale in any clinic, nursing home, or even at the patient's home. In this study, we develop and compare two prognostic models that predict if a patient will experience deterioration in the forthcoming 3 to 24 h. The models sequentially process routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature. These models are also provided with basic patient information, including sex, age, vaccination status, vaccination date, and status of obesity, hypertension, or diabetes. The difference between the two models is the way that the temporal dynamics of the vital signs are processed. Model #1 utilizes a temporally-dilated version of the Long-Short Term Memory model (LSTM) for temporal processes, and Model #2 utilizes a residual temporal convolutional network (TCN) for this purpose. We train and evaluate the models using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA. The convolution-based model outperforms the LSTM based model, achieving a high AUROC of 0.8844-0.9336 for 3 to 24 h deterioration prediction on a held-out test set. We also conduct occlusion experiments to evaluate the importance of each input feature, which reveals the significance of continuously monitoring the variation of the vital signs. Our results show the prospect for accurate deterioration forecast using a minimum feature set that can be relatively easily obtained using wearable devices and self-reported patient information.
Collapse
Affiliation(s)
- Sarmad Mehrdad
- Department of Electrical and Computer Engineering, New York University (NYU), New York, USA
| | - Farah E Shamout
- Department of Biomedical Engineering, New York University (NYU), New York, USA
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Computer Science and Engineering, New York University (NYU), New York, USA
| | - Yao Wang
- Department of Electrical and Computer Engineering, New York University (NYU), New York, USA
- Department of Biomedical Engineering, New York University (NYU), New York, USA
| | - S Farokh Atashzar
- Department of Electrical and Computer Engineering, New York University (NYU), New York, USA.
- Department of Biomedical Engineering, New York University (NYU), New York, USA.
- Department of Mechanical and Aerospace Engineering, New York University (NYU), New York, USA.
| |
Collapse
|
8
|
Rehman A, Xing H, Adnan Khan M, Hussain M, Hussain A, Gulzar N. Emerging technologies for COVID (ET-CoV) detection and diagnosis: Recent advancements, applications, challenges, and future perspectives. Biomed Signal Process Control 2023; 83:104642. [PMID: 36818992 PMCID: PMC9917176 DOI: 10.1016/j.bspc.2023.104642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
In light of the constantly changing terrain of the COVID outbreak, medical specialists have implemented proactive schemes for vaccine production. Despite the remarkable COVID-19 vaccine development, the virus has mutated into new variants, including delta and omicron. Currently, the situation is critical in many parts of the world, and precautions are being taken to stop the virus from spreading and mutating. Early identification and diagnosis of COVID-19 are the main challenges faced by emerging technologies during the outbreak. In these circumstances, emerging technologies to tackle Coronavirus have proven magnificent. Artificial intelligence (AI), big data, the internet of medical things (IoMT), robotics, blockchain technology, telemedicine, smart applications, and additive manufacturing are suspicious for detecting, classifying, monitoring, and locating COVID-19. Henceforth, this research aims to glance at these COVID-19 defeating technologies by focusing on their strengths and limitations. A CiteSpace-based bibliometric analysis of the emerging technology was established. The most impactful keywords and the ongoing research frontiers were compiled. Emerging technologies were unstable due to data inconsistency, redundant and noisy datasets, and the inability to aggregate the data due to disparate data formats. Moreover, the privacy and confidentiality of patient medical records are not guaranteed. Hence, Significant data analysis is required to develop an intelligent computational model for effective and quick clinical diagnosis of COVID-19. Remarkably, this article outlines how emerging technology has been used to counteract the virus disaster and offers ongoing research frontiers, directing readers to concentrate on the real challenges and thus facilitating additional explorations to amplify emerging technologies.
Collapse
Affiliation(s)
- Amir Rehman
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Huanlai Xing
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Muhammad Adnan Khan
- Pattern Recognition and Machine Learning, Department of Software, Gachon University, Seongnam 13557, Republic of Korea
- Riphah School of Computing & Innovation, Faculty of Computing, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Mehboob Hussain
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Abid Hussain
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, 611756, China
| | - Nighat Gulzar
- School of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
9
|
Ho ML, Arnold CW, Decker SJ, Hazle JD, Krupinski EA, Mankoff DA. Institutional Strategies to Maintain and Grow Imaging Research During the COVID-19 Pandemic. Acad Radiol 2023; 30:631-639. [PMID: 36764883 PMCID: PMC9816088 DOI: 10.1016/j.acra.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
Understanding imaging research experiences, challenges, and strategies for academic radiology departments during and after COVID-19 is critical to prepare for future disruptive events. We summarize key insights and programmatic initiatives at major academic hospitals across the world, based on literature review and meetings of the Radiological Society of North America Vice Chairs of Research (RSNA VCR) group. Through expert discussion and case studies, we provide suggested guidelines to maintain and grow radiology research in the postpandemic era.
Collapse
Affiliation(s)
- Mai-Lan Ho
- Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio.
| | | | | | - John D. Hazle
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
10
|
Rahmani AM, Hosseini Mirmahaleh SY. An Intelligent Algorithm to Predict GDP Rate and Find a Relationship Between COVID-19 Outbreak and Economic Downturn. COMPUTATIONAL ECONOMICS 2022; 63:1-20. [PMID: 36321064 PMCID: PMC9607733 DOI: 10.1007/s10614-022-10332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
With the spread of COVID-19, economic damages are challenging for governments and people's livelihood besides its dangerous and negative impact on humanity's health, which can be led to death. Various health guidelines have been proposed to tackle the virus outbreak including quarantine, restriction rules to imports, exports, migrations, and tourist arrival that were affected by economic depression. Providing an approach to predict the economic situation has a highlighted role in managing crisis when a country faces a problem such as a disease epidemic. We propose an intelligent algorithm to predict the economic situation that utilizes neural networks (NNs) to satisfy the aim. Our work estimates correlation coefficient based on the spearman method between gross domestic product rate (GDPR) and other economic statistics to find effective parameters on growing up and falling GDPR and also determined the NNs' inputs. We study the reported economic and disease statistics in Germany, India, Australia, and Thailand countries to evaluate the algorithm's efficiency in predicting economic situation. The experimental results demonstrate the prediction accuracy of approximately 96% and 89% for one and more months ahead, respectively. Our method can help governments to present efficient policies for preventing economic damages.
Collapse
Affiliation(s)
- Amir Masoud Rahmani
- Future Technology Research Center, National Yunlin University of Science and Technology, Douliou, 64002 Taiwan
| | | |
Collapse
|
11
|
Karthik R, Menaka R, Hariharan M, Kathiresan GS. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. Ing Rech Biomed 2022; 43:486-510. [PMID: 34336141 PMCID: PMC8312058 DOI: 10.1016/j.irbm.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Background and objective In recent years, Artificial Intelligence has had an evident impact on the way research addresses challenges in different domains. It has proven to be a huge asset, especially in the medical field, allowing for time-efficient and reliable solutions. This research aims to spotlight the impact of deep learning and machine learning models in the detection of COVID-19 from medical images. This is achieved by conducting a review of the state-of-the-art approaches proposed by the recent works in this field. Methods The main focus of this study is the recent developments of classification and segmentation approaches to image-based COVID-19 detection. The study reviews 140 research papers published in different academic research databases. These papers have been screened and filtered based on specified criteria, to acquire insights prudent to image-based COVID-19 detection. Results The methods discussed in this review include different types of imaging modality, predominantly X-rays and CT scans. These modalities are used for classification and segmentation tasks as well. This review seeks to categorize and discuss the different deep learning and machine learning architectures employed for these tasks, based on the imaging modality utilized. It also hints at other possible deep learning and machine learning architectures that can be proposed for better results towards COVID-19 detection. Along with that, a detailed overview of the emerging trends and breakthroughs in Artificial Intelligence-based COVID-19 detection has been discussed as well. Conclusion This work concludes by stipulating the technical and non-technical challenges faced by researchers and illustrates the advantages of image-based COVID-19 detection with Artificial Intelligence techniques.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - M Hariharan
- School of Computing Sciences and Engineering, Vellore Institute of Technology, Chennai, India
| | - G S Kathiresan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
12
|
Bhosale YH, Patnaik KS. Application of Deep Learning Techniques in Diagnosis of Covid-19 (Coronavirus): A Systematic Review. Neural Process Lett 2022; 55:1-53. [PMID: 36158520 PMCID: PMC9483290 DOI: 10.1007/s11063-022-11023-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
Abstract
Covid-19 is now one of the most incredibly intense and severe illnesses of the twentieth century. Covid-19 has already endangered the lives of millions of people worldwide due to its acute pulmonary effects. Image-based diagnostic techniques like X-ray, CT, and ultrasound are commonly employed to get a quick and reliable clinical condition. Covid-19 identification out of such clinical scans is exceedingly time-consuming, labor-intensive, and susceptible to silly intervention. As a result, radiography imaging approaches using Deep Learning (DL) are consistently employed to achieve great results. Various artificial intelligence-based systems have been developed for the early prediction of coronavirus using radiography pictures. Specific DL methods such as CNN and RNN noticeably extract extremely critical characteristics, primarily in diagnostic imaging. Recent coronavirus studies have used these techniques to utilize radiography image scans significantly. The disease, as well as the present pandemic, was studied using public and private data. A total of 64 pre-trained and custom DL models concerning imaging modality as taxonomies are selected from the studied articles. The constraints relevant to DL-based techniques are the sample selection, network architecture, training with minimal annotated database, and security issues. This includes evaluating causal agents, pathophysiology, immunological reactions, and epidemiological illness. DL-based Covid-19 detection systems are the key focus of this review article. Covid-19 work is intended to be accelerated as a result of this study.
Collapse
Affiliation(s)
- Yogesh H. Bhosale
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| | - K. Sridhar Patnaik
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| |
Collapse
|
13
|
Harikrishnan NB, Pranay SY, Nagaraj N. Classification of SARS-CoV-2 viral genome sequences using Neurochaos Learning. Med Biol Eng Comput 2022; 60:2245-2255. [PMID: 35668230 PMCID: PMC9170350 DOI: 10.1007/s11517-022-02591-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/28/2022] [Indexed: 12/01/2022]
Abstract
Abstract The high spread rate of SARS-CoV-2 virus has put the researchers all over the world in a demanding situation. The need of the hour is to develop novel learning algorithms that can effectively learn a general pattern by training with fewer genome sequences of coronavirus. Learning from very few training samples is necessary and important during the beginning of a disease outbreak when sequencing data is limited. This is because a successful detection and isolation of patients can curb the spread of the virus. However, this poses a huge challenge for machine learning and deep learning algorithms as they require huge amounts of training data to learn the pattern and distinguish from other closely related viruses. In this paper, we propose a new paradigm – Neurochaos Learning (NL) for classification of coronavirus genome sequence that addresses this specific problem. NL is inspired from the empirical evidence of chaos and non-linearity at the level of neurons in biological neural networks. The average sensitivity, specificity and accuracy for NL are 0.998, 0.999 and 0.998 respectively for the multiclass classification problem (SARS-CoV-2, Coronaviridae, Metapneumovirus, Rhinovirus and Influenza) using leave one out crossvalidation. With just one training sample per class for 1000 independent random trials of training, we report an average macro F1-score \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$> 0.99$$\end{document}>0.99 for the classification of SARS-CoV-2 from SARS-CoV-1 genome sequences. We compare the performance of NL with K-nearest neighbours (KNN), logistic regression, random forest, SVM, and naïve Bayes classifiers. We foresee promising future applications in genome classification using NL with novel combinations of chaotic feature engineering and other machine learning algorithms. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11517-022-02591-3.
Collapse
Affiliation(s)
- N. B. Harikrishnan
- The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, 560064 Karnataka India
- Consciousness Studies Programme, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, 560012 Karnataka India
| | - S. Y. Pranay
- Consciousness Studies Programme, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, 560012 Karnataka India
| | - Nithin Nagaraj
- Consciousness Studies Programme, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru, 560012 Karnataka India
| |
Collapse
|
14
|
Svoboda E, Bořil T, Rusz J, Tykalová T, Horáková D, Guttmann CRG, Blagoev KB, Hatabu H, Valtchinov VI. Assessing clinical utility of machine learning and artificial intelligence approaches to analyze speech recordings in multiple sclerosis: A pilot study. Comput Biol Med 2022; 148:105853. [PMID: 35870318 DOI: 10.1016/j.compbiomed.2022.105853] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND An early diagnosis together with an accurate disease progression monitoring of multiple sclerosis is an important component of successful disease management. Prior studies have established that multiple sclerosis is correlated with speech discrepancies. Early research using objective acoustic measurements has discovered measurable dysarthria. METHOD The objective was to determine the potential clinical utility of machine learning and deep learning/AI approaches for the aiding of diagnosis, biomarker extraction and progression monitoring of multiple sclerosis using speech recordings. A corpus of 65 MS-positive and 66 healthy individuals reading the same text aloud was used for targeted acoustic feature extraction utilizing automatic phoneme segmentation. A series of binary classification models was trained, tuned, and evaluated regarding their Accuracy and area-under-the-curve. RESULTS The Random Forest model performed best, achieving an Accuracy of 0.82 on the validation dataset and an area-under-the-curve of 0.76 across 5 k-fold cycles on the training dataset. 5 out of 7 acoustic features were statistically significant. CONCLUSION Machine learning and artificial intelligence in automatic analyses of voice recordings for aiding multiple sclerosis diagnosis and progression tracking seems promising. Further clinical validation of these methods and their mapping onto multiple sclerosis progression is needed, as well as a validating utility for English-speaking populations.
Collapse
Affiliation(s)
- E Svoboda
- Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic; Institute of Phonetics, Faculty of Arts, Charles University, Prague, Czech Republic
| | - T Bořil
- Institute of Phonetics, Faculty of Arts, Charles University, Prague, Czech Republic
| | - J Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic; Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; Department of Neurology & ARTORG Center, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - T Tykalová
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - D Horáková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - C R G Guttmann
- Center for Neurological Imaging, Brigham & Women's Hospital and Harvard Medical School, USA
| | - K B Blagoev
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - H Hatabu
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V I Valtchinov
- Center for Evidence-Based Imaging, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Sarkar J, Saha I, Ghosh N, Maity D, Plewczynski D. Online Predictor Using Machine Learning to Predict Novel Coronavirus and Other Pathogenic Viruses. ACS OMEGA 2022; 7:23069-23074. [PMID: 35847318 PMCID: PMC9280959 DOI: 10.1021/acsomega.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The problem of virus classification is always a subject of concern for virology or epidemiology over the decades. In this regard, a machine learning technique can be used to predict the novel coronavirus by considering its sequence. Thus, we are proposing a machine learning-based novel coronavirus prediction technique, called COVID-Predictor, where 1000 sequences of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and other viruses are used to train a Naive Bayes classifier so that it can predict any unknown sequences of these viruses. The model has been validated using 10-fold cross-validation in comparison with other machine learning techniques. The results show the superiority of our predictor by achieving an average 99.7% accuracy on an unseen validation set of viruses. The same pre-trained model has been used to design a web-based application where sequences of unknown viruses can be uploaded to predict the novel coronavirus.
Collapse
Affiliation(s)
- Jnanendra
Prasad Sarkar
- Department
of Computer Science and Engineering, Jadavpur
University, Kolkata 700032, West Bengal, India
| | - Indrajit Saha
- Department
of Computer Science and Engineering, National
Institute of Technical Teachers’ Training and Research, Kolkata 700106, West Bengal, India
| | - Nimisha Ghosh
- Department
of Computer Science and Information Technology, Institute of Technical Education and Research, Siksha ‘O’
Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India
- Faculty
of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw 02-097,Poland
| | - Debasree Maity
- Department
of Electronics and Communication Engineering, MCKV Institute of Engineering, Howrah, West Bengal 711204, India
| | - Dariusz Plewczynski
- Laboratory
of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory
of Bioinformatics and Computational Genomics, Faculty of Mathematics
and Information Science, Warsaw University
of Technology, 00-927 Warsaw, Poland
| |
Collapse
|
16
|
Zhang D, Wang Z, Li J, Zhu J. Exploring the possible molecular targeting mechanism of Saussurea involucrata in the treatment of COVID-19 based on bioinformatics and network pharmacology. Comput Biol Med 2022; 146:105549. [PMID: 35751193 PMCID: PMC9035664 DOI: 10.1016/j.compbiomed.2022.105549] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Based on bioinformatics and network pharmacology, the treatment of Saussurea involucrata (SAIN) on novel coronavirus (COVID-19) was evaluated by the GEO clinical sample gene difference analysis, compound-target molecular docking, and molecular dynamics simulation. role in the discovery of new targets for the prevention or treatment of COVID-19, to better serve the discovery and clinical application of new drugs. MATERIALS AND METHODS Taking the Traditional Chinese Medicine System Pharmacology Database (TCMSP) as the starting point for the preliminary selection of compounds and targets, we used tools such as Cytoscape 3.8.0, TBtools 1.098, AutoDock vina, R 4.0.2, PyMol, and GROMACS to analyze the compounds of SAIN and targets were initially screened. To further screen the active ingredients and targets, we carried out genetic difference analysis (n = 72) through clinical samples of COVID-19 derived from GEO and carried out biological process (BP) analysis on these screened targets (P ≤ 0.05)., gene = 9), KEGG pathway analysis (FDR≤0.05, gene = 9), protein interaction network (PPI) analysis (gene = 9), and compounds-target-pathway network analysis (gene = 9), to obtain the target Point-regulated biological processes, disease pathways, and compounds-target-pathway relationships. Through the precise molecular docking between the compounds and the targets, we further screened SAIN's active ingredients (Affinity ≤ -7.2 kcal/mol) targets and visualized the data. After that, we performed molecular dynamics simulations and consulted a large number of related Validation of the results in the literature. RESULTS Through the screening, analysis, and verification of the data, it was finally confirmed that there are five main active ingredients in SAIN, which are Quercitrin, Rutin, Caffeic acid, Jaceosidin, and Beta-sitosterol, and mainly act on five targets. These targets mainly regulate Tuberculosis, TNF signaling pathway, Alzheimer's disease, Pertussis, Toll-like receptor signaling pathway, Influenza A, Non-alcoholic fatty liver disease (NAFLD), Neuroactive ligand-receptor interaction, Complement and coagulation cascades, Fructose and mannose metabolism, and Metabolic pathways, play a role in preventing or treating COVID-19. Molecular dynamics simulation results show that the four active ingredients of SAIN, Quercitrin, Rutin, Caffeic acid, and Jaceosidin, act on the four target proteins of COVID-19, AKR1B1, C5AR1, GSK3B, and IL1B to form complexes that can be very stable in the human environment. Tertiary structure exists. CONCLUSION Our study successfully explained the effective mechanism of SAIN in improving COVID-19, and at the same time predicted the potential targets of SAIN in the treatment of COVID-19, AKR1B1, IL1B, and GSK3B. It provides a new basis and provides great support for subsequent research on COVID-19.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China.
| | - Zhaoye Wang
- School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China
| | - Jin Li
- School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China.
| | - Jianbo Zhu
- School of Life Sciences, Shihezi University, Xiangyang Street, Shihezi, 832003, PR China.
| |
Collapse
|
17
|
Garg A, Salehi S, Rocca ML, Garner R, Duncan D. Efficient and visualizable convolutional neural networks for COVID-19 classification using Chest CT. EXPERT SYSTEMS WITH APPLICATIONS 2022; 195:116540. [PMID: 35075334 PMCID: PMC8769906 DOI: 10.1016/j.eswa.2022.116540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/17/2021] [Accepted: 01/10/2022] [Indexed: 05/02/2023]
Abstract
With coronavirus disease 2019 (COVID-19) cases rising rapidly, deep learning has emerged as a promising diagnosis technique. However, identifying the most accurate models to characterize COVID-19 patients is challenging because comparing results obtained with different types of data and acquisition processes is non-trivial. In this paper we designed, evaluated, and compared the performance of 20 convolutional neutral networks in classifying patients as COVID-19 positive, healthy, or suffering from other pulmonary lung infections based on chest computed tomography (CT) scans, serving as the first to consider the EfficientNet family for COVID-19 diagnosis and employ intermediate activation maps for visualizing model performance. All models are trained and evaluated in Python using 4173 chest CT images from the dataset entitled "A COVID multiclass dataset of CT scans," with 2168, 758, and 1247 images of patients that are COVID-19 positive, healthy, or suffering from other pulmonary infections, respectively. EfficientNet-B5 was identified as the best model with an F1 score of 0.9769 ± 0.0046, accuracy of 0.9759 ± 0.0048, sensitivity of 0.9788 ± 0.0055, specificity of 0.9730 ± 0.0057, and precision of 0.9751 ± 0.0051. On an alternate 2-class dataset, EfficientNetB5 obtained an accuracy of 0.9845 ± 0.0109, F1 score of 0.9599 ± 0.0251, sensitivity of 0.9682 ± 0.0099, specificity of 0.9883 ± 0.0150, and precision of 0.9526 ± 0.0523. Intermediate activation maps and Gradient-weighted Class Activation Mappings offered human-interpretable evidence of the model's perception of ground-class opacities and consolidations, hinting towards a promising use-case of artificial intelligence-assisted radiology tools. With a prediction speed of under 0.1 s on GPUs and 0.5 s on CPUs, our proposed model offers a rapid, scalable, and accurate diagnostic for COVID-19.
Collapse
Affiliation(s)
- Aksh Garg
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, USA
- Stanford University, 450 Serra Mall, Stanford, California, USA
| | - Sana Salehi
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, USA
| | - Marianna La Rocca
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, USA
- Dipartimento Interateneo di Fisica, Università di Bari, Bari, Italy
| | - Rachael Garner
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, USA
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Avenue, Los Angeles, CA, USA
| |
Collapse
|
18
|
IoT-Based Wearable Devices for Patients Suffering from Alzheimer Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3224939. [PMID: 35542758 PMCID: PMC9054450 DOI: 10.1155/2022/3224939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
The disorder of Alzheimer's (AD) is defined as a gradual deterioration of cognitive functions, such as the failure of spatial cognition and short-term memory. Besides difficulties in memory, a person with this disease encounters visual processing difficulties and even awareness and identifying of their beloved ones. Nowadays, recent technologies made this possible to connect everything that exists around us on Earth through the Internet, this is what the Internet of Things (IoT) made possible which can capture and save a massive amount of data that are considered very important and useful information which then can be valuable in training of the various state-of-the-art machine and deep learning algorithms. Assistive mobile health applications and IoT-based wearable devices are helping and supporting the ongoing health screening of a patient with AD. In the early stages of AD, the wearable devices and IoT approach aim to keep AD patients mentally active in all of life's daily activities, independent from their caregivers or any family member of the patient. These technological solutions have great potential in improving the quality of life of an AD patient as this helps to reduce pressure on healthcare and to minimize the operational cost. The purpose of this study is to explore the State-of-the-Art wearable technologies for people with AD. Significance, challenges, and limitations that arise and what will be the future of these technological solutions and their acceptance. Therefore, this study also provides the challenges and gaps in the current literature review and future directions for other researchers working in the area of developing wearable devices.
Collapse
|
19
|
Farhang-Sardroodi S, Ghaemi MS, Craig M, Ooi HK, Heffernan JM. A machine learning approach to differentiate between COVID-19 and influenza infection using synthetic infection and immune response data. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5813-5831. [PMID: 35603380 DOI: 10.3934/mbe.2022272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Data analysis is widely used to generate new insights into human disease mechanisms and provide better treatment methods. In this work, we used the mechanistic models of viral infection to generate synthetic data of influenza and COVID-19 patients. We then developed and validated a supervised machine learning model that can distinguish between the two infections. Influenza and COVID-19 are contagious respiratory illnesses that are caused by different pathogenic viruses but appeared with similar initial presentations. While having the same primary signs COVID-19 can produce more severe symptoms, illnesses, and higher mortality. The predictive model performance was externally evaluated by the ROC AUC metric (area under the receiver operating characteristic curve) on 100 virtual patients from each cohort and was able to achieve at least AUC = 91% using our multiclass classifier. The current investigation highlighted the ability of machine learning models to accurately identify two different diseases based on major components of viral infection and immune response. The model predicted a dominant role for viral load and productively infected cells through the feature selection process.
Collapse
Affiliation(s)
- Suzan Farhang-Sardroodi
- Modelling Infection and Immunity Lab, Mathematics Statistics, York University, Toronto, Canada
- Centre for Disease Modelling (CDM), Mathematics Statistics, York University, Toronto, Canada
| | - Mohammad Sajjad Ghaemi
- Digital Technologies Research Centre, National Research Council Canada, Toronto, ON, Canada
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre and Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada
| | - Hsu Kiang Ooi
- Digital Technologies Research Centre, National Research Council Canada, Toronto, ON, Canada
| | - Jane M Heffernan
- Modelling Infection and Immunity Lab, Mathematics Statistics, York University, Toronto, Canada
- Centre for Disease Modelling (CDM), Mathematics Statistics, York University, Toronto, Canada
| |
Collapse
|
20
|
Jemioło P, Storman D, Orzechowski P. Artificial Intelligence for COVID-19 Detection in Medical Imaging-Diagnostic Measures and Wasting-A Systematic Umbrella Review. J Clin Med 2022; 11:2054. [PMID: 35407664 PMCID: PMC9000039 DOI: 10.3390/jcm11072054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has sparked a barrage of primary research and reviews. We investigated the publishing process, time and resource wasting, and assessed the methodological quality of the reviews on artificial intelligence techniques to diagnose COVID-19 in medical images. We searched nine databases from inception until 1 September 2020. Two independent reviewers did all steps of identification, extraction, and methodological credibility assessment of records. Out of 725 records, 22 reviews analysing 165 primary studies met the inclusion criteria. This review covers 174,277 participants in total, including 19,170 diagnosed with COVID-19. The methodological credibility of all eligible studies was rated as critically low: 95% of papers had significant flaws in reporting quality. On average, 7.24 (range: 0-45) new papers were included in each subsequent review, and 14% of studies did not include any new paper into consideration. Almost three-quarters of the studies included less than 10% of available studies. More than half of the reviews did not comment on the previously published reviews at all. Much wasting time and resources could be avoided if referring to previous reviews and following methodological guidelines. Such information chaos is alarming. It is high time to draw conclusions from what we experienced and prepare for future pandemics.
Collapse
Affiliation(s)
- Paweł Jemioło
- AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Dawid Storman
- Chair of Epidemiology and Preventive Medicine, Department of Hygiene and Dietetics, Jagiellonian University Medical College, ul. M. Kopernika 7, 31-034 Krakow, Poland;
| | - Patryk Orzechowski
- AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
- Institute for Biomedical Informatics, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Baseri Saadi S, Tataei Sarshar N, Sadeghi S, Ranjbarzadeh R, Kooshki Forooshani M, Bendechache M. Investigation of Effectiveness of Shuffled Frog-Leaping Optimizer in Training a Convolution Neural Network. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4703682. [PMID: 35368933 PMCID: PMC8967525 DOI: 10.1155/2022/4703682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
One of the leading algorithms and architectures in deep learning is Convolution Neural Network (CNN). It represents a unique method for image processing, object detection, and classification. CNN has shown to be an efficient approach in the machine learning and computer vision fields. CNN is composed of several filters accompanied by nonlinear functions and pooling layers. It enforces limitations on the weights and interconnections of the neural network to create a good structure for processing spatial and temporal distributed data. A CNN can restrain the numbering of free parameters of the network through its weight-sharing property. However, the training of CNNs is a challenging approach. Some optimization techniques have been recently employed to optimize CNN's weight and biases such as Ant Colony Optimization, Genetic, Harmony Search, and Simulated Annealing. This paper employs the well-known nature-inspired algorithm called Shuffled Frog-Leaping Algorithm (SFLA) for training a classical CNN structure (LeNet-5), which has not been experienced before. The training method is investigated by employing four different datasets. To verify the study, the results are compared with some of the most famous evolutionary trainers: Whale Optimization Algorithm (WO), Bacteria Swarm Foraging Optimization (BFSO), and Ant Colony Optimization (ACO). The outcomes demonstrate that the SFL technique considerably improves the performance of the original LeNet-5 although using this algorithm slightly increases the training computation time. The results also demonstrate that the suggested algorithm presents high accuracy in classification and approximation in its mechanism.
Collapse
Affiliation(s)
| | | | - Soroush Sadeghi
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Ramin Ranjbarzadeh
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Dublin, Ireland
| | | | - Malika Bendechache
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Dublin, Ireland
| |
Collapse
|
22
|
Development of a computer-aided tool for detection of COVID-19 pneumonia from CXR images using machine learning algorithm. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [PMCID: PMC8841229 DOI: 10.1016/j.jrras.2022.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The novel coronavirus (SARS-CoV-2) is spreading rapidly worldwide, and it has become a greater risk for human beings. To curb the community transmission of this virus, rapid detection and identification of the affected people via a quick diagnostic process are necessary. Media studies have shown that most COVID-19 victims endure lung disease. For rapid identification of the affected patient, chest CT scans and X-ray images have been reported to be suitable techniques. However, chest X-ray (CXR) shows more convenience than the CT imaging techniques because it has faster imaging times than CT and is also simple and cost-effective. Literature shows that transfer learning is one of the most successful techniques to analyze chest X-ray images and correctly identify various types of pneumonia. Since SVM has a remarkable aspect that tremendously provides good results using a small data set thus in this study we have used SVM machine learning algorithm to diagnose COVID-19 from chest X-ray images. The image processing tool called RGB and SqueezeNet models were used to get more images to diagnose the available data set. Our adopted model shows an accuracy of 98.8% to detect the COVID-19 affected patient from CXR images. It is expected that our proposed computer-aided detection tool (CAT) will play a key role in reducing the spread of infectious diseases in society through a faster patient screening process.
Collapse
|
23
|
Detection and Prevention of Virus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1368:21-52. [DOI: 10.1007/978-981-16-8969-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Khan M, Mehran MT, Haq ZU, Ullah Z, Naqvi SR, Ihsan M, Abbass H. Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review. EXPERT SYSTEMS WITH APPLICATIONS 2021; 185:115695. [PMID: 34400854 PMCID: PMC8359727 DOI: 10.1016/j.eswa.2021.115695] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 05/06/2023]
Abstract
During the current global public health emergency caused by novel coronavirus disease 19 (COVID-19), researchers and medical experts started working day and night to search for new technologies to mitigate the COVID-19 pandemic. Recent studies have shown that artificial intelligence (AI) has been successfully employed in the health sector for various healthcare procedures. This study comprehensively reviewed the research and development on state-of-the-art applications of artificial intelligence for combating the COVID-19 pandemic. In the process of literature retrieval, the relevant literature from citation databases including ScienceDirect, Google Scholar, and Preprints from arXiv, medRxiv, and bioRxiv was selected. Recent advances in the field of AI-based technologies are critically reviewed and summarized. Various challenges associated with the use of these technologies are highlighted and based on updated studies and critical analysis, research gaps and future recommendations are identified and discussed. The comparison between various machine learning (ML) and deep learning (DL) methods, the dominant AI-based technique, mostly used ML and DL methods for COVID-19 detection, diagnosis, screening, classification, drug repurposing, prediction, and forecasting, and insights about where the current research is heading are highlighted. Recent research and development in the field of artificial intelligence has greatly improved the COVID-19 screening, diagnostics, and prediction and results in better scale-up, timely response, most reliable, and efficient outcomes, and sometimes outperforms humans in certain healthcare tasks. This review article will help researchers, healthcare institutes and organizations, government officials, and policymakers with new insights into how AI can control the COVID-19 pandemic and drive more research and studies for mitigating the COVID-19 outbreak.
Collapse
Affiliation(s)
- Muzammil Khan
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Muhammad Taqi Mehran
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Zeeshan Ul Haq
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Zahid Ullah
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Salman Raza Naqvi
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad 44000, Pakistan
| | - Mehreen Ihsan
- Peshawar Medical College, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Haider Abbass
- National Cyber Security Auditing and Evaluation LAb, National University of Sciences & Technology, MCS Campus, Rawalpindi 43600, Pakistan
| |
Collapse
|
25
|
Mendo IR, Marques G, de la Torre Díez I, López-Coronado M, Martín-Rodríguez F. Machine Learning in Medical Emergencies: a Systematic Review and Analysis. J Med Syst 2021; 45:88. [PMID: 34410512 PMCID: PMC8374032 DOI: 10.1007/s10916-021-01762-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022]
Abstract
Despite the increasing demand for artificial intelligence research in medicine, the functionalities of his methods in health emergency remain unclear. Therefore, the authors have conducted this systematic review and a global overview study which aims to identify, analyse, and evaluate the research available on different platforms, and its implementations in healthcare emergencies. The methodology applied for the identification and selection of the scientific studies and the different applications consist of two methods. On the one hand, the PRISMA methodology was carried out in Google Scholar, IEEE Xplore, PubMed ScienceDirect, and Scopus. On the other hand, a review of commercial applications found in the best-known commercial platforms (Android and iOS). A total of 20 studies were included in this review. Most of the included studies were of clinical decisions (n = 4, 20%) or medical services or emergency services (n = 4, 20%). Only 2 were focused on m-health (n = 2, 10%). On the other hand, 12 apps were chosen for full testing on different devices. These apps dealt with pre-hospital medical care (n = 3, 25%) or clinical decision support (n = 3, 25%). In total, half of these apps are based on machine learning based on natural language processing. Machine learning is increasingly applicable to healthcare and offers solutions to improve the efficiency and quality of healthcare. With the emergence of mobile health devices and applications that can use data and assess a patient's real-time health, machine learning is a growing trend in the healthcare industry.
Collapse
Affiliation(s)
- Inés Robles Mendo
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47.011 Valladolid, Spain
| | - Gonçalo Marques
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47.011 Valladolid, Spain
- Polytechnic of Coimbra, ESTGOH, Rua General Santos Costa, 3400-124 Oliveira do Hospital, Portugal
| | - Isabel de la Torre Díez
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47.011 Valladolid, Spain
| | - Miguel López-Coronado
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén, 15, 47.011 Valladolid, Spain
| | - Francisco Martín-Rodríguez
- Advanced Clinical Simulation Center. Faculty of Medicine, University of Valladolid, Avda. Ramón Y Cajal, 7, 47.005 Valladolid, Spain
| |
Collapse
|
26
|
A new COVID-19 detection method from human genome sequences using CpG island features and KNN classifier. ENGINEERING SCIENCE AND TECHNOLOGY, AN INTERNATIONAL JOURNAL 2021; 24. [PMCID: PMC8064761 DOI: 10.1016/j.jestch.2020.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Various viral epidemics have been detected such as the severe acute respiratory syndrome coronavirus and the Middle East respiratory syndrome coronavirus in the last two decades. The coronavirus disease 2019 (COVID-19) is a pandemic caused by a novel betacoronavirus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). After the rapid spread of COVID-19, many researchers have investigated diagnosis and treatment for this terrifying disease quickly. Identifying COVID-19 from the other types of coronaviruses is a difficult problem due to their genetic similarity. In this study, we propose a new efficient COVID-19 detection method based on the K-nearest neighbors (KNN) classifier using the complete genome sequences of human coronaviruses in the dataset recorded in 2019 Novel Coronavirus Resource. We also describe two features based on CpG island that efficiently detect COVID-19 cases. Thus, genome sequences including approximately 30,000 nucleotides can be represented by only two real numbers. The KNN method is a simple and effective non-parametric technique for solving classification problems. However, performance of the KNN depends on the distance measure used. We perform 19 distance metrics investigated in five categories to improve the performance of the KNN algorithm. Some efficient performance parameters are computed to evaluate the proposed method. The proposed method achieves 98.4% precision, 99.2% recall, 98.8% F-measure, and 98.4% accuracy in a few seconds when any L1 type metric is used as a distance measure in the KNN.
Collapse
|
27
|
Dabla PK, Gruson D, Gouget B, Bernardini S, Homsak E. Lessons Learned from the COVID-19 Pandemic: Emphasizing the Emerging Role and Perspectives from Artificial Intelligence, Mobile Health, and Digital Laboratory Medicine. EJIFCC 2021; 32:224-243. [PMID: 34421492 PMCID: PMC8343043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
SARS-CoV-2, the new coronavirus causing COVID-19, is one of the most contagious disease of past decades. COVID-19 is different only in that everyone is encountering it for the first time during this pandemic. The world has gone from complete ignorance to a blitz of details in a matter of months. The foremost challenge that the scientific community faces is to understand the growth and transmission capability of the virus. As the world grapples with the global pandemic, people are spending more time than ever before living and working in the digital milieu, and the adoption of Artificial Intelligence (AI) is propelled to an unprecedented level especially as AI has already proven to play an important role in counteracting COVID-19. AI and Data Science are rapidly becoming important tools in clinical research, precision medicine, biomedical discovery and medical diagnostics. Machine learning (ML) and their subsets, such as deep learning, are also referred to as cognitive computing due to their foundational basis and relationship to cognition. To date, AI based techniques are helping epidemiologists in projecting the spread of virus, contact tracing, early detection, monitoring, social distancing, compiling data and training of healthcare workers. Beside AI, the use of telemedicine, mobile health or mHealth and the Internet of Things (IOT) is also emerging. These techniques have proven to be powerful tools in fighting against the pandemic because they provide strong support in pandemic prevention and control. The present study highlights applications and evaluations of these technologies, practices, and health delivery services as well as regulatory and ethical challenges regarding AI/ML-based medical products.
Collapse
Affiliation(s)
- Pradeep Kumar Dabla
- Department of Biochemistry, G.B. Pant Institute of Postgraduate Medical Education & Research, Associated Maulana Azad Medical College, New Delhi, India
- Emerging Technologies Division - MHBLM Committee, International Federation Clinical Chemistry and Laboratory Medicine (IFCC)
| | - Damien Gruson
- Department of Clinical Biochemistry, Cliniques Universitaires Saint Luc, Catholic University of Louvain, Brussels, Belgium
- Research unit on Endocrinology Diabetes and Nutrition, Catholic University of Louvain, Brussels, Belgium
- Emerging Technologies Division - MHBLM Committee, International Federation Clinical Chemistry and Laboratory Medicine (IFCC)
| | - Bernard Gouget
- Healthcare Division Committee, Comité Français d’accréditation (Cofrac), & National Committee for the selection of Reference Laboratories, Ministry of Health, Paris, France
- Emerging Technologies Division - MHBLM Committee, International Federation Clinical Chemistry and Laboratory Medicine (IFCC)
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Tor Vergata, Rome, Italy
- Emerging Technologies Division - MHBLM Committee, International Federation Clinical Chemistry and Laboratory Medicine (IFCC)
| | - Evgenija Homsak
- Emerging Technologies Division - MHBLM Committee, International Federation Clinical Chemistry and Laboratory Medicine (IFCC)
- Department for Laboratory Diagnostics, University Clinical Center Maribor, Maribor, Slovenia
| |
Collapse
|
28
|
Rasheed J, Jamil A, Hameed AA, Al-Turjman F, Rasheed A. COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip Sci 2021; 13:153-175. [PMID: 33886097 PMCID: PMC8060789 DOI: 10.1007/s12539-021-00431-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
The recent COVID-19 pandemic, which broke at the end of the year 2019 in Wuhan, China, has infected more than 98.52 million people by today (January 23, 2021) with over 2.11 million deaths across the globe. To combat the growing pandemic on urgent basis, there is need to design effective solutions using new techniques that could exploit recent technology, such as machine learning, deep learning, big data, artificial intelligence, Internet of Things, for identification and tracking of COVID-19 cases in near real time. These technologies have offered inexpensive and rapid solution for proper screening, analyzing, prediction and tracking of COVID-19 positive cases. In this paper, a detailed review of the role of AI as a decisive tool for prognosis, analyze, and tracking the COVID-19 cases is performed. We searched various databases including Google Scholar, IEEE Library, Scopus and Web of Science using a combination of different keywords consisting of COVID-19 and AI. We have identified various applications, where AI can help healthcare practitioners in the process of identification and monitoring of COVID-19 cases. A compact summary of the corona virus cases are first highlighted, followed by the application of AI. Finally, we conclude the paper by highlighting new research directions and discuss the research challenges. Even though scientists and researchers have gathered and exchanged sufficient knowledge over last couple of months, but this structured review also examined technological perspectives while encompassing the medical aspect to help the healthcare practitioners, policymakers, decision makers, policymakers, AI scientists and virologists to quell this infectious COVID-19 pandemic outbreak.
Collapse
Affiliation(s)
- Jawad Rasheed
- Department of Computer Engineering, Istanbul Aydin University, Istanbul, 34295, Turkey.
| | - Akhtar Jamil
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Alaa Ali Hameed
- Department of Computer Engineering, Istanbul Sabahattin Zaim University, Istanbul, 34303, Turkey
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Department, Research Center for AI and IoT, Near East University, Nicosia, Mersin 10, Turkey
| | - Ahmad Rasheed
- Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey
| |
Collapse
|
29
|
Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci Rep 2021; 11:10930. [PMID: 34035406 PMCID: PMC8149837 DOI: 10.1038/s41598-021-90428-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Brain tumor localization and segmentation from magnetic resonance imaging (MRI) are hard and important tasks for several applications in the field of medical analysis. As each brain imaging modality gives unique and key details related to each part of the tumor, many recent approaches used four modalities T1, T1c, T2, and FLAIR. Although many of them obtained a promising segmentation result on the BRATS 2018 dataset, they suffer from a complex structure that needs more time to train and test. So, in this paper, to obtain a flexible and effective brain tumor segmentation system, first, we propose a preprocessing approach to work only on a small part of the image rather than the whole part of the image. This method leads to a decrease in computing time and overcomes the overfitting problems in a Cascade Deep Learning model. In the second step, as we are dealing with a smaller part of brain images in each slice, a simple and efficient Cascade Convolutional Neural Network (C-ConvNet/C-CNN) is proposed. This C-CNN model mines both local and global features in two different routes. Also, to improve the brain tumor segmentation accuracy compared with the state-of-the-art models, a novel Distance-Wise Attention (DWA) mechanism is introduced. The DWA mechanism considers the effect of the center location of the tumor and the brain inside the model. Comprehensive experiments are conducted on the BRATS 2018 dataset and show that the proposed model obtains competitive results: the proposed method achieves a mean whole tumor, enhancing tumor, and tumor core dice scores of 0.9203, 0.9113 and 0.8726 respectively. Other quantitative and qualitative assessments are presented and discussed.
Collapse
|
30
|
Ranjbarzadeh R, Jafarzadeh Ghoushchi S, Bendechache M, Amirabadi A, Ab Rahman MN, Baseri Saadi S, Aghamohammadi A, Kooshki Forooshani M. Lung Infection Segmentation for COVID-19 Pneumonia Based on a Cascade Convolutional Network from CT Images. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5544742. [PMID: 33954175 PMCID: PMC8054863 DOI: 10.1155/2021/5544742] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic is a global, national, and local public health concern which has caused a significant outbreak in all countries and regions for both males and females around the world. Automated detection of lung infections and their boundaries from medical images offers a great potential to augment the patient treatment healthcare strategies for tackling COVID-19 and its impacts. Detecting this disease from lung CT scan images is perhaps one of the fastest ways to diagnose patients. However, finding the presence of infected tissues and segment them from CT slices faces numerous challenges, including similar adjacent tissues, vague boundary, and erratic infections. To eliminate these obstacles, we propose a two-route convolutional neural network (CNN) by extracting global and local features for detecting and classifying COVID-19 infection from CT images. Each pixel from the image is classified into the normal and infected tissues. For improving the classification accuracy, we used two different strategies including fuzzy c-means clustering and local directional pattern (LDN) encoding methods to represent the input image differently. This allows us to find more complex pattern from the image. To overcome the overfitting problems due to small samples, an augmentation approach is utilized. The results demonstrated that the proposed framework achieved precision 96%, recall 97%, F score, average surface distance (ASD) of 2.8 ± 0.3 mm, and volume overlap error (VOE) of 5.6 ± 1.2%.
Collapse
Affiliation(s)
- Ramin Ranjbarzadeh
- Department of Telecommunications Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | | | - Malika Bendechache
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Ireland
| | - Amir Amirabadi
- Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Mohd Nizam Ab Rahman
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia
| | - Soroush Baseri Saadi
- Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | | | | |
Collapse
|
31
|
Peddinti B, Shaikh A, K R B, K C NK. Framework for Real-Time Detection and Identification of possible patients of COVID-19 at public places. Biomed Signal Process Control 2021; 68:102605. [PMID: 33824682 PMCID: PMC8015425 DOI: 10.1016/j.bspc.2021.102605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/23/2022]
Abstract
The novel Corona Virus (COVID-19) has become the reason for the world to declare it as a global pandemic, which has already taken many lives from all around the world. This pandemic has become a disaster since the spreading rate from person to person is incredibly high and many techniques have come forth to aid in stopping the infection. Although various types of methods have been put into implementation, the search and suggestions of new approaches to reduce the increasing rate of infection will never come to an end until a vaccine terminates this pandemic. This study focuses on proposing a new framework that is based on Deep Learning algorithms for recognizing the COVID-19 cases, mostly in public places. The algorithms include Background Subtraction for extracting the foreground of thermal images from thermal videos generated by Thermal Cameras through the Thermal Imaging process and the Convolutional Neural Network for detecting people infected with the virus. This automated prototype works in a real-time scenario that helps identify people with the disease and will try to trace it while separating them from having any other contact. This proposal intends to achieve a satisfying growth in determining the real cases of COVID-19 and minimize the spreading rate of this virus to the max, ultimately avoiding more deaths.
Collapse
Affiliation(s)
- Bharati Peddinti
- Department of Computer Science, Graphic Era Deemed to be University, Dehradun, India
| | - Amir Shaikh
- Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun, India
| | - Bhavya K R
- Department of Computer Science, Presidency University, Bengaluru, India
| | - Nithin Kumar K C
- Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun, India
| |
Collapse
|
32
|
Shaban WM, Rabie AH, Saleh AI, Abo-Elsoud MA. Detecting COVID-19 patients based on fuzzy inference engine and Deep Neural Network. Appl Soft Comput 2021; 99:106906. [PMID: 33204229 PMCID: PMC7659585 DOI: 10.1016/j.asoc.2020.106906] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022]
Abstract
COVID-19, as an infectious disease, has shocked the world and still threatens the lives of billions of people. Recently, the detection of coronavirus (COVID-19) is a critical task for the medical practitioner. Unfortunately, COVID-19 spreads so quickly between people and approaches millions of people worldwide in few months. It is very much essential to quickly and accurately identify the infected people so that prevention of spread can be taken. Although several medical tests have been used to detect certain injuries, the hopefully detection efficiency has not been accomplished yet. In this paper, a new Hybrid Diagnose Strategy (HDS) has been introduced. HDS relies on a novel technique for ranking selected features by projecting them into a proposed Patient Space (PS). A Feature Connectivity Graph (FCG) is constructed which indicates both the weight of each feature as well as the binding degree to other features. The rank of a feature is determined based on two factors; the first is the feature weight, while the second is its binding degree to its neighbors in PS. Then, the ranked features are used to derive the classification model that can classify new persons to decide whether they are infected or not. The classification model is a hybrid model that consists of two classifiers; fuzzy inference engine and Deep Neural Network (DNN). The proposed HDS has been compared against recent techniques. Experimental results have shown that the proposed HDS outperforms the other competitors in terms of the average value of accuracy, precision, recall, and F-measure in which it provides about of 97.658%, 96.756%, 96.55%, and 96.615% respectively. Additionally, HDS provides the lowest error value of 2.342%. Further, the results were validated statistically using Wilcoxon Signed Rank Test and Friedman Test.
Collapse
Affiliation(s)
- Warda M Shaban
- Nile higher institute for engineering and technology, Egypt
| | - Asmaa H Rabie
- Computers and Control Dept. Faculty of engineering, Mansoura University, Egypt
| | - Ahmed I Saleh
- Computers and Control Dept. Faculty of engineering, Mansoura University, Egypt
| | - M A Abo-Elsoud
- Electronics and Communication Dept. Faculty of engineering, Mansoura University, Egypt
| |
Collapse
|
33
|
Furstenau LB, Rabaioli B, Sott MK, Cossul D, Bender MS, Farina EMJDM, Filho FNB, Severo PP, Dohan MS, Bragazzi NL. A Bibliometric Network Analysis of Coronavirus during the First Eight Months of COVID-19 in 2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:952. [PMID: 33499127 PMCID: PMC7908247 DOI: 10.3390/ijerph18030952] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has affected all aspects of society. Researchers worldwide have been working to provide new solutions to and better understanding of this coronavirus. In this research, our goal was to perform a Bibliometric Network Analysis (BNA) to investigate the strategic themes, thematic evolution structure and trends of coronavirus during the first eight months of COVID-19 in the Web of Science (WoS) database in 2020. To do this, 14,802 articles were analyzed, with the support of the SciMAT software. This analysis highlights 24 themes, of which 11 of the more important ones were discussed in-depth. The thematic evolution structure shows how the themes are evolving over time, and the most developed and future trends of coronavirus with focus on COVID-19 were visually depicted. The results of the strategic diagram highlight 'CHLOROQUINE', 'ANXIETY', 'PREGNANCY' and 'ACUTE-RESPIRATORY-SYNDROME', among others, as the clusters with the highest number of associated citations. The thematic evolution. structure presented two thematic areas: "Damage prevention and containment of COVID-19" and "Comorbidities and diseases caused by COVID-19", which provides new perspectives and futures trends of the field. These results will form the basis for future research and guide decision-making in coronavirus focused on COVID-19 research and treatments.
Collapse
Affiliation(s)
- Leonardo B. Furstenau
- Graduate Program of Industrial Systems and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul 96816-501, Brazil;
| | - Bruna Rabaioli
- Department of Medicine, University of Santa Cruz do Sul, Santa Cruz do Sul 96816-501, Brazil;
| | - Michele Kremer Sott
- Graduate Program of Industrial Systems and Processes, University of Santa Cruz do Sul, Santa Cruz do Sul 96816-501, Brazil;
| | - Danielli Cossul
- Department of Psychology, University of Santa Cruz do Sul, Santa Cruz do Sul 96816-501, Brazil;
| | - Mariluza Sott Bender
- Multiprofessional Residency Program in Urgency and Emergency, Santa Cruz Hospital, Santa Cruz do Sul 96810-072, Brazil;
| | - Eduardo Moreno Júdice De Mattos Farina
- Scientific Writing Office Department, Higher School of Sciences of Santa Casa de Misericórdia de Vitória, Vitória 29025-023, Brazil; (E.M.J.D.M.F.); (F.N.B.F.)
| | - Fabiano Novaes Barcellos Filho
- Scientific Writing Office Department, Higher School of Sciences of Santa Casa de Misericórdia de Vitória, Vitória 29025-023, Brazil; (E.M.J.D.M.F.); (F.N.B.F.)
| | - Priscilla Paola Severo
- Graduate Program in Law, University of Santa Cruz do Sul, Santa Cruz do Sul 96816-501, Brazil;
| | - Michael S. Dohan
- Faculty of Business Administration, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
34
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
35
|
Catania LJ. SARS-CoV-2 and the COVID-19 pandemic. FOUNDATIONS OF ARTIFICIAL INTELLIGENCE IN HEALTHCARE AND BIOSCIENCE 2021. [PMCID: PMC7691822 DOI: 10.1016/b978-0-12-824477-7.00004-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
I have written clinical and technical papers, journal articles, chapters and textbooks for over 40 years, but none ever created the pain I felt in writing this chapter. It was written in late April and May 2020 when the SARS-CoV-19 pandemic was ramping up and the deaths were dramatically mounting. When I wrote the paragraph on mortality rates in April 2020, total deaths in the U.S. were 1371. As I write this abstract now in late May, the total U.S. deaths have reached 104,000 souls, a 76-fold increase. I wept. This chapter will help you understand the clinical and technical aspects of the COVID-19 pandemic. It will provide a clear understanding of the background, the pathogenesis, the clinical aspects and the AI applications for COVID-19 (albeit dated by the time you read this), but it can’t begin to convey the pain we’re all sharing from this human tragedy.
Collapse
|
36
|
Abstract
The COVID-19 pandemic has lead to catastrophic number of deaths and revealed that much work still remains with data and artificial intelligence. To fully comprehend the dynamics of a pandemic with relevance to artificial intelligence, a primer on global health concepts is first presented. Following this, various aspects of diagnosis and therapy and the relationship to artificial intelligence are presented along with a future projection of an ideal deployment of artificial intelligence in a pandemic. Final thoughts are made about lessons learned and what lies ahead.
Collapse
Affiliation(s)
- Anthony C Chang
- The Sharon Disney Lund, Medical Intelligence and Innovation Institute (MI3), Children's Hospital of Orange County, USA
| |
Collapse
|