1
|
Tastekin B, Akcan R, Evran E, Tamer U, Zengin HY, Yildirim MS, Boyaci IH. Estimation of time since deposition of semen stain on different fabric types using ATR-FTIR spectroscopy and chemometrics. Forensic Sci Int 2024; 354:111885. [PMID: 38007869 DOI: 10.1016/j.forsciint.2023.111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
Various body fluids such as blood, semen, vaginal secretions, and saliva are frequently encountered at crime scene. In cases of sexual assault, semen stains are one of the most reliable evidence of biological origin. In this study, our objective was to develop a method for estimating the time since deposition of semen stains on five different fabric types using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy, with a focus on a time frame of up to 8 weeks. Semen samples from six different volunteers were dripped onto five distinct fabric materials, and ATR-FTIR measurements were obtained at 17 different time points. Principal component analysis (PCA) and partial least squares (PLS) methods were employed to differentiate semen stains on various fabric samples and estimate the age of semen stains. Models constructed using PCA and PLSR achieved high R2 values and low root-mean-square error (RMSE). While the performance varies depending on fabric types, it was observed that age estimation of semen stains can be made within following intervals: 0.39-0.76 days for 0-7 day range, 2.59-3.38 days for the 1-8 week range, and 3.98-8.1 days for the 0-56 day range. This study demonstrates the effectiveness of using ATR-FTIR spectroscopy in combination with chemometrics to estimate the age of human semen stains on various fabric types based on time-dependent spectral changes.
Collapse
Affiliation(s)
- Burak Tastekin
- Department of Forensic Medicine, Hacettepe University, Ankara, Turkey.
| | - Ramazan Akcan
- Department of Forensic Medicine, Hacettepe University, Ankara, Turkey.
| | - Eylul Evran
- Department of Food Engineering, Hacettepe University, Ankara, Turkey.
| | - Ugur Tamer
- Department of Analytical Chemistry, Gazi University, Ankara, Turkey.
| | - H Yagmur Zengin
- Department of Biostatistics, Hacettepe University, Ankara, Turkey.
| | - Mahmut Serif Yildirim
- Department of Forensic Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | | |
Collapse
|
2
|
Hofmaier M, Flemming P, Guskova O, Münch AS, Uhlmann P, Müller M. Swelling and Orientation Behavior of End-Grafted Polymer Chains by In Situ Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Complementing In Situ Ellipsometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16219-16230. [PMID: 37941338 DOI: 10.1021/acs.langmuir.3c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The literature lacks established concrete parameters for assigning grafted chain regimes. In this context, dichroic in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and in situ ellipsometry were used complementarily, offering new opportunities for conformational analysis of end-grafted polymer chains. Especially polymer chain orientation was studied as a new parameter, among others, for proper chain regime assignment in this report. Alkyne-functionalized poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) with a molecular weight of 49.8 kg/mol and a contour length of around 80 nm was grafted to self-assembled monolayers bearing triazole end groups as reported. Different chain regimes were generated by using three different grafting densities. ATR-FTIR spectroscopy based on the ν(C═O) stretching vibration at around 1728 cm-1 provided a new direct approach to determine the GD of polymer chains. Significant shifts in the position of the ν(C═O) band comparing dry and wet states were observed, caused by increased hydrogen bonding interactions between PDMAEMA and water. Finally, the averaged orientation of PDMAEMA chains along the z-axis was determined using dichroic ATR-FTIR spectroscopy based on the dichroic ratios of the ν(C═O) band and molecular order parameters SZ,MOL calculated thereof. High SZ,MOL values were found for the wet state compared to the dry state, confirming that all GD PDMAEMA samples are in the brush regime in the swollen state.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Zellescher Weg 19, D-01069 Dresden, Germany
| | - Patricia Flemming
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Zellescher Weg 19, D-01069 Dresden, Germany
| | - Olga Guskova
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Kaitzer Straße 4, D-01069 Dresden, Germany
| | - Alexander S Münch
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Petra Uhlmann
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Martin Müller
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062 Dresden, Germany
| |
Collapse
|
3
|
Gassner C, Vongsvivut J, Ng SH, Ryu M, Tobin MJ, Juodkazis S, Morikawa J, Wood BR. Linearly Polarized Infrared Spectroscopy for the Analysis of Biological Materials. APPLIED SPECTROSCOPY 2023; 77:977-1008. [PMID: 37464791 DOI: 10.1177/00037028231180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.
Collapse
Affiliation(s)
- Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Meguya Ryu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| |
Collapse
|
4
|
Qiu C, Whittaker GR, Gellman SH, Daniel S, Abbott NL. Interactions of SARS-CoV-2 and MERS-CoV fusion peptides measured using single-molecule force methods. Biophys J 2023; 122:646-660. [PMID: 36650897 PMCID: PMC9841730 DOI: 10.1016/j.bpj.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/07/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
We address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide (FP) sequences within coronavirus (CoV) spike proteins. Within the FPs of severe acute respiratory syndrome CoV 2 and Middle East respiratory syndrome CoV (MERS-CoV), a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key role in encoding hydrophobic interactions that drive viral-host cell membrane fusion. Although a non-polar triad (Leu-Leu-Phe (LLF)) is common to both FP1 sequences, and thought to dominate the encoding of hydrophobic interactions, FP1 from SARS-2 and MERS differ in two residues (Phe 2 versus Ala 2 and Asn 9 versus Asp 9, respectively). Here we explore whether single-molecule force measurements can quantify hydrophobic interactions encoded by FP1 sequences, and then ask whether sequence variations between FP1 from SARS-2 and MERS lead to significant differences in hydrophobic interactions. We find that both SARS-2 and MERS wild-type FP1 generate measurable hydrophobic interactions at the single-molecule level, but that SARS-2 FP1 encodes a substantially stronger hydrophobic interaction than its MERS counterpart (1.91 ± 0.03 nN versus 0.68 ± 0.03 nN, respectively). By performing force measurements with FP1 sequences with single amino acid substitutions, we determine that a single-residue mutation (Phe 2 versus Ala 2) causes the almost threefold difference in the hydrophobic interaction strength generated by the FP1 of SARS-2 versus MERS, despite the presence of LLF in both sequences. Infrared spectroscopy and circular dichroism measurements support the proposal that the outsized influence of Phe 2 versus Ala 2 on the hydrophobic interaction arises from variation in the secondary structure adopted by FP1. Overall, these insights reveal how single-residue diversity in viral FPs, including FP1 of SARS-CoV-2 and MERS-CoV, can lead to substantial changes in intermolecular interactions proposed to play a key role in viral fusion, and hint at strategies for regulating hydrophobic interactions of peptides in a range of contexts.
Collapse
Affiliation(s)
- Cindy Qiu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nicholas L Abbott
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
5
|
Experimental Investigation on the Bioprotective Role of Trehalose on Glutamine Solutions by Infrared Spectroscopy. MATERIALS 2022; 15:ma15124329. [PMID: 35744387 PMCID: PMC9231094 DOI: 10.3390/ma15124329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Glutamine plays a significant role in several basic metabolic processes and is an important regulator of heat shock protein response. The present work is focused on the analysis of the thermal response of aqueous solutions of Glutamine and aqueous solutions of Glutamine in the presence of Trehalose by means of infrared absorption technique. The performed study shows how in the case of a multicomponent system, characterized by a huge number of spectral contributions whose assignment are questionable, the Spectral Distance (SD) and the Cross Wavelet Correlation (XWT) approaches are able to furnish explanatory parameters that can characterize the variations in the spectra behaviour, which is an efficient tool for quantitative comparisons. With this purpose, the analysis has been performed by evaluating the SD and the XWT parameters for the whole investigated spectral range, i.e., 4000–400 cm−1, for scans collected as a function of temperature in the range 20 °C ÷ 60 °C both for Glutamine/Water compounds and for Glutamine /Water/Trehalose mixtures. By means of these analyses, it is found that in aqueous solutions of Glutamine, with respect to aqueous solutions of Glutamine in the presence of Trehalose, the SD and XWT temperature trends follow a linear behaviour where the angular coefficient for Glutamine /Water/Trehalose compounds are lower than that of the Glutamine-Water system in both cases. The obtained findings suggest that Trehalose stabilizes Glutamine against heat treatment.
Collapse
|
6
|
Millette MA, Roy S, Salesse C. Farnesylation and lipid unsaturation are critical for the membrane binding of the C-terminal segment of G-Protein Receptor Kinase 1. Colloids Surf B Biointerfaces 2022; 211:112315. [PMID: 35026543 DOI: 10.1016/j.colsurfb.2021.112315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Many proteins are modified by the covalent addition of different types of lipids, such as myristoylation, palmitoylation and prenylation. Lipidation is expected to promote membrane association of proteins. Visual phototransduction involves many lipid-modified proteins. The G-Protein-coupled receptor of rod photoreceptors, rhodopsin, is inactivated by G-Protein-coupled Receptor Kinase 1 (GRK1). The C-terminus of GRK1 is farnesylated and its truncation has been shown to result in a very high decrease of its enzymatic activity, most likely because of the loss of its membrane localization. Little information is available on the membrane binding of GRK1 as well as of most prenylated proteins. Measurements of the membrane binding of the non-farnesylated and farnesylated C-terminal segment of GRK1 were thus performed using lipids typical of those found in rod outer segment disk membranes. Their random coil secondary structure was determined using circular dichroism and infrared spectroscopy. The non-farnesylated C-terminal segment of GRK1 has no surface activity. In contrast, the farnesylated C-terminal segment of GRK1 shows a particularly strong binding to lipid monolayers bearing at least one unsaturated fatty acyl chain. No binding is observed in the presence of monolayers of saturated phospholipids, in agreement with the low affinity of farnesylated Ras proteins for lipids in the liquid-ordered state. Altogether, these data demonstrate that the farnesyl group of the C-terminal segment of GRK1 is mandatory for its membrane binding, which is favored by particular lipids or lipid mixtures. This information will also be useful for the understanding of the membrane binding of other prenylated proteins.
Collapse
Affiliation(s)
- Marc-Antoine Millette
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Sarah Roy
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
7
|
Yang S, Zhang Q, Yang H, Shi H, Dong A, Wang L, Yu S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int J Biol Macromol 2022; 206:175-187. [PMID: 35217087 DOI: 10.1016/j.ijbiomac.2022.02.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Infrared (IR) spectroscopy is a highly sensitive technique that provides complete information on chemical compositions. The IR spectra of proteins or peptides give rise to nine characteristic IR absorption bands. The amide I bands are the most prominent and sensitive vibrational bands and widely used to predict protein secondary structures. The interference of H2O absorbance is the greatest challenge for IR protein secondary structure prediction. Much effort has been made to reduce/eliminate the interference of H2O, simplify operation steps, and increase prediction accuracy. Progress in sampling and equipment has rendered the Fourier transform infrared (FTIR) technique suitable for determining the protein secondary structure in broader concentration ranges, greatly simplifying the operating steps. This review highlights the recent progress in sample preparation, data analysis, and equipment development of FTIR in A/T mode, with a focus on recent applications of FTIR spectroscopy in the prediction of protein secondary structure. This review also provides a brief introduction of the progress in ATR-FTIR for predicting protein secondary structure and discusses some combined IR methods, such as AFM-based IR spectroscopy, that are used to analyze protein structural dynamics and protein aggregation.
Collapse
Affiliation(s)
- Shouning Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | | | - Huayan Yang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haimei Shi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Aichun Dong
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, USA.
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
8
|
Quemé-Peña M, Juhász T, Kohut G, Ricci M, Singh P, Szigyártó IC, Papp ZI, Fülöp L, Beke-Somfai T. Membrane Association Modes of Natural Anticancer Peptides: Mechanistic Details on Helicity, Orientation, and Surface Coverage. Int J Mol Sci 2021; 22:ijms22168613. [PMID: 34445319 PMCID: PMC8395313 DOI: 10.3390/ijms22168613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anticancer peptides (ACPs) could potentially offer many advantages over other cancer therapies. ACPs often target cell membranes, where their surface mechanism is coupled to a conformational change into helical structures. However, details on their binding are still unclear, which would be crucial to reach progress in connecting structural aspects to ACP action and to therapeutic developments. Here we investigated natural helical ACPs, Lasioglossin LL-III, Macropin 1, Temporin-La, FK-16, and LL-37, on model liposomes, and also on extracellular vesicles (EVs), with an outer leaflet composition similar to cancer cells. The combined simulations and experiments identified three distinct binding modes to the membranes. Firstly, a highly helical structure, lying mainly on the membrane surface; secondly, a similar, yet only partially helical structure with disordered regions; and thirdly, a helical monomeric form with a non-inserted perpendicular orientation relative to the membrane surface. The latter allows large swings of the helix while the N-terminal is anchored to the headgroup region. These results indicate that subtle differences in sequence and charge can result in altered binding modes. The first two modes could be part of the well-known carpet model mechanism, whereas the newly identified third mode could be an intermediate state, existing prior to membrane insertion.
Collapse
Affiliation(s)
- Mayra Quemé-Peña
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Tünde Juhász
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Correspondence: (T.J.); (T.B.-S.)
| | - Gergely Kohut
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Maria Ricci
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
| | - Priyanka Singh
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Imola Cs. Szigyártó
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
| | - Zita I. Papp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.I.P.); (L.F.)
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (Z.I.P.); (L.F.)
| | - Tamás Beke-Somfai
- Biomolecular Self-Assembly Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.Q.-P.); (G.K.); (M.R.); (P.S.); (I.C.S.)
- Correspondence: (T.J.); (T.B.-S.)
| |
Collapse
|
9
|
Ward LC. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy for the Quantitative Analysis of Deuterium in Plasma: Application to Total Body Water Determination in Humans and Other Animals. APPLIED SPECTROSCOPY 2021; 75:698-705. [PMID: 33635101 DOI: 10.1177/00037028211002532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conventional methods for measuring the concentration of deuterium in body fluids are by either isotope ratio mass spectrometry or Fourier transform infrared transmission (FT-IR) spectroscopy. The latter method is often preferred as it is less expensive and time consuming; however, having a lower sensitivity means a larger sample volume is required. This study investigated an alternative FT-IR spectroscopic method, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), which has the potential to provide shorter analysis times while requiring smaller sample volumes. Deuterium was assayed using ATR FT-IR in plasma in the concentration range 0.5 to 2.5 mg mL-1, typical of those observed in tracer dilution measurements of total body water. Minimal sample preparation was required and analysis time was substantially decreased compared to transmission FT-IR. Samples were analyzed with high precision (coefficient of variation (CV) < 0.5%). Precision of assay was maintained when assaying plasma volumes of only 10 µL. The application of the method to the determination of total body water in humans and animals (horses) was demonstrated. A rapid and simple method for the measurement of deuterium in plasma is described that only requires very small sample volumes, rendering the method suitable for use in pediatrics where blood sampling is required to be kept to a minimum.
Collapse
Affiliation(s)
- Leigh C Ward
- School of Chemistry and Molecular Biosciences, 1974The University of Queensland, St. Lucia, Australia
| |
Collapse
|
10
|
Abstract
FTIR spectroscopy has been widely used to characterize biopharmaceuticals for many years, in particular to analyze protein structure. More recently, it was demonstrated to be a useful tool to study and compare protein samples in terms of glycosylation. Based on a spectral region specific to carbohydrate absorption, we present here a detailed protocol to compare the FTIR spectra of glycoproteins in terms of global glycosylation level and in terms of glycan composition. This FTIR information is compared to MS information. Both approaches yield consistent results but it appears FTIR analysis is easier and more rapid to perform comparisons.
Collapse
|
11
|
Feuillie C, Lambert E, Ewald M, Azouz M, Henry S, Marsaudon S, Cullin C, Lecomte S, Molinari M. High Speed AFM and NanoInfrared Spectroscopy Investigation of Aβ 1-42 Peptide Variants and Their Interaction With POPC/SM/Chol/GM1 Model Membranes. Front Mol Biosci 2020; 7:571696. [PMID: 33033718 PMCID: PMC7510551 DOI: 10.3389/fmolb.2020.571696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Due to an aging population, neurodegenerative diseases such as Alzheimer's disease (AD) have become a major health issue. In the case of AD, Aβ1 - 42 peptides have been identified as one of the markers of the disease with the formation of senile plaques via their aggregation, and could play a role in memory impairment and other tragic syndromes associated with the disease. Many studies have shown that not only the morphology and structure of Aβ1 - 42 peptide assembly are playing an important role in the formation of amyloid plaques, but also the interactions between Aβ1 - 42 and the cellular membrane are crucial regarding the aggregation processes and toxicity of the amyloid peptides. Despite the increasing amount of information on AD associated amyloids and their toxicity, the molecular mechanisms involved still remain unclear and require in-depth investigation at the local scale to clearly decipher the role of the sequence of the amyloid peptides, of their secondary structures, of their oligomeric states, and of their interactions with lipid membranes. In this original study, through the use of Atomic Force Microscopy (AFM) related-techniques, high-speed AFM and nanoInfrared AFM, we tried to unravel at the nanoscale the link between aggregation state, structure and interaction with membranes in the amyloid/membrane interaction. Using three mutants of Aβ peptides, L34T, oG37C, and WT Aβ1 - 42 peptides, with differences in morphology, structure and assembly process, as well as model lipidic membranes whose composition and structure allow interactions with the peptides, our AFM study coupling high spatial and temporal resolution and nanoscale structure information clearly evidences a local correlation between the secondary structure of the peptides, their fibrillization kinetics and their interactions with model membranes. Membrane disruption is associated to small transient oligomeric entities in the early stages of aggregation that strongly interact with the membrane, and present an antiparallel β-sheet secondary structure. The strong effect on membrane integrity that exists when these oligomeric Aβ1 - 42 peptides interact with membranes of a particular composition could be a lead for therapeutic studies.
Collapse
Affiliation(s)
- Cecile Feuillie
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Eleonore Lambert
- LRN EA 4682, Université de Reims Champagne-Ardenne, Reims, France
| | - Maxime Ewald
- LRN EA 4682, Université de Reims Champagne-Ardenne, Reims, France
| | - Mehdi Azouz
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France.,Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Sarah Henry
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Sophie Marsaudon
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | | | - Sophie Lecomte
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| | - Michael Molinari
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, Pessac, France
| |
Collapse
|
12
|
Stodolak-Zych E, Jeleń P, Dzierzkowska E, Krok-Borkowicz M, Zych Ł, Boguń M, Rapacz-Kmita A, Kolesińska B. Modification of chitosan fibers with short peptides as a model of synthetic extracellular matrix. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Ji Y, Yang X, Ji Z, Zhu L, Ma N, Chen D, Jia X, Tang J, Cao Y. DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N-Methylacetamide Fine Components. ACS OMEGA 2020; 5:8572-8578. [PMID: 32337419 PMCID: PMC7178369 DOI: 10.1021/acsomega.9b04421] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/30/2020] [Indexed: 05/09/2023]
Abstract
The infrared spectrum (IR) characteristic peaks of amide I, amide II, and amide III bands are marked as amide or peptide characteristic peaks. Through the nuclear magnetic resonance study, N-methylacetamide has been determined to have six fine components, which include protonation, hydration, and hydroxy structures. Then the independent IR spectrum of every component in N-methylacetamide is calculated by using the density functional theory quantum chemistry method, and the contribution of each component to amide I, II, and III bands is analyzed. The results of this research can help to explain the formation of the amide infrared spectrum, which has positive significance in organic chemistry, analytical chemistry, and chemical biology.
Collapse
Affiliation(s)
- Yan Ji
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaoliang Yang
- School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210000, China
| | - Zhi Ji
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Linhui Zhu
- College
of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Nana Ma
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Dejun Chen
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xianbin Jia
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Junming Tang
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Yilin Cao
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| |
Collapse
|
14
|
Ji Y, Yang X, Ji Z, Zhu L, Ma N, Chen D, Jia X, Tang J, Cao Y. DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N-Methylacetamide Fine Components. ACS OMEGA 2020. [PMID: 32337419 DOI: 10.1021/acsomega.9b0442110.1021/acsomega.9b04421.s001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The infrared spectrum (IR) characteristic peaks of amide I, amide II, and amide III bands are marked as amide or peptide characteristic peaks. Through the nuclear magnetic resonance study, N-methylacetamide has been determined to have six fine components, which include protonation, hydration, and hydroxy structures. Then the independent IR spectrum of every component in N-methylacetamide is calculated by using the density functional theory quantum chemistry method, and the contribution of each component to amide I, II, and III bands is analyzed. The results of this research can help to explain the formation of the amide infrared spectrum, which has positive significance in organic chemistry, analytical chemistry, and chemical biology.
Collapse
Affiliation(s)
- Yan Ji
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaoliang Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China
| | - Zhi Ji
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Linhui Zhu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Nana Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Dejun Chen
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xianbin Jia
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Junming Tang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yilin Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
15
|
Baumgartner B, Freitag S, Lendl B. 3D Printing for Low-Cost and Versatile Attenuated Total Reflection Infrared Spectroscopy. Anal Chem 2020; 92:4736-4741. [DOI: 10.1021/acs.analchem.9b04043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bettina Baumgartner
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Wien, Austria
| | - Stephan Freitag
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Wien, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Wien, Austria
| |
Collapse
|
16
|
de Miguel Catalina A, Forbrig E, Kozuch J, Nehls C, Paulowski L, Gutsmann T, Hildebrandt P, Mroginski MA. The C-Terminal VPRTES Tail of LL-37 Influences the Mode of Attachment to a Lipid Bilayer and Antimicrobial Activity. Biochemistry 2019; 58:2447-2462. [DOI: 10.1021/acs.biochem.8b01297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Enrico Forbrig
- Department of Physical Chemistry, Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Jacek Kozuch
- Division of Chemistry, Stanford University, Stanford, Californa 94305, United States
| | - Christian Nehls
- Biophysics Department, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel 23845, Germany
| | - Laura Paulowski
- Biophysics Department, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel 23845, Germany
| | - Thomas Gutsmann
- Biophysics Department, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel 23845, Germany
| | - Peter Hildebrandt
- Department of Physical Chemistry, Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Maria Andrea Mroginski
- Department of Physical Chemistry, Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| |
Collapse
|
17
|
Petti MK, Ostrander JS, Saraswat V, Birdsall ER, Rich KL, Lomont JP, Arnold MS, Zanni MT. Enhancing the signal strength of surface sensitive 2D IR spectroscopy. J Chem Phys 2019; 150:024707. [PMID: 30646693 DOI: 10.1063/1.5065511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Spectroscopic techniques that are capable of measuring surfaces and interfaces must overcome two technical challenges: one, the low coverage of molecules at the surface, and two, discerning between signals from the bulk and surface. We present surface enhanced attenuated reflection 2D infrared (SEAR 2D IR) spectroscopy, a method that combines localized surface plasmons with a reflection pump-probe geometry to achieve monolayer sensitivity. The method is demonstrated at 6 µm with the amide I band of a model peptide, a cysteine terminated α-helical peptide tethered to a gold surface. Using SEAR 2D IR spectroscopy, the signal from this sample is enhanced 20 000-times over a monolayer on a dielectric surface. Like attenuated total reflection IR spectroscopy, SEAR 2D IR spectroscopy can be applied to strongly absorbing solvents. We demonstrated this capability by solvating a peptide monolayer with H2O, which cannot normally be used when measuring the amide I band. SEAR 2D IR spectroscopy will be advantageous for studying chemical reactions at electrochemical surfaces, interfacial charge transfer in photovoltaics, and structural changes of transmembrane proteins in lipid membranes.
Collapse
Affiliation(s)
- Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Vivek Saraswat
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Erin R Birdsall
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kacie L Rich
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Brielle ES, Arkin IT. Site-Specific Hydrogen Exchange in a Membrane Environment Analyzed by Infrared Spectroscopy. J Phys Chem Lett 2018; 9:4059-4065. [PMID: 29957958 DOI: 10.1021/acs.jpclett.8b01675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen exchange is a powerful method to examine macromolecules. In membrane proteins, exchange can distinguish between solvent-accessible and -inaccessible residues due to shielding by the hydrophobic environment of the lipid bilayer. Herein, rather than examining which residues undergo hydrogen exchange, we employ a protocol that enables the full deuteration of all polar hydrogens in a membrane protein. We then measure the impact of hydrogen exchange on the shift of the amide I vibrational mode of individually labeled sites. The results enable us to correlate polarity with vibrational shifts, thereby providing a powerful tool to examine specific locations within a membrane protein in its native membrane environment.
Collapse
Affiliation(s)
- Esther S Brielle
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Jerusalem 91904 , Israel
| | - Isaiah T Arkin
- The Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Jerusalem 91904 , Israel
| |
Collapse
|
19
|
Savini F, Bobone S, Roversi D, Mangoni ML, Stella L. From liposomes to cells: Filling the gap between physicochemical and microbiological studies of the activity and selectivity of host‐defense peptides. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Filippo Savini
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRome00133 Italy
| | - Sara Bobone
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRome00133 Italy
| | - Daniela Roversi
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRome00133 Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory affiliated to Pasteur Italia‐Fondazione Cenci BolognettiSapienza University of RomeRome, via degli Apuli9‐00185 Italy
| | - Lorenzo Stella
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRome00133 Italy
| |
Collapse
|
20
|
Henry S, Bercu NB, Bobo C, Cullin C, Molinari M, Lecomte S. Interaction of Aβ 1-42 peptide or their variant with model membrane of different composition probed by infrared nanospectroscopy. NANOSCALE 2018; 10:936-940. [PMID: 29292465 DOI: 10.1039/c7nr07489a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Toxicity of Aβ peptides involved in Alzheimer's disease is linked to the interaction of intermediate species with membranes. Nanoscale Infrared Spectroscopy enhances the study of the morphology and the secondary structure of the peptides as fibers or oligomers interacting with membranes of different compositions, with nanometer scale resolution. Membrane models are used to investigate the role of different lipids in their interactions with Aβ peptides. This work clearly brings to light that the presence of cholesterol in membranes is favorable to the interaction with Aβ peptides in oligomers or aggregates.
Collapse
Affiliation(s)
- S Henry
- CBMN, CNRS UMR 5248, IPB, Université de Bordeaux, 33607 Pessac, France.
| | | | | | | | | | | |
Collapse
|
21
|
Vibrational spectroscopy of muscular tissue intoxicated by snake venom and exposed to photobiomodulation therapy. Lasers Med Sci 2017; 33:503-512. [DOI: 10.1007/s10103-017-2389-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/12/2017] [Indexed: 11/25/2022]
|
22
|
Lomont JP, Ostrander JS, Ho JJ, Petti MK, Zanni MT. Not All β-Sheets Are the Same: Amyloid Infrared Spectra, Transition Dipole Strengths, and Couplings Investigated by 2D IR Spectroscopy. J Phys Chem B 2017; 121:8935-8945. [PMID: 28851219 DOI: 10.1021/acs.jpcb.7b06826] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition dipole strengths and frequencies of the amyloid β-sheet amide I mode for the aggregated proteins amyloid-β1-40, calcitonin, α-synuclein, and glucagon. According to standard vibrational coupling models for proteins, the frequencies of canonical β-sheets are set by their size and structural and environmental disorder, which determines the delocalization length of the vibrational excitons. The larger the delocalization the lower the frequency of the main infrared-allowed transition, A⊥. The models also predict an accompanying increase in transition dipole strength. For the proteins measured here, we find no correlation between transition dipole strengths and amyloid β-sheet transition frequency. To understand this observation, we have extracted from the protein data bank crystal structures of amyloid peptides from which we calculate the amide I vibrational couplings, and we use these in a model β-sheet Hamiltonian to simulate amyloid vibrational spectra. We find that the variations in amyloid β-sheet structures (e.g., dihedral angles, interstrand distances, and orientations) create significant differences in the average values for interstrand and nearest neighbor couplings, and that those variations encompass the variation in measured A⊥ frequencies. We also find that off-diagonal disorder about the average values explains the range of transition dipole strengths observed experimentally. Thus, we conclude that the lack of correlation between transition dipole-strength and frequency is caused by variations in amyloid β-sheet structure. Taken together, these results indicate that the amide I frequency is very sensitive to amyloid β-sheet structure, the β-sheets of these 4 proteins are not identical, and the assumption that frequency of amyloids scales with β-sheet size cannot be adopted without an accompanying measurement of transition dipole strengths.
Collapse
Affiliation(s)
- Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| |
Collapse
|
23
|
Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs. Lasers Med Sci 2017; 32:1131-1141. [DOI: 10.1007/s10103-017-2218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
24
|
Zhang J, Li B, Wang Q, Li C, Zhang Y, Lin H, Wang Z. Characterization of postmortem biochemical changes in rabbit plasma using ATR-FTIR combined with chemometrics: A preliminary study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:733-739. [PMID: 27788472 DOI: 10.1016/j.saa.2016.10.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Postmortem interval (PMI) determination is one of the most challenging tasks in forensic medicine due to a lack of accurate and reliable methods. It is especially difficult for late PMI determination. Although many attempts with various types of body fluids based on chemical methods have been made to solve this problem, few investigations are focused on blood samples. In this study, we employed an attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique coupled with principle component analysis (PCA) to monitor biochemical changes in rabbit plasma with increasing PMI. Partial least square (PLS) model was used based on the spectral data for PMI prediction in an independent sample set. Our results revealed that postmortem chemical changes in compositions of the plasma were time-dependent, and various components including proteins, lipids and nucleic acids contributed to the discrimination of the samples at different time points. A satisfactory prediction within 48h postmortem was performed by the combined PLS model with a good fitting between actual and predicted PMI of 0.984 and with an error of ±1.92h. In consideration of the simplicity and portability of ATR-FTIR, our preliminary study provides an experimental and theoretical basis for application of this technique in forensic practice.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Li
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Chengzhi Li
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Yinming Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Hancheng Lin
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
25
|
Srour B, Bruechert S, Andrade SLA, Hellwig P. Secondary Structure Determination by Means of ATR-FTIR Spectroscopy. Methods Mol Biol 2017; 1635:195-203. [PMID: 28755370 DOI: 10.1007/978-1-4939-7151-0_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Specialized infrared spectroscopic techniques have been developed that allow studying the secondary structure of membrane proteins and the influence of crucial parameters like lipid content and detergent. Here, we focus on an ATR-FTIR spectroscopic study of Af-Amt1 and the influence of LDAO/glycerol on its structural integrity. Our results clearly indicate that infrared spectroscopy can be used to identify the adapted sample conditions.
Collapse
Affiliation(s)
- Batoul Srour
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, Strasbourg, France
| | - Stefan Bruechert
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Susana L A Andrade
- BIOSS Centre for Biological Signalling Studies, Schänzlestr. 1, 79104, Freiburg, Germany
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioelectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
26
|
Peng B, Ding XY, Sun C, Yang YN, Gao YJ, Zhao X. The chain order of binary unsaturated lipid bilayers modulated by aromatic-residue-containing peptides: an ATR-FTIR spectroscopy study. RSC Adv 2017. [DOI: 10.1039/c7ra01145h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It highlights the importance of aromatic residues in influencing peptide binding to the membrane, demonstrates that the stability of the membranes depends on the lipid composition and the sequence, structural context, and orientation of the peptides.
Collapse
Affiliation(s)
- Bo Peng
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Xiao-Yan Ding
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Chao Sun
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Ya-Nan Yang
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Yu-Jiao Gao
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| | - Xin Zhao
- Shanghai Key Laboratory of Magnetic Resonance
- Department of Physics
- School of Physics and Materials Science
- East China Normal University
- Shanghai 200062
| |
Collapse
|
27
|
Jena S, Horn J, Suryanarayanan R, Friess W, Aksan A. Effects of Excipient Interactions on the State of the Freeze-Concentrate and Protein Stability. Pharm Res 2016; 34:462-478. [DOI: 10.1007/s11095-016-2078-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
|
28
|
Suwal S, Doyen A, Bazinet L. Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: Review of current and recently developed methods. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.08.056] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Dunkelberger EB, Grechko M, Zanni MT. Transition Dipoles from 1D and 2D Infrared Spectroscopy Help Reveal the Secondary Structures of Proteins: Application to Amyloids. J Phys Chem B 2015; 119:14065-75. [PMID: 26446575 DOI: 10.1021/acs.jpcb.5b07706] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition dipoles are an underutilized quantity for probing molecular structures. The transition dipole strengths in an extended system like a protein are modulated by the couplings and thus probe the structures. Here we measure the absolute transition dipole strengths of human and rat amylin in their solution, aggregated, membrane, and micelleular bound forms, using a combination of 1D and 2D infrared spectroscopy. We find that the vibrational modes of amyloid fibers made of human amylin can extend across as many as 12 amino acids, reflecting very ordered β-sheets in the most carefully prepared samples. Rat amylin has FTIR spectra that are nearly identical in solution, micelles, and membranes. We show that the transition dipoles of rat amylin are much larger when bound to micelles and membranes than when in solution, consistent with rat amylin adopting an α-helical structure. We interpret the transition dipole strengths as experimental measurements of the inverse participation ratio often calculated in theoretical studies. The structure of aggregating and membrane-bound proteins can be difficult to identify with existing techniques, especially during kinetics. These results demonstrate how absolute transition dipoles measured via our 1D/2D spectroscopy method can provide important structural information.
Collapse
Affiliation(s)
- Emily B Dunkelberger
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1396, United States
| | - Maksim Grechko
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1396, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1396, United States
| |
Collapse
|
30
|
Martínez‐Bujidos M, Rull A, González‐Cura B, Pérez‐Cuéllar M, Montoliu‐Gaya L, Villegas S, Ordóñez‐Llanos J, Sánchez‐Quesada JL. Clusterin/apolipoprotein J binds to aggregated LDL in human plasma and plays a protective role against LDL aggregation. FASEB J 2014; 29:1688-700. [DOI: 10.1096/fj.14-264036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/01/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Maria Martínez‐Bujidos
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
- Biochemistry and Molecular Biology DepartmentUniversitat Autònoma de BarcelonaCerdanyolaSpain
| | - Anna Rull
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Beatriz González‐Cura
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Montserrat Pérez‐Cuéllar
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Laia Montoliu‐Gaya
- Protein Folding and Stability Group, Biochemistry and Molecular Biology DepartmentUniversitat Autònoma de BarcelonaCerdanyolaSpain
| | - Sandra Villegas
- Protein Folding and Stability Group, Biochemistry and Molecular Biology DepartmentUniversitat Autònoma de BarcelonaCerdanyolaSpain
| | - Jordi Ordóñez‐Llanos
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
- Biochemistry and Molecular Biology DepartmentUniversitat Autònoma de BarcelonaCerdanyolaSpain
| | - José Luis Sánchez‐Quesada
- Cardiovascular Biochemistry GroupResearch Institute of the Hospital de Sant Pau (IIB Sant Pau)BarcelonaSpain
| |
Collapse
|
31
|
Kriegel S, Uchida T, Osawa M, Friedrich T, Hellwig P. Biomimetic environment to study E. coli complex I through surface-enhanced IR absorption spectroscopy. Biochemistry 2014; 53:6340-7. [PMID: 25225967 DOI: 10.1021/bi500955a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study complex I was immobilized in a biomimetic environment on a gold layer deposited on an ATR-crystal in order to functionally probe the enzyme against substrates and inhibitors via surface-enhanced IR absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV). To achieve this immobilization, two methods based on the generation of a high affinity self-assembled monolayer (SAM) were probed. The first made use of the affinity of Ni-NTA toward a hexahistidine tag that was genetically engineered onto complex I and the second exploited the affinity of the enzyme toward its natural substrate NADH. Experiments were also performed with complex I reconstituted in lipids. Both approaches have been found to be successful, and electrochemically induced IR difference spectra of complex I were obtained.
Collapse
Affiliation(s)
- Sébastien Kriegel
- Laboratoire de bioelectrochimie et spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS , Strasbourg 67000, France
| | | | | | | | | |
Collapse
|
32
|
Lhor M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 2014; 207:223-39. [PMID: 24560216 PMCID: PMC4028306 DOI: 10.1016/j.cis.2014.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid-peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.
Collapse
Affiliation(s)
- Mustapha Lhor
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sarah C Bernier
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Habib Horchani
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sylvain Bussières
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Line Cantin
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Bernard Desbat
- CBMN-UMR 5248 CNRS, Université de Bordeaux, IPB, Allée Geoffroy Saint Hilaire, 33600 Pessac, France
| | - Christian Salesse
- CUO-Recherche, Centre de recherche du CHU de Québec, Hôpital du Saint-Sacrement, Département d'ophtalmologie, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada; Regroupement stratégique PROTEO, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
33
|
Lifetime prediction of NBR composite sheet in aviation kerosene by using nonlinear curve fitting of ATR-FTIR spectra. J IND ENG CHEM 2013. [DOI: 10.1016/j.jiec.2013.01.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Vidal BDC. Using the FT-IR linear dichroism method for molecular order determination of tendon collagen bundles and nylon 6. Acta Histochem 2013; 115:686-91. [PMID: 23506648 DOI: 10.1016/j.acthis.2013.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/03/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Polarized Fourier transform-infrared (FT-IR) was used to compare the orientation of vibrational chemical groups of bovine tendon collagen bundles (CBs) to that of nylon 6, a simpler polyamide model, in terms of linear dichroism (LD). Subtraction of spectral profiles identified the most significant differences regarding the amide regions. At 1630cm(-1), the CBs displayed higher peak areas and absorbance when positioned perpendicularly (A⊥) to the plane of polarized light, in comparison with nylon 6. In contrast, at the 1526cm(-1) amide II spectral region the inverse occurred. In the amide III region (1232cm(-1)), the LD was positive and higher for CBs. Dichroic ratios (DR=A||/A⊥) calculated from the average of ten measured spectra for CBs and nylon 6 revealed that the values for CBs were <1.0 in the 3298-1655cm(-1) wavenumber range and >1.0 in the 1536-1234cm(-1) wavenumber range. From 1535 to 1120cm(-1), nylon 6 displayed DR values higher than those of CBs. The LD band integrated areas were higher in CBs than in nylon 6. The LD differences between CBs and nylon 6 are probably due to a more complex chemical composition and supramolecular oriented architecture in CBs in comparison to nylon 6.
Collapse
Affiliation(s)
- Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Rua Monteiro Lobato 255, CEP 013083-862 Campinas (SP), Brazil.
| |
Collapse
|
35
|
Silva SS, Oliveira JM, Benesch J, Caridade SG, Mano JF, Reis RR. Hybrid biodegradable membranes of silane-treated chitosan/soy protein for biomedical applications. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513490361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, progress in the field of hybrid materials has been accelerated through use of the sol–gel process for creating materials and devices, which benefit from the incorporation of both inorganic and organic components. In this work, organic–inorganic hybrid membranes were prepared from tetraethoxysilane and a blend system composed of chitosan and soy protein. By introducing a small amount of siloxane bond into the chitosan/soy protein system, the chitosan/soy protein hybrid membranes were improved in terms of structure, topography and mechanical properties. It appears that the chitosan/soy protein hybrid membranes were formed by discrete inorganic moieties entrapped in the chitosan/soy protein blend, which improved the stability and mechanical performance assessed by the dynamic mechanical analysis as compared to chitosan/soy protein membrane. Also, in vitro cell culture studies evidenced that the chitosan/soy protein hybrid membranes are non-cytotoxic over a mouse fibroblast-like cell line. The hybrid membranes of silane-treated chitosan/soy protein developed in this work have potential in biomedical applications, including tissue engineering.
Collapse
Affiliation(s)
- Simone S Silva
- 3B’s Research Group- Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Caldas das Taipas, 4806-909 Guimarães, Portugal
- ICVS/3B’s- PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B’s Research Group- Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Caldas das Taipas, 4806-909 Guimarães, Portugal
- ICVS/3B’s- PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Johan Benesch
- 3B’s Research Group- Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Caldas das Taipas, 4806-909 Guimarães, Portugal
- ICVS/3B’s- PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sofia G Caridade
- 3B’s Research Group- Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Caldas das Taipas, 4806-909 Guimarães, Portugal
- ICVS/3B’s- PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B’s Research Group- Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Caldas das Taipas, 4806-909 Guimarães, Portugal
- ICVS/3B’s- PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui R Reis
- 3B’s Research Group- Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Caldas das Taipas, 4806-909 Guimarães, Portugal
| |
Collapse
|
36
|
Disalvo EA, Bouchet AM, Frias MA. Connected and isolated CH2 populations in acyl chains and its relation to pockets of confined water in lipid membranes as observed by FTIR spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1683-9. [PMID: 23500348 DOI: 10.1016/j.bbamem.2013.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/15/2013] [Accepted: 02/13/2013] [Indexed: 11/18/2022]
Abstract
Analysis of the band corresponding to the frequency of vibrational symmetric stretching mode of methylene groups in the lipid acyl chains and the bands of water below and above the phase transition of different lipids by Fourier transform infrared spectroscopy gives strong support to the formation of confined water pockets in between the lipid acyl chains. Our measures and analysis consolidate the mechanism early proposed by Traüble, in the sense that water is present in kinks formed by trans-gauche isomers along the hydrocarbon tails. The formation of these regions depends on the acyl lipid composition, which determines the presence of different populations of water species, characterized by its degree of H bond coordination in fluid saturated or unsaturated lipids. The free energy excess due to the reinforcement of the water structure along few water molecules in the adjacencies of exposed membrane residues near the phase transition is a reasonable base to explain the insertion and translocation of polar peptides and amino acid residues through the biomembrane on thermodynamic and structural grounds.
Collapse
Affiliation(s)
- E A Disalvo
- Universidad Nacional de Santiago del Estero, Santiago del Estero, Argentina.
| | | | | |
Collapse
|
37
|
Caputo GA. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy. Methods Mol Biol 2013; 1063:95-116. [PMID: 23975773 DOI: 10.1007/978-1-62703-583-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrophobic matching between transmembrane protein segments and the lipid bilayer in which they are embedded is a significant factor in the behavior and orientation of such transmembrane segments. The condition of hydrophobic mismatch occurs when the hydrophobic thickness of a lipid bilayer is significantly different than the length of the membrane spanning segment of a protein, resulting in a mismatch. This mismatch can result in altered function of proteins as well as nonnative structural arrangements including effects on transmembrane α-helix tilt angles, oligomerization state, and/or the formation of non-transmembrane topographies. Here, a fluorescence-based protocol is described for testing model transmembrane α-helices and their sensitivity to hydrophobic mismatch by measuring the propensity of these helices to form non-transmembrane structures. Overall, good hydrophobic matching between the bilayer and transmembrane segments is an important factor that must be considered when designing membrane proteins or peptides.
Collapse
Affiliation(s)
- Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| |
Collapse
|
38
|
Sundaram SK, Sacksteder CA, Weber TJ, Riley BJ, Addleman RS, Harrer BJ, Peterman JW. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology. Nanomedicine (Lond) 2012; 8:145-56. [PMID: 23256497 DOI: 10.2217/nnm.12.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.
Collapse
Affiliation(s)
- S K Sundaram
- Kazuo Inamori School of Engineering, Alfred University, Alfred, NY 14802, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Varman RM, Singh S. Investigation of effects of terpene skin penetration enhancers on stability and biological activity of lysozyme. AAPS PharmSciTech 2012; 13:1084-90. [PMID: 22930344 DOI: 10.1208/s12249-012-9840-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/15/2012] [Indexed: 11/30/2022] Open
Abstract
The transport of proteins through skin can be facilitated potentially by using terpenes as chemical enhancers. However, we do not know about the effects of these enhancers on the stability and biological activity of proteins which is crucial for the development of safe and efficient formulations. Therefore, this project investigated the effects of terpene-based skin penetration enhancers which are reported as nontoxic to the skin (e.g., limonene, p-cymene, geraniol, farnesol, eugenol, menthol, terpineol, carveol, carvone, fenchone, and verbenone), on the conformational stability and biological activity of a model protein lysozyme. Terpene (5% v/v) was added to lysozyme solution and kept for 24 h (the time normally a transdermal patch remains) for investigating conformational stability profiles and biological activity. Fourier transform infrared spectrophotometer was used to analyze different secondary structures, e.g., α-helix, β-sheet, β-turn, and random coil. Conformational changes were also monitored by differential scanning calorimeter by determining midpoint transition temperature (Tm) and calorimetric enthalpy (ΔH). Biological activity of lysozyme was determined by measuring decrease in A (450) when it was added to a suspension of Micrococcus lysodeikticus. The results of this study indicate that terpenes 9, 10, and 11 (carvone, L-fenchone, and L-verbenone) decreased conformational stability and biological activity of lysozyme significantly (p < 0.05) less than other terpenes used in this study. It is concluded that smaller terpenes containing ketones with low lipophilicity (log K (ow) ∼2.00) would be optimal for preserving conformational stability and biological activity of lysozyme in a transdermal formulation containing terpene as permeation enhancer.
Collapse
|
40
|
Manor J, Arkin IT. Gaining insight into membrane protein structure using isotope-edited FTIR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23196348 DOI: 10.1016/j.bbamem.2012.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
FTIR spectroscopy has long been used as a tool used to gain average structural information on proteins. With the advent of stable isotope editing, FTIR can be used to derive accurate information on isolated amino acids. In particular, in an anisotropic sample such as membrane layers, it is possible to measure the orientation of the peptidic carbonyl groups. Herein, we review the theory that enables one to obtain accurate restraints from FTIR spectroscopy, alongside considerations for sample suitability and general applicability. We also propose approaches that may be used to generate structural models of simple membrane proteins based on FTIR orientational restraints. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Joshua Manor
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmund J. Safra Campus, Jerusalem, 91904, Israel
| | | |
Collapse
|
41
|
Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Antimicrob Agents Chemother 2012; 56:5698-708. [PMID: 22908164 DOI: 10.1128/aac.00918-12] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Persistent Pseudomonas aeruginosa infections are a major cause of morbidity and mortality in cystic fibrosis (CF) patients and are linked to the formation of a biofilm. The development of new biofilm inhibition strategies is thus a major challenge. LL-37 is the only human antimicrobial peptide derived from cathelicidin. The effects on the P. aeruginosa PAO1 strain of synthetic truncated fragments of this peptide were compared with the effects of the original peptide. Fragments of LL-37 composed of 19 residues (LL-19, LL13-31, and LL7-25) inhibited biofilm formation. The strongest antibiofilm activity was observed with the peptides LL7-37 and LL-31, which decreased the percentage of biomass formation at a very low concentration. Some peptides were also active on the bacteria within an established biofilm. LL7-31, LL-31, and LL7-37 increased the uptake of propidium iodide (PI) by sessile bacteria. The peptide LL7-37 decreased the height of the biofilm and partly disrupted it. The peptides active within the biofilm had an infrared spectrum compatible with an α-helix. LL-37, but not the peptides LL7-31 and LL7-37, showed cellular toxicity by permeabilizing the eukaryotic plasma membrane (uptake of ethidium bromide and release of lactate dehydrogenase [LDH]). None of the tested peptides affected mitochondrial activity in eukaryotic cells. In conclusion, a 25-amino-acid peptide (LL7-31) displayed both strong antimicrobial and antibiofilm activities. The peptide was even active on cells within a preformed biofilm and had reduced toxicity toward eukaryotic cells. Our results also suggest the contribution of secondary structures (α-helix) to the activity of the peptides on biofilms.
Collapse
|
42
|
|
43
|
Bouchet AM, Lairion F, Ruysschaert JM, Lensink MF. Oligoarginine vectors for intracellular delivery: role of arginine side-chain orientation in chain length-dependent destabilization of lipid membranes. Chem Phys Lipids 2011; 165:89-96. [PMID: 22119850 DOI: 10.1016/j.chemphyslip.2011.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 10/15/2022]
Abstract
Arginine-rich peptides receive increased attention due to their capacity to cross different types of membranes and to transport cargo molecules inside cells. Even though peptide-induced destabilization has been investigated extensively, little is known about the peptide side-chain and backbone orientation with respect to the bilayer that may contribute to a molecular understanding of the peptide-induced membrane perturbations. The main objective of this work is to provide a detailed description of the orientation of arginine peptides in the lipid bilayer of PC and negatively charged PG liposomes using ATR-IR spectroscopy and molecular modeling, and to relate these orientational preferences to lipid bilayer destabilization. Molecular modeling showed that above the transition temperature arginine side-chains are preferentially solvent-directed at the PC/water interface whereas several arginine side-chains are pointing towards the PG hydrophobic core. IR dichroic spectra confirmed the orientation of the arginine side chains perpendicular to the lipid-water interface. IR spectra shows an randomly distributed backbone that seems essential to optimize interactions with the lipid membrane. The observed increase of permeation to a fluorescent dye is related to the peptide induced-formation of gauche bonds in the acyl chains. In the absence of hydrophobic residues, insertion of side-chains that favors phosphate/guanidium interaction is another mechanism of membrane permeabilization that has not been further analyzed so far.
Collapse
Affiliation(s)
- A M Bouchet
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe - CP 206/2, B-1050 Brussels, Belgium
| | | | | | | |
Collapse
|
44
|
Vidal BDC, Mello MLS. Collagen type I amide I band infrared spectroscopy. Micron 2010; 42:283-9. [PMID: 21134761 DOI: 10.1016/j.micron.2010.09.010] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/16/2010] [Accepted: 09/25/2010] [Indexed: 12/23/2022]
Abstract
Collagen fiber structure and organization have been found to vary in different tendon types. Differences have been reported in the FT-IR spectra of the amide I band of collagen-containing structures. In the present study, the FT-IR spectral characteristics of the amide I band of the bovine flexor tendon and the extended rat tail tendon were compared by using the diamond attenuated total reflectance technique. The objective was to associate FT-IR spectral characteristics in tendons with their different collagen fiber supraorganization and biomechanical properties. Nylon 6 and poly-L-lysine were used as polyamide models. Each of these materials was found to exhibit molecular order and crystallinity, as revealed by their birefringence. The following FT-IR parameters were evaluated: amide I band profile, absorption peaks and areas, and the 1655 cm⁻¹/1690 cm⁻¹ absorbance ratio. The amide I area and the 1655 cm⁻¹/1690 cm⁻¹ absorbance ratio were significantly higher for the bovine flexor tendon, indicating that its collagen fibers are richer in pyridinoline-type cross-linking, proline and/or hydroxyproline and H-bonding, and that these fibers are more packed and supraorganizationally ordered than those in the rat tail tendon. This conclusion is additionally supported by differences in collagen solubility and biochemical/biomechanical properties of the tendons.
Collapse
Affiliation(s)
- Benedicto de Campos Vidal
- Department of Anatomy, Cell Biology, and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), 13083-863 Campinas (SP), Brazil.
| | | |
Collapse
|
45
|
Gustot A, Smriti, Ruysschaert JM, McHaourab H, Govaerts C. Lipid composition regulates the orientation of transmembrane helices in HorA, an ABC multidrug transporter. J Biol Chem 2010; 285:14144-51. [PMID: 20223819 DOI: 10.1074/jbc.m109.079673] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette (ABC) transporters constitute a large class of molecular pumps whose central role in chemotherapy resistance has highlighted their clinical relevance. We investigated whether the lipid composition of the membrane affects the function and structure of HorA, a bacterial ABC multidrug transporter. When the transporter was reconstituted in a bilayer where phosphatidylethanolamine (PE), the main lipid of the bacterial membrane, was replaced with phosphatidylcholine (PC), ATP hydrolysis and substrate transport became uncoupled. Although ATPase activity was maintained, HorA lost its ability to extrude the prototypical substrate Hoechst33342. Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) revealed that, although the secondary structure of the protein was unaffected, the orientation of the transmembrane helices (TM) was modified by the change in lipid composition. The orientation of the backbone carbonyls indicated that the helices opened wider in PE versus PC-containing liposomes, with 10 degrees difference. This was supported by hydrogen/deuterium exchange studies showing increased protection of the backbone from the solvent in PC-containing liposomes. Electron Paramagnetic Resonance was used to further probe the structural change. In the PC-containing liposomes we observed increased mobility of the spin label in TM4, along with increased exposure to molecular oxygen, used as a hydrophobic quencher. This indicates that the lipid change induced modification of the orientation of TM4, exposing Cys-180 to the lipid phase. The lipid composition of the bilayer thus modulates the structure of HorA, and in turn its ability to extrude its substrates.
Collapse
Affiliation(s)
- Adelin Gustot
- Department of Structure and Function of Biological Membranes, Structural Biology and Bioinformatics Center, Université Libre de Bruxelles, CP206/2, Boulevard du Triomphe, 1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
46
|
Sudo Y, Kitade Y, Furutani Y, Kojima M, Kojima S, Homma M, Kandori H. Interaction between Na+ ion and carboxylates of the PomA-PomB stator unit studied by ATR-FTIR spectroscopy. Biochemistry 2010; 48:11699-705. [PMID: 19894756 DOI: 10.1021/bi901517n] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial flagellar motors are molecular machines powered by the electrochemical potential gradient of specific ions across the membrane. The PomA-PomB stator complex of Vibrio alginolyticus couples Na(+) influx to torque generation in this supramolecular motor, but little is known about how Na(+) associates with the PomA-PomB complex in the energy conversion process. Here, by means of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, we directly observed binding of Na(+) to carboxylates in the PomA-PomB complex, including the functionally essential residue Asp24. The Na(+) affinity of Asp24 is estimated to be approximately 85 mM, close to the apparent K(m) value from the swimming motility of the cells (78 mM). At least two other carboxylates are shown to be capable of interacting with Na(+), but with somewhat lower affinities. We conclude that Asp24 and at least two other carboxylates constitute Na(+) interaction sites in the PomA-PomB complex. This work reveals features of the Na(+) pathway in the PomA-PomB Na(+) channel by using vibrational spectroscopy.
Collapse
Affiliation(s)
- Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Seil M, Kabré E, Nagant C, Vandenbranden M, Fontanils U, Marino A, Pochet S, Dehaye JP. Regulation by CRAMP of the responses of murine peritoneal macrophages to extracellular ATP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:569-78. [PMID: 19913495 DOI: 10.1016/j.bbamem.2009.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
Peritoneal macrophages were isolated from wild type (WT) mice and from mice invalidated for the P2X(7) receptor (KO) which had been pretreated with thioglycolate. In cells from WT mice, 1 mM ATP increased the intracellular concentration of calcium ([Ca(2+)](i)), the uptake of ethidium bromide, the production of reactive oxygen species (ROS), the secretion of IL-1beta, the release of oleic acid and of lactate dehydrogenase; it decreased the intracellular concentration of potassium ([K(+)](i)). In KO mice, ATP transiently increased the [Ca(2+)](i) confirming that the P2X(7) receptor is a major receptor of peritoneal macrophages. WKYMVm, an agonist of receptors for formylated peptides (FPR) also increased the [Ca(2+)](i) in murine macrophages. The slight increase of the [Ca(2+)](i) was strongly potentiated by ivermectin confirming the expression of functional P2X(4) receptors by murine peritoneal macrophages. CRAMP, the unique antimicrobial peptide derived from cathelin in mouse inhibited all the responses coupled to P2X(7) receptors in macrophages from WT mice. Agonists for FPR had no effect on the increase of the [Ca(2+)](i) in response to ATP. CRAMP had no effect on the increase of the [Ca(2+)](i) evoked by a combination of ATP and ivermectin in macrophages from P2X(7)-KO mice. In summary CRAMP inhibits the responses secondary to the activation of the murine P2X(7) receptors expressed by peritoneal macrophages. This inhibition is not mediated by FPR receptors and is specific since CRAMP has no effect on the response coupled to P2X(4) receptors. It can thus be concluded that the interaction between P2X(7) receptors and cathelin-derived antimicrobial peptides is species-specific, in some cases (man) positive in others (mouse) negative.
Collapse
Affiliation(s)
- Michèle Seil
- Laboratoire de Chimie biologique et médicale et de Microbiologie pharmaceutique, Institut de Pharmacie C.P. 205/3, Université libre de Bruxelles, Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu J, Strzalka J, Tronin A, Johansson JS, Blasie JK. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, II: Fluorescence and vibrational spectroscopy using a cyanophenylalanine probe. Biophys J 2009; 96:4176-87. [PMID: 19450488 DOI: 10.1016/j.bpj.2009.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/02/2008] [Accepted: 01/07/2009] [Indexed: 11/15/2022] Open
Abstract
We demonstrate that cyano-phenylalanine (Phe(CN)) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-Phe(CN). The Trp to Phe(CN) mutation alters neither the alpha-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this Phe(CN) mutant hbAP-Phe(CN), based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-Phe(CN), enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four Phe(CN) probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-Phe(CN) therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity.
Collapse
Affiliation(s)
- Jing Liu
- Departments of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
49
|
Psakis G, Saidijam M, Shibayama K, Polaczek J, Bettaney KE, Baldwin JM, Baldwin SA, Hope R, Essen LO, Essenberg RC, Henderson PJF. The sodium-dependent D-glucose transport protein of Helicobacter pylori. Mol Microbiol 2009; 71:391-403. [PMID: 19161491 DOI: 10.1111/j.1365-2958.2008.06535.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Helicobacter pylori is a gram-negative pathogenic microaerophile with a particular tropism for the mucosal surface of the gastric epithelium. Despite its obligatory microaerophilic character, it can metabolize D-glucose and/or D-galactose in both oxidative and fermentative pathways via a Na(+)-dependent secondary active transport, a glucokinase and enzymes of the pentose phosphate pathway. We have assigned the Na(+)-dependent transport of glucose to the protein product of the H. pylori 1174 gene. The gene was heterologously expressed in a glucose transport-deficient Escherichia coli strain, where transport activities of radiolabelled D-glucose, D-galactose and 2-deoxy-D-glucose were restored, consistent with the expected specificity of the hexose uptake system in H. pylori. D-mannose was also identified as a substrate. The HP1174 transport protein was purified and reconstituted into proteoliposomes, where sodium dependence of sugar transport activity was demonstrated. Additionally the tryptophan/tyrosine fluorescence of the purified protein showed quenching by 2-deoxy-D-glucose, D-mannose, D-glucose or D-galactose in the presence of sodium ions. This is the first reported purification and characterization of an active glucose transport protein member of the TC 2.1.7 subgroup of the Major Facilitator Superfamily, constituting the route for entry of sugar nutrients into H. pylori. A model is derived of its three-dimensional structure as a paradigm of the family.
Collapse
Affiliation(s)
- Georgios Psakis
- The Astbury Centre for Structural Molecular Biology, Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dzafić E, Klein O, Screpanti E, Hunte C, Mäntele W. Flexibility and dynamics of NhaA Na+/H+-antiporter of Escherichia coli studied by Fourier transform infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 72:102-109. [PMID: 18930435 DOI: 10.1016/j.saa.2008.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/15/2008] [Accepted: 08/20/2008] [Indexed: 05/26/2023]
Abstract
NhaA (41,355Da) is a Na(+)/H(+) antiporter of Escherichia coli which plays a central role in regulation of intracellular pH, cellular Na(+) content, and cell volume [E. Padan, S. Schuldiner, J. Exp. Biol. 196 (1994) 443]. Its activity is strongly regulated by pH and increases over 3 orders of magnitude between pH 7 and 8 [A. Rothman, Y. Gerchman, E. Padan, S. Schuldiner, Biochemistry 36 (1997) 14572]. Protein dynamics and flexibility in the activated and inactivated state, respectively, was analysed by probing accessibility in (1)H/(2)H exchange experiments for the wild type and the mutant G338S which is constitutively active independent of pH [A. Rimon, Y. Gerchman, Z. Kariv, E. Padan, J. Biol. Chem. 273 (1998) 26470]. This was studied by ATR-FTIR difference spectroscopy using a home built microvolume (<5 microl) perfusion chamber [E. Agić, O. Klein, W. Mäntele, Proceedings of the 10th European Conference on the Spectroscopy of Biological Molecules, vol. 93, 2003, ISBN 9634826148; S. Gourion-Arsiquaud, S. Chevance, P. Bouyer, L. Garnier, J.-L. Montillet, A. Bondon, C. Berthomieu, Biochemistry 44 (2005) 8652]. The solution or suspension of the target protein is contained in a chamber with sample volumes of below 5 microl. It is in contact with the ATR crystal and separated from the flowing effector molecules by a dialysis membrane. The flow-ATR unit is characterised by high stability, fast response, and high sensitivity for the IR spectroscopic detection of binding-induced conformational changes and reactions. On the basis of (1)H-(2)H exchange of NhaA followed in the amide I and amide II region of the IR spectrum, it is concluded that the accessible fraction of the polypeptide chain of NhaA increases by more than 10% in the active state. For the mutant, no changes in accessibility were observed for different pH values. The increase of Na(+) concentration increases the extent of exchange. The stability of the wild type protein in the active and inactive form was analysed by measuring the temperature profiles of the IR spectra. A decrease of the structural stability of the protein with activation was observed. Together with the results from (1)H/(2)H exchange, the inactive state represents a more compact form whereas activation induces a more open conformation of the protein.
Collapse
Affiliation(s)
- E Dzafić
- Institut für Biophysik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|