1
|
Wu KY, Qian SY, Faucher A, Tran SD. Advancements in Hydrogels for Corneal Healing and Tissue Engineering. Gels 2024; 10:662. [PMID: 39451315 PMCID: PMC11507397 DOI: 10.3390/gels10100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant attention for their versatile applications across various fields, including biomedical engineering. This review delves into the fundamentals of hydrogels, exploring their definition, properties, and classification. Hydrogels, as three-dimensional networks of crosslinked polymers, possess tunable properties such as biocompatibility, mechanical strength, and hydrophilicity, making them ideal for medical applications. Uniquely, this article offers original insights into the application of hydrogels specifically for corneal tissue engineering, bridging a gap in current research. The review further examines the anatomical and functional complexities of the cornea, highlighting the challenges associated with corneal pathologies and the current reliance on donor corneas for transplantation. Considering the global shortage of donor corneas, this review discusses the potential of hydrogel-based materials in corneal tissue engineering. Emphasis is placed on the synthesis processes, including physical and chemical crosslinking, and the integration of bioactive molecules. Stimuli-responsive hydrogels, which react to environmental triggers, are identified as promising tools for drug delivery and tissue repair. Additionally, clinical applications of hydrogels in corneal pathologies are explored, showcasing their efficacy in various trials. Finally, the review addresses the challenges of regulatory approval and the need for further research to fully realize the potential of hydrogels in corneal tissue engineering, offering a promising outlook for future developments in this field.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Shu Yu Qian
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Anne Faucher
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
3
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Fang Y, Li J, Yang K, Li Z, Chen X, Long Y, Huang Y, Du Y, Wang L. Potential of an Amphiphilic Artificial Corneal Endothelial Layer as a Replacement Option for Damaged Corneal Endothelium. Adv Healthc Mater 2024:e2401563. [PMID: 39086039 DOI: 10.1002/adhm.202401563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Bullous keratopathy, a condition severely impacting vision and potentially leading to corneal blindness, necessitates corneal transplantation. However, the shortage of donor corneas and complex surgical procedures drive the exploration of tissue-engineered corneal endothelial layers. This study develops a transparent, amphiphilic, and cell-free membrane for corneal endothelial replacement. The membrane, securely attached to the posterior surface of the cornea, is created by mixing hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethylacrylate (EGDMA) in a 10:1 ratio. A 50 µL volume is used to obtain a 60 µm hydrophobic membrane on both sides, with one side treated with a polyvinylpyrrolidone (PVP) solution. The resulting membrane is transparent, foldable, biocompatible, amphiphilic, and easily handled. When exposed to 20% sulfur hexafluoride (SF6), the hydrophilic side of the membrane adheres tightly to the corneal Descemet's membrane, preventing water absorption into the corneal stroma, and thus treating bullous keratopathy. Histological test confirms its effectiveness, showing normal corneal structure and low inflammation when implanted in rabbits for up to 100 d. This study showcases the potential of this membrane as a viable option for corneal endothelial replacement, offering a novel approach to address donor tissue scarcity in corneal transplantation.
Collapse
Affiliation(s)
- Yifan Fang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- The Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong, 510050, China
| | - Junyang Li
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Kunkun Yang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhao Li
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- The School of Medicine, Nankai University, Tianjin, 300350, China
| | - Xiaoke Chen
- Department of Biomedical Engineering, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yi Long
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Yanan Du
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| |
Collapse
|
5
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
6
|
Song E, Kwon JW, Park CY, Kang JT, Park K. Alginate Hydrogel Integrated with a Human Fibroblast-Derived Extracellular Matrix Supports Corneal Endothelial Cell Functionality and Suppresses Endothelial-Mesenchymal Transition. ACS Biomater Sci Eng 2024; 10:3855-3867. [PMID: 38780042 DOI: 10.1021/acsbiomaterials.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Human corneal transplantation is still the only option to restore the function of corneal endothelial cells (CECs). Therefore, there is an urgent need for hCEC delivery systems to replace the human donor cornea. Here, we propose an alginate hydrogel (AH)-based delivery system, where a human fibroblast-derived, decellularized extracellular matrix (ECM) was physically integrated with AH. This AH securely combined with the ECM (ECM-AH) was approximately 50 μm thick, transparent, and permeable. The surface roughness and surface potential provided ECM-AH with a favorable microenvironment for CEC adhesion and growth in vitro. More importantly, ECM-AH could support the structural (ZO-1) and functional (Na+/K+-ATPase) markers of hCECs, as assessed via western blotting and quantitative polymerase chain reaction, which were comparable with those of a ferritic nitrocarburizing (FNC)-coated substrate (a positive control). The cell density per unit area was also significantly better with ECM-AH than the FNC substrate at day 7. A simulation test of cell engraftment in vitro showed that hCECs were successfully transferred into the decellularized porcine corneal tissue, where they were mostly alive. Furthermore, we found out that the endothelial-mesenchymal transition (EnMT)-inductive factors (Smad2 and vimentin) were largely declined with the hCECs grown on ECM-AH, whereas the EnMT inhibitory factor (Smad7) was significantly elevated. The difference was statistically significant compared to that of the FNC substrate. Moreover, we also observed that TGF-β1-treated hCECs showed faster recovery of cell phenotype on the ECM. Taken together, our study demonstrates that ECM-AH is a very promising material for hCEC culture and delivery, which endows an excellent microenvironment for cell function and phenotype maintenance.
Collapse
Affiliation(s)
- Euisun Song
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jae Won Kwon
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Jung-Taek Kang
- Biotechnology Research Institute, Mgenplus Co., Ltd, Seoul 06688, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Xie L, Dong X, Ji J, Ouyang C, Wu J, Hou C, Huang T. Fabrication of bioengineered corneal endothelial grafts using an allogeneic cornea-derived matrix. Mater Today Bio 2024; 25:101003. [PMID: 38434572 PMCID: PMC10907766 DOI: 10.1016/j.mtbio.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Corneal endothelial keratoplasty has been the primary treatment method of endothelial decompensation, but it is often limited in clinical practice due to global shortage of donor cornea. Here, we explored using an ultra-thin allogeneic cornea-derived matrix (uACM) films as a substrate for constructing bioengineered corneal endothelial grafts. We evaluated the films' optical, mechanical, and structural properties, and measured the composition of the extracellular matrix. The uACM was an ultrathin and curved cornea-shaped film with favorable optical and mechanical properties. The fabrication process efficiently preserved corneal extracellular matrix composition and significantly decreased cellular components. Moreover, human corneal endothelial cells and rabbit corneal endothelial cells (RCECs) can adhere and grow on the uACM films with a positive expression of the corneal endothelial functional markers Na+/K+-ATPase and ZO-1. The successful transplantation of uACM with RCECs grafts into the rabbit model of endothelial dysfunction via Descemet membrane endothelial keratoplasty resulted in prompt restoration of corneal transparency and thickness. During the four-week follow-up period, the uACM with RCECs implanted eyes exhibited comparable corneal transparency, central corneal thickness, and endothelial cell count to that of the healthy rabbit. Histologic examination revealed that the grafts were successfully attached and integrated onto the posterior surface of the corneal stroma. The uACM achieved biomimetic reconstruction in terms of both composition and structure, and can be used to construct the bioengineered corneal endothelial grafts. These results indicate that constructing bioengineered corneal endothelial grafts from discarded human corneal tissues may pave the way for generating high-quality corneal endothelial grafts for transplantation.
Collapse
Affiliation(s)
- Lijie Xie
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Dong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chen Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Zhang X, Wang H, Sun X, Zhao L, Li T, Qi X, Wang T, Zhou Q, Shi W. Development of Thermoplastic Polyurethane Films for the Replacement of Corneal Endothelial Function of Transparency Maintenance. ACS APPLIED BIO MATERIALS 2023; 6:5458-5469. [PMID: 37967451 DOI: 10.1021/acsabm.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Endothelial keratoplasty is the main surgical procedure for treating corneal endothelial dysfunction (CED), which is limited by the global shortage of donor corneas. Herein, we developed and evaluated the modified thermoplastic polyurethane (M-TPU) films with gelatin-glycidyl methacrylate to replace the corneal endothelial function and maintain corneal transparency. The films displayed comparable light transmission characteristics with normal corneas and clinically favorable mechanical properties for surgical manipulation. After surface modification, the hydrophilicity and biocompatibility of M-TPU films were significantly improved. In the rabbit CED model, the M-TPU implants exhibited firm adhesion to the exposed stromal surface. The rabbit corneal transparency and thickness could be restored completely within 1 week of M-TPU film implantation. There was no significant inflammatory reaction and immune rejection during the follow-up of 1 month. Proteomic analysis suggested that the complement inhibition, the increase of mineral absorption, and the decrease of P53 apoptosis signaling pathway and lysine degradation might be beneficial in maintaining the corneal transparency. Overall, our study demonstrated the potential of M-TPU films as artificial implants for the replacement of corneal endothelial function to restore corneal thickness and transparency.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan 250000, China
| | - Hongwei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Xiuli Sun
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Long Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Tan Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Ting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan 250000, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao 266000, China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250000, China
- School of Ophthalmology, Shandong First Medical University, Jinan 250000, China
| |
Collapse
|
9
|
Chi M, Yuan B, Xie Z, Hong J. The Innovative Biomaterials and Technologies for Developing Corneal Endothelium Tissue Engineering Scaffolds: A Review and Prospect. Bioengineering (Basel) 2023; 10:1284. [PMID: 38002407 PMCID: PMC10669703 DOI: 10.3390/bioengineering10111284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Corneal transplantation is the only treatment for corneal endothelial blindness. However, there is an urgent need to find substitutes for corneal endothelium grafts due to the global shortage of donor corneas. An emerging research field focuses on the construction of scaffold-based corneal endothelium tissue engineering (CETE). Long-term success in CETE transplantation may be achieved by selecting the appropriate biomaterials as scaffolds of corneal endothelial cells and adding bioactive materials to promote cell activity. This article reviews the research progress of CETE biomaterials in the past 20 years, describes the key characteristics required for corneal endothelial scaffolds, and summarizes the types of materials that have been reported. Based on these, we list feasible improvement strategies for biomaterials innovation. In addition, we describe the improved techniques for the scaffolds' surface topography and drug delivery system. Some promising technologies for constructing CETE are proposed. However, some questions have not been answered yet, and clinical trials and industrialization should be carried out with caution.
Collapse
Affiliation(s)
- Miaomiao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| | - Bowei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| | - Zijun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| |
Collapse
|
10
|
Sasseville S, Karami S, Tchatchouang A, Charpentier P, Anney P, Gobert D, Proulx S. Biomaterials used for tissue engineering of barrier-forming cell monolayers in the eye. Front Bioeng Biotechnol 2023; 11:1269385. [PMID: 37840667 PMCID: PMC10569698 DOI: 10.3389/fbioe.2023.1269385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell monolayers that form a barrier between two structures play an important role for the maintenance of tissue functionality. In the anterior portion of the eye, the corneal endothelium forms a barrier that controls fluid exchange between the aqueous humor of the anterior chamber and the corneal stroma. This monolayer is central in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). FECD is a common corneal disease, in which corneal endothelial cells deposit extracellular matrix that increases the thickness of its basal membrane (Descemet's membrane), and forms excrescences (guttae). With time, there is a decrease in endothelial cell density that generates vision loss. Transplantation of a monolayer of healthy corneal endothelial cells on a Descemet membrane substitute could become an interesting alternative for the treatment of this pathology. In the back of the eye, the retinal pigment epithelium (RPE) forms the blood-retinal barrier, controlling fluid exchange between the choriocapillaris and the photoreceptors of the outer retina. In the retinal disease dry age-related macular degeneration (dry AMD), deposits (drusen) form between the RPE and its basal membrane (Bruch's membrane). These deposits hinder fluid exchange, resulting in progressive RPE cell death, which in turn generates photoreceptor cell death, and vision loss. Transplantation of a RPE monolayer on a Bruch's membrane/choroidal stromal substitute to replace the RPE before photoreceptor cell death could become a treatment alternative for this eye disease. This review will present the different biomaterials that are proposed for the engineering of a monolayer of corneal endothelium for the treatment of FECD, and a RPE monolayer for the treatment of dry AMD.
Collapse
Affiliation(s)
- Samantha Sasseville
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Samira Karami
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Ange Tchatchouang
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pascale Charpentier
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Princia Anney
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Delphine Gobert
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre universitaire d’ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Stéphanie Proulx
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Luo X, He X, Zhao H, Ma J, Tao J, Zhao S, Yan Y, Li Y, Zhu S. Research Progress of Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1976. [PMID: 37446492 DOI: 10.3390/nano13131976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Nowadays, treating corneal diseases arising from injury to the corneal endothelium necessitates donor tissue, but these corneas are extremely scarce. As a result, researchers are dedicating significant efforts to exploring alternative approaches that do not rely on donor tissues. Among these, creating a tissue-engineered scaffold on which corneal endothelial cells can be transplanted holds particular fascination. Numerous functional materials, encompassing natural, semi-synthetic, and synthetic polymers, have already been studied in this regard. In this review, we present a comprehensive overview of recent advancements in using polymer biomaterials as scaffolds for corneal endothelium tissue engineering. Initially, we analyze and present the key properties necessary for an effective corneal endothelial implant utilizing polymer biomaterials. Subsequently, we focus on various emerging biomaterials as scaffolds for corneal endothelium tissue engineering. We discuss their modifications (including natural and synthetic composites) and analyze the effect of micro- and nano-topological morphology on corneal endothelial scaffolds. Lastly, we highlight the challenges and prospects of these materials in corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Xiaoying Luo
- State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin He
- State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhao
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai 200080, China
| | - Jun Ma
- UniSA STEM and Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Jie Tao
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai 200080, China
| | - Songjiao Zhao
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai 200080, China
| | - Yan Yan
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai 200080, China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Mohanta M, Thirugnanam A. Development of Multifunctional Commercial Pure Titanium-Polyethylene Glycol Drug-Eluting Substrates with Enhanced Optical and Antithrombotic Properties. Cardiovasc Eng Technol 2023; 14:37-51. [PMID: 35701708 DOI: 10.1007/s13239-022-00637-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Development of multifunctional advanced stent implants (metal/polymer composite)-drug-eluting stents with superior material and optical properties is still a challenge. In this research work, multifunctional metal-polymer composite drug-eluting substrates (DES) for stent application were developed by using commercially pure titanium (cpTi) and polyethylene glycol (PEG). METHODS Surface modifications on titanium substrates were carried out by sodium hydroxide under various concentrations; 5M (6 and 24 h) and 10M (6 and 24 h). It induces a nanoporous structure which facilitates the larger area for encapsulation of the drug, Aspirin (ASA) via intermolecular forces followed by polymer coating of PEG (MW-20,000) by physical adsorption process, which is structured as layer-by-layer gathering. RESULTS The developed cpTi-PEG DES were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), optical energy bandgap, static contact angle measurement, antithrombotic and drug release studies. The development of sodium titanate oxide prompted surface nano-features revealed by SEM and XRD. Moreover, FTIR confirms the presence of ASA and PEG functional groups over the cpTi surface. Drug release studies fitted with Ritger-Peppas kinetic model (≤ 60%), which indicates the super case II transport mechanisms (n > 1). Further UV-visible absorbance spectrum was quantified by the Tauc plot, which shows the broadening of the energy bandgap (Eg). In addition, the shrink in blood clots was more around the Tib2/ASA/PEG.Please confirm the inserted city name in affiliations [1,2] are correct and amend if necessary.Yes, city name "Rourkela" is correct. CONCLUSION Developed cpTi-PEG DES has improved optical properties and prevent thrombus formation which suggesting it a potential substrate to overcome prime clinical challenges.
Collapse
Affiliation(s)
- Monalisha Mohanta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - A Thirugnanam
- Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Room No. 206, Rourkela, Odisha, 769008, India.
| |
Collapse
|
13
|
Petsoglou C, Weinel L. Biomaterials and their impact on corneal transplantation and eye banking. Clin Exp Ophthalmol 2023; 51:7-8. [PMID: 36631989 DOI: 10.1111/ceo.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Constantinos Petsoglou
- Speciality of Ophthalmology, Save Sight Institute, University of Sydney, Camperdown, New South Wales, Australia.,NSW Tissue Bank, Cornea Unit, Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Luke Weinel
- The Eye Bank of South Australia, Department of Surgical and Perioperative Medicine, Ophthalmology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
14
|
Bunk C, Löser L, Fribiczer N, Komber H, Jakisch L, Scholz R, Voit B, Seiffert S, Saalwächter K, Lang M, Böhme F. Amphiphilic Model Networks Based on PEG and PCL Tetra-arm Star Polymers with Complementary Reactivity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carolin Bunk
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lucas Löser
- Institut für Physik - NMR Group, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Nora Fribiczer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Lothar Jakisch
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Reinhard Scholz
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kay Saalwächter
- Institut für Physik - NMR Group, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle, Germany
| | - Michael Lang
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Frank Böhme
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
15
|
Bosch BM, Bosch-Rue E, Perpiñan-Blasco M, Perez RA. Design of functional biomaterials as substrates for corneal endothelium tissue engineering. Regen Biomater 2022; 9:rbac052. [PMID: 35958516 PMCID: PMC9362998 DOI: 10.1093/rb/rbac052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/12/2022] Open
Abstract
Corneal endothelium defects are one of the leading causes of blindness worldwide. The actual treatment is transplantation, which requires the use of human cadaveric donors, but it faces several problems, such as global shortage of donors. Therefore, new alternatives are being developed and, among them, cell therapy has gained interest in the last years due to its promising results in tissue regeneration. Nevertheless, the direct administration of cells may sometimes have limited success due to the immune response, hence requiring the combination with extracellular mimicking materials. In this review, we present different methods to obtain corneal endothelial cells from diverse cell sources such as pluripotent or multipotent stem cells. Moreover, we discuss different substrates in order to allow a correct implantation as a cell sheet and to promote an enhanced cell behavior. For this reason, natural or synthetic matrixes that mimic the native environment have been developed. These matrixes have been optimized in terms of their physicochemical properties, such as stiffness, topography, composition and transparency. To further enhance the matrixes properties, these can be tuned by incorporating certain molecules that can be delivered in a sustained manner in order to enhance biological behavior. Finally, we elucidate future directions for corneal endothelial regeneration, such as 3D printing, in order to obtain patient-specific substrates.
Collapse
Affiliation(s)
- Begona M Bosch
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Elia Bosch-Rue
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Marina Perpiñan-Blasco
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| | - Roman A Perez
- Universitat Internacional de Catalunya Bioengineering Institute of Technology (BIT), , Sant Cugat del Valles, Barcelona, 08195, Spain
| |
Collapse
|
16
|
Delivery of Cells to the Cornea Using Synthetic Biomaterials. Cornea 2022; 41:1325-1336. [DOI: 10.1097/ico.0000000000003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
|
17
|
Yazdanpanah G, Shen X, Nguyen T, Anwar KN, Jeon O, Jiang Y, Pachenari M, Pan Y, Shokuhfar T, Rosenblatt MI, Alsberg E, Djalilian AR. A Light-Curable and Tunable Extracellular Matrix Hydrogel for In Situ Suture-Free Corneal Repair. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2113383. [PMID: 35692510 PMCID: PMC9187264 DOI: 10.1002/adfm.202113383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 05/15/2023]
Abstract
Corneal injuries are a major cause of blindness worldwide. To restore corneal integrity and clarity, there is a need for regenerative bio-integrating materials for in-situ repair and replacement of corneal tissue. Here, we introduce Light-curable COrnea Matrix (LC-COMatrix), a tunable material derived from decellularized porcine cornea extracellular matrix containing un-denatured collagen and sulfated glycosaminoglycans. It is a functionalized hydrogel with proper swelling behavior, biodegradation, and viscosity that can be cross-linked in situ with visible light, providing significantly enhanced biomechanical strength, stability, and adhesiveness. Cross-linked LC-COMatrix strongly adheres to human corneas ex vivo and effectively closes full-thickness corneal perforations with tissue loss. Likewise, in vivo, LC-COMatrix seals large corneal perforations, replaces partial-corneal stromal defects and bio-integrates into the tissue in rabbit models. LC-COMatrix is a natural ready-to-apply bio-integrating adhesive that is representative of native corneal matrix with potential applications in corneal and ocular surgeries.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Yizhou Jiang
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Mohammad Pachenari
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago; Chicago, IL, USA
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago; Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois at Chicago; Chicago, Illinois, USA
| |
Collapse
|
18
|
Roy A, Chaurasia S, Fernandes M, Mohamed A, Murthy S, Das S. Effect of Donor Age and Corneal Endothelial Cell Density on Non-utilization of Donor Corneal Tissues: A Study From Indian Eye Banks. Cornea 2022; 41:746-750. [PMID: 34320599 DOI: 10.1097/ico.0000000000002783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To study the causes of non-utilization of donor corneas and assess whether non-utilized tissues differ from utilized tissues with regard to age and endothelial cell density (ECD). METHODS Aretrospective, cross-sectional analyses of all donor corneas collected from a network of 4 eye banks of a tertiary eye care institute in India during a 1-year period (January to December 2019) was conducted. All donor corneas were assessed for tissue quality by slit lamp evaluation, donor age, and specular microscopy. The causes of non-utilization and effect of donor age and ECD on tissue utilization were studied. RESULTS A total of 10,969 corneas were harvested during the study period; 4618 (42.1%) tissues were discarded. The main causes of non-utilization were poor tissue quality accounting for 86.16% (n = 3979) of all discarded corneas. The mean donor age was 50.7 ± 2.9 years and 63.3 ± 2.3 years for used and discarded corneas, respectively (P < 0.0001). The mean ECD of donor tissues was significantly (P < 0.0001) higher in the utilization group (2787.3 ± 77.4 cells/mm2) than that in the non-utilization group (2394.4 ± 82.5 cells/mm2). Donor age and ECD and their interaction were significant (P < 0.001) predictors of tissue utilization rate. CONCLUSIONS Donor age and ECD and their interaction were significantly associated with the rate of utilization of donor corneal tissues.
Collapse
Affiliation(s)
- Aravind Roy
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, Vijayawada, Andhra Pradesh, India
| | - Sunita Chaurasia
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, Hyderabad, Andhra Pradesh, India
| | - Merle Fernandes
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, Visakhapatnam, Andhra Pradesh, India
| | - Ashik Mohamed
- Ophthalmic Biophysics Department, L V Prasad Eye Institute, Hyderabad, Andhra Pradesh, India; and
| | - Somasheila Murthy
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, Hyderabad, Andhra Pradesh, India
| | - Sujata Das
- Cornea and Anterior Segment Service, L V Prasad Eye Institute, Bhubaneswar, Andhra Pradesh, India
| |
Collapse
|
19
|
Delaey J, De Vos L, Koppen C, Dubruel P, Van Vlierberghe S, Van den Bogerd B. Tissue engineered scaffolds for corneal endothelial regeneration: a material's perspective. Biomater Sci 2022; 10:2440-2461. [PMID: 35343525 DOI: 10.1039/d1bm02023d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, the treatment of corneal diseases caused by damage to the corneal endothelium requires a donor cornea. Because of their limited availability (1 donor cornea for 70 patients in need), researchers are investigating alternative approaches that are independent of donor tissue. One of them includes the development of a tissue engineered scaffold onto which corneal endothelial cells are seeded. In order to function as a suitable substrate, some of its essential properties including thickness, permeability, transparency and mechanical strength should meet certain demands. Additionally, the membrane should be biocompatible and allow the formation of a functional endothelium on the surface. Many materials have already been investigated in this regard including natural, semi-synthetic and synthetic polymers. In the current review, we present an overview of their characteristics and provide a critical view on the methods exploited for material characterization. Next, also the suitability of scaffolds to serve their purpose is discussed along with an overview of natural tissues (e.g. amniotic membrane and lens capsule) previously investigated for this application. Eventually, we propose a consistent approach to be exploited ideally for membrane characterization in future research. This will allow a scientifically sound comparison of materials and membranes investigated by different research groups, hence benefitting research towards the creation of a suitable/optimal tissue engineered endothelial graft.
Collapse
Affiliation(s)
- Jasper Delaey
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Lobke De Vos
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Carina Koppen
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium. .,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Bert Van den Bogerd
- Antwerp Research Group for Ocular Science (ARGOS), Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
20
|
Song ES, Park JH, Ha SS, Cha PH, Kang JT, Park CY, Park K. Novel Corneal Endothelial Cell Carrier Couples a Biodegradable Polymer and a Mesenchymal Stem Cell-Derived Extracellular Matrix. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12116-12129. [PMID: 35238557 DOI: 10.1021/acsami.2c01709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we report a transparent, biodegradable, and cell-adhesive carrier that is securely coupled with the extracellular matrix (ECM) for corneal endothelial cell (CEC) transplantation. To fabricate a CEC carrier, poly(lactide-co-caprolactone) (PLCL) solution was poured onto the decellularized ECM (UMDM) derived from in vitro cultured umbilical cord blood-MSCs. Once completely dried, ECM-PLCL was then peeled off from the substrate. It was 20 μm thick, transparent, rich in fibronectin and collagen type IV, and easy to handle. Surface characterizations exhibited that ECM-PLCL was very rough (54.0 ± 4.50 nm) and uniformly covered in high density by ECM and retained a positive surface charge (65.2 ± 57.8 mV), as assessed via atomic force microscopy. Human CECs (B4G12) on the ECM-PLCL showed good cell attachment, with a cell density similar to the normal cornea. They could also maintain a cell phenotype, with nicely formed cell-cell junctions as assessed via ZO-1 and N-cadherin at 14 days. This was in sharp contrast to the CEC behaviors on the FNC-coated PLCL (positive control). A function-related marker, Na+/K+-ATPase, was also identified via western blot and immunofluorescence. In addition, primary rabbit CECs showed a normal shape and they could express structural and functional proteins on the ECM-PLCL. A simulation test confirmed that CECs loaded on the ECM-PLCL were successfully engrafted into the decellularized porcine corneal tissue, with a high engraftment level and cell viability. Moreover, ECM-PLCL transplantation into the anterior chamber of the rabbit eye for 8 weeks proved the maintenance of normal cornea properties. Taken together, this study demonstrates that our ECM-PLCL can be a promising cornea endothelium graft with an excellent ECM microenvironment for CECs.
Collapse
Affiliation(s)
- Eui Sun Song
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Joo-Hee Park
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Sang Su Ha
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Pu-Hyeon Cha
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul 06688, Republic of Korea
| | - Jung-Taek Kang
- Biotechnology Research Institute, Mgenplus Co., Ltd., Seoul 06688, Republic of Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
21
|
Himmler M, Schubert DW, Fuchsluger TA. Examining the Transmission of Visible Light through Electrospun Nanofibrous PCL Scaffolds for Corneal Tissue Engineering. NANOMATERIALS 2021; 11:nano11123191. [PMID: 34947541 PMCID: PMC8705195 DOI: 10.3390/nano11123191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022]
Abstract
The transparency of nanofibrous scaffolds is of highest interest for potential applications like corneal wound dressings in corneal tissue engineering. In this study, we provide a detailed analysis of light transmission through electrospun polycaprolactone (PCL) scaffolds. PCL scaffolds were produced via electrospinning, with fiber diameters in the range from (35 ± 13) nm to (167 ± 35) nm. Light transmission measurements were conducted using UV-vis spectroscopy in the range of visible light and analyzed with respect to the influence of scaffold thickness, fiber diameter, and surrounding medium. Contour plots were compiled for a straightforward access to light transmission values for arbitrary scaffold thicknesses. Depending on the fiber diameter, transmission values between 15% and 75% were observed for scaffold thicknesses of 10 µm. With a decreasing fiber diameter, light transmission could be improved, as well as with matching refractive indices of fiber material and medium. For corneal tissue engineering, scaffolds should be designed as thin as possible and fabricated from polymers with a matching refractive index to that of the human cornea. Concerning fiber diameter, smaller fiber diameters should be favored for maximizing graft transparency. Finally, a novel, semi-empirical formulation of light transmission through nanofibrous scaffolds is presented.
Collapse
Affiliation(s)
- Marcus Himmler
- Department of Ophthalmology, University Medical Center Rostock, Doberaner Straße 140, 18057 Rostock, Germany
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nuremberg, Martenstraße 7, 91058 Erlangen, Germany;
- Correspondence: (M.H.); (T.A.F.)
| | - Dirk W. Schubert
- Institute of Polymer Materials, Friedrich-Alexander University Erlangen-Nuremberg, Martenstraße 7, 91058 Erlangen, Germany;
| | - Thomas A. Fuchsluger
- Department of Ophthalmology, University Medical Center Rostock, Doberaner Straße 140, 18057 Rostock, Germany
- Correspondence: (M.H.); (T.A.F.)
| |
Collapse
|
22
|
Optimization of polycaprolactone - based nanofiber matrices for the cultivation of corneal endothelial cells. Sci Rep 2021; 11:18858. [PMID: 34552187 PMCID: PMC8458296 DOI: 10.1038/s41598-021-98426-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/02/2021] [Indexed: 01/24/2023] Open
Abstract
Posterior lamellar transplantation of the eye’ s cornea (DSAEK, DMEK) currently is the gold standard for treating patients with corneal endothelial cell and back surface pathologies resulting in functional impairment. An artificial biomimetic graft carrying human corneal endothelium could minimize the dependency on human donor corneas giving access to this vision-restoring surgery to large numbers of patients, thus reducing current long waiting lists. In this study, four groups of electrospun nanofibrous scaffolds were compared: polycaprolactone (PCL), PCL/collagen, PCL/gelatin and PCL/chitosan. Each of the scaffolds were tissue-engineered with human corneal endothelial cells (HCEC-B4G12) and analyzed with regard to their potential application as artificial posterior lamellar grafts. Staining with ZO-1 and Na+/K+-ATPase antibodies revealed intact cell functionalities. It could be shown, that blending leads to decreasing contact angle, whereby a heterogeneous blend morphology could be revealed. Scaffold cytocompatibility could be confirmed for all groups via live/dead staining, whereby a significant higher cell viability could be observed for the collagen and gelatine blended matrices with 97 ± 3% and 98 ± 2% living cells respectively. TEM images show the superficial anchoring of the HCECs onto the scaffolds. This work emphasizes the benefit of blended PCL nanofibrous scaffolds for corneal endothelial keratoplasty.
Collapse
|
23
|
Baird PN, Machin H, Brown KD. Corneal supply and the use of technology to reduce its demand: A review. Clin Exp Ophthalmol 2021; 49:1078-1090. [PMID: 34310836 DOI: 10.1111/ceo.13978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
Recovery and access to end-of-life corneal tissue for corneal transplantation, training and research is globally maldistributed. The reasons for the maldistribution are complex and multifaceted, and not well defined or understood. Currently there are few solutions available to effectively address these issues. This review provides an overview of the system, key issues impacting recovery and allocation and emphasises how end-user ophthalmologists and researchers, with support from administrators and the wider sector, can assist in increasing access long-term through sustaining eye banks nationally and globally. We posit that prevention measures and improved surgical techniques, together with the development of novel therapies will play a significant role in reducing demand and enhance the equitable allocation of corneas.
Collapse
Affiliation(s)
- Paul N Baird
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Lions Eye Donation Service, Melbourne, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| |
Collapse
|
24
|
Català P, Thuret G, Skottman H, Mehta JS, Parekh M, Ní Dhubhghaill S, Collin RWJ, Nuijts RMMA, Ferrari S, LaPointe VLS, Dickman MM. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res 2021; 87:100987. [PMID: 34237411 DOI: 10.1016/j.preteyeres.2021.100987] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The state of the art therapy for treating corneal endothelial disease is transplantation. Advances in the reproducibility and accessibility of surgical techniques are increasing the number of corneal transplants, thereby causing a global deficit of donor corneas and leaving 12.7 million patients with addressable visual impairment. Approaches to regenerate the corneal endothelium offer a solution to the current tissue scarcity and a treatment to those in need. Methods for generating corneal endothelial cells into numbers that could address the current tissue shortage and the possible strategies used to deliver them have now become a therapeutic reality with clinical trials taking place in Japan, Singapore and Mexico. Nevertheless, there is still a long way before such therapies are approved by regulatory bodies and become clinical practice. Moreover, acellular corneal endothelial graft equivalents and certain drugs could provide a treatment option for specific disease conditions without the need of donor tissue or cells. Finally, with the emergence of gene modulation therapies to treat corneal endothelial disease, it would be possible to treat presymptomatic patients or those presenting early symptoms, drastically reducing the need for donor tissue. It is necessary to understand the most recent developments in this rapidly evolving field to know which conditions could be treated with which approach. This article provides an overview of the current and developing regenerative medicine therapies to treat corneal endothelial disease and provides the necessary guidance and understanding towards the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Pere Català
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Gilles Thuret
- Laboratory of Biology, Engineering and Imaging of Corneal Graft, BiiGC, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France; Institut Universitaire de France, Paris, France
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University Singapore Medical School, Singapore; Singapore National Eye Centre, Singapore
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK; The Veneto Eye Bank Foundation, Venice, Italy; Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sorcha Ní Dhubhghaill
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
25
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
26
|
Current development of alternative treatments for endothelial decompensation: Cell-based therapy. Exp Eye Res 2021; 207:108560. [PMID: 33811914 DOI: 10.1016/j.exer.2021.108560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Current treatment for corneal endothelial dysfunction consists in the replacement of corneal endothelium by keratoplasty. Owing to the scarcity of donor corneas and the increasing number of transplants, alternative treatments such as cell-based therapies are necessary. In this article, we highlight the biological aspects of the cornea and the corneal endothelium, as well as the context that surrounds the need for new alternatives to conventional keratoplasty. We then review some of those experimental treatments in more detail, focusing on the development of the in vitro and preclinical phases of two cell-based therapies: tissue-engineered endothelial keratoplasty (TE-EK) and cell injection. In the case of TE-EK graft construction, we analyse the current progress, considering all the requirements it must meet in order to be functional. Moreover, we discuss the inherent drawbacks of endothelial keratoplasties, which TE-EK grafts should overcome in order to make surgical intervention easier and to improve the outcomes of current endothelial keratoplasties. Finally, we analyse the development of preclinical trials and their limitations in terms of performing an optimal functional evaluation of cell-based therapy, and we conclude by discussing early clinical trials in humans.
Collapse
|
27
|
Li PC, Chen SC, Hsueh YJ, Shen YC, Tsai MY, Hsu LW, Yeh CK, Chen HC, Huang CC. Gelatin scaffold with multifunctional curcumin-loaded lipid-PLGA hybrid microparticles for regenerating corneal endothelium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111753. [DOI: 10.1016/j.msec.2020.111753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 01/21/2023]
|
28
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
29
|
Hancox Z, Heidari Keshel S, Yousaf S, Saeinasab M, Shahbazi MA, Sefat F. The progress in corneal translational medicine. Biomater Sci 2020; 8:6469-6504. [PMID: 33174878 DOI: 10.1039/d0bm01209b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cornea tissue is in high demand by tissue donation centres globally, and thus tissue engineering cornea, which is the main topic of corneal translational medicine, can serve as a limitless alternative to a donated human cornea tissue. Tissue engineering aims to produce solutions to the challenges associated with conventional cornea tissue, including transplantation and use of human amniotic membrane (HAM), which have issues with storage and immune rejection in patients. Accordingly, by carefully selecting biomaterials and fabrication methods to produce these therapeutic tissues, the demand for cornea tissue can be met, with an improved healing outcome for recipients with less associated harmful risks. In this review paper, we aim to present the recent advancements in the research and clinical applications of cornea tissue, applications including biomaterial selection, fabrication methods, scaffold structure, cellular response to these scaffolds, and future advancements of these techniques.
Collapse
Affiliation(s)
- Zoe Hancox
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Patrickios CS, Matyjaszewski K. Amphiphilic polymer co‐networks: 32 years old and growing stronger – a perspective. POLYM INT 2020. [DOI: 10.1002/pi.6138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
31
|
Xie L, Ouyang C, Ji J, Wu J, Dong X, Hou C, Huang T. Construction of bioengineered corneal stromal implants using an allogeneic cornea-derived matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111673. [PMID: 33545838 DOI: 10.1016/j.msec.2020.111673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023]
Abstract
The bioengineering of corneal scaffolds that mimic native human cornea has attracted interest owing to the scarcity of donor corneas for the transplantation-based treatment of corneal blindness. However, an optimally engineered corneal tissue for clinical use has yet to emerge. Herein, human corneal tissues discarded during allogeneic corneal transplantation surgery were used to construct allogeneic cornea-derived matrix (ACM) scaffolds with favorable optical properties and structural strength. During scaffold fabrication, collagen and glycosaminoglycan levels were well preserved, while DNA decreased significantly. Scanning electron microscopy revealed the presence of fiber-like structures on the scaffold surface and specific structures featuring multiple interlaced lamellae in cross-sections. Moreover, corneal epithelial cells grown on the ACM formed a continuous multi-stratified epithelium with a strong expression of the corneal epithelial differentiation marker CK3/12, gap junction marker Connexin43, and stem-cell-specific marker p63α, while corneal stromal cells expressed the keratocyte-specific marker KERA and the adhesion marker integrin β1. When the ACM was implanted into rabbit corneal stromal pockets, the rabbit cornea remained transparent throughout the follow-up period. These results indicate that the construction of corneal stromal implants from discarded human corneal tissues may pave the way for the generation of high-quality corneal tissue for transplantation.
Collapse
Affiliation(s)
- Lijie Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Chen Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Jing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Xiaojuan Dong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Chao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China
| | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, PR China.
| |
Collapse
|
32
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-Rafii A, Djalilian AR. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng Regen Med 2020; 17:567-593. [PMID: 32696417 PMCID: PMC7373337 DOI: 10.1007/s13770-020-00262-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. METHODS In this review, we first discussed the anatomy of the cornea and the required properties for reconstructing layers of the cornea. Regenerative approaches are divided into two main categories; using direct cell/growth factor delivery or using scaffold-based cell delivery. It is expected delivered cells migrate and integrate into the host tissue and restore its structure and function to restore vision. Growth factor delivery also has shown promising results for corneal surface regeneration. Scaffold-based approaches are categorized based on the type of scaffold, since it has a significant impact on the efficiency of regeneration, into the hydrogel and non-hydrogel based scaffolds. Various types of cells, biomaterials, and techniques are well covered. RESULTS The most important characteristics to be considered for biomaterials in corneal regeneration are suitable mechanical properties, biocompatibility, biodegradability, and transparency. Moreover, a curved shape structure and spatial arrangement of the fibrils have been shown to mimic the corneal extracellular matrix for cells and enhance cell differentiation. CONCLUSION Tissue engineering and regenerative medicine approaches showed to have promising outcomes for corneal regeneration. However, besides proper mechanical and optical properties, other factors such as appropriate sterilization method, storage, shelf life and etc. should be taken into account in order to develop an engineered cornea for clinical trials.
Collapse
Affiliation(s)
- S Sharareh Mahdavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1200 W Harrison St, Chicago, IL, 60607, USA
| |
Collapse
|
34
|
Brown KD, Dusting GJ, Daniell M. Emerging Technologies to Solve the Key Issues in Endothelial Keratoplasty. CURRENT OPHTHALMOLOGY REPORTS 2020. [DOI: 10.1007/s40135-020-00251-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Fuest M, Yam GHF, Mehta JS, Duarte Campos DF. Prospects and Challenges of Translational Corneal Bioprinting. Bioengineering (Basel) 2020; 7:bioengineering7030071. [PMID: 32640721 PMCID: PMC7552635 DOI: 10.3390/bioengineering7030071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal transplantation remains the ultimate treatment option for advanced stromal and endothelial disorders. Corneal tissue engineering has gained increasing interest in recent years, as it can bypass many complications of conventional corneal transplantation. The human cornea is an ideal organ for tissue engineering, as it is avascular and immune-privileged. Mimicking the complex mechanical properties, the surface curvature, and stromal cytoarchitecure of the in vivo corneal tissue remains a great challenge for tissue engineering approaches. For this reason, automated biofabrication strategies, such as bioprinting, may offer additional spatial control during the manufacturing process to generate full-thickness cell-laden 3D corneal constructs. In this review, we discuss recent advances in bioprinting and biomaterials used for in vitro and ex vivo corneal tissue engineering, corneal cell-biomaterial interactions after bioprinting, and future directions of corneal bioprinting aiming at engineering a full-thickness human cornea in the lab.
Collapse
Affiliation(s)
- Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence: (M.F.); (D.F.D.C.)
| | - Gary Hin-Fai Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Singapore National Eye Centre, Singapore 169856, Singapore
| | - Daniela F. Duarte Campos
- Institute of Applied Medical Engineering, RWTH Aachen University, 52074 Aachen, Germany
- DWI Leibniz Institute for Interactive Materials, 52074 Aachen, Germany
- Correspondence: (M.F.); (D.F.D.C.)
| |
Collapse
|
36
|
Forget A, Rojas D, Waibel M, Pencko D, Gunenthiran S, Ninan N, Loudovaris T, Drogemuller C, Coates PT, Voelcker NH, Blencowe A. Facile preparation of tissue engineering scaffolds with pore size gradients using the muesli effect and their application to cell spheroid encapsulation. J Biomed Mater Res B Appl Biomater 2020; 108:2495-2504. [DOI: 10.1002/jbm.b.34581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/14/2019] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Aurelien Forget
- School of Pharmacy and Medical ScienceUniversity of South Australia Adelaide South Australia Australia
- Institute for Macromolecular ChemistryUniversity of Freiburg Freiburg Germany
| | - Darling Rojas
- The Centre for Clinical and Experimental Transplantation (CCET)The Royal Adelaide Hospital Adelaide South Australia Australia
| | - Michaela Waibel
- Immunology and Diabetes UnitSt Vincent's Institute of Medical Research Fitzroy Victoria Australia
| | - Daniella Pencko
- The Centre for Clinical and Experimental Transplantation (CCET)The Royal Adelaide Hospital Adelaide South Australia Australia
- Faculty of Health and Medical Sciences, School of MedicineThe University of Adelaide Adelaide South Australia Australia
| | - Satyathiran Gunenthiran
- School of Pharmacy and Medical ScienceUniversity of South Australia Adelaide South Australia Australia
- Future Industries InstituteUniversity of South Australia Mawson Lakes South Australia Australia
| | - Neethu Ninan
- School of Pharmacy and Medical ScienceUniversity of South Australia Adelaide South Australia Australia
- Future Industries InstituteUniversity of South Australia Mawson Lakes South Australia Australia
| | - Thomas Loudovaris
- Immunology and Diabetes UnitSt Vincent's Institute of Medical Research Fitzroy Victoria Australia
| | - Chris Drogemuller
- The Centre for Clinical and Experimental Transplantation (CCET)The Royal Adelaide Hospital Adelaide South Australia Australia
- Faculty of Health and Medical Sciences, School of MedicineThe University of Adelaide Adelaide South Australia Australia
| | - Patrick T. Coates
- The Centre for Clinical and Experimental Transplantation (CCET)The Royal Adelaide Hospital Adelaide South Australia Australia
- Faculty of Health and Medical Sciences, School of MedicineThe University of Adelaide Adelaide South Australia Australia
| | - Nicolas H. Voelcker
- Future Industries InstituteUniversity of South Australia Mawson Lakes South Australia Australia
- CSIRO Manufacturing Clayton Victoria Australia
- Monash Institute of Pharmaceutical SciencesMonash University Parkville Victoria Australia
| | - Anton Blencowe
- School of Pharmacy and Medical ScienceUniversity of South Australia Adelaide South Australia Australia
- Future Industries InstituteUniversity of South Australia Mawson Lakes South Australia Australia
| |
Collapse
|
37
|
Brewer K, Gundsambuu B, Facal Marina P, Barry SC, Blencowe A. Thermoresponsive Poly(ε-Caprolactone)-Poly(Ethylene/Propylene Glycol) Copolymers as Injectable Hydrogels for Cell Therapies. Polymers (Basel) 2020; 12:E367. [PMID: 32046029 PMCID: PMC7077385 DOI: 10.3390/polym12020367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Injectable, thermoresponsive hydrogels are promising candidates for the delivery, maintenance and controlled release of adoptive cell therapies. Therefore, there is significant interest in the development of cytocompatible and biodegradable thermoresponsive hydrogels with appropriate gelling characteristics. Towards this end, a series of thermoresponsive copolymers consisting of poly(caprolactone) (PCL), poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) segments, with various PEG:PPG ratios, were synthesised via ring-opening polymerisation (ROP) of ε-caprolactone and epoxy-functionalised PEG and PPG derivatives. The resultant PCL-PEG-PPG copolymers were characterised via proton nuclear magnetic resonance (1H NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The thermoresponsive characteristics of the aqueous copolymer solutions at various concentrations was investigated using the inversion method. Whilst all of the copolymers displayed thermoresponsive properties, the copolymer with a ratio of 1:2 PEG:PPG exhibited an appropriate sol-gel transition (28 °C) at a relatively low concentration (10 wt%), and remained a gel at 37 °C. Furthermore, the copolymers were shown to be enzymatically degradable in the presence of lipases and could be used for the encapsulation of CD4+ T-cell lymphocytes. These results demonstrate that the thermoresponsive PCL-PEG-PPG hydrogels may be suitable for use as an adoptive cell therapy (ACT) delivery vehicle.
Collapse
Affiliation(s)
- Kyle Brewer
- Applied Chemistry and Translational Biomaterials (ACTB) Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; (K.B.); (P.F.M.)
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
| | - Batjargal Gundsambuu
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paula Facal Marina
- Applied Chemistry and Translational Biomaterials (ACTB) Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; (K.B.); (P.F.M.)
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Simon C. Barry
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
- Molecular Immunology, Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, SA Health, Adelaide, South Australia 5006, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; (K.B.); (P.F.M.)
- Cooperative Research Centre for Cell Therapy Manufacturing, University of South Australia, Adelaide, South Australia 5000, Australia; (B.G.); (S.C.B.)
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
38
|
Synthesis of New Flexible Coumarin Dimers for Sodium and Potassium Differentiation. J Fluoresc 2020; 30:27-34. [DOI: 10.1007/s10895-020-02492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
|
39
|
Seow WY, Kandasamy K, Peh GSL, Mehta JS, Sun W. Ultrathin, Strong, and Cell-Adhesive Agarose-Based Membranes Engineered as Substrates for Corneal Endothelial Cells. ACS Biomater Sci Eng 2019; 5:4067-4076. [DOI: 10.1021/acsbiomaterials.9b00610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wei Yang Seow
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #07-01, Singapore 138669
| | - Karthikeyan Kandasamy
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #07-01, Singapore 138669
| | - Gary S. L. Peh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore
- Duke-NUS Graduate Medical School, Singapore
- Singapore National Eye Centre, Singapore
| | - William Sun
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, #07-01, Singapore 138669
| |
Collapse
|
40
|
Song JE, Sim BR, Jeon YS, Kim HS, Shin EY, Carlomagno C, Khang G. Characterization of surface modified glycerol/silk fibroin film for application to corneal endothelial cell regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:263-275. [PMID: 30324858 DOI: 10.1080/09205063.2018.1535819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Corneal endothelial cells (CEnCs) play a fundamental role in maintaining the transparency of the cornea. CEnCs lose their full proliferating capacity when tissue damages occur. The loss in proliferation rate is associated with corneal edema and decrease in visual acuity, leading in severe cases, to blindness. In these situations, a corneal transplant is usually needed to restore the original tissue functions. Tissue engineering is an efficient alternative for the production of implantable films, which can regenerate the tissue functions regulating at the same time the immune-response. In this study, we proposed a stable and transparent film, composed of silk fibroin modified with glycerol (G/SF), as a potential substrate for corneal endothelial cells regeneration. Our results confirmed that G/SF films have a uniform structure, rougher surface and lower thickness respect to the SF film. In vitro tests show that G/SF films can induce a slight increase in CEnCs initial adhesion and proliferation rate if compared with the SF film. Morphology and gene expression evaluations demonstrated that the bioactive effects of silk fibroin were not affected by the presence of glycerol. For this reason, the G/SF films are suitable as CEnCs carrier and promising for the corneal damages treatments.
Collapse
Affiliation(s)
- Jeong Eun Song
- a Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center , Chonbuk National University , Jeonju-si , Jeollabuk-do , Republic of Korea
| | - Bo Ra Sim
- a Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center , Chonbuk National University , Jeonju-si , Jeollabuk-do , Republic of Korea
| | - Yoo Shin Jeon
- a Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center , Chonbuk National University , Jeonju-si , Jeollabuk-do , Republic of Korea
| | - Han Sol Kim
- a Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center , Chonbuk National University , Jeonju-si , Jeollabuk-do , Republic of Korea
| | - Eun Yeong Shin
- a Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center , Chonbuk National University , Jeonju-si , Jeollabuk-do , Republic of Korea
| | - Cristiano Carlomagno
- b Department of Industrial Engineering, BIOTech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine , University of Trento , Trento , Italy
| | - Gilson Khang
- a Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center , Chonbuk National University , Jeonju-si , Jeollabuk-do , Republic of Korea
| |
Collapse
|
41
|
Kruse M, Walter P, Bauer B, Rütten S, Schaefer K, Plange N, Gries T, Jockenhoevel S, Fuest M. Electro-spun Membranes as Scaffolds for Human Corneal Endothelial Cells. Curr Eye Res 2019; 43:1-11. [PMID: 29281419 DOI: 10.1080/02713683.2017.1377258] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Corneal endothelial dysfunction remains the most frequent indication for corneal transplantation, limited by donor material shortage, poor long-term graft survival, or allogeneic graft rejection. Therefore, tissue-engineered endothelial grafts (TEEG) represent a promising alternative to human donor tissue. In this study, we generated electro-spun scaffolds and tested these for their suitability for human corneal endothelial cell (hCEC) cultivation. METHODS The polymers poly(methyl-methacrylate) (PMMA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL) were spun with equal parameters. HCEC-12 was cultured on the scaffolds for 3 to 7 days. Scaffolds were evaluated by light microscopy, porometry, light transmission, scanning electron microscopy (SEM), live/dead staining and cell viability assay. RESULTS Electro-spun fibers from PMMA (2.99 ± 0.24 µm) showed significantly higher diameters than PCL (2.29 ± 0.11 µm; p = 0.003) and PLGA (1.84 ± 0.21 µm; p < 0.001), while fibers from PCL also showed larger diameters than those from PLGA (p = 0.002). PMMA scaffolds (26.77 ± 17.48 µm) had significantly larger interstitial spaces than those from PCL (13.30 ± 5.47 µm; p = 0.04) and PLGA (10.42 ± 6.15 µm; p = 0.002), while PCL and PLGA did not differ significantly (p = 0.26). SEM analysis revealed that only PLGA fibers preserved a normal HCEC-12 morphology. PLGA and PCL did not differ in cell number, death, or viability after 7 days of HCEC-12 cultivation. PMMA showed significantly higher cytotoxicity (p < 0.001; PLGA: 1626.2 ± 183.8 RLU; PMMA: 841.9 ± 92.7 RLU; PCL: 1580.2 ± 171.02 RLU). CONCLUSIONS The biodegradable PLGA and PCL electro-spun scaffolds resulted in equal biocompatibility, while PMMA showed cytotoxicity. Only PLGA preserved hCEC morphology and consequently seems to be a promising candidate for TEEG construction.
Collapse
Affiliation(s)
- Magnus Kruse
- a Department of Biohybrid & Medical Textiles (BioTex) , AME-Helmholtz Institute for Biomedical Engineering & ITA-Institut für Textiltechnik Aachen, RWTH Aachen University , Aachen , Germany
| | - Peter Walter
- b Department of Ophthalmology , RWTH Aachen University , Aachen , Germany
| | - Benedict Bauer
- a Department of Biohybrid & Medical Textiles (BioTex) , AME-Helmholtz Institute for Biomedical Engineering & ITA-Institut für Textiltechnik Aachen, RWTH Aachen University , Aachen , Germany
| | - Stephan Rütten
- c Department of Electron Microscopy , University Hospital RWTH , Aachen , Germany
| | - Karola Schaefer
- d DWI - Leibniz Institute for Interactive Materials e.V. and Institute of Technical and Macromolecular Chemistry (ITMC) , RWTH Aachen University , Aachen , Germany
| | - Niklas Plange
- b Department of Ophthalmology , RWTH Aachen University , Aachen , Germany
| | - Thomas Gries
- a Department of Biohybrid & Medical Textiles (BioTex) , AME-Helmholtz Institute for Biomedical Engineering & ITA-Institut für Textiltechnik Aachen, RWTH Aachen University , Aachen , Germany
| | - Stefan Jockenhoevel
- a Department of Biohybrid & Medical Textiles (BioTex) , AME-Helmholtz Institute for Biomedical Engineering & ITA-Institut für Textiltechnik Aachen, RWTH Aachen University , Aachen , Germany
| | - Matthias Fuest
- b Department of Ophthalmology , RWTH Aachen University , Aachen , Germany
| |
Collapse
|
42
|
Harkin DG, Dunphy SE, Shadforth AMA, Dawson RA, Walshe J, Zakaria N. Mounting of Biomaterials for Use in Ophthalmic Cell Therapies. Cell Transplant 2018; 26:1717-1732. [PMID: 29338382 PMCID: PMC5784520 DOI: 10.1177/0963689717723638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
When used as scaffolds for cell therapies, biomaterials often present basic handling and logistical problems for scientists and surgeons alike. The quest for an appropriate mounting device for biomaterials is therefore a significant and common problem. In this review, we provide a detailed overview of the factors to consider when choosing an appropriate mounting device including those experienced during cell culture, quality assurance, and surgery. By way of example, we draw upon our combined experience in developing epithelial cell therapies for the treatment of eye diseases. We discuss commercially available options for achieving required goals and provide a detailed analysis of 4 experimental designs developed within our respective laboratories in Australia, the United Kingdom, and Belgium.
Collapse
Affiliation(s)
- Damien G Harkin
- 1 School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,2 Queensland Eye Institute, South Brisbane, Queensland, Australia
| | - Siobhan E Dunphy
- 3 Division of Clinical Neuroscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.,4 Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College, Dublin, Ireland
| | - Audra M A Shadforth
- 1 School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,2 Queensland Eye Institute, South Brisbane, Queensland, Australia
| | - Rebecca A Dawson
- 1 School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,2 Queensland Eye Institute, South Brisbane, Queensland, Australia
| | - Jennifer Walshe
- 2 Queensland Eye Institute, South Brisbane, Queensland, Australia
| | - Nadia Zakaria
- 5 Division of Ophthalmology, Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium.,6 Department of Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
43
|
Kocaba V, Damour O, Auxenfans C, Burillon C. [Corneal endothelial cell therapy, a review]. J Fr Ophtalmol 2018; 41:462-469. [PMID: 29773311 DOI: 10.1016/j.jfo.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
In France, endothelial dysfunction represents approximately one half of the indications for corneal transplants performed each year. However, the use of endothelial keratoplasty is limited by the technical difficulty of the procedure, a shortage of available grafts, and the potential for graft failure or rejection. These limitations are driving researchers to develop new, less invasive, and more effective therapies. Corneal endothelial cell therapy is being explored as a potential therapeutic measure, to avoid the uncertainty associated with grafting. The human cornea is an ideal tissue for cell therapy. Due to its avascular and immunologically privileged characteristics, transplanted cells are better tolerated compared with other vascularized tissues and organs. Advances in the field of stem cell engineering, particularly the development of corneal epithelial stem cell therapy for the treatment of severe ocular surface disease, have aroused a massive interest in adapting cell therapy techniques to corneal endothelial cells. This chapter, based on a review of the literature, aims at educating the reader on the latest research in the field of corneal endothelial cell therapy.
Collapse
Affiliation(s)
- V Kocaba
- Service d'ophtalmologie, pavillon C, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France; Université Claude-Bernard Lyon-1, 69100 Villeurbanne, France; Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France; Cornea Center of Excellence, The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, États-Unis; Tissue Engineering and stem cell group, Singapore Eye Research Institute, 168751 Singapour.
| | - O Damour
- Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France
| | - C Auxenfans
- Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France
| | - C Burillon
- Service d'ophtalmologie, pavillon C, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France; Université Claude-Bernard Lyon-1, 69100 Villeurbanne, France; Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France
| |
Collapse
|
44
|
Kitiri EN, Varnava CK, Patrickios CS, Voutouri C, Stylianopoulos T, Gradzielski M, Hoffmann I. Double‐networks based on interconnected amphiphilic “in–out” star first polymer conetworks prepared by RAFT polymerization. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Elina N. Kitiri
- Department of ChemistryUniversity of Cyprus P. O. Box 20537, 1678 Nicosia Cyprus
| | | | - Costas S. Patrickios
- Department of ChemistryUniversity of Cyprus P. O. Box 20537, 1678 Nicosia Cyprus
| | - Chrysovalantis Voutouri
- Department of Mechanical and Manufacturing EngineeringUniversity of Cyprus P. O. Box 20537, Nicosia 1678 Cyprus
| | | | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für ChemieTechnische Universität Berlin, Strasse des 17 Juni 124, 10623 Berlin Germany
| | - Ingo Hoffmann
- Institut Max von Laue‐Paul Langevin (ILL) F‐38042 Grenoble Cedex 9 France
| |
Collapse
|
45
|
Nutan B, Chandel AKS, Jewrajka SK. Liquid Prepolymer-Based in Situ Formation of Degradable Poly(ethylene glycol)-Linked-Poly(caprolactone)-Linked-Poly(2-dimethylaminoethyl)methacrylate Amphiphilic Conetwork Gels Showing Polarity Driven Gelation and Bioadhesion. ACS APPLIED BIO MATERIALS 2018; 1:1606-1619. [DOI: 10.1021/acsabm.8b00461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Arvind K. Singh Chandel
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division, Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
46
|
Williams R, Lace R, Kennedy S, Doherty K, Levis H. Biomaterials for Regenerative Medicine Approaches for the Anterior Segment of the Eye. Adv Healthc Mater 2018; 7:e1701328. [PMID: 29388397 DOI: 10.1002/adhm.201701328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Indexed: 12/13/2022]
Abstract
The role of biomaterials in tissue engineering and regenerative medicine strategies to treat vision loss associated with damage to tissues in the anterior segment of the eye has been studied for several years. This has mostly involved replacement and support for the cornea and conjunctiva. These are complex tissues with specific functional requirements for different parts of the tissue. Amniotic membrane (AM) is used in clinical practice to transplant autologous or allogenic cells to the corneal surface. Fibrin gels have also progressed to clinical use under specific conditions. Alternatives to AM such as collagen gels, other natural materials, for example keratin and silks, and synthetic polymers have received considerable attention in laboratory and animal studies. This experience is building a body of evidence to demonstrate the potential of tissue engineering and regenerative medicine in corneal and conjunctival reconstruction and can also lead to other applications in the anterior segment of the eye, for example, the trabecular meshwork. There is a real clinical need for new procedures to overcome vision loss but there are also opportunities for developments in ocular applications to lead to biomaterials innovations for use in other clinical areas.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rebecca Lace
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Stephnie Kennedy
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kyle Doherty
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Hannah Levis
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
47
|
Al Abdulsalam NK, Barnett NL, Harkin DG, Walshe J. Cultivation of corneal endothelial cells from sheep. Exp Eye Res 2018; 173:24-31. [PMID: 29680447 DOI: 10.1016/j.exer.2018.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Abstract
Research is currently under way to produce tissue engineered corneal endothelium transplants for therapeutic use in humans. This work requires the use of model animals, both for the supply of corneal endothelial cells (CECs) for experimentation, and to serve as recipients for test transplants. A variety of species can be used, however, a number of important advantages can be gained by using sheep as transplant recipients. The purpose of the present study was therefore to develop a method for culturing sheep CECs that would be suitable for the eventual construction of corneal endothelium grafts destined for sheep subjects. A method was established for culturing sheep CECs and these were compared to cultured human CECs. Results showed that cultured sheep and human CECs had similar growth characteristics when expanded from corneal endothelium explants on gelatin-coated plates, and achieved similar cell densities after several weeks. Furthermore, the markers zonula occludens-1, N-cadherin and sodium potassium ATPase could be immunodetected in similar staining patterns at cell boundaries of cultured CECs from both species. This work represents the first detailed study of sheep CEC cultures, and is the first demonstration of their similarities to human CEC cultures. Our results indicate that sheep CECs would be an appropriate substitute for human CECs when developing methods to produce tissue engineered corneal endothelium transplants.
Collapse
Affiliation(s)
- Najla Khaled Al Abdulsalam
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101, Australia; School of Biomedical Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia; King Faisal University, Hofuf, Saudi Arabia
| | - Nigel L Barnett
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101, Australia; School of Biomedical Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia; The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, 4029, Australia
| | - Damien G Harkin
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101, Australia; School of Biomedical Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Jennifer Walshe
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101, Australia.
| |
Collapse
|
48
|
Apostolides DE, Patrickios CS, Sakai T, Guerre M, Lopez G, Améduri B, Ladmiral V, Simon M, Gradzielski M, Clemens D, Krumm C, Tiller JC, Ernould B, Gohy JF. Near-Model Amphiphilic Polymer Conetworks Based on Four-Arm Stars of Poly(vinylidene fluoride) and Poly(ethylene glycol): Synthesis and Characterization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02475] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Costas S. Patrickios
- Department of Chemistry, University of Cyprus, 1 University Avenue, 2109 Aglanjia, Cyprus
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Marc Guerre
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Gérald Lopez
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Bruno Améduri
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Vincent Ladmiral
- Institut Charles Gerhardt, Ingénierie et Architectures Macromoléculaires, UMR 5253 CNRS, UM, ENSCM, Place Eugène Bataillon, UM, Cedex 5 34095 Montpellier, France
| | - Miriam Simon
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Michael Gradzielski
- Institut für Chemie, Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Daniel Clemens
- Institut für Weiche Materie und Funktionale Materialien (EM-ISFM), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Christian Krumm
- Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 66, D-44227 Dortmund, Germany
| | - Joerg C. Tiller
- Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Strasse 66, D-44227 Dortmund, Germany
| | - Bruno Ernould
- Institute for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université catholique de Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Gohy
- Institute for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter (BSMA), Université catholique de Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
49
|
Biocompatible Porous Polyester-Ether Hydrogel Scaffolds with Cross-Linker Mediated Biodegradation and Mechanical Properties for Tissue Augmentation. Polymers (Basel) 2018; 10:polym10020179. [PMID: 30966215 PMCID: PMC6414870 DOI: 10.3390/polym10020179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Porous polyester-ether hydrogel scaffolds (PEHs) were fabricated using acid chloride/alcohol chemistry and a salt templating approach. The PEHs were produced from readily available and cheap commercial reagents via the reaction of hydroxyl terminated poly(ethylene glycol) (PEG) derivatives with sebacoyl, succinyl, or trimesoyl chloride to afford ester cross-links between the PEG chains. Through variation of the acid chloride cross-linkers used in the synthesis and the incorporation of a hydrophobic modifier (poly(caprolactone) (PCL)), it was possible to tune the degradation rates and mechanical properties of the resulting hydrogels. Several of the hydrogel formulations displayed exceptional mechanical properties, remaining elastic without fracture at compressive strains of up to 80%, whilst still displaying degradation over a period of weeks to months. A subcutaneous rat model was used to study the scaffolds in vivo and revealed that the PEHs were infiltrated with well vascularised tissue within two weeks and had undergone significant degradation in 16 weeks without any signs of toxicity. Histological evaluation for immune responses revealed that the PEHs incite only a minor inflammatory response that is reduced over 16 weeks with no evidence of adverse effects.
Collapse
|
50
|
Larrañeta E, Stewart S, Ervine M, Al-Kasasbeh R, Donnelly RF. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. J Funct Biomater 2018; 9:E13. [PMID: 29364833 PMCID: PMC5872099 DOI: 10.3390/jfb9010013] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
Hydrogels have been shown to be very useful in the field of drug delivery due to their high biocompatibility and ability to sustain delivery. Therefore, the tuning of their properties should be the focus of study to optimise their potential. Hydrogels have been generally limited to the delivery of hydrophilic drugs. However, as many of the new drugs coming to market are hydrophobic in nature, new approaches for integrating hydrophobic drugs into hydrogels should be developed. This article discusses the possible new ways to incorporate hydrophobic drugs within hydrogel structures that have been developed through research. This review describes hydrogel-based systems for hydrophobic compound delivery included in the literature. The section covers all the main types of hydrogels, including physical hydrogels and chemical hydrogels. Additionally, reported applications of these hydrogels are described in the subsequent sections.
Collapse
Affiliation(s)
- Eneko Larrañeta
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Sarah Stewart
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Michael Ervine
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Rehan Al-Kasasbeh
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- Queens University Belfast, School of Pharmacy, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|