1
|
Wang Q, Guo Z. Durability improvement strategies for wettable fog harvesting devices inspired by spider silk fibers: a review. NANOSCALE 2024. [PMID: 39434597 DOI: 10.1039/d4nr02697g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Water scarcity is a persistent challenge, and in this case, the freshwater content in the air and water collection phenomena observed in nature provide ideas for fog harvesting. The fog-harvesting capabilities of natural spider silk have long attracted attention. Thus, researchers have undertaken significant efforts for the preparation of wettable biomimetic knotted fibers. However, the fragility of their chemical coating and the susceptibility of spun fibers to damage often present substantial challenges in the durability of fog harvesting equipment. Herein, from a bioengineering perspective, we review the improvement strategies for enhancing the mechanical properties of wettable biomimetic spider silk fibers based on the dense nanoconfined hydrogen-bond array crystalline regions and uniformly embedded amorphous regions of natural wettable spider silk fibers. These strategies aim to achieve high tensile strength, good fracture toughness, and corrosion resistance. Additionally, by incorporating UV inhibitors during spinning, the effects of sunlight can be mitigated or shielded, thereby greatly enhancing the mechanical durability of fog-harvesting devices under harsh realistic conditions.
Collapse
Affiliation(s)
- Qiong Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
2
|
Lu H, Jian M, Liang X, Wang Y, Niu J, Zhang Y. Strong Silkworm Silk Fibers through CNT-Feeding and Forced Reeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408385. [PMID: 39400397 DOI: 10.1002/adma.202408385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Indexed: 10/15/2024]
Abstract
High-performance silk fibers, with their eco-friendly degradability and renewability, have long captivated researchers as an alternative to synthetic fibers. Spider dragline silk, renowned for its exceptional strength (>1 GPa), has an extremely low yield, hindering its widespread use. While domesticated silkworms (Bombyx mori) can produce silk fibers industrially, their moderate strength (≈0.5 GPa) pales in comparison to the formidable spider dragline silk. In this study, naturally produced strong silkworm silk fibers are reported with a tensile strength of ≈1.2 GPa achieved through combining feeding carbon nanotubes (CNTs) to silkworms and in situ forced reeling for alignment. Molecular dynamics simulations confirm the interaction between the CNTs and silk fibroin, while the forced reeling process aligns these reinforcing fillers and the silk fibroin β-sheet nanocrystals along the fiber axis. Structural analysis reveals a significant enhancement in the content and alignment of β-sheet nanocrystals within the silk fibers, accounting for their superior mechanical properties, including tensile strength of ≈1.2 GPa and Young's modulus of 24.4 GPa, surpassing various types of silkworm silk and spider silk. This advancement addresses the historical trade-off between the strength and scalability of silk, potentially paving the way for eco-friendly, biodegradable, and renewable alternatives to synthetic fibers in a variety of applications.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Muqiang Jian
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yida Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiali Niu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
4
|
Nawaz T, Gu L, Gibbons J, Hu Z, Zhou R. Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications. Biomimetics (Basel) 2024; 9:373. [PMID: 38921253 PMCID: PMC11201842 DOI: 10.3390/biomimetics9060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The sophisticated, elegant protein-polymers designed by nature can serve as inspiration to redesign and biomanufacture protein-based materials using synthetic biology. Historically, petro-based polymeric materials have dominated industrial activities, consequently transforming our way of living. While this benefits humans, the fabrication and disposal of these materials causes environmental sustainability challenges. Fortunately, protein-based biopolymers can compete with and potentially surpass the performance of petro-based polymers because they can be biologically produced and degraded in an environmentally friendly fashion. This paper reviews four groups of protein-based polymers, including fibrous proteins (collagen, silk fibroin, fibrillin, and keratin), elastomeric proteins (elastin, resilin, and wheat glutenin), adhesive/matrix proteins (spongin and conchiolin), and cyanophycin. We discuss the connection between protein sequence, structure, function, and biomimetic applications. Protein engineering techniques, such as directed evolution and rational design, can be used to improve the functionality of natural protein-based materials. For example, the inclusion of specific protein domains, particularly those observed in structural proteins, such as silk and collagen, enables the creation of novel biomimetic materials with exceptional mechanical properties and adaptability. This review also discusses recent advancements in the production and application of new protein-based materials through the approach of synthetic biology combined biomimetics, providing insight for future research and development of cutting-edge bio-inspired products. Protein-based polymers that utilize nature's designs as a base, then modified by advancements at the intersection of biology and engineering, may provide mankind with more sustainable products.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | - Liping Gu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | | | - Zhong Hu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA;
| | - Ruanbao Zhou
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
5
|
Li J, Yang GZ, Li X, Tan HL, Wong ZW, Jiang S, Yang D. Nanoassembly of spider silk protein mediated by intrinsically disordered regions. Int J Biol Macromol 2024; 271:132438. [PMID: 38761906 DOI: 10.1016/j.ijbiomac.2024.132438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Spider silk is the self-assembling product of silk proteins each containing multiple repeating units. Each repeating unit is entirely intrinsically disordered or contains a small disordered domain. The role of the disordered domain/unit in conferring silk protein storage and self-assembly is not fully understood yet. Here, we used biophysical and biochemical techniques to investigate the self-assembly of a miniature version of a minor ampullate spidroin (denoted as miniMiSp). miniMiSp consists of two identical intrinsically disordered domains, one folded repetitive domain, and two folded terminal domains. Our data indicated that miniMiSp self-assembles into oligomers and further into liquid droplets. The oligomerization is attributed to the aggregation-prone property of both the disordered domains and the folded repetitive domain. Our results support the model of micellar structure for silk proteins at high protein concentrations. The disordered domain is indispensable for liquid droplet formation via liquid-liquid phase separation, and tyrosine residues located in the disordered domain make dominant contributions to stability of the liquid droplets. As the same tyrosine residues are also critical to fibrillation, the liquid droplets are likely an intermediate state between the solution state and the fiber state. Additionally, the terminal domains contribute to the pH- and salt-dependent self-assembly properties.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Gabriel Z Yang
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Xue Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Hao Lei Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhi Wei Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Shimin Jiang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
6
|
Mi J, Li X, Niu S, Zhou X, Lu Y, Yang Y, Sun Y, Meng Q. High-strength and ultra-tough supramolecular polyamide spider silk fibers assembled via specific covalent and reversible hydrogen bonds. Acta Biomater 2024; 176:190-200. [PMID: 38199426 DOI: 10.1016/j.actbio.2024.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Achieving ultra-high tensile strength and exceptional toughness is a longstanding goal for structural materials. However, previous attempts using covalent and non-covalent bonds have failed, leading to the belief that these two properties are mutually exclusive. Consequently, commercial fibers have been forced to compromise between tensile strength and toughness, as seen in the differences between nylon and Kevlar. To address this challenge, we drew inspiration from the disparate tensile strength and toughness of nylon and Kevlar, both of which are polyamide fibers, and developed an innovative approach that combines specific intermolecular disulfide bonds and reversible hydrogen bonds to create ultra-strong and ultra-tough polyamide spider silk fibers. Our resulting Supramolecular polyamide spider silk, which has a maximum molecular weight of 1084 kDa, exhibits high tensile strength (1180 MPa) and extraordinary toughness (433 MJ/m3), surpassing Kevlar's toughness 8-fold. This breakthrough presents a new opportunity for the sustainable development of spider silk as an environmentally friendly alternative to synthetic commercial fibers, as spider silk is composed of amino acids. Future research could explore the use of these techniques and fundamental knowledge to develop other super materials in various mechanical fields, with the potential to improve people's lives in many ways. STATEMENT OF SIGNIFICANCE: • By emulating synthetic commercial fibers such as nylon and polyethylene, we have successfully produced supramolecular-weight polyamide spider silk fibers with a molecular weight of 1084 kDa through a unique covalent bond-mediated linear polymerization reaction of spider silk protein molecules. This greatly surpasses the previous record of a maximum molecular weight of 556 kDa. • We obtained supramolecular polyamide spider silk fibers with both high-tensile strength and toughness. The stress at break is 1180 MPa, and the toughness is 8 times that of kevlar, reaching 433 MJ/m3. • Our results challenge the notion that it is impossible to manufacture fibers with both ultra-high tensile strength and ultra-toughness, and provide theoretical guidance for developing environmentally friendly and sustainable structural materials that meet industrial needs.
Collapse
Affiliation(s)
- Junpeng Mi
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xue Li
- Department of Biological Sciences, National University of Singapore,14 Science Drive 4 117543, Singapore
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Xingping Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yihang Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuchen Yang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuan Sun
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Qing Meng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; College of Life and Geographic Sciences, Kashi University, Xin Jiang 844006, China.
| |
Collapse
|
7
|
Li M, Li J, Liu K, Zhang H. Artificial structural proteins: Synthesis, assembly and material applications. Bioorg Chem 2024; 144:107162. [PMID: 38308999 DOI: 10.1016/j.bioorg.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Structural proteins have evolved over billions of years and offer outstanding mechanical properties, such as resilience, toughness and stiffness. Advances in modular protein engineering, polypeptide modification, and synthetic biology have led to the development of novel biomimetic structural proteins to perform in biomedical and military fields. However, the development of customized structural proteins and assemblies with superior performance remains a major challenge, due to the inherent limitations of biosynthesis, difficulty in mimicking the complexed macroscale assembly, etc. This review summarizes the approaches for the design and production of biomimetic structural proteins, and their chemical modifications for multiscale assembly. Furthermore, we discuss the function tailoring and current applications of biomimetic structural protein assemblies. A perspective of future research is to reveal how the mechanical properties are encoded in the sequences and conformations. This review, therefore, provides an important reference for the development of structural proteins-mimetics from replication of nature to even outperforming nature.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Mi J, Zhou X, Sun R, Han J. Disabling spidroin N-terminal homologs' reverse reaction unveils why its intermolecular disulfide bonds have not evolved for 380 million years. Int J Biol Macromol 2023; 249:125974. [PMID: 37499718 DOI: 10.1016/j.ijbiomac.2023.125974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Spiders, ubiquitous predators known for their powerful silks, rely on spidroins that self-assemble from high-concentration solutions stored in silk glands, which are mediated by the NT and CT domains. CT homodimers containing intermolecular disulfide bonds enhance silk performance, promoting spider survival and reproduction. However, no NT capable of forming such disulfide bonds has been identified. Our study reveals that NT homodimers with sulfur substitution can form under alkaline conditions, shedding light on why spiders have not evolved intermolecular disulfide bonds in the NT module during their 380 million years of evolution. This discovery significantly advances our comprehension of spider evolution and silk spinning mechanisms, while also providing novel insights into protein storage, assembly, as well as the mechanisms and therapeutic strategies for neurodegenerative diseases associated with protein aggregation.
Collapse
Affiliation(s)
- Junpeng Mi
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xingping Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Rou Sun
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jiaojiao Han
- Department of Clinical Hematology and osology, Shanghai center for clinical laboratory, Shanghai 200126, China.
| |
Collapse
|
9
|
Greco G, Schmuck B, Jalali SK, Pugno NM, Rising A. Influence of experimental methods on the mechanical properties of silk fibers: A systematic literature review and future road map. BIOPHYSICS REVIEWS 2023; 4:031301. [PMID: 38510706 PMCID: PMC10903380 DOI: 10.1063/5.0155552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 03/22/2024]
Abstract
Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.
Collapse
Affiliation(s)
| | | | - S. K. Jalali
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy
| | | | - Anna Rising
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
10
|
Zhang Y, Lu H, Zhang M, Hou Z, Li S, Wang H, Wu XE, Zhang Y. In Situ Mineralizing Spinning of Strong and Tough Silk Fibers for Optical Waveguides. ACS NANO 2023; 17:5905-5912. [PMID: 36892421 DOI: 10.1021/acsnano.2c12855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biopolymer-based optical waveguides with low-loss light guiding performance and good biocompatibility are highly desired for applications in biomedical photonic devices. Herein, we report the preparation of silk optical fiber waveguides through bioinspired in situ mineralizing spinning, which possess excellent mechanical properties and low light loss. Natural silk fibroin was used as the main precursor for the wet spinning of the regenerated silk fibroin (RSF) fibers. Calcium carbonate nanocrystals (CaCO3 NCs) were in situ grown in the RSF network and served as nucleation templates for mineralization during the spinning, leading to the formation of strong and tough fibers. CaCO3 NCs can guide the structure transformation of silk fibroin from random coils to β-sheets, contributing to enhanced mechanical properties. The tensile strength and toughness of the obtained fibers are up to 0.83 ± 0.15 GPa and 181.98 ± 52.42 MJ·m-3, obviously higher than those of natural silkworm silks and even comparable to spider silks. We further investigated the performance of the fibers as optical waveguides and observed a low light loss of 0.46 dB·cm-1, which is much lower than natural silk fibers. We believed that these silk-based fibers with excellent mechanical and light propagation properties are promising for applications in biomedical light imaging and therapy.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing, 100072, China
| | - Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhishan Hou
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun-En Wu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Fan R, Hakanpää J, Elfving K, Taberman H, Linder MB, Aranko AS. Biomolecular Click Reactions Using a Minimal pH-Activated Catcher/Tag Pair for Producing Native-Sized Spider-Silk Proteins. Angew Chem Int Ed Engl 2023; 62:e202216371. [PMID: 36695475 DOI: 10.1002/anie.202216371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
A type of protein/peptide pair known as Catcher/Tag pair spontaneously forms an intermolecular isopeptide bond which can be applied for biomolecular click reactions. Covalent protein conjugation using Catcher/Tag pairs has turned out to be a valuable tool in biotechnology and biomedicines, but it is essential to increase the current toolbox of orthogonal Catcher/Tag pairs to expand the range of applications further, for example, for controlled multiple-fragment ligation. We report here the engineering of novel Catcher/Tag pairs for protein ligation, aided by a crystal structure of a minimal CnaB domain from Lactobacillus plantarum. We show that a newly engineered pair, called SilkCatcher/Tag enables efficient pH-inducible protein ligation in addition to being compatible with the widely used SpyCatcher/Tag pair. Finally, we demonstrate the use of the SilkCatcher/Tag pair in the production of native-sized highly repetitive spider-silk-like proteins with >90 % purity, which is not possible by traditional recombinant production methods.
Collapse
Affiliation(s)
- Ruxia Fan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - Johanna Hakanpää
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany.,Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603, Hamburg, Germany
| | - Karoliina Elfving
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - Helena Taberman
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| |
Collapse
|
12
|
Xu J, Yang Y, Liu L, Huang X, Wu C, Pang J, Qiu R, Wu S. Micro-structure and tensile properties of microfluidic spinning konjac glucomannan and sodium alginate composite bio-fibers regulated by shear and elongational flow: experiment and multi-scale simulation. Int J Biol Macromol 2023; 227:777-785. [PMID: 36495989 DOI: 10.1016/j.ijbiomac.2022.11.292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Microfluidic spinning has been widely used to produce bio-fibers with excellent tensile performances by regulating the conformation of biological macromolecules. However, the effect of channel shapes on fiber tensile performances is unclear. In this study, bio-fibers were prepared using konjac glucomannan and sodium alginate by five channels. The micro-morphology and tensile performance of fibers were characterized and measured. Then, the dynamical behaviours of macromolecule clusters in flow fields were simulated by multi-scale numerical methods. The results show that the elongational flow with increasing extension rates produced fibers with a tensile strength of 32.34 MPa and a tensile strain of 18.72 %, which were 1.37 and 1.55 times that for a shear flow, respectively. The difference in tensile performances was attributed to the micro-morphology regulated by flow fields. The continuously increasing extension rate of flow was more effective than the shear rate or the maximum extension rate for the stretching of macromolecule clusters. We conclude that the channel shapes significantly influence flow fields, dynamical behaviours of molecule clusters, the morphology of fibers, and tensile performances. This study provides a novel numerical method and understanding of microfluidic spinning, which will promote the optimization and applications of bio-fibers.
Collapse
Affiliation(s)
- Jingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Huang
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Renhui Qiu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Shuyi Wu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| |
Collapse
|
13
|
Recombinant Spider Silk Fiber with High Dimensional Stability in Water and Its NMR Characterization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238479. [PMID: 36500566 PMCID: PMC9739919 DOI: 10.3390/molecules27238479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to maintain dimensional stability. In order to produce spider silk with a highly hydrophobic character, based on the sequence of ADF-3 silk, we produced recombinant silk (RSSP(VLI)) where all QQ sequences were replaced by VL, while single Q was replaced by I. The artificial RSSP(VLI) fiber was prepared using formic acid as the spinning solvent and methanol as the coagulant solvent. The dimensional stability and water absorption experiments of the fiber were performed for eight kinds of silk fiber. RSSP(VLI) fiber showed high dimensional stability, which is suitable for textiles. A remarkable decrease in the motion of the fiber in water was made evident by 13C solid-state NMR. This study using 13C solid-state NMR is the first trial to put spider silk to practical use and provide information regarding the molecular design of new recombinant spider silk materials with high dimensional stability in water, allowing recombinant spider silk proteins to be used in next-generation biomaterials and materials for textiles.
Collapse
|
14
|
Asakura T, Matsuda H, Naito A, Abe Y. Formylation of Recombinant Spider Silk in Formic Acid and Wet Spinning Studied Using Nuclear Magnetic Resonance and Infrared Spectroscopies. ACS Biomater Sci Eng 2022; 8:2390-2402. [PMID: 35532754 DOI: 10.1021/acsbiomaterials.2c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We reported wet spinning of recombinant spider silk protein (RSSP) and formylation of RSSP in formic acid (FA). First, FA was selected as the spinning solvent and the detailed spinning condition was determined. Next, the mechanical property was compared between the RSSP fiber spun after allowing the spinning solution dissolved in FA to stand for 2 days and the fiber spun immediately after being dissolved in FA for 4 h. The tensile strength of the former fiber was lower than the strength of the latter fiber. This difference can be explained by the difference in the degree of formylation as follows. FA is a known formylating agent, although most researchers who prepared silk fiber by wet spinning with FA have not pointed out about formylation. The formylation of the Ser OH group was confirmed by 13C solution nuclear magnetic resonance (NMR), and the time course of formylation of the RSSP film prepared from the FA solution was tracked by Fourier transform infrared spectroscopy. The 13C solid-state NMR spectra were also compared between two kinds of the formylated RSSP fibers and indicated that the packing state was tighter for the latter fiber than the former one, which could explain higher tensile strength of the latter fiber in the dry state. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the RSSP sample decomposed gradually with storage time in FA and the decomposition has begun partly even at 2 h after dissolution in FA. The decomposition by formylation seems to have no significant effect on the backbone structure of the RSSP fiber, although the packing of the fiber becomes loose as a whole. Finally, preliminary trial of deformylation of the formylated RSSP fiber was performed.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yunoske Abe
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| |
Collapse
|
15
|
Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider Silk-Inspired Artificial Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103965. [PMID: 34927397 PMCID: PMC8844500 DOI: 10.1002/advs.202103965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Indexed: 05/14/2023]
Abstract
Spider silk is a natural polymeric fiber with high tensile strength, toughness, and has distinct thermal, optical, and biocompatible properties. The mechanical properties of spider silk are ascribed to its hierarchical structure, including primary and secondary structures of the spidroins (spider silk proteins), the nanofibril, the "core-shell", and the "nano-fishnet" structures. In addition, spider silk also exhibits remarkable properties regarding humidity/water response, water collection, light transmission, thermal conductance, and shape-memory effect. This motivates researchers to prepare artificial functional fibers mimicking spider silk. In this review, the authors summarize the study of the structure and properties of natural spider silk, and the biomimetic preparation of artificial fibers from different types of molecules and polymers by taking some examples of artificial fibers exhibiting these interesting properties. In conclusion, biomimetic studies have yielded several noteworthy findings in artificial fibers with different functions, and this review aims to provide indications for biomimetic studies of functional fibers that approach and exceed the properties of natural spider silk.
Collapse
Affiliation(s)
- Jiatian Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Sitong Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Jiayi Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Abdul Qadeer Khan
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Baigang An
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Xiang Zhou
- Department of ScienceChina Pharmaceutical UniversityNanjing211198China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
16
|
Li X, Qi X, Cai YM, Sun Y, Wen R, Zhang R, Johansson J, Meng Q, Chen G. Customized Flagelliform Spidroins Form Spider Silk-like Fibers at pH 8.0 with Outstanding Tensile Strength. ACS Biomater Sci Eng 2021; 8:119-127. [PMID: 34908395 PMCID: PMC8753598 DOI: 10.1021/acsbiomaterials.1c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spider flagelliform silk shows the best extensibility among various types of silk, but its biomimetic preparation has not been much studied. Herein, five customized flagelliform spidroins (FlSps: S and NTDFl-Sn-CTDFl, n = 1-4), in which the repetitive region (S) and N-/C- terminal domains (NTDFl and CTDFl) are from the same spidroin and spider species, were produced recombinantly. The recombinant spidroins with terminal domains were able to form silk-like fibers with diameters of ∼5 μm by manual pulling at pH 8.0, where the secondary structure transformation occurred. The silk-like fibers from NTDFl-S4-CTDFl showed the highest tensile strength (∼250 MPa), while those ones with 1-3 S broke at a similar stress (∼180 MPa), suggesting that increasing the amounts of the repetitive region can improve the tensile strength, but a certain threshold might need to be reached. This study shows successful preparation of flagelliform silk-like fibers with good mechanical properties, providing general insights into efficient biomimetic preparations of spider silks.
Collapse
Affiliation(s)
- Xue Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, 200092 Shanghai, China.,Institute of Biological Sciences and Biotechnology, Donghua University, 201620 Shanghai, China
| | - Xingmei Qi
- The Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yu-Ming Cai
- Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, Hampshire, U.K
| | - Yuan Sun
- Institute of Biological Sciences and Biotechnology, Donghua University, 201620 Shanghai, China
| | - Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, 201620 Shanghai, China
| | - Rui Zhang
- Department of Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14157 Huddinge, Sweden
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, 201620 Shanghai, China
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 14157 Huddinge, Sweden
| |
Collapse
|
17
|
Critical role of minor eggcase silk component in promoting spidroin chain alignment and strong fiber formation. Proc Natl Acad Sci U S A 2021; 118:2100496118. [PMID: 34531321 DOI: 10.1073/pnas.2100496118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 11/18/2022] Open
Abstract
Natural spider silk with extraordinary mechanical properties is typically spun from more than one type of spidroin. Although the main components of various spider silks have been widely studied, little is known about the molecular role of the minor silk components in spidroin self-assembly and fiber formation. Here, we show that the minor component of spider eggcase silk, TuSp2, not only accelerates self-assembly but remarkably promotes molecular chain alignment of spidroins upon physical shearing. NMR structure of the repetitive domain of TuSp2 reveals that its dimeric structure with unique charged surface serves as a platform to recruit different domains of the main eggcase component TuSp1. Artificial fiber spun from the complex between TuSp1 and TuSp2 minispidroins exhibits considerably higher strength and Young's modulus than its native counterpart. These results create a framework for rationally designing silk biomaterials based on distinct roles of silk components.
Collapse
|
18
|
Wang J, Yuan W, Qin R, Fan T, Fan JS, Huang W, Yang D, Lin Z. Self-assembly of tubuliform spidroins driven by hydrophobic interactions among terminal domains. Int J Biol Macromol 2020; 166:1141-1148. [PMID: 33157141 DOI: 10.1016/j.ijbiomac.2020.10.269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 11/26/2022]
Abstract
Spider silk has remarkable physical and biocompatible properties. Investigation of structure-function relationship and self-assembly process of spidroins is necessary for uncovering the mechanism of silk fiber formation. Nevertheless, how the terminal domains initiate self-assembly of soluble tubuliform spidroins to form solid eggcase silk is still not fully understood. Here we investigate the roles of both terminal domains of tubuliform spidroin 1 (TuSp1) in the silk fiber formation. We found that interactions among the terminal domains drive rapid TuSp1 self-assembly and fiber formation, which is insensitive to pH changes from 6.0 to 7.0. These interactions also contribute to the spidroin chain alignment in fiber formation upon shear-force exposure. Structural analysis and site-directed mutagenesis identified eight critical surface-exposed residues involved in hydrophobic interactions among terminal domains. Spidroins with single-point mutations of these residues fail to form intermediate micelle-like structures. The structural docking model indicates that multiple terminal domains of TuSp1 may interact with each other based on hydrophobic interactions and surface complementarity, which may lead to forming the surface of the micelle-like structure. Our results provide new insights into the structural mechanism of eggcase silk formation and the basis for designing and producing novel biomaterials derived from spider eggcase silk.
Collapse
Affiliation(s)
- Jingxia Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Ruiqi Qin
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Tiantian Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China
| | - Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
19
|
Li X, Mi J, Wen R, Zhang J, Cai Y, Meng Q, Lin Y. Wet-Spinning Synthetic Fibers from Aggregate Glue: Aggregate Spidroin 1 (AgSp1). ACS APPLIED BIO MATERIALS 2020; 3:5957-5965. [PMID: 35021824 DOI: 10.1021/acsabm.0c00619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spidroin has the potential of wide applications in the biomedicine field as a natural biomaterial. Various synthetic fibers with outstanding mechanical properties have been produced from different spidroins. However, studies on the structural analysis or biomimetic exploration of aggregate spidroin (AgSp) remain scarce. Here, three recombinant AgSp1 spidroins (1RP, 1RC, 3RP) were constructed and expressed in Escherichia coli, followed by purification via coupling heating and ammonium sulfate precipitation. Circular dichroism (CD) spectrum-based secondary structural analysis shows that 1RP and 3RP have similar structures (mainly random coil) in water and PB buffer, while 1RC is mainly composed of α-helix structure and HFIP can change all of the recombinant AgSp1 into helix structure. Through the wet-spinning method, six types of synthetic fibers were produced from these three recombinant AgSp1 spidroins. Subsequently, the properties and structures of synthetic fibers were characterized by mechanical testing and ATR-FTIR. Synthetic fibers spun from 3RP have considerable tensile strength and extensibility (∼37.56 MPa and ∼4.5%, respectively). To the best of our knowledge, this is the first synthetic fiber obtained from AgSp spidroin. Our results demonstrated that AgSp1 can be regarded as an available source of spidroin for silklike fiber production and may provide valuable perspectives on the AgSp1 biomimetic process for certain applications.
Collapse
Affiliation(s)
- Xue Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Junpeng Mi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Jie Zhang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Yuming Cai
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
20
|
Mu X, Fitzpatrick V, Kaplan DL. From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Adv Healthc Mater 2020; 9:e1901552. [PMID: 32109007 PMCID: PMC7415583 DOI: 10.1002/adhm.201901552] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/18/2019] [Indexed: 12/25/2022]
Abstract
Silk spinning offers an evolution-based manufacturing strategy for industrial polymer manufacturing, yet remains largely inaccessible as the manufacturing mechanisms in biological and synthetic systems, especially at the molecular level, are fundamentally different. The appealing characteristics of silk spinning include the sustainable sourcing of the protein material, the all-aqueous processing into fibers, and the unique material properties of silks in various formats. Substantial progress has been made to mimic silk spinning in artificial manufacturing processes, despite the gap between natural and artificial systems. This report emphasizes the universal spinning conditions utilized by both spiders and silkworms to generate silk fibers in nature, as a scientific and technical framework for directing molecular assembly into high-performance structures. The preparation of regenerated silk feedstocks and mimicking native spinning conditions in artificial manufacturing are discussed, as is progress and challenges in fiber spinning and 3D printing of silk-composites. Silk spinning is a biomimetic model for advanced and sustainable artificial polymer manufacturing, offering benefits in biomedical applications for tissue scaffolds and implantable devices.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
21
|
Spidroin‐Inspired, High‐Strength, Loofah‐Shaped Protein Fiber for Capturing Uranium from Seawater. Angew Chem Int Ed Engl 2020; 59:15997-16001. [DOI: 10.1002/anie.202007383] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 11/07/2022]
|
22
|
Spidroin‐Inspired, High‐Strength, Loofah‐Shaped Protein Fiber for Capturing Uranium from Seawater. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Zhu H, Rising A, Johansson J, Zhang X, Lin Y, Zhang L, Yi T, Mi J, Meng Q. Tensile properties of synthetic pyriform spider silk fibers depend on the number of repetitive units as well as the presence of N- and C-terminal domains. Int J Biol Macromol 2020; 154:765-772. [DOI: 10.1016/j.ijbiomac.2020.03.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
|
24
|
Kiseleva AP, Krivoshapkin PV, Krivoshapkina EF. Recent Advances in Development of Functional Spider Silk-Based Hybrid Materials. Front Chem 2020; 8:554. [PMID: 32695749 PMCID: PMC7338834 DOI: 10.3389/fchem.2020.00554] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023] Open
Abstract
Silkworm silk is mainly known as a luxurious textile. Spider silk is an alternative to silkworm silk fibers and has much more outstanding properties. Silk diversity ensures variation in its application in nature and industry. This review aims to provide a critical summary of up-to-date fabrication methods of spider silk-based organic-inorganic hybrid materials. This paper focuses on the relationship between the molecular structure of spider silk and its mechanical properties. Such knowledge is essential for understanding the innate properties of spider silk as it provides insight into the sophisticated assembly processes of silk proteins into the distinct polymers as a basis for novel products. In this context, we describe the development of spider silk-based hybrids using both natural and bioengineered spider silk proteins blended with inorganic nanoparticles. The following topics are also covered: the diversity of spider silk, its composition and architecture, the differences between silkworm silk and spider silk, and the biosynthesis of natural silk. Referencing biochemical data and processes, this paper outlines the existing challenges and future outcomes.
Collapse
Affiliation(s)
| | | | - Elena F. Krivoshapkina
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg, Russia
| |
Collapse
|
25
|
Chakraborty R, Fan JS, Lai CC, Raghuvamsi PV, Chee PX, Anand GS, Yang D. Structural Basis of Oligomerization of N-Terminal Domain of Spider Aciniform Silk Protein. Int J Mol Sci 2020; 21:ijms21124466. [PMID: 32586030 PMCID: PMC7352312 DOI: 10.3390/ijms21124466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023] Open
Abstract
Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen–deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein.
Collapse
|
26
|
Zhu H, Sun Y, Yi T, Wang S, Mi J, Meng Q. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process. Biochimie 2020; 175:77-84. [PMID: 32417459 DOI: 10.1016/j.biochi.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022]
Abstract
Due to its unique mechanical properties, spider silk shows great promise as a strong super-thin fiber in many fields. Although progress has been made in the field of synthesizing spider-silk fiber from recombinant spidroin (spider silk protein) in the last few decades, methods to obtain synthetic spider-silk fibers as tough as natural silk from small-sized recombinant protein with a simple spinning process have eluded scientists. In this paper, a recombinant spidroin (MW: 93.4 kDa) was used to spin tough synthetic spider-silk fibers with a simple wet-spinning process. Titanium oxide incorporation and formaldehyde cross-linking were used to improve the mechanical properties of synthetic spider-silk fibers. Fibers treated with incorporation or/and cross-linking varied in microstructure, strength and extensibility while all exhibited enhanced strength and toughness. In particular, one fiber possessed a toughness of 249 ± 22 MJ/m3. This paper presents a new method to successfully spin tough spider-silk fibers in a simple way.
Collapse
Affiliation(s)
- Hongnian Zhu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yuan Sun
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tuo Yi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Suyang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Junpeng Mi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
27
|
Li Y, Li J, Sun J, He H, Li B, Ma C, Liu K, Zhang H. Bioinspired and Mechanically Strong Fibers Based on Engineered Non‐Spider Chimeric Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Haonan He
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Department of ChemistryTsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Department of ChemistryTsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
28
|
Li Y, Li J, Sun J, He H, Li B, Ma C, Liu K, Zhang H. Bioinspired and Mechanically Strong Fibers Based on Engineered Non‐Spider Chimeric Proteins. Angew Chem Int Ed Engl 2020; 59:8148-8152. [DOI: 10.1002/anie.202002399] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/05/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Haonan He
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Department of ChemistryTsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Department of ChemistryTsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
29
|
Kong N, Wan F, Dai W, Wu P, Su C, Peng C, Zheng K, Chen X, Ling S, Gong J, Yao Y. A Cuboid Spider Silk: Structure–Function Relationship and Polypeptide Signature. Macromol Rapid Commun 2020; 41:e1900583. [DOI: 10.1002/marc.201900583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/16/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Na Kong
- School of Physical Science and TechnologyShanghaiTech University 393 Middle Huaxia Road Pudong Shanghai 201210 China
| | - Fengju Wan
- School of Physical Science and TechnologyShanghaiTech University 393 Middle Huaxia Road Pudong Shanghai 201210 China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical TranslationShanghai Industrial Technology Institute 1278 Keyuan Road Shanghai 201203 China
| | - Ping Wu
- National Facility for Protein Science in ShanghaiZhangjiang Lab Shanghai 201210 China
- Shanghai Science Research CenterChinese Academy of Sciences Shanghai 201204 China
| | - Chen Su
- National Facility for Protein Science in ShanghaiZhangjiang Lab Shanghai 201210 China
- Shanghai Science Research CenterChinese Academy of Sciences Shanghai 201204 China
| | - Chao Peng
- National Facility for Protein Science in ShanghaiZhangjiang Lab Shanghai 201210 China
- Shanghai Science Research CenterChinese Academy of Sciences Shanghai 201204 China
| | - Ke Zheng
- School of Physical Science and TechnologyShanghaiTech University 393 Middle Huaxia Road Pudong Shanghai 201210 China
| | - Xuexin Chen
- Institute of Insect ScienceCollege of Agriculture and BiotechnologyZhejiang University 310058 Hangzhou China
| | - Shengjie Ling
- School of Physical Science and TechnologyShanghaiTech University 393 Middle Huaxia Road Pudong Shanghai 201210 China
| | - Jinkang Gong
- School of Physical Science and TechnologyShanghaiTech University 393 Middle Huaxia Road Pudong Shanghai 201210 China
| | - Yuan Yao
- School of Physical Science and TechnologyShanghaiTech University 393 Middle Huaxia Road Pudong Shanghai 201210 China
| |
Collapse
|
30
|
Guo C, Li C, Mu X, Kaplan DL. Engineering Silk Materials: From Natural Spinning to Artificial Processing. APPLIED PHYSICS REVIEWS 2020; 7:011313. [PMID: 34367402 PMCID: PMC8340942 DOI: 10.1063/1.5091442] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/23/2020] [Indexed: 05/17/2023]
Abstract
Silks spun by the arthropods are "ancient' materials historically utilized for fabricating high-quality textiles. Silks are natural protein-based biomaterials with unique physical and biological properties, including particularly outstanding mechanical properties and biocompatibility. Current goals to produce artificially engineered silks to enable additional applications in biomedical engineering, consumer products, and device fields, have prompted considerable effort towards new silk processing methods using bio-inspired spinning and advanced biopolymer processing. These advances have redefined silk as a promising biomaterial past traditional textile applications and into tissue engineering, drug delivery, and biodegradable medical devices. In this review, we highlight recent progress in understanding natural silk spinning systems, as well as advanced technologies used for processing and engineering silk into a broad range of new functional materials.
Collapse
Affiliation(s)
- Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
31
|
Qiu W, Patil A, Hu F, Liu XY. Hierarchical Structure of Silk Materials Versus Mechanical Performance and Mesoscopic Engineering Principles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903948. [PMID: 31657136 DOI: 10.1002/smll.201903948] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/27/2019] [Indexed: 05/21/2023]
Abstract
A comprehensive review on the five levels of hierarchical structures of silk materials and the correlation with macroscopic properties/performance of the silk materials, that is, the toughness, strain-stiffening, etc., is presented. It follows that the crystalline binding force turns out to be very important in the stabilization of silk materials, while the β-crystallite networks or nanofibrils and the interactions among helical nanofibrils are two of the most essential structural elements, which to a large extent determine the macroscopic performance of various forms of silk materials. In this context, the characteristic structural factors such as the orientation, size, and density of β-crystallites are very crucial. It is revealed that the formation of these structural elements is mainly controlled by the intermolecular nucleation of β-crystallites. Consequently, the rational design and reconstruction of silk materials can be implemented by controlling the molecular nucleation via applying sheering force and seeding (i.e., with carbon nanotubes). In general, the knowledge of the correlation between hierarchical structures and performance provides an understanding of the structural reasons behind the fascinating behaviors of silk materials.
Collapse
Affiliation(s)
- Wu Qiu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Aniruddha Patil
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Fan Hu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Advanced Soft Matter Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Xiang Yang Liu
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Physical Science and Technology & College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| |
Collapse
|
32
|
Frydrych M, Greenhalgh A, Vollrath F. Artificial spinning of natural silk threads. Sci Rep 2019; 9:15428. [PMID: 31659185 PMCID: PMC6817873 DOI: 10.1038/s41598-019-51589-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/27/2019] [Indexed: 01/28/2023] Open
Abstract
Silk producing arthropods spin solid fibres from an aqueous protein feedstock apparently relying on the complex structure of the silk protein and its controlled aggregation by shear forces, alongside biochemical changes. This flow-induced phase-transition of the stored native silk molecules is irreversible, environmentally sound and remarkably energy efficient. The process seemingly relies on a self-assembling, fibrillation process. Here we test this hypothesis by biomimetically spinning a native-based silk feedstock, extracted by custom processes, into silk fibres that equal their natural models' mechanical properties. Importantly, these filaments, which featured cross-section morphologies ranged from large crescent-like to small ribbon-like shapes, also had the slender cross-sectional areas of native fibres and their hierarchical nanofibrillar structures. The modulation of the post-draw conditions directly affected mechanical properties, correlated with the extent of fibre crystallinity, i.e. degree of molecular order. We believe our study contributes significantly to the understanding and development of artificial silks by demonstrating successful biomimetic spinning relies on appropriately designed feedstock properties. In addition, our study provides inspiration for low-energy routes to novel synthetic polymers.
Collapse
Affiliation(s)
- Martin Frydrych
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, United Kingdom
| | - Alexander Greenhalgh
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, United Kingdom
| | - Fritz Vollrath
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, United Kingdom.
| |
Collapse
|
33
|
Xu L, Weatherbee-Martin N, Liu XQ, Rainey JK. Recombinant Silk Fiber Properties Correlate to Prefibrillar Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805294. [PMID: 30756524 DOI: 10.1002/smll.201805294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Spider silks are desirable materials with mechanical properties superior to most synthetic materials coupled with biodegradability and biocompatibility. In order to replicate natural silk properties using recombinant spider silk proteins (spidroins) and wet-spinning methods, the focus to date has typically been on modifying protein sequence, protein size, and spinning conditions. Here, an alternative approach is demonstrated. Namely, using the same ≈57 kDa recombinant aciniform silk protein with a consistent wet-spinning protocol, fiber mechanical properties are shown to significantly differ as a function of the solvent used to dissolve the protein at high concentration (the "spinning dope" solution). A fluorinated acid/alcohol/water dope leads to drastic improvement in fibrillar extensibility and, correspondingly, toughness compared to fibers produced using a previously developed fluorinated alcohol/water dope. To understand the underlying cause for these mechanical differences, morphology and structure of the two classes of silk fiber are compared, with features tracing back to dope-state protein structuring and preassembly. Specifically, distinct classes of spidroin nanoparticles appear to form in each dope prior to fiber spinning and these preassembled states are, in turn, linked to fiber morphology, structure, and mechanical properties. Tailoring of dope-state spidroin nanoparticle assembly, thus, appears a promising strategy to modulate fibrillar silk properties.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Nathan Weatherbee-Martin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
34
|
Chen J, Hu J, Sasaki S, Naka K. Modular Assembly of a Conserved Repetitive Sequence in the Spider Eggcase Silk: From Gene to Fiber. ACS Biomater Sci Eng 2018; 4:2748-2757. [DOI: 10.1021/acsbiomaterials.8b00428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianming Chen
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China
| | - Jinlian Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China
| | - Sono Sasaki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-8585 Kyoto, Japan
| |
Collapse
|
35
|
Zheng K, Ling S. De Novo Design of Recombinant Spider Silk Proteins for Material Applications. Biotechnol J 2018; 14:e1700753. [PMID: 29781251 DOI: 10.1002/biot.201700753] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/22/2018] [Indexed: 01/08/2023]
Abstract
Spider silks are well known for their superior mechanical properties that are stronger and tougher than steel despite being assembled at close to ambient conditions and using water as the solvent. However, it is a significant challenge to utilize spider silks for practical applications due to their limited sources. Fortunately, genetic engineering techniques offer a promising approach to produce useable amounts of spider silk variants. Starting from these recombinant spider silk proteins, a series of experiments and simulations strategies are developed to improve the recombinant spider silk proteins (RSSP) material design and fabrication with the aim of biomimicking the structure-property-function relationships of spider silks. Accordingly, in this review, the authors first introduce the structure-property-function relationship of spider silks. Then, the recent progress in the genetic synthesis of RSSPs is discussed and their related multiscale self-assembly behaviors is summarized. Finally, the authors outline works utilizing multiscale modeling to assist RSSP material design.
Collapse
Affiliation(s)
- Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
36
|
Lölsberg J, Linkhorst J, Cinar A, Jans A, Kuehne AJC, Wessling M. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres. LAB ON A CHIP 2018; 18:1341-1348. [PMID: 29619449 DOI: 10.1039/c7lc01366c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a three-dimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond.
Collapse
Affiliation(s)
- Jonas Lölsberg
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Chen J, Hu J, Zuo P, Su X, Liu Z, Yang M. Tailor-made spider-eggcase-silk spheres for efficient lysosomal drug delivery. RSC Adv 2018; 8:9394-9401. [PMID: 35541844 PMCID: PMC9078666 DOI: 10.1039/c8ra00232k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Spider silks are attractive biopolymers due to their excellent mechanical properties and biomimetic potential. To optimize the electrostatic interaction for lysosomal drug delivery, a spider-eggcase-silk protein was genetically engineered using 5× His Tag with a tailor-made isoelectric point of 4.8. By a facile HFIP-on-oil method, silk spheres were assembled as rapidly as 10 s. After the post-treatment of ethanol, silk spheres were determined with an improved compressive modulus by AFM indentation. Under incubation of silk spheres in a Doxorubicin solution, a maximum of 35% loading and average of 30% loading efficiency were determined. In the cytotoxicity experiment, silk spheres exhibited intrinsic biocompatibility and showed good control of the loaded drug in the neutral PBS solution. Significantly, by 96 h, the accumulative drug release at pH 4.5 was approximately 4.5-fold higher than that at pH 7.4. By conducting the platelet adhesion and hemolysis assay, Doxorubicin-loaded silk spheres exhibited good hemocompatibility. To further demonstrate this release behavior, within 24 h, Doxorubicin-loaded silk spheres were efficiently delivered to lysosomes and then released the payload to the nuclei of Hela cells. Recombinant spider-eggcase-silk spheres are facilely prepared as drug carriers with a tailor-made isoelectric point specifically for lysosomal delivery.![]()
Collapse
Affiliation(s)
- Jianming Chen
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| | - Jinlian Hu
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| | - Peijun Zuo
- Nano and Advanced Materials Institute
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
| | - Xiaoqian Su
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Zhigao Liu
- Shenzhen PKU-HKUST Medical Center
- Shenzhen
- China
| | - Mo Yang
- Department of Biomedical Engineering
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
| |
Collapse
|
38
|
From EST to novel spider silk gene identification for production of spidroin-based biomaterials. Sci Rep 2017; 7:13354. [PMID: 29042670 PMCID: PMC5645381 DOI: 10.1038/s41598-017-13876-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/03/2017] [Indexed: 11/09/2022] Open
Abstract
A cDNA library from a pool of all the seven silk glands from a tropical spider species was constructed. More than 1000 expressed sequence tag (EST) clones were created. Almost 65% of the EST clones were identified and around 50% were annotated. The cellular and functional distribution of the EST clones indicated high protein synthesis activity in spider silk glands. Novel clones with repetitive amino acid sequences, which is one of the most important characteristics of spider silk genes, were isolated. One of these clones, namely TuSp2 in current research, contains two almost identical fragments with one short C-terminal domain. Reverse transcription (RT) PCR and expression analysis showed that it is expressed in the tubuliform gland and involved in eggcase silk formation. Furthermore, its single repetitive domain can be induced to form various types of materials, including macroscopic fibers, transparent film and translucent hydrogel. This study implies promising potentials for future identification of novel spidroins and development of new spidroin-based biomaterials.
Collapse
|
39
|
Otikovs M, Andersson M, Jia Q, Nordling K, Meng Q, Andreas LB, Pintacuda G, Johansson J, Rising A, Jaudzems K. Degree of Biomimicry of Artificial Spider Silk Spinning Assessed by NMR Spectroscopy. Angew Chem Int Ed Engl 2017; 56:12571-12575. [PMID: 28791761 DOI: 10.1002/anie.201706649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 01/29/2023]
Abstract
Biomimetic spinning of artificial spider silk requires that the terminal domains of designed minispidroins undergo specific structural changes in concert with the β-sheet conversion of the repetitive region. Herein, we combine solution and solid-state NMR methods to probe domain-specific structural changes in the NT2RepCT minispidroin, which allows us to assess the degree of biomimicry of artificial silk spinning. In addition, we show that the structural effects of post-spinning procedures can be examined. By studying the impact of NT2RepCT fiber drying, we observed a reversible beta-to-alpha conversion. We think that this approach will be useful for guiding the optimization of artificial spider silk fibers.
Collapse
Affiliation(s)
- Martins Otikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Marlene Andersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 750 07, Uppsala, Sweden
| | - Qiupin Jia
- Institute of Biological Sciences and Biotechnology, Donghua University, 201620, Shanghai, China
| | - Kerstin Nordling
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Novum, 141 57, Huddinge, Sweden
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, 201620, Shanghai, China
| | - Loren B Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Novum, 141 57, Huddinge, Sweden
| | - Anna Rising
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, 750 07, Uppsala, Sweden.,Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet, Novum, 141 57, Huddinge, Sweden
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| |
Collapse
|
40
|
Otikovs M, Andersson M, Jia Q, Nordling K, Meng Q, Andreas LB, Pintacuda G, Johansson J, Rising A, Jaudzems K. Degree of Biomimicry of Artificial Spider Silk Spinning Assessed by NMR Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Martins Otikovs
- Latvian Institute of Organic Synthesis Aizkraukles 21 1006 Riga Latvia
| | - Marlene Andersson
- Department of Anatomy, Physiology and Biochemistry Swedish University of Agricultural Sciences Box 7011 750 07 Uppsala Sweden
| | - Qiupin Jia
- Institute of Biological Sciences and Biotechnology Donghua University 201620 Shanghai China
| | - Kerstin Nordling
- Department of Neurobiology Care Sciences and Society (NVS) Center for Alzheimer Research Karolinska Institutet Novum 141 57 Huddinge Sweden
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology Donghua University 201620 Shanghai China
| | - Loren B. Andreas
- Centre de RMN à Très Hauts Champs Institut des Sciences Analytiques (UMR 5280-CNRS, ENS Lyon, UCB Lyon 1) Université de Lyon 5 rue de la Doua 69100 Villeurbanne France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs Institut des Sciences Analytiques (UMR 5280-CNRS, ENS Lyon, UCB Lyon 1) Université de Lyon 5 rue de la Doua 69100 Villeurbanne France
| | - Jan Johansson
- Department of Neurobiology Care Sciences and Society (NVS) Center for Alzheimer Research Karolinska Institutet Novum 141 57 Huddinge Sweden
| | - Anna Rising
- Department of Anatomy, Physiology and Biochemistry Swedish University of Agricultural Sciences Box 7011 750 07 Uppsala Sweden
- Department of Neurobiology Care Sciences and Society (NVS) Center for Alzheimer Research Karolinska Institutet Novum 141 57 Huddinge Sweden
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis Aizkraukles 21 1006 Riga Latvia
| |
Collapse
|
41
|
Qiao X, Qian Z, Li J, Sun H, Han Y, Xia X, Zhou J, Wang C, Wang Y, Wang C. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14665-14676. [PMID: 28384406 DOI: 10.1021/acsami.7b01752] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A variety of devices used for biomedical engineering have been fabricated using protein polymer because of their excellent properties, such as strength, toughness, biocompatibility, and biodegradability. In this study, we fabricated an optical waveguide using genetically engineered spider silk protein. This method has two significant advantages: (1) recombinant spider silk optical waveguide exhibits excellent optical and biological properties and (2) biosynthesis of spider silk protein can overcome the limitation to the research on spider silk optical waveguide due to the low yield of natural spider silk. In detail, two kinds of protein-based optical waveguides made from recombinant spider silk protein and regenerative silkworm silk protein were successfully prepared. Results suggested that the recombinant spider silk optical waveguide showed a smoother surface and a higher refractive index when compared with regenerative silkworm silk protein. The optical loss of recombinant spider silk optical waveguide was 0.8 ± 0.1 dB/cm in air and 1.9 ± 0.3 dB/cm in mouse muscles, which were significantly lower than those of regenerative silkworm silk optical waveguide. Moreover, recombinant spider silk optical waveguide can meet the demand to guide and efficiently deliver light through biological tissue. In addition, recombinant spider silk optical waveguide showed low toxicity to cells in vitro and low-level inflammatory reaction with surrounding tissue in vivo. Therefore, recombinant spider silk optical waveguide is a promising implantable device to guide and deliver light with low loss.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Zhigang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Hongji Sun
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Yao Han
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Xiaoxia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Chunlan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , 27 TaipingRoad, Beijing 100850, People's Republic of China
| |
Collapse
|
42
|
Li X, Shi CH, Tang CL, Cai YM, Meng Q. The correlation between the length of repetitive domain and mechanical properties of the recombinant flagelliform spidroin. Biol Open 2017; 6:333-339. [PMID: 28126711 PMCID: PMC5374401 DOI: 10.1242/bio.022665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Spider silk is an attractive biopolymer with numerous potential applications due to its remarkable characteristics. Among the six categories of spider silks, flagelliform (Flag) spider silk possesses longer and more repetitive core domains than others, therefore performing the highest extensibility. To investigate the correlation between the recombinant spidroin size and the synthetic fiber properties, four recombinant proteins with different sizes [N-Scn-C (n=1-4)] were constructed and expressed using IMPACT system. Subsequently, different recombinant spidroins were spun into fibers through wet-spinning via a custom-made continuous post-drawing device. Mechanical tests of the synthetic fibers with four parameters (maximum stress, maximum extension, Young's modulus and toughness) demonstrated that the extensibility of the fibers showed a positive correlation with spidroin size, consequently resulting in the extensibility of N-Sc4-C fiber ranked the highest (58.76%) among four fibers. Raman data revealed the relationship between secondary structure content and mechanical properties. The data here provide a deeper insight into the relationship between the function and structure of Flag silk for future design of artificial fibers. Summary: A study of the relationship between the structure and property of synthetic spider silk-like fibers, which aims to aid with the designing of functional artificial fibers.
Collapse
Affiliation(s)
- Xue Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.,Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Chang-Hua Shi
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Chuan-Long Tang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yu-Ming Cai
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Qing Meng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China .,Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
43
|
Koeppel A, Holland C. Progress and Trends in Artificial Silk Spinning: A Systematic Review. ACS Biomater Sci Eng 2017; 3:226-237. [DOI: 10.1021/acsbiomaterials.6b00669] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Andreas Koeppel
- Department of Materials
Science
and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Chris Holland
- Department of Materials
Science
and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
44
|
Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol 2017; 13:262-264. [PMID: 28068309 DOI: 10.1038/nchembio.2269] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/25/2016] [Indexed: 11/08/2022]
Abstract
Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.
Collapse
|
45
|
Peng Q, Zhang Y, Lu L, Shao H, Qin K, Hu X, Xia X. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci Rep 2016; 6:36473. [PMID: 27819339 PMCID: PMC5098227 DOI: 10.1038/srep36473] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022] Open
Abstract
Spiders achieve superior silk fibres by controlling the molecular assembly of silk proteins and the hierarchical structure of fibres. However, current wet-spinning process for recombinant spidroins oversimplifies the natural spinning process. Here, water-soluble recombinant spider dragline silk protein (with a low molecular weight of 47 kDa) was adopted to prepare aqueous spinning dope. Artificial spider silks were spun via microfluidic wet-spinning, using a continuous post-spin drawing process (WS-PSD). By mimicking the natural spinning apparatus, shearing and elongational sections were integrated in the microfluidic spinning chip to induce assembly, orientation of spidroins, and fibril structure formation. The additional post-spin drawing process following the wet-spinning section partially mimics the spinning process of natural spider silk and substantially contributes to the compact aggregation of microfibrils. Subsequent post-stretching further improves the hierarchical structure of the fibres, including the crystalline structure, orientation, and fibril melting. The tensile strength and elongation of post-treated fibres reached up to 510 MPa and 15%, respectively.
Collapse
Affiliation(s)
- Qingfa Peng
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Li Lu
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kankan Qin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuechao Hu
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxia Xia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
46
|
Silk Spinning in Silkworms and Spiders. Int J Mol Sci 2016; 17:ijms17081290. [PMID: 27517908 PMCID: PMC5000687 DOI: 10.3390/ijms17081290] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/31/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023] Open
Abstract
Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes.
Collapse
|
47
|
Weatherbee-Martin N, Xu L, Hupe A, Kreplak L, Fudge DS, Liu XQ, Rainey JK. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk. Biomacromolecules 2016; 17:2737-46. [PMID: 27387592 DOI: 10.1021/acs.biomac.6b00857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spider silks are outstanding biomaterials with mechanical properties that outperform synthetic materials. Of the six fibrillar spider silks, aciniform (or wrapping) silk is the toughest through a unique combination of strength and extensibility. In this study, a wet-spinning method for recombinant Argiope trifasciata aciniform spidroin (AcSp1) is introduced. Recombinant AcSp1 comprising three 200 amino acid repeat units was solubilized in a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/water mixture, forming a viscous α-helix-enriched spinning dope, and wet-spun into an ethanol/water coagulation bath allowing continuous fiber production. Post-spin stretching of the resulting wet-spun fibers in water significantly improved fiber strength, enriched β-sheet conformation without complete α-helix depletion, and enhanced birefringence. These methods allow reproducible aciniform silk fiber formation, albeit with lower extensibility than native silk, requiring conditions and methods distinct from those previously reported for other silk proteins. This provides an essential starting point for tailoring wet-spinning of aciniform silk to achieve desired properties.
Collapse
Affiliation(s)
| | | | - Andre Hupe
- Department of Integrative Biology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | - Douglas S Fudge
- Department of Integrative Biology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
48
|
Ling S, Dinjaski N, Ebrahimi D, Wong JY, Kaplan DL, Buehler MJ. Conformation Transitions of Recombinant Spidroins via Integration of Time-Resolved FTIR Spectroscopy and Molecular Dynamic Simulation. ACS Biomater Sci Eng 2016; 2:1298-1308. [DOI: 10.1021/acsbiomaterials.6b00234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shengjie Ling
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Nina Dinjaski
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | | - Joyce Y. Wong
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | |
Collapse
|
49
|
To spin or not to spin: spider silk fibers and more. Appl Microbiol Biotechnol 2015; 99:9361-80. [DOI: 10.1007/s00253-015-6948-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
|
50
|
Rising A, Johansson J. Toward spinning artificial spider silk. Nat Chem Biol 2015; 11:309-15. [DOI: 10.1038/nchembio.1789] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
|