1
|
Gao W, Dou W, Zhou D, Song B, Niu T, Hua C, Wee ATS, Zhou M. Epitaxial Growth of 2D Binary Phosphides. SMALL METHODS 2024; 8:e2301512. [PMID: 38175841 DOI: 10.1002/smtd.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Combinations of phosphorus with main group III, IV, and V elements are theoretically predicted to generate 2D binary phosphides with extraordinary properties and promising applications. However, experimental synthesis is significantly lacking. Here, a general approach for preparing 2D binary phosphides is reported using single crystalline surfaces containing the constituent element of target 2D materials as the substrate. To validate this, SnP3 and BiP, representing typical 2D binary phosphides, are successfully synthesized on Cu2Sn and bismuthene, respectively. Scanning tunneling microscopy imaging reveals a hexagonal pattern of SnP3 on Cu2Sn, while α-BiP can be epitaxially grown on the α-bismuthene domain on Cu2Sb. First-principles calculations reveal that the formation of SnP3 on Cu2Sn is associated with strong interface bonding and significant charge transfer, while α-BiP interacts weakly with α-bismuthene so that its semiconducting property is preserved. The study demonstrates an attractive avenue for the atomic-scale growth of binary 2D materials via substrate phase engineering.
Collapse
Affiliation(s)
- Wenjin Gao
- Collaborative Center for Physics and Chemistry, Institute of International Innovation, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Wenzhen Dou
- Collaborative Center for Physics and Chemistry, Institute of International Innovation, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Dechun Zhou
- Collaborative Center for Physics and Chemistry, Institute of International Innovation, Beihang University, Hangzhou, 311115, China
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Biyu Song
- Collaborative Center for Physics and Chemistry, Institute of International Innovation, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Collaborative Center for Physics and Chemistry, Institute of International Innovation, Beihang University, Hangzhou, 311115, China
| | - Chenqiang Hua
- Collaborative Center for Physics and Chemistry, Institute of International Innovation, Beihang University, Hangzhou, 311115, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Miao Zhou
- Collaborative Center for Physics and Chemistry, Institute of International Innovation, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| |
Collapse
|
2
|
Gao W, Zhi G, Zhou M, Niu T. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311317. [PMID: 38712469 DOI: 10.1002/smll.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Indexed: 05/08/2024]
Abstract
The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.
Collapse
Affiliation(s)
- Wenjin Gao
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | | | - Miao Zhou
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
3
|
Zou X, Yuan X, Liang L, Tian F, Li Y, Sun Y, Wang C. Unusual Janus Bi 2TeSe 2 Topological Insulators Displaying Second-Harmonic Generation, Linear-in-Temperature Resistivity, and Weak Antilocalization. J Am Chem Soc 2024; 146:17784-17792. [PMID: 38916273 DOI: 10.1021/jacs.4c03176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Well-established knowledge about inversion-symmetric Bi2TexSe3-x topological insulators characterizes the promising new-generation quantum device. Noticeably, the inversion asymmetric phase containing different surface electronic structures may create an extra topological phenomenon pointing to a new device paradigm. Herein, Janus Bi2TeSe2 single-crystal nanosheets with an unconventional stacking sequence of Se-Bi-Se-Bi-Te are realized via chemical vapor deposition growth, which is clarified by atomically resolved AC-STEM and elemental mapping. An obvious polarization-dependent second-harmonic generation with a representative 6-fold rotational symmetry is detected due to the broken out-of-plane mirror symmetry in this system. Low-temperature transport measurements display a strange metal-like linear-in-temperature resistivity. Anomalous conductance peaks under low magnetic fields induced by the weak antilocalization effect of topological surface states and the two-dimensional transport-dominated anisotropic magnetoresistance are revealed. These findings correlate the Janus Bi2TeSe2 phase with emerging physics topics, which would inspire fresh thoughts in well-developed Bi3TexSe3-x topological insulators and open up opportunities for exploring hybrid nonlinear optoelectronic topological devices.
Collapse
Affiliation(s)
- Xiaobin Zou
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xuanhao Yuan
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lishan Liang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Fei Tian
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yan Li
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yong Sun
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Chengxin Wang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
4
|
Dabur D, Rana P, Wu HF. Pentacenequinone-Modulated 2D GdSn-PQ Nanosheets as a Fluorescent Probe for the Detection of Enrofloxacin in Biological and Environmental Samples. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27028-27039. [PMID: 38755114 PMCID: PMC11145593 DOI: 10.1021/acsami.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
The fate and effects of fluoroquinolone antibacterial (FQ) on the environment are important since there appears to be a surge in FQ resistance like enrofloxacin (ENR) in both environmental and clinical organisms. Numerous reports indicate that the sensing capabilities of these antibiotics need to be improved. Here, we have investigated the interaction of ENR with our synthesized pentacenequinone-modulated gadolinium-tin (GdSn-PQ) nanosheets and the formation of intermolecular interactions that caused the occurrence of aggregation-induced emission enhancement. The concept for designing hybrid metallic nanosheets comes from the unique features inherited from the parent organic precursor. Due to the distinct interaction between ENR and GdSn-PQ, the interstate conversion (ISC) between GdSn-PQ and ENR induces a significant wavelength shift in photoluminescence (PL), improving reliability, selectivity, and visibility compared to quenching- or AIEE-based methods without peak shifts, allowing for highly sensitive and visually detectable analyses. The fluorescence signal of GdSn-PQ exhibited a linear relationship (R2 = 0.9911), with the added ENR concentrations ranging from 5 to 90 nM, with a detection limit of 0.10 nM. We have demonstrated its potential and wide use in the detection of ENR in biological samples (human urine and blood serum) and environmental samples (tap water and seawater) with a recovery rate of 98- 108%. The current approach has demonstrated that the 2D GdSn-PQ nanosheet is a novel and powerful platform for future biological and environmental studies.
Collapse
Affiliation(s)
- Deepak Dabur
- International
PhD Program for Science, National Sun Yat-Sen
University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-Sen University,
Kaohsiung, 70, Lien-Hai
Road, Kaohsiung 80424, Taiwan
| | - Priyanka Rana
- Department
of Chemistry, National Sun Yat-Sen University,
Kaohsiung, 70, Lien-Hai
Road, Kaohsiung 80424, Taiwan
| | - Hui-Fen Wu
- International
PhD Program for Science, National Sun Yat-Sen
University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-Sen University,
Kaohsiung, 70, Lien-Hai
Road, Kaohsiung 80424, Taiwan
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
- Institute
of Medical Science and Technology, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute
of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- School of
Medicine, College of Medicine, National
Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute
of BioPharmaceutical Science, National Sun
Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
5
|
Xu Y, Qi J, Ma C, He Q. Wet-Chemical Synthesis of Elemental 2D Materials. Chem Asian J 2024; 19:e202301152. [PMID: 38469659 DOI: 10.1002/asia.202301152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Wet-chemical synthesis refers to the bottom-up chemical synthesis in solution, which is among the most popular synthetic approaches towards functional two-dimensional (2D) materials. It offers several advantages, including cost-effectiveness, high yields,, precious control over the production process. As an emerging family of 2D materials, elemental 2D materials (Xenes) have shown great potential in various applications such as electronics, catalysts, biochemistry,, sensing technologies due to their exceptional/exotic properties such as large surface area, tunable band gap,, high carrier mobility. In this review, we provide a comprehensive overview of the current state-of-the-art in wet-chemical synthesis of Xenes including tellurene, bismuthene, antimonene, phosphorene,, arsenene. The current solvent compositions, process parameters utilized in wet-chemical synthesis, their effects on the thickness, stability of the resulting Xenes are also presented. Key factors considered involves ligands, precursors, surfactants, reaction time, temperature. Finally, we highlight recent advances, existing challenges in the current application of wet-chemical synthesis for Xenes production, provide perspectives on future improvement.
Collapse
Affiliation(s)
- Yue Xu
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Junlei Qi
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Cong Ma
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Qiyuan He
- Department of Materials Science, Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Phong TC, Minh LN, Hien ND. Comparison of electron scattering by acoustic-phonons in two types of quantum wells with GaAs and GaN materials. NANOSCALE ADVANCES 2024; 6:832-845. [PMID: 38298586 PMCID: PMC10825907 DOI: 10.1039/d3na00274h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/16/2023] [Indexed: 02/02/2024]
Abstract
In this work, we report a detailed comparison of electron-acoustic-phonon (EAP) interaction strength in symmetric (parabolic) and asymmetric (semi-parabolic) quantum-wells (QWs) for both GaAs and GaN materials. The operator projection method will be utilized to calculate the acoustic-phonon-assisted cyclotron resonance (CR) absorption power. The EAP interaction strength is determined by measuring the full width at half maximum (FWHM) of the acoustic-phonon-assisted CR absorption peak based on the profile of the curve describing the dependence of the acoustic-phonon-assisted CR absorption power on the photon energy. The studied result reveals that the EAP interaction strengths in the symmetric and asymmetric QWs are functions of the electron temperature (ET), external magnetic field (EMF), and confined potential frequency (CPF). Namely, the larger the ET, the EMF, and the CPF, the stronger the EAP interaction strengths in the symmetric and asymmetric QWs are for both GaN and GaAs materials. More importantly, the obtained result demonstrates that under the influence of the structural (CPF) and external (ET and EMF) parameters, the EAP interaction strength in the symmetric QW is always much stronger than that in the asymmetric QW for both GaN and GaAs materials. Simultaneously, the EAP interaction strength in the GaN material is much stronger than that in the GaAs material for both the symmetric and asymmetric QWs.
Collapse
Affiliation(s)
- Tran Cong Phong
- Atomic Molecular and Optical Physics Research Group, Institute for Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Le Ngoc Minh
- Faculty of Physics, University of Sciences, Hue University Hue City Vietnam
| | - Nguyen Dinh Hien
- Institute of Research and Development, Duy Tan University Da Nang Vietnam
- School of Engineering & Technology, Duy Tan University Da Nang Vietnam
| |
Collapse
|
7
|
Chen M, Zhao X, Wang B, Liu H, Chen Z, Sun L, Xu X. Graphene-wrapped petal-like gap-enhanced Raman tags for enhancing photothermal conversion and Raman imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123306. [PMID: 37683434 DOI: 10.1016/j.saa.2023.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Multifunctional nanoplatform that combine imaging, diagnostic, and therapeutic functions into a single agent have great significance for the early diagnosis and efficient treatment of diseases, particularly tumors. In this study, we report on a novel graphene-wrapped petal-like gap-enhanced Raman tags with mesoporous silica shells (MS-GP-GERTs). These MS-GP-GERTs have 4-NBT Raman reporters embedded in the gap between the gold nanocore and the petal-shaped shell and are wrapped in graphene and mesoporous silica. The results of photothermal measurement experiments show that graphene layers significantly enhanced the photothermal effect of gap-enhanced Raman tags (GERTs). The photothermal conversion efficiency of MS-GP-GERTs reaches 40.8%, comparable to pure graphene. Moreover, MS-GP-GERTs show good photothermal performance in agarose phantoms, heating the phantom to 47 °C within 5 min under a low power density laser (0.5 W/cm2). MS-GP-GERTs also exhibit excellent photothermal stability and physiological environment stability, making them a promising candidate for repeated photothermal therapy. Raman spectra and mapping imaging experiments demonstrate MS-GP-GERTs' low detection limit (100 fM), large imaging depth (2.74 mm), and excellent ability to image simulated biological tissue and cells. This novel Raman tag has the potential to become a multifunctional nano platform for integrating Raman imaging diagnosis and photothermal therapy.
Collapse
Affiliation(s)
- Ming Chen
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Xing Zhao
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Bin Wang
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China.
| | - Hongliang Liu
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Zhixiang Chen
- Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Lu Sun
- Institute of Modern Optics, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Xiaoxuan Xu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Wang Y, Guo S, Xu X, Pan J, Hu J, Zhang S. Adsorption and sensing performance of air pollutants on a β-TeO 2 monolayer: a first-principles study. Phys Chem Chem Phys 2023; 26:612-620. [PMID: 38086641 DOI: 10.1039/d3cp04400a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Two-dimensional (2D) β-TeO2 is a novel semiconductor with potential applications in electronic circuits due to its air-stability and ultra-high carrier mobility. In this study, we explore the possibility of using a 2D β-TeO2 monolayer for the detection of gaseous pollutants including SO2, NO2, H2S, CO2, CO, and NH3 gas molecules based on first-principles calculations. The adsorption properties including the adsorption energy, adsorption distance and charge transfer indicate that the interaction between 2D β-TeO2 and the six gases is via a physisorption mechanism. Among the six gas adsorption systems, the SO2 adsorption system has the most negative adsorption energy and the largest charge transfer. In addition, the adsorption of SO2 obviously changes the electrical conductivity of the β-TeO2 monolayer because the band gap decreases from 2.727 eV to 1.897 eV after adsorbing SO2. Our results suggest that the 2D β-TeO2 should be an eminently promising SO2 sensing material.
Collapse
Affiliation(s)
- Ying Wang
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Shiying Guo
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Xiaoyong Xu
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jing Pan
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jingguo Hu
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.
| |
Collapse
|
9
|
Zhao H, Xue Y, Zhao Y, Chen J, Chang B, Huang H, Xu T, Sun L, Chen Y, Sha J, Zhu B, Tao L. Large-area 2D bismuth antimonide with enhanced thermoelectric properties via multiscale electron-phonon decoupling. MATERIALS HORIZONS 2023; 10:2053-2061. [PMID: 36930046 DOI: 10.1039/d2mh01226j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is a challenge to obtain high thermoelectric efficiency owing to the conflicting parameters of the materials that are required. In this work, the composition-adjustable 2D bismuth antimonide (Bi100-xSbx) is synthesized using an e-beam evaporation system with homemade targets. Engineering multiscale defects is done to optimize the thermoelectric performance in the compound. Sb alloying introduces atomic defects, lattice distortion and increased grain boundary. They drastically decrease the thermal conductivity, with an ultralow value of ∼0.23 W m-1 K-1 obtained for the composition with x = 18. It is noticed that the atomic and nanoscale defects do not deteriorate the electrical conductivity (105 S m-1), and the value is even comparable to the bulk counterpart over a wide composition range (0 ≤ x ≤ 35). Annealing induces pore structure with microscale defects, which increase the Seebeck coefficient by 84% due to the energy barrier. The resultant ZT of 0.13 is enhanced by 420% in the annealed Bi82Sb18 when compared with the as-grown Bi. This work demonstrates a cost-effective and controllable way to decouple electrons and phonons in the thermoelectric field.
Collapse
Affiliation(s)
- Hanliu Zhao
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China.
| | - Yuxin Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China.
| | - Yu Zhao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.
| | - Jiayi Chen
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China.
| | - Bo Chang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China.
| | - Hao Huang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China.
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 211189, People's Republic of China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 211189, People's Republic of China
| | - Yunfei Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.
| | - Jingjie Sha
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.
| | - Beibei Zhu
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China.
| | - Li Tao
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, People's Republic of China.
| |
Collapse
|
10
|
Sun M, Dong A, Gui Y. Gas-sensing properties of Pb, Pd modified C3N4 for SF6 decomposition products detection: A DFT study. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Fan W, Han Y, Chen S, Sun S, Zhao X, Bai C, Wang G, Lu C, Zhang W, Fu S, Zhang H. Nanosized indium selenide saturable absorber for multiple solitons operation in Er 3+-doped fiber laser. OPTICS EXPRESS 2023; 31:10176-10190. [PMID: 37157571 DOI: 10.1364/oe.484219] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
With the advances in the field of ultrafast photonics occurring so fast, the demand for optical modulation devices with high performance and soliton lasers which can realize the evolution of multiple soliton pulses is gradually increasing. Nevertheless, saturable absorbers (SAs) with appropriate parameters and pulsed fiber lasers which can output abundant mode-locking states still need to be further explored. Due to the special band gap energy values of few-layer indium selenide (InSe) nanosheets, we have prepared a SA based on InSe on a microfiber by optical deposition. In addition, we demonstrate that our prepared SA possesses a modulation depth and saturable absorption intensity about 6.87% and 15.83 MW/cm2, respectively. Then, multiple soliton states are obtained by dispersion management techniques, including regular solitons, and second-order harmonic mode-locking solitons. Meanwhile, we have obtained multi-pulse bound state solitons. We also provide theoretical basis for the existence of these solitons. The results of the experiment show that the InSe has the potential to be an excellent optical modulator because of its excellent saturable absorption properties. This work also is important for improving the understanding and knowledge of InSe and the output performance of fiber lasers.
Collapse
|
12
|
Adhikari S, Mandal S, Kim DH. Recent Development Strategies for Bismuth-Driven Materials in Sustainable Energy Systems and Environmental Restoration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206003. [PMID: 36526436 DOI: 10.1002/smll.202206003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Bismuth(Bi)-based materials have gained considerable attention in recent decades for use in a diverse range of sustainable energy and environmental applications due to their low toxicity and eco-friendliness. Bi materials are widely employed in electrochemical energy storage and conversion devices, exhibiting excellent catalytic and non-catalytic performance, as well as CO2 /N2 reduction and water treatment systems. A variety of Bi materials, including its oxides, chalcogenides, oxyhalides, bismuthates, and other composites, have been developed for understanding their physicochemical properties. In this review, a comprehensive overview of the properties of individual Bi material systems and their use in a range of applications is provided. This review highlights the implementation of novel strategies to modify Bi materials based on morphological and facet control, doping/defect inclusion, and composite/heterojunction formation. The factors affecting the development of different classes of Bi materials and how their control differs between individual Bi compounds are also described. In particular, the development process for these material systems, their mass production, and related challenges are considered. Thus, the key components in Bi compounds are compared in terms of their properties, design, and applications. Finally, the future potential and challenges associated with Bi complexes are presented as a pathway for new innovations.
Collapse
Affiliation(s)
- Sangeeta Adhikari
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
- Catalyst Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sandip Mandal
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Oryong-dong, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Do-Heyoung Kim
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
- Catalyst Research Institute, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
13
|
Zheng Y, Wang Y, Xiao J, Xu L, Dai X, Wang Z. Insight into the Anchoring Effect of Two‐Dimensional TiX
2
(X = S, Se) Materials for Sodium–Sulfur Batteries: A First‐Principles Study. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yunxin Zheng
- College of Science Guilin University of Technology Guilin 541008 China
| | - Yanwen Wang
- College of Science Guilin University of Technology Guilin 541008 China
| | - Jianrong Xiao
- College of Science Guilin University of Technology Guilin 541008 China
| | - Liang Xu
- Energy Materials Computing Center School of Energy and Mechanical Engineering Jiangxi University of Science and Technology Nanchang 330013 China
| | - Xueqiong Dai
- College of Science Guilin University of Technology Guilin 541008 China
| | - Zhiyong Wang
- College of Science Guilin University of Technology Guilin 541008 China
| |
Collapse
|
14
|
Liu X, Guo H, Wang J, Huang Q, Chen X, Bao J, Yu J. A first-principles study of the adsorption mechanism of NO 2 on monolayer antimonide phosphide: a highly sensitive and selective gas sensor. NEW J CHEM 2023. [DOI: 10.1039/d2nj05553h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A NO2/SbP adsorption system with high adsorption energy (−0.876 eV) and charge transfer value (−0.83 e) is reported.
Collapse
Affiliation(s)
- Xiaodong Liu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Haojie Guo
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| | - Jia Wang
- College of Architectural Engineering, Shanxi Institute of Applied Science and Technology, Taiyuan 030031, China
| | - Qing Huang
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| | - Jiading Bao
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| |
Collapse
|
15
|
Sheng Q, Tang S, Ye F, Wang Y, Chen S, Bai C, Lu C, Zhang H, Fu S, Wang G, Zhang W. Passively mode-locked fiber laser based on GeTe as a saturable absorber. APPLIED OPTICS 2022; 61:9379-9385. [PMID: 36606884 DOI: 10.1364/ao.475019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
In this work, we fabricate a saturable absorber based on GeTe with saturation intensity and modulation depth of 12.6M W/c m 2 and 7%, respectively. We obtain stable conventional soliton and stretched soliton mode-locking operation. For the conventional soliton state, the average output power increased from 0.93 to 8.70 mW with the increase of pump power, and the fundamental repetition rate was 7.8351 MHz. Its central wavelength and 3 dB bandwidth were 1564.72 and 4.78 nm, respectively. For the stretched soliton state, when the pump power was increased from 87.4 to 420.3 mW, the average output power increased from 2.05 to 10.46 mW. When the maximum average output power reached 10.46 mW, the maximum average single-pulse energy was 0.86 nJ. The experimental results show that GeTe nanosheets will have broad application potential in the field of ultrafast photonics.
Collapse
|
16
|
Lin X, Ng SF, Ong WJ. Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Zhao J, Jin X, Yao C, Zeng H. First-principles study of O-functionalized two-dimensional AsP monolayers: electronic structure, mechanical, piezoelectric, and optical properties. NANOTECHNOLOGY 2022; 34:015201. [PMID: 36162330 DOI: 10.1088/1361-6528/ac94db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Using density functional theory, we investigated the geometrical properties, electronic structures, carrier mobilities, piezoelectric coefficients, and optical absorption behaviors of three O-functionalizedβ-phase AsP structures (b-AsPO-FO, b-AsPO-As-SO and b-AsPO-P-SO). It is shown that three O-functionalized monolayers are all indirect semiconductors with bandgaps of 0.21, 0.67, and 0.80 eV, respectively. Our calculations demonstrated that the pristine AsP monolayer and these O-functionalized AsP monolayers have strongly anisotropic carrier mobilities, allowing their potential applications for in-plane anisotropic electronic device. The bandgaps of three functionalized nanomaterials exhibit non-monotonic variations under the biaxial strains changing from -0.10 to +0.10, all experiencing metal-indirect bandgap-direct bandgap transition. The calculated in-plane Young's modulus results suggest that they are fairly flexible to allow the application of large elastic strains on the chemically functionalized AsP monolayers. Furthermore, the b-AsPO-FO monolayer exhibits excellent anisotropic light-harvesting behavior (absorption peak: 2.36 and 2.76 eV alongxand 2.37 eV alongydirection) in visible light region. The b-AsPO-As-SO and b-AsPO-P-SO monolayers have strong absorption peak at 2.60 eV and 2.87 eV, respectively. The tunable electronic structures, anisotropic carrier mobility, and excellent optical absorption properties may facilitate practical applications of O-functionalized b-AsP monolayers in nanoelectronics and photovoltaics.
Collapse
Affiliation(s)
- Jun Zhao
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xuehu Jin
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, People's Republic of China
| | - Can Yao
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hui Zeng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, People's Republic of China
| |
Collapse
|
18
|
|
19
|
Tetrahydrofuran and 2-methyltetrahydrofuran adsorption studies on violet phosphorene nanosheets based on first-principles studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Zhang Q, Yang Y, Fan H, Feng L, Wen G, Qin LC. Synthesis of Graphene Oxide Using Boric Acid In Hummers Method. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Mao Y, Qin C, Wang J, Yuan J. A two-dimensional α-As/α-AsP van der Waals heterostructure for photovoltaic applications. Phys Chem Chem Phys 2022; 24:16058-16064. [PMID: 35735012 DOI: 10.1039/d2cp01540d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On the basis of first-principles calculations, we constructed a two-dimensional (2D) α-As/α-AsP van der Waals heterostructure (vdWH) to study the structural stability, and electronic and optical properties. Our results show that the 2D α-As/α-AsP vdWH displays indirect semiconductor characteristics with a band gap of 0.86 eV. Furthermore, it exhibits anisotropic properties and a high light absorption coefficient of up to 106 cm-1 in the ultraviolet region. Our predicted photoelectric conversion efficiency (PCE) of the 2D α-As/α-AsP vdWH reaches 21.30%, which is higher than those of blue-AsP/CdSe (13%), GeSe/AsP (16%), and As/tetracyanonaphtho-quinodimethane (TCNNQ) (20%). By applying an in-plane strain in the range from -6% to 6%, the band structure of the 2D α-As/α-AsP vdWH can be effectively tuned. In particular, under a uniaxial strain of -2% along the x-axis (2% along the y-axis), a transition from indirect to direct in the band structure occurs, while when applying a biaxial strain of -4% a transition from a semiconductor to a metal can be realized. These results indicate that the 2D α-As/α-AsP vdWH has potential applications in optoelectronic devices and solar cells.
Collapse
Affiliation(s)
- Yuliang Mao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China.
| | - Chuangqing Qin
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China.
| | - Jing Wang
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China. .,Hunan National Center for Applied Mathematics, Hunan 411105, China
| | - Jianmei Yuan
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China. .,Hunan National Center for Applied Mathematics, Hunan 411105, China
| |
Collapse
|
22
|
Fu Y, Liao Y, Li P, Li H, Jiang S, Huang H, Sun W, Li T, Yu H, Li K, Li H, Jia B, Ma T. Layer structured materials for ambient nitrogen fixation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Highly Stable, Graphene-Wrapped, Petal-like, Gap-Enhanced Raman Tags. NANOMATERIALS 2022; 12:nano12101626. [PMID: 35630847 PMCID: PMC9144347 DOI: 10.3390/nano12101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 02/01/2023]
Abstract
Gap-enhanced Raman tags (GERTs) were widely used in cell or biological tissue imaging due to their narrow spectral linewidth, weak photobleaching effect, and low biological matrix interference. Here, we reported a new kind of graphene-wrapped, petal-like, gap-enhanced Raman tags (GP-GERTs). The 4-Nitrobenzenethiol (4-NBT) Raman reporters were embedded in the petal-like nanogap, and graphene was wrapped on the surface of the petal-like, gap-enhanced Raman tags. Finite-difference time-domain (FDTD) simulations and Raman experimental studies jointly reveal the Raman enhancement mechanism of graphene. The SERS enhancement of GP-GERTs is jointly determined by the petal-like “interstitial hotspots” and electron transfer between graphene and 4-NBT molecules, and the total Raman enhancement factor (EF) can reach 1010. Mesoporous silica was grown on the surface of GP-GERTs by tetraethyl orthosilicate hydrolysis to obtain Raman tags of MS-GP-GERTs. Raman tag stability experiments showed that: MS-GP-GERTs not only can maintain the signal stability in aqueous solutions of different pH values (from 3 to 12) and simulated the physiological environment (up to 72 h), but it can also stably enhance the signal of different Raman molecules. These highly stable, high-signal-intensity nanotags show great potential for SERS-based bioimaging and multicolor imaging.
Collapse
|
24
|
Wang T, Jiang X, Wang J, Liu Z, Song J, Liu Y. One-dimensional quantum channel in bent honeycomb nanoribbons. Phys Chem Chem Phys 2022; 24:9316-9323. [PMID: 35389407 DOI: 10.1039/d2cp00468b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The directionality of steering charge carriers is of great importance for the application of two-dimensional (2D) materials. Using the generalized Bloch theorem coupled with the self-consistent charge density-functional tight-binding method, we theoretically propose an approach to construct a one-dimensional (1D) quantum channel in honeycomb nanoribbons (NR) via in-plane bending deformation. Bending-induced pseudo-magnetic fields lead to Landau quantization and localize the electronic states along both edges of bent NR. These localized states form robust 1D quantum channels, whose energies can be linearly modulated through the bending angle. Our findings give new inspiration for the realization of transverse magnetic focusing (TMF) under zero magnetic fields and pave the way for the design of 2D material-based nano-devices via strain-engineering.
Collapse
Affiliation(s)
- Tong Wang
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Xi Jiang
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Jing Wang
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Zhao Liu
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China. .,Beijing Computational Science Research Center, Beijing 100193, China
| | - Juntao Song
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Ying Liu
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China. .,National Key Laboratory for Materials Simulation and Design, Beijing 100083, China
| |
Collapse
|
25
|
Zhang CG, Wang PJ. NbCX (X=F, Cl, Br, I) with Highly Anisotropic Fermi Velocity, Optical, Mechanical and Electric Transport Properties. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Yang X, Shen Y, Liu J, Meng X, Gao X, Lv L, Zhou M, Zhang Y, Zheng Y, Zhou Z. Electronic and optical properties of a novel two-dimensional semiconductor material TlPt 2S 3: a first-principles study. Phys Chem Chem Phys 2022; 24:7642-7652. [PMID: 35297434 DOI: 10.1039/d1cp05918a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two-dimensional (2D) materials have attracted widespread attention due to their unique physical and chemical properties. Here, by using density functional theory calculations, we suggest a novel 2D TlPt2S3 material whose layered bulk counterpart was synthesized in 1973. Theoretical calculation results indicate that the exfoliating energy of monolayer and bilayer TlPt2S3 is 34.96 meV Å-2 and 36.03 meV Å-2. We systematically studied the electronic and optical properties of monolayer and bilayer TlPt2S3, and revealed that they are indirect band gap semiconductors with band gaps of 2.26 eV and 2.10 eV, respectively. Monolayer and bilayer TlPt2S3 exhibit superior carrier mobility (901.63 cm2 V-1 s-1 and 13635.04 cm2 V-1 s-1 for electron mobility of the monolayer and bilayer, respectively) and photocatalytic performance (as high as 1 × 105 light absorption coefficient in the visible light region). Interestingly, we find that monolayer TlPt2S3 has significant hydrogen evolution performance, while in the bilayer, the electron band distribution shows complete oxygen evolution ability, which indicates that the proposed monolayer and bilayer TlPt2S3 are potential novel 2D materials suitable for photocatalytic water splitting driven by visible light.
Collapse
Affiliation(s)
- Xin Yang
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Yanqing Shen
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China. .,Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jiajia Liu
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Xianghui Meng
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Xu Gao
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Lingling Lv
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Min Zhou
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Yu Zhang
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Yangdong Zheng
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China.
| | - Zhongxiang Zhou
- School of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China. .,Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
27
|
Zhang J, Pang J, Chen H, Wei G, Wei S, Yan J, Jin S. Study on SO 2 and Cl 2 sensor application of 2D PbSe based on first principles calculations. RSC Adv 2022; 12:8530-8535. [PMID: 35424836 PMCID: PMC8984962 DOI: 10.1039/d2ra01249a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
In this paper, we use 2D PbSe to design a gas sensor to monitor the presence of SO2 and Cl2. We use first principles to verify the feasibility of this material, such as atomic structure, band gap, differential charge density and Bader charge. The results show that 2D PbSe can distinctly adsorb SO2 and Cl2. Furthermore, the adsorption of SO2 and Cl2 will affect the electronic structure of 2D PbSe, and some electrons in the PbSe are transferred to gas atoms. The band gap of the system after adsorption is smaller than that of the PbSe before adsorption. The band gap of single layer PbSe decreases by 41.92% after SO2 adsorption and 60.61% after Cl2 adsorption. The band gap of multi-layer PbSe decreases by 72.97% after SO2 adsorption and 43.24% after Cl2 adsorption. This shows that single layer PbSe is more sensitive to Cl2 and multi-layer PbSe is more sensitive to SO2. It provides a potential possibility for designing gas sensors for SO2 and Cl2 based on 2D PbSe.
Collapse
Affiliation(s)
- Jiwei Zhang
- Guangdong Ocean University Zhanjiang 524088 China
| | - Jianhua Pang
- Guangdong Ocean University Zhanjiang 524088 China
| | - Hui Chen
- Guangdong Ocean University Zhanjiang 524088 China
| | - Guang Wei
- Guangdong Ocean University Zhanjiang 524088 China
| | - Songrui Wei
- Institute of Microscale Optoelectronics, Shenzhen University Shenzhen 518060 China
| | - Jin Yan
- Guangdong Ocean University Zhanjiang 524088 China
| | - Shaowei Jin
- National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center) Shenzhen 518055 China
| |
Collapse
|
28
|
Hu Y, Liang J, Xia Y, Zhao C, Jiang M, Ma J, Tie Z, Jin Z. 2D Arsenene and Arsenic Materials: Fundamental Properties, Preparation, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104556. [PMID: 34846791 DOI: 10.1002/smll.202104556] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
As emerging 2D materials, arsenene and arsenic materials have attracted rising interest in the past few years. The diverse crystalline phases, exotic electrical characteristics, and widespread applications of 2D arsenene and arsenic bring them great research value and utilization potential. Herein, the recent progress of 2D arsenene and arsenic is reviewed in terms of fundamental properties, preparation, and applications. The fundamental properties of 2D arsenene and arsenic, including the crystal phases, environmental stability, and electrical structure, from theoretical to experimental reports are first summarized. Then, the experimental processes for preparing 2D arsenene and arsenic, along with their respective advantages and disadvantages, are introduced including epitaxial growth, mechanical exfoliation, and liquid-phase exfoliation. Moreover, applications of 2D arsenene and arsenic are discussed, suggesting a wide range of applications of 2D arsenene and arsenic in field-effect transistors, sensors, catalysts, biological applications, and so on. Finally, some perspectives about the challenges and opportunities of promising 2D arsenene and arsenic are provided. This review provides a helpful guidance and stimulates more focus on future explorations and developments of 2D arsenene and arsenic.
Collapse
Affiliation(s)
- Yi Hu
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Junchuan Liang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Yuren Xia
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Cheng Zhao
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Minghang Jiang
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Jing Ma
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zuoxiu Tie
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| | - Zhong Jin
- MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, 518063, China
| |
Collapse
|
29
|
Efficient Saturable Absorber Based on Ferromagnetic Insulator Cr 2Ge 2Te 6 in Er-Doped Mode-Locked Fiber Laser. NANOMATERIALS 2022; 12:nano12050751. [PMID: 35269240 PMCID: PMC8911801 DOI: 10.3390/nano12050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022]
Abstract
A ferromagnetic insulator Cr2Ge2Te6 as a saturable absorber in an Er-doped fiber laser (EDFL) was demonstrated. In this work, a CGT-PVA composite film was successfully fabricated using the liquid-phase exfoliation method and employed in an EDFL. The modulation depth and saturation intensity of the SA are 4.26% and 89.40 MW/cm2, respectively. Stable pulses with a minimum pulse width of 978.5 fs when the repetition rate was 3.25 MHz were recorded experimentally. Furthermore, stable solitons still need to be obtained when the pulse energy in the cavity is as high as 11.6 nJ. The results fully suggest that CGT has outstanding nonlinear absorption properties, which may have broad potential applications in ultrafast photons.
Collapse
|
30
|
Peng Y, Lin C, Li Y, Gao Y, Wang J, He J, Huang Z, Liu J, Luo X, Yang Y. Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS 2 SERS biosensors with capillary effect. MATTER 2022; 5:694-709. [PMID: 34957388 PMCID: PMC8686209 DOI: 10.1016/j.matt.2021.11.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 05/09/2023]
Abstract
The current COVID-19 pandemic urges us to develop ultra-sensitive surface-enhanced Raman scattering (SERS) substrates to identify the infectiousness of SARS-CoV-2 virions in actual environments. Here, a micrometer-sized spherical SnS2 structure with the hierarchical nanostructure of "nano-canyon" morphology was developed as semiconductor-based SERS substrate, and it exhibited an extremely low limit of detection of 10-13 M for methylene blue, which is one of the highest sensitivities among the reported pure semiconductor-based SERS substrates. Such ultra-high SERS sensitivity originated from the synergistic enhancements of the molecular enrichment caused by capillary effect and the charge transfer chemical enhancement boosted by the lattice strain and sulfur vacancies. The novel two-step SERS diagnostic route based on the ultra-sensitive SnS2 substrate was presented to diagnose the infectiousness of SARS-CoV-2 through the identification standard of SERS signals for SARS-CoV-2 S protein and RNA, which could accurately identify non-infectious lysed SARS-CoV-2 virions in actual environments, whereas the current PCR methods cannot.
Collapse
Affiliation(s)
- Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jing Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui 12560, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui 12560, China
| | - Zhengren Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Jianjun Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | - Xiaoying Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Yang F, Sun S, Chen S, Wang Y, Sui Z, Zhu M, Hong Z, Xu J, Tang S, Lu C, Wang G, Fu S, Chen X, Zhang H, Zhang W. Passively mode-locked Er-doped fiber laser based on a ferromagnetic insulator Cr 2Si 2Te 6 as a saturable absorber. APPLIED OPTICS 2022; 61:898-903. [PMID: 35201058 DOI: 10.1364/ao.448502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
In our work, a new-type, to the best of our knowledge, ferromagnetic insulator and its nonlinear optical absorption characteristics and related ultrafast modulation applications were investigated. Cr2Si2Te6 saturable absorbers (SAs) with a modulation depth and a saturable intensity of 9.7% and 3.5MW/cm2 were fabricated. By adjusting the pump power to 120 mW and optimizing the polarization state, traditional soliton operations were obtained successfully; the corresponding duration of pulse and the fundamental repetition rate were ∼1.33ps and 6.70 MHz, and the signal-to-noise ratio was 50 dB. The experimental results reveal that Cr2Si2Te6 with excellent saturable absorption characteristics can be used as a SA to obtain ultrafast pulse lasers.
Collapse
|
32
|
Menazea AA, Awwad NS, Ibrahium HA, Ebaid G, Elhosiny Ali H. Selective detection of sulfur trioxide in the presence of environmental gases by AlN nanotube. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.2016764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- A. A. Menazea
- Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| | - Ghaffar Ebaid
- Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - H. Elhosiny Ali
- Physics Department, faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
33
|
Chandrasekaran S, Zhang C, Shu Y, Wang H, Chen S, Nesakumar Jebakumar Immanuel Edison T, Liu Y, Karthik N, Misra R, Deng L, Yin P, Ge Y, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Zhang P, Bowen C, Han Z. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Mahnama M, Meshkinghalam M, Ozmaian M. Anisotropic thermal conductivity and corrugated patterns in single-layer black phosphorus nanoribbon subjected to shear loading: a molecular dynamics study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:075403. [PMID: 34757946 DOI: 10.1088/1361-648x/ac3868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Single-layer black phosphorus (SLBP) also known as phosphorene is a recently introduced two-dimensional material with unique structure and promising physical properties that has drawn considerable attention in the field of nanodevices. This structure demonstrates a high anisotropy in mechanical and thermal behavior along zigzag (ZZ) and armchair (AC) principal in-plane directions. Here in this study, it is shown that implementing shear strain on 10 nm × 50 nm SLBP nanoribbons (SLBPNRs) along ZZ and AC directions, the anisotropy leads to different corrugated patterns on the pristine structure. Applying non-equilibrium molecular dynamics under a parameterized Stillinger-Weber potential for modelling SLBP, thermal conductivity (TC) behavior of the sheared SLBPNRs with corrugated patterns are examined. The results show a higher amplitude and wavelength of the corregations on the ZZ-aligned SLBPNRs, which is around two times higher than that of AC-aligned counterparts. Although, it is also shown that unlike some other 2D materials, such as graphene, the wrinkling does not have such a significant effect on TC of SLBP. The phonon density of states results obtained in this work as well as phonon dispersion curves by first-principle calculations in other works concrete this finding. The results show small frequency shifts in both high- and low-frequency phonons, which are not strong enough to affect TC in SLBPNRs. This interesting thermal property of SLBP under shear strain suggests the great potential application of these corrugated structures in nanodevices without any loss of TC abilities.
Collapse
Affiliation(s)
- Maryam Mahnama
- School of Mechanical Engineering, College of Engineering, University of Tehran, PO Box: 11155-4563, Tehran, Iran
| | - Mostafa Meshkinghalam
- School of Mechanical Engineering, College of Engineering, University of Tehran, PO Box: 11155-4563, Tehran, Iran
| | - Masoumeh Ozmaian
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States of America
| |
Collapse
|
35
|
Xu W, Xie Z, Su J, Wang R, Wu X, Xu H. High Anisotropic Optoelectronics in Two Dimensional Layered PbSnX 2 (X = S/Se). J Phys Chem Lett 2021; 12:10574-10580. [PMID: 34694815 DOI: 10.1021/acs.jpclett.1c02876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We systematically study the giant anisotropic optoelectronics in layered PbSnX2 (X = S/Se). The highly anisotropic optoelectronics mainly originates from the asymmetric sublattices SnX, resulting in the anisotropy of photoelectronic properties with fascinating visible light absorption range in single-layer and bilayer PbSnX2. We employ uniaxial strain in both the x and y directions and find an indirect-to-direct band gap transition, while the quasiparticle indirect band gap presents excellent linear scaling with biaxial strain in monolayer PbSnX2. We also demonstrate ultrahigh anisotropic mobilities of electrons (μy > μx) and holes (μx > μy) in both single-layer and bilayer PbSnX2 (X = S/Se), and spin-orbit coupling effects and the increase of layer number significantly reduce exciton binding energies and band gaps. Finally, the strong layer dependence of the band structure is clearly seen when the film thickness is less than 4 layers. Our results provide a fundamental understanding of highly anisotropic PbSnX2 (X = S/Se) and show two potential candidates in photoelectric applications.
Collapse
Affiliation(s)
- Wangping Xu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
- Department of Physics, Chongqing University, Chongqing 401331, P. R. China
- Department of Physics and Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zijuan Xie
- Department of Physics and Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Jun Su
- Department of Physics and Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Rui Wang
- Department of Physics, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaozhi Wu
- Department of Physics, Chongqing University, Chongqing 401331, P. R. China
| | - Hu Xu
- Department of Physics and Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Shenzhen 518055, P. R. China
| |
Collapse
|
36
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Kim Y, Woo WJ, Kim D, Lee S, Chung SM, Park J, Kim H. Atomic-Layer-Deposition-Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005907. [PMID: 33749055 DOI: 10.1002/adma.202005907] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Transition metal chalcogenides (TMCs) are a large family of 2D materials with different properties, and are promising candidates for a wide range of applications such as nanoelectronics, sensors, energy conversion, and energy storage. In the research of new materials, the development and investigation of industry-compatible synthesis techniques is of key importance. In this respect, it is important to study 2D TMC materials synthesized by the atomic layer deposition (ALD) technique, which is widely applied in industries. In addition to the synthesis of 2D TMCs, ALD is used to modulate the characteristic of 2D TMCs such as their carrier density and morphology. So far, the improvement of thin film uniformity without oxidation and the synthesis of low-dimensional nanomaterials on 2D TMCs have been the research focus. Herein, the synthesis and modulation of 2D TMCs by ALD is described, and the characteristics of ALD-based TMCs used in nanoelectronics, sensors, and energy applications are discussed.
Collapse
Affiliation(s)
- Youngjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Whang Je Woo
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Sangyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seung-Min Chung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jusang Park
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Hyungjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
38
|
Hess P. Bonding, structure, and mechanical stability of 2D materials: the predictive power of the periodic table. NANOSCALE HORIZONS 2021; 6:856-892. [PMID: 34494064 DOI: 10.1039/d1nh00113b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This tutorial review describes the ongoing effort to convert main-group elements of the periodic table and their combinations into stable 2D materials, which is sometimes called modern 'alchemy'. Theory is successfully approaching this goal, whereas experimental verification is lagging far behind in the synergistic interplay between theory and experiment. The data collected here gives a clear picture of the bonding, structure, and mechanical performance of the main-group elements and their binary compounds. This ranges from group II elements, with two valence electrons, to group VI elements with six valence electrons, which form not only 1D structures but also, owing to their variable oxidation states, low-symmetry 2D networks. Outside of these main groups reviewed here, predominantly ionic bonding may be observed, for example in group II-VII compounds. Besides high-symmetry graphene with its shortest and strongest bonds and outstanding mechanical properties, low-symmetry 2D structures such as various borophene and tellurene phases with intriguing properties are receiving increasing attention. The comprehensive discussion of data also includes bonding and structure of few-layer assemblies, because the electronic properties, e.g., the band gap, of these heterostructures vary with interlayer layer separation and interaction energy. The available data allows the identification of general relationships between bonding, structure, and mechanical stability. This enables the extraction of periodic trends and fundamental rules governing the 2D world, which help to clear up deviating results and to estimate unknown properties. For example, the observed change of the bond length by a factor of two alters the cohesive energy by a factor of four and the extremely sensitive Young's modulus and ultimate strength by more than a factor of 60. Since the stiffness and strength decrease with increasing atom size on going down the columns of the periodic table, it is important to look for suitable allotropes of elements and binaries in the upper rows of the periodic table when mechanical stability and robustness are issues. On the other hand, the heavy compounds are of particular interest because of their low-symmetry structures with exotic electronic properties.
Collapse
Affiliation(s)
- Peter Hess
- Institute of Physical Chemistry, INF 253, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Liu H, Chen H, Liu X, Mo L, Chen C, Guo Z, Liu Z. Dual-responsive ultrathin 1T-phase niobium telluride nanosheet-based delivery systems for enhanced chemo-photothermal therapy. J Mater Chem B 2021; 9:8109-8120. [PMID: 34494067 DOI: 10.1039/d1tb01469b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1T-phase niobium telluride (NbTe2) nanosheets are becoming increasingly important in emerging fields, such as spintronics, sensors and magneto-optoelectronics, due to their excellent physical and chemical properties. However, exploration on their biomedical applications are limited. Herein, ultrathin 1T-phase NbTe2 single-crystalline nanosheets with excellent photothermal performance, high drug-loading rate, near-infrared (NIR) light/acidic pH-triggered drug release, and low toxicity were developed for potentiated photothermal therapy. Importantly, they showed excellent biocompatibility in vivo and in vitro. NbTe2 nanosheets loaded with integrated stress response inhibitors (ISRIB) could achieve chemo-photothermal therapy of tumors through the ATF4-ASNS signaling axis. Ultrathin 1T-phase NbTe2 single-crystalline nanosheets with unique photothermal properties, drug loading rate and safety provide dramatic possibilities in biomedical applications, such as tissue imaging, photothermal therapeutics and pharmaceutics.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Haolin Chen
- Department of Haematology, The Seventh Hospital of Sun Yat-sen University, Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoying Liu
- Cell Biology Department, Weifang Medical University, Weifang, 261053, China
| | - Luoqi Mo
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Zhouyi Guo
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Zhiming Liu
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| |
Collapse
|
40
|
Switchable Interlayer Magnetic Coupling of Bilayer CrI 3. NANOMATERIALS 2021; 11:nano11102509. [PMID: 34684951 PMCID: PMC8538881 DOI: 10.3390/nano11102509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
Due to the weak van der Waals (vdW) interlayer interaction, interfacial geometry of two-dimensional (2D) magnetic vdW materials can be freely assembled, and the stacking order between layers can be readily controlled, such as laterally shifting or rotating, which may trigger the variation of magnetic order. We investigate the H-type bilayer CrI3 where the two layers are aligned in anti-parallel directions. Based on first-principles calculations, we propose two states with different interlayer magnetic couplings, i.e., ferromagnetic and antiferromagnetic, and analyze the superexchange mechanism inside. It is found that the two magnetic coupling states are stacking-dependent, and could be switched by applying out-of-plane axial strain and electron doping. Our findings show great application potential in the design of heterostructural and spintronic devices based on 2D magnetic vdW materials.
Collapse
|
41
|
Hira SA, Yusuf M, Annas D, Nagappan S, Song S, Park S, Park KH. Recent Advances on Conducting Polymer-Supported Nanocomposites for Nonenzymatic Electrochemical Sensing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shamim Ahmed Hira
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Mohammad Yusuf
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Dicky Annas
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Saravanan Nagappan
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Sehwan Song
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
42
|
|
43
|
Zhang Y, Ma C, Xie J, Ågren H, Zhang H. Black Phosphorus/Polymers: Status and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100113. [PMID: 34323318 DOI: 10.1002/adma.202100113] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Indexed: 06/13/2023]
Abstract
As a newly emerged mono-elemental nanomaterial, black phosphorus (BP) has been widely investigated for its fascinating physical properties, including layer-dependent tunable band gap (0.3-1.5 eV), high ON/OFF ratio (104 ), high carrier mobility (103 cm2 V-1 s-1 ), excellent mechanical resistance, as well as special in-plane anisotropic optical, thermal, and vibrational characteristics. However, the instability caused by chemical degradation of its surface has posed a severe challenge for its further applications. A focused BP/polymer strategy has more recently been developed and implemented to hurdle this issue, so at present BP/polymers have been developed that exhibit enhanced stability, as well as outstanding optical, thermal, mechanical, and electrical properties. This has promoted researchers to further explore the potential applications of black phosphorous. In this review, the preparation processes and the key properties of BP/polymers are reviewed, followed by a detailed account of their diversified applications, including areas like optoelectronics, bio-medicine, and energy storage. Finally, in accordance with the current progress, the prospective challenges and future directions are highlighted and discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chunyang Ma
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Jianlei Xie
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
44
|
|
45
|
Bhuvaneswari R, Nagarajan V, Chandiramouli R. Red tricycle phosphorene nanoribbon as a removing medium of sulfadiazine and sulfamethoxazole molecules based on first-principles studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116294] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Fang Y, Wang F, Wang R, Zhai T, Huang F. 2D NbOI 2 : A Chiral Semiconductor with Highly In-Plane Anisotropic Electrical and Optical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101505. [PMID: 34096119 DOI: 10.1002/adma.202101505] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Exploring in-plane anisotropic 2D materials is of great significance to the fundamental studies and further development of polarizationsensitive optoelectronics. Herein, chiral niobium oxide diiodide (NbOI2 ) is introduced into the intriguing anisotropic 2D family with the experimental demonstration of anisotropic optical and electrical properties. 2D NbOI2 crystals exhibit highly anisotropic dispersed band structures around the Fermi surface and strong in-plane anisotropy of phonon vibrations owing to the different bonding modes of Nb atoms along the b- and c-axes. Consequently, the anisotropic factors of optical absorbance and photoresponsivity in 2D NbOI2 crystals reach up to 1.75 and 1.7, respectively. These anisotropic properties make 2D NbOI2 an interesting platform for novel polarization-sensitive optoelectronic applications.
Collapse
Affiliation(s)
- Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fakun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ruiqi Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
47
|
Ben J, Liu X, Wang C, Zhang Y, Shi Z, Jia Y, Zhang S, Zhang H, Yu W, Li D, Sun X. 2D III-Nitride Materials: Properties, Growth, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006761. [PMID: 34050555 DOI: 10.1002/adma.202006761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
2D III-nitride materials have been receiving considerable attention recently due to their excellent physicochemical properties, such as high stability, wide and tunable bandgap, and magnetism. Therefore, 2D III-nitride materials can be applied in various fields, such as electronic and photoelectric devices, spin-based devices, and gas detectors. Although the developments of 2D h-BN materials have been successful, the fabrication of other 2D III-nitride materials, such as 2D h-AlN, h-GaN, and h-InN, are still far from satisfactory, which limits the practical applications of these materials. In this review, recent advances in the properties, growth methods, and potential applications of 2D III-nitride materials are summarized. The properties of the 2D III-nitride materials are mainly obtained by first-principles calculations because of the difficulties in the growth and characterizations of these materials. The discussion on the growth of 2D III-nitride materials is focused on 2D h-BN and h-AlN, as the developments of 2D h-GaN and h-InN are yet to be realized. Therefore, applications have been realized mostly based on the 2D h-BN materials; however, many potential applications are cited for the entire range of 2D III-nitride materials. Finally, future research directions and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jianwei Ben
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Cong Wang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yupeng Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiming Shi
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Yuping Jia
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Shanli Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenjie Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Dabing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| |
Collapse
|
48
|
Princy Maria J, Nagarajan V, Chandiramouli R. First-principles studies on sensing properties of delta arsenene nanoribbons towards hexane and heptane molecules. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Achadu OJ, Abe F, Li TC, Khoris IM, Lee D, Lee J, Suzuki T, Park EY. Molybdenum Trioxide Quantum Dot-Encapsulated Nanogels for Virus Detection by Surface-Enhanced Raman Scattering on a 2D Substrate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27836-27844. [PMID: 34105944 DOI: 10.1021/acsami.1c04793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The use of nanogels (NGs) to modulate surface-enhanced Raman scattering (SERS) activities is introduced as an innovative strategy to address certain critical issues with SERS-based immunoassays. This includes the chemical deformation of SERS nanotags, as well as their nonspecific interactions and effective "hotspots" formation. Herein, the polymeric cocoon and stimuli-responsive properties of NGs were used to encapsulate SERS nanotags containing plasmonic molybdenum trioxide quantum dots (MoO3-QDs). The pH-controlled release of the encapsulated nanotags and their subsequent localization by maleimide-functionalized magnetic nanoparticles facilitated the creation of "hotspots" regions with catalyzed SERS activities. This approach resulted in developing a biosensing platform for the ultrasensitive immunoassays of hepatitis E virus (HEV) or norovirus (NoV). The immunoassays were optimized using the corresponding virus-like particles to attain limits of detection of 6.5 and 8.2 fg/mL for HEV-LPs and NoV-LPs, respectively. The SERS-based technique achieved a signal enhancement factor of up to ∼108 due to the combined electromagnetic and chemical mechanisms of the employed dual-SERS substrate of MoO3-QDs/2D hexagonal boron nitride nanosheets. The highlight and validation of the developed SERS-based immunoassays was the detection of NoV in infected patients' fecal specimen and clinical HEV G7 subtype. Importantly, this system can be used to maintain the stability of SERS nanotags and improve their reliability in immunoassays.
Collapse
Affiliation(s)
- Ojodomo J Achadu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Fuyuki Abe
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 232-1, Yainaba, Fujieda 426-0083, Japan
| | - Tian-Cheng Li
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayam-shi, Tokyo 208-0011, Japan
| | - Indra Memdi Khoris
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Dongkyu Lee
- Department of Chemistry, College of Natural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jaebeom Lee
- Department of Chemistry, College of Natural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-1 Higashi-ku, Handa-yama, Hamamatsu 431-3192, Japan
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
50
|
Zhang W, Chai C, Fan Q, Song Y, Yang Y. Structural, Electronic, and Optical Properties of Hexagonal XC 6 (X=N, P, As, and Sb) Monolayers. Chemphyschem 2021; 22:1124-1133. [PMID: 33871928 DOI: 10.1002/cphc.202100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/14/2021] [Indexed: 11/07/2022]
Abstract
Based on first-principles calculations, a novel family of two-dimensional (2D) IV-V compounds, XC6 (X=N, P, As and Sb), is proposed. These compounds exhibit excellent stability, as determined from the cohesive energies, phonon dispersion analysis, ab initio molecular dynamics (AIMD) simulations, and mechanical properties. In this type of structure, the carbon atom is sp2 hybridized, whereas the X (N, P, As and Sb) atom is nonplanar sp3 hybridized with one 2pz orbital filled with lone pair electrons. NC6 , PC6 , AsC6 and SbC6 monolayers are intrinsic indirect semiconductors with wide bandgaps of 2.02, 2.36, 2.77, and 2.85 eV (based on HSE06 calculations), respectively. After applying mechanical strain, PC6 , AsC6 and SbC6 monolayers can be transformed from indirect to direct semiconductors. The appropriate bandgaps and well-located band edge positions make XC6 monolayers potential materials for photocatalytic water splitting. XC6 family members also have high absorption coefficients (∼105 cm-1 ) in the ultraviolet region and higher electron mobilities (∼103 cm2 V-1 s-1 ) than many known 2D semiconductors.
Collapse
Affiliation(s)
- Wei Zhang
- School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Changchun Chai
- School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Qingyang Fan
- College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, 710071, China
| | - Yanxing Song
- School of Microelectronics, Xidian University, Xi'an, 710071, China
| | - Yintang Yang
- School of Microelectronics, Xidian University, Xi'an, 710071, China
| |
Collapse
|