1
|
Sogbein O, Paul P, Umar M, Chaari A, Batuman V, Upadhyay R. Bortezomib in cancer therapy: Mechanisms, side effects, and future proteasome inhibitors. Life Sci 2024; 358:123125. [PMID: 39413903 DOI: 10.1016/j.lfs.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
The ubiquitin-proteasome pathway (UPP) regulates protein stability and normal cellular functions with the help of autocatalytic proteasome complex. Studies have linked aberrant proteasome activity to malignant cells and found that proteasome inhibitors play a significant role as therapeutic drugs for various types of cancer, specifically multiple myeloma and mantle cell lymphoma. Bortezomib, the first FDA-approved proteasome inhibitor for treating different stages of multiple myeloma, acts on cancer cells by inhibiting the 26S proteasome, modulating NF-κB, phosphorylating Bcl-2, upregulating of NOXA, blocking p53 degradation, activating caspase, generating reactive oxygen species (ROS), and inhibiting angiogenesis. However, its efficacy is limited due to side effects such as peripheral neuropathy (PN), thrombotic microangiopathy (TMA), and acute interstitial nephritis (AIN). Therefore, a better understanding of its precise mechanism of action may help mitigate these side effects. In this review, we have discussed the proposed mechanisms of action and off target effects of Bortezomib, along with the prospects of next generation potential proteasome inhibitor drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Olusola Sogbein
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Meenakshi Umar
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Vecihi Batuman
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Silhan J, Fajtova P, Bartosova J, Hurysz BM, Almaliti J, Miyamoto Y, Eckmann L, Gerwick WH, O'Donoghue AJ, Boura E. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. Nat Commun 2024; 15:8621. [PMID: 39366995 PMCID: PMC11452676 DOI: 10.1038/s41467-024-53022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
The proteasome is a proteolytic enzyme complex essential for protein homeostasis in mammalian cells and protozoan parasites like Trichomonas vaginalis (Tv), the cause of the most common, non-viral sexually transmitted disease. Tv and other protozoan 20S proteasomes have been validated as druggable targets for antimicrobials. However, low yields and purity of the native proteasome have hindered studies of the Tv 20S proteasome (Tv20S). We address this challenge by creating a recombinant protozoan proteasome by expressing all seven α and seven β subunits of Tv20S alongside the Ump-1 chaperone in insect cells. The recombinant Tv20S displays biochemical equivalence to its native counterpart, confirmed by various assays. Notably, the marizomib (MZB) inhibits all catalytic subunits of Tv20S, while the peptide inhibitor carmaphycin-17 (CP-17) specifically targets β2 and β5. Cryo-electron microscopy (cryo-EM) unveils the structures of Tv20S bound to MZB and CP-17 at 2.8 Å. These findings explain MZB's low specificity for Tv20S compared to the human proteasome and demonstrate CP-17's higher specificity. Overall, these data provide a structure-based strategy for the development of specific Tv20S inhibitors to treat trichomoniasis.
Collapse
Affiliation(s)
- Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Jitka Bartosova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jehad Almaliti
- Department Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman, Jordan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Yukiko Miyamoto
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lars Eckmann
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Prague, Czech Republic.
| |
Collapse
|
3
|
Dai Q, Ma M, Wang N, Zhou Y, Zhang Z. Antiproliferative metabolites against glioma cells from the marine-associated actinomycete Streptomyces sp. ZZ735. Fitoterapia 2024; 178:106176. [PMID: 39127306 DOI: 10.1016/j.fitote.2024.106176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Metabolites produced by the genus Streptomyces are the most important resource for discovering bioactive compounds. In this study, chemical investigation on the metabolites produced by the marine-derived Streptomyces sp. ZZ735 in rice solid medium led to the isolation of eighteen compounds (1-18). Chemical structures of the isolated compounds were determined based on their HRESIMS data and the extensive NMR spectral analyses. Streptonaphthothiazines A (1), B (2), 2-(2-hydroxy-2-methylpropanoylamino)-benzoic acid (7), and streptomycinoic acids A (17), B (18) are characterized as five previously undescribed compounds. The structural backbones of streptonaphthothiazines A (1), B (2) and streptomycinoic acids A (17), B (18) are found from a natural resource for the first time. It is also the first report of 2-(2-methylpropanoylamino)-benzoic acid (3), 2-(2-methylpropanoylamino)-benzamide (4), methyl 2-(3-hydroxypropanoylamino)-benzoate (5), 2-propionylaminobenzamide (6), and (2E)-3-(3-hydroxy-4,5-dimethoxyphenyl)-2-propenoic acid (15) as natural products. Streptonaphthothiazines A (1), B (2) and streptomycinoic acids A (17), B (18) have antiproliferative activity against human glioma U87MG or U251 cells with IC50 values ranging from 31.8 to 37.9 μM.
Collapse
Affiliation(s)
- Qianyin Dai
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| | - Mingzhu Ma
- Zhejiang Marine Development Research Institute, Zhoushan 316000, China
| | - Nan Wang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China.
| | - Yufang Zhou
- Zhejiang Marine Development Research Institute, Zhoushan 316000, China.
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
4
|
Hagar M, Andersen RJ, Ryan KS. Prephenate decarboxylase: An unexplored branchpoint to unusual natural products. Cell Chem Biol 2024; 31:1610-1626. [PMID: 39059391 DOI: 10.1016/j.chembiol.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Prephenate decarboxylases are a small family of enzymes which initiate a specialized divergence from the shikimate pathway, where prephenate (2) is decarboxylated without aromatization. In addition to effecting a challenging chemical transformation, prephenate decarboxylases have been implicated in the production of rare specialized metabolites, sometimes directly constructing bioactive warheads. Many of the biosynthetic steps to natural products derived from prephenate decarboxylases remain elusive. Here, we review prephenate decarboxylase research thus far and highlight natural products that may be derived from biosynthetic pathways involving prephenate decarboxylases. We also highlight commonly encountered challenges in the structure elucidation of these natural products. Prephenate decarboxylases are a gateway into understudied biosynthetic pathways which present a high potential for the discovery of novel and bioactive natural products, as well as new biosynthetic enzymes.
Collapse
Affiliation(s)
- Mostafa Hagar
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond J Andersen
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
5
|
Kim J, Hwang SJ, Lee GS, Lee JR, An HI, Im HS, Kim M, Lee SS, Lee HJ, Kim CS. Collagenase and Tyrosinase Inhibitory Compounds from Fish Gut Bacteria Ruegeria atlantica and Pseudoalteromonas neustonica. ACS OMEGA 2024; 9:34259-34267. [PMID: 39157099 PMCID: PMC11325404 DOI: 10.1021/acsomega.3c09585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024]
Abstract
Ruegeria atlantica and Pseudoalteromonas neustonica are fish gut bacteria that have been isolated from the guts of Pagrus major and Acanthopagrus schlegelii, respectively. A total of 22 compounds (1-22) were isolated from these two bacteria; 16 compounds (1-16) from R. atalantica and 6 compounds (17-22) from P. neustonica. Their chemical structures were elucidated by spectroscopic and spectrometric data analysis and chemical synthesis. Compounds 11 and 13 showed strong collagenase inhibitory activity, with 31.91% and 36.43% at 20 μM, respectively, comparable to or surpassing that of the positive control epigallocatechin gallate (EGCG, 34.66%). Also, compounds 11 and 14 exhibited a mild tyrosinase inhibitory effect of 6.73% and 13.68%, respectively. All of the tested compounds displayed no significant antibacterial activity against Escherichia coli and Bacillus subtilis up to 100 μM. The collagenase- and tyrosinase-inhibitory compound 11, cyclo(l-Pro-d-Leu), was found to be stable under heat (50 °C) and UV light (254 and 365 nm) for up to 6 days. These results indicate that compound 11 could be developed into a cosmeceutical with antiaging effects.
Collapse
Affiliation(s)
- Jonghwan Kim
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Su Jung Hwang
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyu Sung Lee
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Ju Ryeong Lee
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Hye In An
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hong Sik Im
- College
of Biotechnology and Bioengineering, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Minji Kim
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Sang-Seob Lee
- College
of Biotechnology and Bioengineering, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Hyo-Jong Lee
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chung Sub Kim
- Department
of Biopharmaceutical Convergence, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Zhang S, Zhou Z, Wang T, Lu A. Design, Synthesis, and Antifungal Activities of Phenylpyrrole Analogues Based on Alkaloid Lycogalic Acid. Molecules 2024; 29:3150. [PMID: 38999100 PMCID: PMC11243374 DOI: 10.3390/molecules29133150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Plant diseases caused by pathogenic fungi seriously affect the yield and quality of crops, cause huge economic losses, and pose a considerable threat to global food security. Phenylpyrrole analogues were designed and synthesized based on alkaloid lycogalic acid. All target compounds were characterized by 1H NMR, 13C NMR, and HRMS. Their antifungal activities against seven kinds of phytopathogenic fungi were evaluated. The results revealed that most compounds had broad-spectrum fungicidal activities at 50 μg/mL; 14 compounds displayed more than 60% fungicidal activities against Rhizoctonia cerealis and Sclerotinia sclerotiorum, and in particular, the fungicidal activities of compounds 8g and 8h against Rhizoctonia cerealis were more than 90%, which could be further developed as lead agents for water-soluble fungicides. The molecular docking results indicate that compounds 8g and 8h can interact with 14α-demethylase (RcCYP51) through hydrogen bonding with strong affinity.
Collapse
Affiliation(s)
- Shuaiheng Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Zhenghong Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Tienan Wang
- Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| |
Collapse
|
7
|
Beng TK, Kaur J, Anosike IS, Rentfro B, Newgard S. Revisiting the 1,3-azadiene-succinic anhydride annulation reaction for the stereocontrolled synthesis of allylic 2-oxopyrrolidines bearing up to four contiguous stereocenters. RSC Adv 2024; 14:16678-16684. [PMID: 38784414 PMCID: PMC11110166 DOI: 10.1039/d4ra03156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Polysubstituted 2-oxopyrrolidines bearing at least two contiguous stereocenters constitute the core of several pharmaceuticals, including clausenamide (antidementia). Here, we describe a flexible annulation strategy, which unites succinic anhydride and 1,3-azadienes to produce allylic 2-oxopyrrolidines bearing contiguous stereocenters. The approach is chemoselective, efficient, modular, scalable, and diastereoselective. The scalable nature of the reactions offers the opportunity for post-diversification, leading to incorporation of motifs with either known pharmaceutical value or that permit subsequent conversion to medicinally relevant entities.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jasleen Kaur
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Ifeyinwa S Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Benjamin Rentfro
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Shae Newgard
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
8
|
Gayatri, Brewitz L, Ibbotson L, Salah E, Basak S, Choudhry H, Schofield CJ. Thiophene-fused γ-lactams inhibit the SARS-CoV-2 main protease via reversible covalent acylation. Chem Sci 2024; 15:7667-7678. [PMID: 38784729 PMCID: PMC11110133 DOI: 10.1039/d4sc01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Enzyme inhibitors working by O-acylation of nucleophilic serine residues are of immense medicinal importance, as exemplified by the β-lactam antibiotics. By contrast, inhibition of nucleophilic cysteine enzymes by S-acylation has not been widely exploited for medicinal applications. The SARS-CoV-2 main protease (Mpro) is a nucleophilic cysteine protease and a validated therapeutic target for COVID-19 treatment using small-molecule inhibitors. The clinically used Mpro inhibitors nirmatrelvir and simnotrelvir work via reversible covalent reaction of their electrophilic nitrile with the Mpro nucleophilic cysteine (Cys145). We report combined structure activity relationship and mass spectrometric studies revealing that appropriately functionalized γ-lactams can potently inhibit Mpro by reversible covalent reaction with Cys145 of Mpro. The results suggest that γ-lactams have potential as electrophilic warheads for development of covalently reacting small-molecule inhibitors of Mpro and, by implication, other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Gayatri
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Lewis Ibbotson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Shyam Basak
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| | - Hani Choudhry
- Department of Biochemistry, Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University Jeddah Saudi Arabia
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford UK
| |
Collapse
|
9
|
Jerye K, Lüken H, Steffen A, Schlawis C, Jänsch L, Schulz S, Brönstrup M. Activity-Based Protein Profiling Identifies Protein Disulfide-Isomerases as Target Proteins of the Volatile Salinilactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309515. [PMID: 38430530 PMCID: PMC11095149 DOI: 10.1002/advs.202309515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Indexed: 03/04/2024]
Abstract
The salinilactones, volatile marine natural products secreted from Salinispora arenicola, feature a unique [3.1.0]-lactone ring system and cytotoxic activities through a hitherto unknown mechanism. To find their molecular target, an activity-based protein profiling with a salinilactone-derived probe is applied that disclosed the protein disulfide-isomerases (PDIs) as the dominant mammalian targets of salinilactones, and thioredoxin (TRX1) as secondary target. The inhibition of protein disulfide-isomerase A1 (PDIA1) and TRX1 is confirmed by biochemical assays with recombinant proteins, showing that (1S,5R)-salinilactone B is more potent than its (1R,5S)-configured enantiomer. The salinilactones bound covalently to C53 and C397, the catalytically active cysteines of the isoform PDIA1 according to tandem mass spectrometry. Reactions with a model substrate demonstrated that the cyclopropyl group is opened by an attack of the thiol at C6. Fluorophore labeling experiments showed the cell permeability of a salinilactone-BODIPY (dipyrrometheneboron difluoride) conjugate and its co-localization with PDIs in the endoplasmic reticulum. The study is one of the first to pinpoint a molecular target for a volatile microbial natural product, and it demonstrates that salinilactones can achieve high selectivity despite their small size and intrinsic reactivity.
Collapse
Affiliation(s)
- Karoline Jerye
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Helko Lüken
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Anika Steffen
- Department of Cell BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Christian Schlawis
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Lothar Jänsch
- Research Group Cellular Proteome ResearchHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Stefan Schulz
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
- Biomolecular Drug Research Center (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- German Center for Infection ResearchSite Hannover‐BraunschweigInhoffenstraße 738124BraunschweigGermany
| |
Collapse
|
10
|
Kirschner T, Müller MP, Rauh D. Targeting KRAS Diversity: Covalent Modulation of G12X and Beyond in Cancer Therapy. J Med Chem 2024; 67:6044-6051. [PMID: 38621359 DOI: 10.1021/acs.jmedchem.3c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The GTPase KRAS acts as a switch in cellular signaling, transitioning between inactive GDP-bound and active GTP-bound states. In about 20% of human cancers, oncogenic RAS mutations disrupt this balance, favoring the active form and promoting proliferative signaling, thus rendering KRAS an appealing target for precision medicine in oncology. In 2013, Shokat and co-workers achieved a groundbreaking feat by covalently targeting a previously undiscovered allosteric pocket (switch II pocket (SWIIP)) of KRASG12C. This breakthrough led to the development and approval of sotorasib (AMG510) and adagrasib (MRTX849), revolutionizing the treatment of KRASG12C-dependent lung cancer. Recent achievements in targeting various KRASG12X mutants, using SWIIP as a key binding pocket, are discussed. Insights from successful KRASG12C targeting informed the design of molecules addressing other mutations, often in a covalent manner. These findings offer promise for innovative approaches in addressing commonly occurring KRAS mutations such as G12D, G12V, G12A, G12S, and G12R in various cancers.
Collapse
Affiliation(s)
- Tonia Kirschner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Matthias P Müller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für integrierte Wirkstoffforschung (ZIW), 44227 Dortmund, Germany
| |
Collapse
|
11
|
Shende VV, Bauman KD, Moore BS. The shikimate pathway: gateway to metabolic diversity. Nat Prod Rep 2024; 41:604-648. [PMID: 38170905 PMCID: PMC11043010 DOI: 10.1039/d3np00037k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
12
|
Boccellato C, Rehm M. TRAIL-induced apoptosis and proteasomal activity - Mechanisms, signalling and interplay. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119688. [PMID: 38368955 DOI: 10.1016/j.bbamcr.2024.119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Programmed cell death, in particular apoptosis, is essential during development and tissue homeostasis, and also is the primary strategy to induce cancer cell death by cytotoxic therapies. Precision therapeutics targeting TRAIL death receptors are being evaluated as novel anti-cancer agents, while in parallel highly specific proteasome inhibitors have gained approval as drugs. TRAIL-dependent signalling and proteasomal control of cellular proteostasis are intricate processes, and their interplay can be exploited to enhance therapeutic killing of cancer cells in combination therapies. This review provides detailed insights into the complex signalling of TRAIL-induced pathways and the activities of the proteasome. It explores their core mechanisms of action, pharmaceutical druggability, and describes how their interplay can be strategically leveraged to enhance cell death responses in cancer cells. Offering this comprehensive and timely overview will allow to navigate the complexity of the processes governing cell death mechanisms in TRAIL- and proteasome inhibitor-based treatment conditions.
Collapse
Affiliation(s)
- Chiara Boccellato
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany.
| | - Markus Rehm
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart 70569, Germany.
| |
Collapse
|
13
|
Rai T, Kaushik N, Malviya R, Sharma PK. A review on marine source as anticancer agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:415-451. [PMID: 37675579 DOI: 10.1080/10286020.2023.2249825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
This review investigates the potential of natural compounds obtained from marine sources for the treatment of cancer. The oceans are believed to contain physiologically active compounds, such as alkaloids, nucleosides, macrolides, and polyketides, which have shown promising effects in slowing human tumor cells both in vivo and in vitro. Various marine species, including algae, mollusks, actinomycetes, fungi, sponges, and soft corals, have been studied for their bioactive metabolites with diverse chemical structures. The review explores the therapeutic potential of various marine-derived substances and discusses their possible applications in cancer treatment.
Collapse
Affiliation(s)
- Tamanna Rai
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
14
|
Jeon H, Kim JH, Kim S. Recent asymmetric synthesis of natural products bearing an α-tertiary amine moiety via temporary chirality induction strategies. Nat Prod Rep 2024; 41:228-250. [PMID: 37846620 DOI: 10.1039/d3np00032j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Covering: 2013 to 2023The α-tertiary amine moiety is a common structural motif in natural alkaloids and is frequently associated with intriguing biological activities and inherent synthetic challenges. A major hurdle in the total synthesis of these alkaloids is the asymmetric construction of the α-tertiary amine moiety. Temporary chirality inductions have been effective strategies employed to address this issue, particularly in natural product synthesis. The temporary chirality induction strategies in α-tertiary amine synthesis can be broadly classified into three categories based on the types of temporary chirality involved: Seebach's self-regeneration of stereocenters (SRS), C-to-N-to-C chirality transfer, and memory of chirality (MOC). This review highlights the recent advancements in temporary chirality induction strategies for the total synthesis of α-tertiary amine-containing natural products between 2013 and 2023.
Collapse
Affiliation(s)
- Hongjun Jeon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jae Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Vitorino IR, Pinto E, Martín J, Mackenzie TA, Ramos MC, Sánchez P, de la Cruz M, Vicente F, Vasconcelos V, Reyes F, Lage OM. Uncovering the biotechnological capacity of marine and brackish water Planctomycetota. Antonie Van Leeuwenhoek 2024; 117:26. [PMID: 38261060 PMCID: PMC10805854 DOI: 10.1007/s10482-023-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
An appealing strategy for finding novel bioactive molecules in Nature consists in exploring underrepresented and -studied microorganisms. Here, we investigated the antimicrobial and tumoral anti-proliferative bioactivities of twenty-three marine and estuarine bacteria of the fascinating phylum Planctomycetota. This was achieved through extraction of compounds produced by the Planctomycetota cultured in oligotrophic medium followed by an antimicrobial screening against ten relevant human pathogens including Gram-positive and Gram-negative bacteria, and fungi. Cytotoxic effects of the extracts were also evaluated against five tumoral cell lines. Moderate to potent activities were obtained against Enterococcus faecalis, methicillin-sensitive and methicillin-resistant Staphylococcus aureus and vancomycin-sensitive and vancomycin-resistant Enterococcus faecium. Anti-fungal effects were observed against Trichophyton rubrum, Candida albicans and Aspergillus fumigatus. The highest cytotoxic effects were observed against human breast, pancreas and melanoma tumoral cell lines. Novipirellula caenicola and Rhodopirellula spp. strains displayed the widest spectrum of bioactivities while Rubinisphaera margarita ICM_H10T affected all Gram-positive bacteria tested. LC-HRMS analysis of the extracts did not reveal the presence of any known bioactive natural product, suggesting that the observed activities are most likely caused by novel molecules, that need identification. In summary, we expanded the scope of planctomycetal species investigated for bioactivities and demonstrated that various strains are promising sources of novel bioactive compounds, which reenforces the potential biotechnological prospects offered by Planctomycetota.
Collapse
Affiliation(s)
- Inês R Vitorino
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Eugénia Pinto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Jesús Martín
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Thomas A Mackenzie
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Maria C Ramos
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Pilar Sánchez
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Vítor Vasconcelos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Fernando Reyes
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
| |
Collapse
|
16
|
Parra J, Beaton A, Seipke RF, Wilkinson B, Hutchings MI, Duncan KR. Antibiotics from rare actinomycetes, beyond the genus Streptomyces. Curr Opin Microbiol 2023; 76:102385. [PMID: 37804816 DOI: 10.1016/j.mib.2023.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Throughout the golden age of antibiotic discovery, Streptomyces have been unsurpassed for their ability to produce bioactive metabolites. Yet, this success has been hampered by rediscovery. As we enter a new stage of biodiscovery, omics data and existing scientific repositories can enable informed choices on the biodiversity that may yield novel antibiotics. Here, we focus on the chemical potential of rare actinomycetes, defined as bacteria within the order Actinomycetales, but not belonging to the genus Streptomyces. They are named as such due to their less-frequent isolation under standard laboratory practices, yet there is increasing evidence to suggest these biologically diverse genera harbour considerable biosynthetic and chemical diversity. In this review, we focus on examples of successful isolation and genera that have been the focus of more concentrated biodiscovery efforts, we survey the representation of rare actinomycete taxa, compared with Streptomyces, across natural product data repositories in addition to its biosynthetic potential. This is followed by an overview of clinically useful drugs produced by rare actinomycetes and considerations for future biodiscovery efforts. There is much to learn about these underexplored taxa, and mounting evidence suggests that they are a fruitful avenue for the discovery of novel antimicrobials.
Collapse
Affiliation(s)
- Jonathan Parra
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Ainsley Beaton
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryan F Seipke
- University of Leeds, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, Leeds LS2 9JT, UK
| | - Barrie Wilkinson
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew I Hutchings
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Katherine R Duncan
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, 141 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
17
|
Rathod K, Rana S, Dhandukia P, Thakker JN. Investigating marine Bacillus as an effective growth promoter for chickpea. J Genet Eng Biotechnol 2023; 21:137. [PMID: 37999862 PMCID: PMC10673802 DOI: 10.1186/s43141-023-00608-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Microorganisms have characteristics that aid plant growth and raise the level of vital metabolites in plants for better growth including primary and secondary metabolites as well as several developmental enzymes. Marine bacteria must endure harsh environmental circumstances for their survival so it produces several secondary metabolites to protect themselves. Such metabolites might likewise be advantageous for a plant's growth. However, the effectiveness of marine microbes on plant growth remains unexplored. In the present study, we aim to evaluate such marine microbe both in vitro and in vivo as a plant growth promoter. RESULT Marine Bacillus licheniformis was found positive for vital plant growth-promoting traits like gibberellin and ammonia production, phosphate and potassium solubilization in vitro. Due to the presence of such traits, it was able to increase germination in chickpea. As it can colonize with the roots, it will be able to help plants absorb more nutrients. Additionally, in vivo study shows that B. licheniformis treatment caused rise in vital factors involved in plant growth and development like chlorophyll, POX, phenol, proline, carotenoid, flavonoid, total proteins and SOD which resulted in increase of chickpea height by 26.23% and increase in biomass by 33.85% in pot trials. CONCLUSION Marine B. licheniformis was able to promote plant growth and increased chickpea production in both number and weight for both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Khushbu Rathod
- Department of Biotechnology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Shruti Rana
- Department of Biotechnology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India
| | - Pinakin Dhandukia
- Department of Microbiology, School of Science and Technology, Vanita Vishram Women's University, Surat, Gujarat, India
| | - Janki N Thakker
- Department of Biotechnology, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India.
| |
Collapse
|
18
|
Gazzaroli G, Angeli A, Giacomini A, Ronca R. Proteasome inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:775-796. [PMID: 37847492 DOI: 10.1080/13543776.2023.2272648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION The therapeutic targeting of the ubiquitin-proteasome pathway (UPP) through inhibitors of the 20S proteasome core proteolytic activities has revolutionized the treatment of hematological malignancies and is paving the way for its extension to solid tumors. AREAS COVERED This review covers the progress made in the field of proteasome inhibitors, ranging from the first-generation bortezomib to the latest second-generation inhibitors such as carfilzomib and ixazomib as well as the proteasome inhibitors in clinical phase such as oprozomib and marizomib. The development of selective and potent proteasome inhibitors with improved pharmacological properties is described from the synthesis to their basic biological, and clinical validation. EXPERT OPINION Proteasome inhibitors have transformed the treatment landscape for hematological malignancies and hold great promise for cancer therapy. Combination therapies targeting multiple pathways, the development of novel inhibitors or 'hybrid-inhibitors,' and the optimization of treatment protocols are key areas for future exploration. The extension of proteasome inhibitors for the treatment of solid tumors, and their ability to pass the blood-brain barrier open new possibilities for treating central nervous system cancers. However, managing adverse effects, particularly those affecting the central nervous system, remains a critical consideration and a strategic 'working on' aspect for the near future.
Collapse
Affiliation(s)
- Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
19
|
Zhang Y, Xie CL, Wang Y, He XW, Xie MM, Li Y, Zhang K, Zou ZB, Yang LH, Xu R, Yang XW. Penidihydrocitrinins A-C: New Polyketides from the Deep-Sea-Derived Penicillium citrinum W17 and Their Anti-Inflammatory and Anti-Osteoporotic Bioactivities. Mar Drugs 2023; 21:538. [PMID: 37888473 PMCID: PMC10608093 DOI: 10.3390/md21100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Three new polyketides (penidihydrocitrinins A-C, 1-3) and fourteen known compounds (4-17) were isolated from the deep-sea-derived Penicillium citrinum W17. Their structures were elucidated by comprehensive analyses of 1D and 2D NMR, HRESIMS, and ECD calculations. Compounds 1-17 were evaluated for their anti-inflammatory and anti-osteoporotic bioactivities. All isolates exhibited significant inhibitory effects on LPS-stimulated nitric oxide production in murine brain microglial BV-2 cells in a dose-response manner. Notably, compound 14 displayed the strongest effect with the IC50 value of 4.7 µM. Additionally, compounds 6, 7, and 8 significantly enhanced osteoblast mineralization, which was comparable to that of the positive control, purmorphamine. Furthermore, these three compounds also suppressed osteoclastogenesis in a dose-dependent manner under the concentrations of 2.5 μM, 5.0 μM, and 10 μM.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Chun-Lan Xie
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
- School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361005, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Xi-Wen He
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - You Li
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Kai Zhang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Long-He Yang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Ren Xu
- School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361005, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| |
Collapse
|
20
|
Gattoni G, Di Costanzo F, de la Haba RR, Fernández AB, Guerrero-Flores S, Selem-Mojica N, Ventosa A, Corral P. Biosynthetic gene profiling and genomic potential of the novel photosynthetic marine bacterium Roseibaca domitiana. Front Microbiol 2023; 14:1238779. [PMID: 37860137 PMCID: PMC10584327 DOI: 10.3389/fmicb.2023.1238779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023] Open
Abstract
Shifting the bioprospecting targets toward underexplored bacterial groups combined with genome mining studies contributes to avoiding the rediscovery of known compounds by revealing novel, promising biosynthetic gene clusters (BGCs). With the aim of determining the biosynthetic potential of a novel marine bacterium, strain V10T, isolated from the Domitian littoral in Italy, a comparative phylogenomic mining study was performed across related photosynthetic bacterial groups from an evolutionary perspective. Studies on polyphasic and taxogenomics showed that this bacterium constitutes a new species, designated Roseibaca domitiana sp. nov. To date, this genus has only one other validly described species, which was isolated from a hypersaline Antarctic lake. The genomic evolutionary study linked to BGC diversity revealed that there is a close relationship between the phylogenetic distance of the members of the photosynthetic genera Roseibaca, Roseinatronobacter, and Rhodobaca and their BGC profiles, whose conservation pattern allows discriminating between these genera. On the contrary, the rest of the species related to Roseibaca domitiana exhibited an individual species pattern unrelated to genome size or source of isolation. This study showed that photosynthetic strains possess a streamlined content of BGCs, of which 94.34% of the clusters with biotechnological interest (NRPS, PKS, RRE, and RiPP) are completely new. Among these stand out T1PKS, exclusive of R. domitiana V10T, and RRE, highly conserved only in R. domitiana V10T and R. ekhonensis, both categories of BGCs involved in the synthesis of plant growth-promoting compounds and antitumoral compounds, respectively. In all cases, with very low homology with already patented molecules. Our findings reveal the high biosynthetic potential of infrequently cultured bacterial groups, suggesting the need to redirect attention to microbial minorities as a novel and vast source of bioactive compounds still to be exploited.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana B. Fernández
- Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre, Pamplona, Spain
- Research & Development Department, Bioinsectis SL, Navarre, Spain
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México UNAM, Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
21
|
Do M, Anosike SI, Beng TK. Diastereospecific arylation and cascade deconstructive amidation/thioesterification of readily available lactam-fused bromolactones. RSC Adv 2023; 13:25691-25698. [PMID: 37649665 PMCID: PMC10463012 DOI: 10.1039/d3ra04690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
An intrinsic goal when designing synthetic methodology is to identify approaches whereby readily accessible precursors are converted into an array of products, which efficiently tap into new 3D-chemical space. In these studies, readily available bicyclic lactam-bromolactones have been interrogated in several fragment growth protocols by utilizing the halogen and lactone motifs as versatile linchpins for strategic construction of C-C, C-N, C-O, and C-S bonds. Diastereospecific C(sp3)-C(sp2) Kumada coupling of sterically imposing [5,5]-bicyclic lactam-bromolactones with several aryl Grignard reagents, under palladium catalysis, furnishes diarylmethane-tethered lactam-lactones in synthetically attractive yields, stereoinvertive fashion, and with a tolerance for many functional groups. When [5,6]-bicyclic lactam-bromolactones, which are prone to β-hydride elimination are employed, efficient arylation is observed only under Co(acac)3-catalyzed conditions. Importantly, these [5,6]-bicyclic lactam-bromolactones undergo retentive arylation, independent of the transition metal catalyst. A base-mediated cascade deconstructive amidation of the [5,6]-bicyclic lactam-bromolactones with primary aliphatic amines proceeds efficiently to afford epoxide-tethered lactam carboxamides, which bear four contiguous stereocenters. Furthermore, an unusual route to homoallylic thioesters has been uncovered through deconstructive contra-thermodynamic thioesterification of the lactam-fused bromolactone precursors.
Collapse
Affiliation(s)
- Minh Do
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Stella I Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
22
|
Silhan J, Fajtova P, Bartosova J, Hurysz BM, Almaliti J, Miyamoto Y, Eckmann L, Gerwick WH, O’Donoghue AJ, Boura E. Structural elucidation of recombinant Trichomonas vaginalis 20S proteasome bound to covalent inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553660. [PMID: 37645851 PMCID: PMC10462138 DOI: 10.1101/2023.08.17.553660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Proteasomes are essential for protein homeostasis in mammalian cells1-4 and in protozoan parasites such as Trichomonas vaginalis (Tv).5 Tv and other protozoan 20S proteasomes have been validated as druggable targets.6-8 However, in the case of Tv 20S proteasome (Tv20S), biochemical and structural studies were impeded by low yields and purity of the native proteasome. We successfully made recombinant Tv20S by expressing all seven α and seven β subunits together with the Ump-1 chaperone in insect cells. We isolated recombinant proteasome and showed that it was biochemically indistinguishable from the native enzyme. We confirmed that the recombinant Tv20S is inhibited by the natural product marizomib (MZB)9 and the recently developed peptide inhibitor carmaphycin-17 (CP-17)8,10. Specifically, MZB binds to the β1, β2 and β5 subunits, while CP-17 binds the β2 and β5 subunits. Next, we obtained cryo-EM structures of Tv20S in complex with these covalent inhibitors at 2.8Å resolution. The structures revealed the overall fold of the Tv20S and the binding mode of MZB and CP-17. Our work explains the low specificity of MZB and higher specificity of CP-17 towards Tv20S as compared to human proteasome and provides the platform for the development of Tv20S inhibitors for treatment of trichomoniasis.
Collapse
Affiliation(s)
- Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jitka Bartosova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Brianna M. Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jehad Almaliti
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Yukiko Miyamoto
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Lars Eckmann
- Division of Gastroenterology, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| |
Collapse
|
23
|
Hermans C, De Mol ML, Mispelaere M, De Rop AS, Rombaut J, Nusayr T, Creamer R, De Maeseneire SL, Soetaert WK, Hulpiau P. MariClus: Your One-Stop Platform for Information on Marine Natural Products, Their Gene Clusters and Producing Organisms. Mar Drugs 2023; 21:449. [PMID: 37623730 PMCID: PMC10455768 DOI: 10.3390/md21080449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The marine environment hosts the vast majority of living species and marine microbes that produce natural products with great potential in providing lead compounds for drug development. With over 70% of Earth's surface covered in water and the high interaction rate associated with liquid environments, this has resulted in many marine natural product discoveries. Our improved understanding of the biosynthesis of these molecules, encoded by gene clusters, along with increased genomic information will aid us in uncovering even more novel compounds. RESULTS We introduce MariClus (https://www.mariclus.com), an online user-friendly platform for mining and visualizing marine gene clusters. The first version contains information on clusters and the predicted molecules for over 500 marine-related prokaryotes. The user-friendly interface allows scientists to easily search by species, cluster type or molecule and visualize the information in table format or graphical representation. CONCLUSIONS This new online portal simplifies the exploration and comparison of gene clusters in marine species for scientists and assists in characterizing the bioactive molecules they produce. MariClus integrates data from public sources, like GenBank, MIBiG and PubChem, with genome mining results from antiSMASH. This allows users to access and analyze various aspects of marine natural product biosynthesis and diversity.
Collapse
Affiliation(s)
- Cedric Hermans
- Bioinformatics Knowledge Center (BiKC), Campus Brugge Station, Howest University of Applied Sciences, Rijselstraat 5, 8200 Bruges, Belgium; (C.H.)
| | - Maarten Lieven De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marieke Mispelaere
- Bioinformatics Knowledge Center (BiKC), Campus Brugge Station, Howest University of Applied Sciences, Rijselstraat 5, 8200 Bruges, Belgium; (C.H.)
| | - Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jeltien Rombaut
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tesneem Nusayr
- Life Sciences, Texas A&M-Corpus Christi, Corpus Christi, TX 78412, USA
| | - Rebecca Creamer
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Sofie L. De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim K. Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Paco Hulpiau
- Bioinformatics Knowledge Center (BiKC), Campus Brugge Station, Howest University of Applied Sciences, Rijselstraat 5, 8200 Bruges, Belgium; (C.H.)
| |
Collapse
|
24
|
Xia K, Shang J, Sun J, Zhu W, Fu P. Expanding the Chemical Diversity of Secondary Metabolites Produced by Two Marine-Derived Enterocin- and Wailupemycin-Producing Streptomyces Strains. ACS OMEGA 2023; 8:28886-28897. [PMID: 37576654 PMCID: PMC10413459 DOI: 10.1021/acsomega.3c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
To expand the chemical diversity of secondary metabolites produced by two marine-derived enterocin- and wailupemycin-producing Streptomyces strains, OUCMDZ-3434 and OUCMDZ-2599, precursor feeding and solid fermentation strategies were used. Two new compounds, wailupemycins Q (1) and R (2), were isolated from the extracts of liquid and solid fermentation of OUCMDZ-3434. Furthermore, during the fermentation of OUCMDZ-3434, p-fluorobenzoic acid was added as the key biosynthetic precursor, which resulted in the isolation of eight new fluorinated enterocin and wailupemycin derivatives (3-10) and 10 previously reported analogues (11-20). From the solid fermentation extract of OUCMDZ-2599, a new sulfur-containing compound thiotetromycin B (21) and its known analogue thiotetromycin (22) were identified. Moreover, the solid fermentation strategy effectively activated the biosynthesis of siderophores (23-25) of strain OUCMDZ-2599. Compound 3 showed moderate antibacterial activity against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus subsp. aureus with MIC values of 4 μg/mL. Compounds 23-25 were significantly capable of binding Fe(III).
Collapse
Affiliation(s)
- Kunyu Xia
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
| | - Jiaxu Shang
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
| | - Jiwen Sun
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
| | - Weiming Zhu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, People’s Republic of China
| | - Peng Fu
- Key
Laboratory of Marine Drugs, Ministry of Education of China, School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, People’s
Republic of China
- Laboratory
for Marine Drugs and Bioproducts, Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, People’s Republic of China
| |
Collapse
|
25
|
Xiong Z, Wang R, Xia T, Zhang S, Ma S, Guo Z. Natural Products and Biological Activity from Actinomycetes Associated with Marine Algae. Molecules 2023; 28:5138. [PMID: 37446800 DOI: 10.3390/molecules28135138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Marine natural products have been recognized as the most promising source of bioactive substances for drug discovery research. This review illustrates the diversity of culturable actinobacteria associated with marine algae, their bioactivity and metabolites, and approaches to their isolation and determination of their biological properties. Furthermore, actinobacteria associated with marine algae are presented as a new subject for an extensive investigation to find novel and active natural products, which make them a potentially rich and innovative source for new drug development deserving more attention and exploration.
Collapse
Affiliation(s)
- Zijun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Rong Wang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Tengfei Xia
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Shiqing Zhang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Shuai Ma
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| | - Zhikai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
| |
Collapse
|
26
|
Ye JJ, Zou RJ, Zhou DD, Deng XL, Wu NL, Chen DD, Xu J. Insights into the phylogenetic diversity, biological activities, and biosynthetic potential of mangrove rhizosphere Actinobacteria from Hainan Island. Front Microbiol 2023; 14:1157601. [PMID: 37323895 PMCID: PMC10264631 DOI: 10.3389/fmicb.2023.1157601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Mangrove rhizosphere soils host diverse Actinobacteria tolerant to numerous stresses and are inevitably capable of exhibiting excellent biological activity by producing impressive numbers of bioactive natural products, including those with potential medicinal applications. In this study, we applied an integrated strategy of combining phylogenetic diversity, biological activities, and biosynthetic gene clusters (BGCs) screening approach to investigate the biotechnological importance of Actinobacteria isolated from mangrove rhizosphere soils from Hainan Island. The actinobacterial isolates were identifified using a combination of colony morphological characteristics and 16S rRNA gene sequence analysis. Based on the results of PCR-detected BGCs screening, type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected. Crude extracts of 87 representative isolates were subjected to antimicrobial evaluation by determining the minimum inhibitory concentration of each strain against six indicator microorganisms, anticancer activities were determined on human cancer cell lines HepG2, HeLa, and HCT-116 using an MTT colorimetric assay, and immunosuppressive activities against the proliferation of Con A-induced T murine splenic lymphocytes in vitro. A total of 287 actinobacterial isolates affiliated to 10 genera in eight families of six orders were isolated from five different mangrove rhizosphere soil samples, specififically, Streptomyces (68.29%) and Micromonospora (16.03%), of which 87 representative strains were selected for phylogenetic analysis. The crude extracts of 39 isolates (44.83%) showed antimicrobial activity against at least one of the six tested indicator pathogens, especially ethyl acetate extracts of A-30 (Streptomyces parvulus), which could inhibit the growth of six microbes with MIC values reaching 7.8 μg/mL against Staphylococcus aureus and its resistant strain, compared to the clinical antibiotic ciproflfloxacin. Furthermore, 79 crude extracts (90.80%) and 48 (55.17%) of the isolates displayed anticancer and immunosuppressive activities, respectively. Besides, four rare strains exhibited potent immunosuppressive activity against the proliferation of Con A-induced T murine splenic lymphocyte in vitro with an inhibition rate over 60% at 10 μg/mL. Type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected in 49.43, 66.67, and 88.51% of the 87 Actinobacteria, respectively. Signifificantly, these strains (26 isolates, 29.89%) harbored PKS I, PKS II, and NRPS genes in their genomes. Nevertheless, their bioactivity is independent of BGCs in this study. Our findings highlighted the antimicrobial, immunosuppressive, and anticancer potential of mangrove rhizosphere Actinobacteria from Hainan Island and the biosynthetic prospects of exploiting the corresponding bioactive natural product.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Xu
- Collaborative Innovation Center of Ecological Civilization, School of Chemical Engineering and Technology, Hainan University, Haikou, China
| |
Collapse
|
27
|
Ahmed S, Alam W, Aschner M, Filosa R, Cheang WS, Jeandet P, Saso L, Khan H. Marine Cyanobacterial Peptides in Neuroblastoma: Search for Better Therapeutic Options. Cancers (Basel) 2023; 15:cancers15092515. [PMID: 37173981 PMCID: PMC10177606 DOI: 10.3390/cancers15092515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroblastoma is the most prevalent extracranial solid tumor in pediatric patients, originating from sympathetic nervous system cells. Metastasis can be observed in approximately 70% of individuals after diagnosis, and the prognosis is poor. The current care methods used, which include surgical removal as well as radio and chemotherapy, are largely unsuccessful, with high mortality and relapse rates. Therefore, attempts have been made to incorporate natural compounds as new alternative treatments. Marine cyanobacteria are a key source of physiologically active metabolites, which have recently received attention owing to their anticancer potential. This review addresses cyanobacterial peptides' anticancer efficacy against neuroblastoma. Numerous prospective studies have been carried out with marine peptides for pharmaceutical development including in research for anticancer potential. Marine peptides possess several advantages over proteins or antibodies, including small size, simple manufacturing, cell membrane crossing capabilities, minimal drug-drug interactions, minimal changes in blood-brain barrier (BBB) integrity, selective targeting, chemical and biological diversities, and effects on liver and kidney functions. We discussed the significance of cyanobacterial peptides in generating cytotoxic effects and their potential to prevent cancer cell proliferation via apoptosis, the activation of caspases, cell cycle arrest, sodium channel blocking, autophagy, and anti-metastasis behavior.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer, 209 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Philippe Jeandet
- Faculty of Sciences, RIBP-USC INRAe 1488, University of Reims, 51100 Reims, France
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, 00185 Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
28
|
Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133:106427. [PMID: 36841046 DOI: 10.1016/j.bioorg.2023.106427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/15/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theβ5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt
| | - Nouran Alzahaby
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Sonousi
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, Egypt.
| |
Collapse
|
29
|
Mir RH, Mir PA, Uppal J, Chawla A, Patel M, Bardakci F, Adnan M, Mohi-ud-din R. Evolution of Natural Product Scaffolds as Potential Proteasome Inhibitors in Developing Cancer Therapeutics. Metabolites 2023; 13:metabo13040509. [PMID: 37110167 PMCID: PMC10142660 DOI: 10.3390/metabo13040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Homeostasis between protein synthesis and degradation is a critical biological function involving a lot of precise and intricate regulatory systems. The ubiquitin-proteasome pathway (UPP) is a large, multi-protease complex that degrades most intracellular proteins and accounts for about 80% of cellular protein degradation. The proteasome, a massive multi-catalytic proteinase complex that plays a substantial role in protein processing, has been shown to have a wide range of catalytic activity and is at the center of this eukaryotic protein breakdown mechanism. As cancer cells overexpress proteins that induce cell proliferation, while blocking cell death pathways, UPP inhibition has been used as an anticancer therapy to change the balance between protein production and degradation towards cell death. Natural products have a long history of being used to prevent and treat various illnesses. Modern research has shown that the pharmacological actions of several natural products are involved in the engagement of UPP. Over the past few years, numerous natural compounds have been found that target the UPP pathway. These molecules could lead to the clinical development of novel and potent anticancer medications to combat the onslaught of adverse effects and resistance mechanisms caused by already approved proteasome inhibitors. In this review, we report the importance of UPP in anticancer therapy and the regulatory effects of diverse natural metabolites, their semi-synthetic analogs, and SAR studies on proteasome components, which may aid in discovering a new proteasome regulator for drug development and clinical applications.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Jasreen Uppal
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Roohi Mohi-ud-din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190001, Jammu and Kashmir, India
| |
Collapse
|
30
|
Wang T, You Y, Wang ZH, Zhao JQ, Zhang YP, Yin JQ, Zhou MQ, Cui BD, Yuan WC. Copper-Catalyzed Diastereo- and Enantioselective Decarboxylative [3 + 2] Cyclization of Alkyne-Substituted Cyclic Carbamates with Azlactones: Access to γ-Butyrolactams Bearing Two Vicinal Tetrasubstituted Carbon Stereocenters. Org Lett 2023. [PMID: 36800376 DOI: 10.1021/acs.orglett.3c00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A copper-catalyzed diastereo- and enantioselective decarboxylative [3 + 2] cyclization reaction of alkyne-substituted cyclic carbamates with azlactones has been established. A range of optically pure γ-butyrolactams bearing two vicinal tetrasubstituted carbon stereocenters were obtained in high yields with good to excellent stereoselectivities (up to 99% yield, 99:1 dr, and 99% ee). This is the first example of asymmetric synthesis γ-butyrolactams containing sterically congested vicinal tetrasubstituted stereocenters via a decarboxylative cyclization pathway.
Collapse
Affiliation(s)
- Ting Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jun-Qing Yin
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Bao-Dong Cui
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
31
|
Motoyama T, Nogawa T, Shimizu T, Kawatani M, Kashiwa T, Yun CS, Hashizume D, Osada H. Fungal NRPS-PKS Hybrid Enzymes Biosynthesize New γ-Lactam Compounds, Taslactams A-D, Analogous to Actinomycete Proteasome Inhibitors. ACS Chem Biol 2023; 18:396-403. [PMID: 36692171 DOI: 10.1021/acschembio.2c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Proteasome inhibitors with γ-lactam structure, such as lactacystin and salinosporamide A, have been isolated from actinomycetes and have attracted attention as lead compounds for anticancer drugs. Previously, we identified a unique enzyme TAS1, which is the first reported fungal NRPS-PKS hybrid enzyme, from the filamentous fungus Pyricularia oryzae for the biosynthesis of a mycotoxin tenuazonic acid, a tetramic acid compound without γ-lactam structure. Homologues of TAS1 have been identified in several fungal genomes and classified into four groups (A-D). Here, we show that the group D TAS1 homologues from two filamentous fungi can biosynthesize γ-lactam compounds, taslactams A-D, with high similarity to actinomycete proteasome inhibitors. One of the γ-lactam compounds, taslactam C, showed potent proteasome inhibitory activity. In contrast to actinomycete γ-lactam compounds which require multiple enzymes for biosynthesis, the TAS1 homologue alone was sufficient for the biosynthesis of the fungal γ-lactam compounds.
Collapse
Affiliation(s)
- Takayuki Motoyama
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Toshihiko Nogawa
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan.,Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan.,Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Takeshi Kashiwa
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Choong-Soo Yun
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- Materials Characterization Support Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan.,Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Saitama 351-0198, Japan.,Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yata, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
32
|
Racioppo B, Qiu N, Adibekian A. Serine Hydrolase Activity‐Based Probes for use in Chemical Proteomics. Isr J Chem 2023. [DOI: 10.1002/ijch.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Brittney Racioppo
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Nan Qiu
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Alexander Adibekian
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
| |
Collapse
|
33
|
Paul S, Das S, Mitra B, Chandra Pariyar G, Ghosh P. β-Cyclodextrin: a green supramolecular catalyst assisted eco-friendly one-pot three-component synthesis of biologically active substituted pyrrolidine-2-one. RSC Adv 2023; 13:5457-5466. [PMID: 36793299 PMCID: PMC9924053 DOI: 10.1039/d2ra08054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
A green, novel and eco-efficient synthetic route towards the synthesis of highly substituted bio-active pyrrolidine-2-one derivatives was demonstrated using β-cyclodextrin, a water-soluble supramolecular solid as a green and eco-benign catalyst at room temperature under water-ethanol solvent medium. The exploration of the green catalyst β-cyclodextrin for the metal-free one-pot three-component synthesis of a wide range of highly functionalized bio-active heterocyclic pyrrolidine-2-one moieties from easily available aldehydes and amines explains the superiority and uniqueness of this protocol.
Collapse
Affiliation(s)
- Subhankar Paul
- Department of Chemistry, University of North Bengal District-Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| | - Sharmistha Das
- Department of Chemistry, University of North Bengal District-Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| | - Bijeta Mitra
- Department of Chemistry, University of North Bengal District-Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| | - Gyan Chandra Pariyar
- Department of Food Technology, University of North BengalDistrict-DarjeelingWest BengalIndia
| | - Pranab Ghosh
- Department of Chemistry, University of North Bengal District-Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| |
Collapse
|
34
|
Gholami F, Yousefnejad F, Larijani B, Mahdavi M. Vinyl azides in organic synthesis: an overview. RSC Adv 2023; 13:990-1018. [PMID: 36686934 PMCID: PMC9811501 DOI: 10.1039/d2ra06726a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Among organic azides, vinyl azides have attracted significant attention, because of their unique properties in organic synthesis, which led to reports of many types of research on this versatile conjugated azide in recent years. This magical precursor can also be converted into intermediates such as iminyl radicals, 2H-azirines, iminyl metal complexes, nitrilium ions, and iminyl ions, making this compound useful in heterocycle synthesis.
Collapse
Affiliation(s)
- Fateme Gholami
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
35
|
Chen S, Zhang DS, Wang JH. Antimycic Acid and its Acetyl Derivative from Deep-sea-derived Alcanivorax sp. SHA4 with Neuroprotective Properties. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chemical investigation of secondary metabolites of the deep-sea-derived Alcanivorax sp. SHA4 identified a new compound 1 which was antimycic acid (2)'s acetyl derivative, and 11 known compounds (2-12). Their structures were elucidated by extensive nuclear magnetic resonance and mass spectrometry spectroscopic analyses, and the absolute configuration of compound 1 was determined by Marfey's method. Bioactivity assays indicated that compounds 1 and 2 exhibited significant neuroprotective properties against glutamate-induced PC12 cell death in 0.02-0.31 μM.
Collapse
Affiliation(s)
- Shuang Chen
- Hainan Institution of Zhejiang University, Sanya, China
| | - Da-shan Zhang
- Institute of Marine Biology & Pharmacology, Ocean College of Zhejiang University, Zhoushan, China
| | - Jin-hui Wang
- Hainan Institution of Zhejiang University, Sanya, China
| |
Collapse
|
36
|
Targeting immunoproteasome in neurodegeneration: A glance to the future. Pharmacol Ther 2023; 241:108329. [PMID: 36526014 DOI: 10.1016/j.pharmthera.2022.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.
Collapse
|
37
|
Sahayasheela VJ, Lankadasari MB, Dan VM, Dastager SG, Pandian GN, Sugiyama H. Artificial intelligence in microbial natural product drug discovery: current and emerging role. Nat Prod Rep 2022; 39:2215-2230. [PMID: 36017693 PMCID: PMC9931531 DOI: 10.1039/d2np00035k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: up to the end of 2022Microorganisms are exceptional sources of a wide array of unique natural products and play a significant role in drug discovery. During the golden era, several life-saving antibiotics and anticancer agents were isolated from microbes; moreover, they are still widely used. However, difficulties in the isolation methods and repeated discoveries of the same molecules have caused a setback in the past. Artificial intelligence (AI) has had a profound impact on various research fields, and its application allows the effective performance of data analyses and predictions. With the advances in omics, it is possible to obtain a wealth of information for the identification, isolation, and target prediction of secondary metabolites. In this review, we discuss drug discovery based on natural products from microorganisms with the help of AI and machine learning.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
| | - Manendra B Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, Kerala, India
| | - Syed G Dastager
- NCIM Resource Centre, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune, Maharashtra, India
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
38
|
Zhou T, Chen H, Liu Y, Wang H, Yan Q, Wang W, Chen F. Visible-Light-Promoted Xanthate-Transfer Cyclization Reactions of Unactivated Olefins under Photocatalyst- and Additive-Free Conditions. J Org Chem 2022; 87:15582-15597. [DOI: 10.1021/acs.joc.2c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tongyao Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hang Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yang Liu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wei Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fener Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
39
|
Hamdi Mohamadabad P, Setamdideh D. AmberChrom/brine as a Green Catalytic System for Synthesis of Pyrrolin-2-ones. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2141044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Davood Setamdideh
- Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran
| |
Collapse
|
40
|
Park S, Lee J, Kim JH, Jeong Y, Lee S, Lee SW, Kim S. Evolution of a Strategy for Concise Enantioselective Total Synthesis of the Salinosporamide Family of Natural Products. Angew Chem Int Ed Engl 2022; 61:e202210317. [DOI: 10.1002/anie.202210317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Soojun Park
- College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Jiwoo Lee
- College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Jae Hyun Kim
- College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
- College of Pharmacy Chung-Ang University 84, Heukseok-ro Seoul 06974 Republic of Korea
| | - Yeji Jeong
- College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Seokwoo Lee
- College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Su Won Lee
- College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sanghee Kim
- College of Pharmacy Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
41
|
Mal K, Mukhopadhyay C. Chromatography free expeditious green synthesis of 3-hydroxy-2-pyrrolidone derivatives under eco-friendly conditions via the oxidation of benzyl amines without catalyst. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Barra L, Awakawa T, Abe I. Noncanonical Functions of Enzyme Cofactors as Building Blocks in Natural Product Biosynthesis. JACS AU 2022; 2:1950-1963. [PMID: 36186570 PMCID: PMC9516700 DOI: 10.1021/jacsau.2c00391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Enzymes involved in secondary metabolite biosynthetic pathways have typically evolutionarily diverged from their counterparts functioning in primary metabolism. They often catalyze diverse and complex chemical transformations and are thus a treasure trove for the discovery of unique enzyme-mediated chemistries. Besides major natural product classes, such as terpenoids, polyketides, and ribosomally or nonribosomally synthesized peptides, biosynthetic investigations of noncanonical natural product biosynthetic pathways often reveal functionally distinct enzyme chemistries. In this Perspective, we aim to highlight challenges and opportunities of biosynthetic investigations on noncanonical natural product pathways that utilize primary metabolites as building blocks, otherwise generally considered as enzyme cofactors. A focus is made on the discovered chemical and enzymological novelties.
Collapse
Affiliation(s)
- Lena Barra
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Takayoshi Awakawa
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative
Research Institute of Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuro Abe
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative
Research Institute of Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
43
|
Zhang Z, Zhang S, Lin B, Wang Q, Nie X, Shi Y. Combined treatment of marizomib and cisplatin modulates cervical cancer growth and invasion and enhances antitumor potential in vitro and in vivo. Front Oncol 2022; 12:974573. [PMID: 36110967 PMCID: PMC9468930 DOI: 10.3389/fonc.2022.974573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Proteasome inhibition is an attractive approach for anticancer therapy. Cisplatin (cis-diamminedichloroplatinum, CDDP) is widely used as a standard chemotherapy drug in the treatment of solid malignant tumors, such as cervical cancer, ovarian cancer, colorectal cancer, and lung cancer. However, the development of CDDP resistance largely limits its clinical application. Proteasome inhibitors may enhance traditional chemotherapy agent-induced cytotoxicity and apoptosis. Marizomib (NPI-0052, salinosporamide A, Mzb), a second-generation proteasome inhibitor, shows synergistic anticancer activity with some drugs. Currently, the effect of Mzb on cervical cancer cell proliferation remains unclear. In this study, we explored the role of Mzb in three cervical cancer cell lines, HeLa, CaSki, and C33A, representing major molecular subtypes of cervical cancer and xenografts. We found that Mzb alone showed noteworthy cytotoxic effects, and its combination with CDDP resulted in more obvious cytotoxicity and apoptosis in cervical cancer cell lines and xenografts. In order to investigate the mechanism of this effect, we probed whether Mzb alone or in combination with CDDP had a better antitumor response by enhancing CDDP-induced angiopoietin 1 (Ang-1) expression and inhibiting the expression of TEK receptor tyrosine kinase (Tie-2) in the Ang-1/Tie-2 pathway, FMS-like tyrosine kinase 3 ligand (Flt-3L) and stem cell factor (SCF) as identified by a cytokine antibody chip test. The results suggest that Mzb has better antitumor effects on cervical cancer cells and can sensitize cervical cancer cells to CDDP treatment both in vitro and in vivo. Accordingly, we conclude that the combination of CDDP with Mzb produces synergistic anticancer activity and that Mzb may be a potential effective drug in combination therapy for cervical cancer patients.
Collapse
Affiliation(s)
- Ziruizhuo Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Songcheng Zhang
- Department of Pediatrics, Nanyang Chinese Medicine Hospital, Nanyang, Henan, China
| | - Bingjie Lin
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qixin Wang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaojing Nie
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yonghua Shi
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang, China
- *Correspondence: Yonghua Shi,
| |
Collapse
|
44
|
Vandyshev DY, Shikhaliev KS. Recyclization of Maleimides by Binucleophiles as a General Approach for Building Hydrogenated Heterocyclic Systems. Molecules 2022; 27:5268. [PMID: 36014507 PMCID: PMC9416709 DOI: 10.3390/molecules27165268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The building of heterocyclic systems containing hydrogenated fragments is an important step towards the creation of biologically-active compounds with a wide spectrum of pharmacological activity. Among the numerous methods for creating such systems, a special place is occupied by processes using N-substituted maleimides as the initial substrate. This molecule easily reacts in Diels-Alder/retro-Diels-Alder reactions, Michael additions with various nucleophiles, and co-polymerization processes, as have been described in numerous detailed reviews. However, information on the use of maleimides in cascade heterocyclization reactions is currently limited. This study is devoted to a review and analysis of existing literature data on the processes of recyclization of N-substituted maleimides with various C,N-/N,N-/S,N-di- and polynucleophilic agents, such as amidines, guanidines, diamines, aliphatic ketazines, aminouracils, amino- and mercaptoazoles, aminothiourea, and thiocarbomoyl pyrazolines, among others. The significant structural diversity of the recyclization products described in this study illustrates the powerful potential of maleimides as a building block in the organic synthesis of biologically-active compounds with hydrogenated heterocyclic fragments.
Collapse
Affiliation(s)
- Dmitriy Yu. Vandyshev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya Sq. 1, 394018 Voronezh, Russia
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya Sq. 1, 394018 Voronezh, Russia
- TekhnoKhim, 50 Let Sovetskoi Vlasti Str. 8, 394050 Voronezh, Russia
| |
Collapse
|
45
|
Park S, Lee J, Kim JH, Jeong Y, Lee S, Lee SW, Kim S. Evolution of a Strategy for Concise Enantioselective Total Synthesis of the Salinosporamide Family of Natural Products. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Soojun Park
- Seoul National University College of Pharmacy Pharmacy KOREA, REPUBLIC OF
| | - Jiwoo Lee
- Seoul National University College of Pharmacy Pharmacy KOREA, REPUBLIC OF
| | - Jae Hyun Kim
- Chung-Ang University - Seoul Campus: Chung-Ang University Pharmacy KOREA, REPUBLIC OF
| | - Yeji Jeong
- Seoul National University College of Pharmacy Pharmacy KOREA, REPUBLIC OF
| | - Seokwoo Lee
- Seoul National University College of Pharmacy Pharmacy KOREA, REPUBLIC OF
| | - Su Won Lee
- Seoul National University College of Pharmacy Pharmacy KOREA, REPUBLIC OF
| | - Sanghee Kim
- Seoul National University College of Pharmacy 1 Gwanak-ro, Gwanak-gu 08826 Seoul KOREA, REPUBLIC OF
| |
Collapse
|
46
|
Ishida Y, Nishikata T. Radical/Iminium Domino Strategy (RIDS) for Rapid Construction of Sterically Congested γ‐Lactam‐Based Multiheterocycles. Chemistry 2022; 28:e202201047. [DOI: 10.1002/chem.202201047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuto Ishida
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| | - Takashi Nishikata
- Graduate School of Science and Engineering Yamaguchi University 2-16-1 Tokiwadai Ube Yamaguchi 755-8611 Japan
| |
Collapse
|
47
|
Kudo Y, Konoki K, Yotsu-Yamashita M. Mass spectrometry-guided discovery of new analogues of bicyclic phosphotriester salinipostin and evaluation of their monoacylglycerol lipase inhibitory activity. Biosci Biotechnol Biochem 2022; 86:1333-1342. [PMID: 35918181 DOI: 10.1093/bbb/zbac131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022]
Abstract
Natural products containing the highly unusual phosphotriester ring are known to be potent serine hydrolase inhibitors. The long-chain bicyclic enol-phosphotriester salinipostins (SPTs) from the marine actinomycete Salinispora have been identified as selective antimalarial agents. A potential regulatory function has been suggested for phosphotriesters based on their structural relationship with actinomycete signaling molecules and the prevalence of spt-like biosynthetic gene clusters across actinomycetes. In this study, we established a mass spectrometry-guided screening method for phosphotriesters focusing on their characteristic fragment ions. Applying this screening method to the SPT producer Salinispora tropica CNB-440, new SPT analogues (4-6) were discovered and their structures were elucidated by spectroscopic analyses. Previously known and herein-identified SPT analogues inhibited the activity of human monoacylglycerol lipase (MAGL), a key serine hydrolase in the endocannabinoid system, in the nanomolar range. Our method could be applied to the screening of phosphotriesters, potential serine hydrolase inhibitors and signaling molecules.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan.,Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
48
|
Liu Y, Zhang H, Xiao H, Li Y, Liu Y. Expression, purification and structure determination of the chlorinase ClA2. Biochem Biophys Res Commun 2022; 628:64-67. [DOI: 10.1016/j.bbrc.2022.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
|
49
|
Chemical acylation of an acquired serine suppresses oncogenic signaling of K-Ras(G12S). Nat Chem Biol 2022; 18:1177-1183. [PMID: 35864332 DOI: 10.1038/s41589-022-01065-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Drugs that directly impede the function of driver oncogenes offer exceptional efficacy and a therapeutic window. The recently approved mutant selective small-molecule cysteine-reactive covalent inhibitor of the G12C mutant of K-Ras, sotorasib, provides a case in point. KRAS is the most frequently mutated proto-oncogene in human cancer, yet despite success targeting the G12C allele, targeted therapy for other hotspot mutants of KRAS has not been described. Here we report the discovery of small molecules that covalently target a G12S somatic mutation in K-Ras and suppress its oncogenic signaling. We show that these molecules are active in cells expressing K-Ras(G12S) but spare the wild-type protein. Our results provide a path to targeting a second somatic mutation in the oncogene KRAS by overcoming the weak nucleophilicity of an acquired serine residue. The chemistry we describe may serve as a basis for the selective targeting of other unactivated serines.
Collapse
|
50
|
Bahrami Y, Bouk S, Kakaei E, Taheri M. Natural Products from Actinobacteria as a Potential Source of New Therapies Against Colorectal Cancer: A Review. Front Pharmacol 2022; 13:929161. [PMID: 35899111 PMCID: PMC9310018 DOI: 10.3389/fphar.2022.929161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common, and deadly disease. Despite the improved knowledge on CRC heterogeneity and advances in the medical sciences, there is still an urgent need to cope with the challenges and side effects of common treatments for the disease. Natural products (NPs) have always been of interest for the development of new medicines. Actinobacteria are known to be prolific producers of a wide range of bioactive NPs, and scientific evidence highlights their important protective role against CRC. This review is a holistic picture on actinobacter-derived cytotoxic compounds against CRC that provides a good perspective for drug development and design in near future. This review also describes the chemical structure of 232 NPs presenting anti-CRC activity with the being majority of quinones, lactones, alkaloids, peptides, and glycosides. The study reveals that most of these NPs are derived from marine actinobacteria followed by terrestrial and endophytic actinobacteria, respectively. They are predominantly produced by Streptomyces, Micromonospors, Saliniospors and Actinomadura, respectively, in which Streptomyces, as the predominant contributor generating over 76% of compounds exclusively. Besides it provides a valuable snapshot of the chemical structure-activity relationship of compounds, highlighting the presence or absence of some specific atoms and chemical units in the structure of compounds can greatly influence their biological activities. To the best of our knowledge, this is the first comprehensive review on natural actinobacterial compounds affecting different types of CRC. Our study reveals that the high diversity of actinobacterial strains and their NPs derivatives, described here provides a new perspective and direction for the production of new anti-CRC drugs and paves the way to innovation for drugs discovery in the future. The knowledge obtain from this review can help us to understand the pivotal application of actinobacteria in future drugs development.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| | - Sasan Bouk
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| |
Collapse
|