1
|
He X, Yu J, Yin R, Zhang P, Xiao C, Chen X. A Nanoscale Trans-Platinum(II)-Based Supramolecular Coordination Self-Assembly with a Distinct Anticancer Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312488. [PMID: 38301714 DOI: 10.1002/adma.202312488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Drug resistance significantly hampers the clinical application of existing platinum-based anticancer drugs. New platinum medications that possess distinct mechanisms of action are highly desired for the treatment of Pt-resistant cancers. Herein, a nanoscale trans-platinum(II)-based supramolecular coordination self-assembly (Pt-TCPP-BA) is prepared via using trans-[PtCl2(pyridine)(NH3)] (transpyroplatin), tetracarboxylporphyrin (TCPP), and benzoic acid (BA) as building blocks to combat drug resistance in platinum-based chemotherapy. Mechanistic studies indicate that Pt-TCPP-BA shows a hydrogen-peroxide-responsive dissociation behavior along with the generation of bioactive trans-Pt(II) and TCPP-Pt species. Different from cisplatin, these degradation products interact with DNA via interstrand cross-links and small groove binding, and induce significant upregulation of cell-death-related proteins such as p53, cleaved caspase 3, p21, and phosphorylated H2A histone family member X in cisplatin-resistant cancer cells. As a result, Pt-TCPP-BA exhibits potent killing effects against Pt-resistant tumors both in vitro and in vivo. Overall, this work not only provides a new platinum drug for combating drug-resistant cancer but also offers a new paradigm for the development of platinum-based supramolecular anticancer drugs.
Collapse
Affiliation(s)
- Xidong He
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
Weng P, Li C, Liu Q, Tang Z, Zhou Z, Chen S, Hao Y, Xu M. A ternary nucleotide-lanthanide coordination nanoprobe for ratiometric fluorescence detection of ciprofloxacin. LUMINESCENCE 2024; 39:e4667. [PMID: 38178733 DOI: 10.1002/bio.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ciprofloxacin (CIP) is a widely used broad-spectrum antibiotic and has been associated with various side effects, making its accurate detection crucial for patient safety, drug quality compliance, and environmental and food safety. This study presents the development of a ternary nucleotide-lanthanide coordination nanoprobe, GMP-Tb-BDC (GMP: guanosine 5'-monophosphate, BDC: 2-amino-1,4-benzenedicarboxylic acid), for the sensitive and ratiometric detection of CIP. The GMP-Tb-BDC nanoprobe was constructed by incorporating the blue-emissive ligand BDC into the Tb/GMP coordination polymers. Upon the addition of CIP, the fluorescence of terbium ion (Tb3+ ) was significantly enhanced due to the coordination and fluorescence sensitization properties of CIP, while the emission of the BDC ligand remained unchanged. The nanoprobe demonstrated good linearity in the concentration range of 0-10 μM CIP. By leveraging mobile phone software to analyze the color signals, rapid on-site analysis of CIP was achieved. Furthermore, the nanoprobe exhibited accurate analysis of CIP in actual drug and milk samples. This study showcases the potential of the GMP-Tb-BDC nanoprobe for practical applications in CIP detection.
Collapse
Affiliation(s)
- Pei Weng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
3
|
Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nat Rev Chem 2023; 7:273-286. [PMID: 37117419 DOI: 10.1038/s41570-023-00474-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Coordination polymers (CPs) and their subset, metal-organic frameworks (MOFs), can have porous structures and hybrid physicochemical properties that are useful for diverse applications. Although crystalline CPs and MOFs have received the most attention to date, their amorphous states are of growing interest as they can be directly synthesized under mild conditions. Directly synthesized amorphous CPs (aCPs) can be constructed from a wider range of metals and ligands than their crystalline and crystal-derived counterparts and demonstrate numerous unique material properties, such as higher mechanical robustness, increased stability and greater processability. This Review examines methods for the direct synthesis of aCPs and amorphous MOFs, as well as their properties and characterization routes, and offers a perspective on the opportunities for the widespread adoption of directly synthesized aCPs.
Collapse
|
4
|
Han Q, Zhang X, Jia Y, Guo S, Zhu J, Luo S, Na N, Ouyang J. Synthesis and Characteristics of Self‐Assembled Multifunctional Ln
3+
‐DNA Hybrid Coordination Polymers. Chemistry 2022; 28:e202200281. [DOI: 10.1002/chem.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Qingzhi Han
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Xinlian Zhang
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yijing Jia
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Shaoshi Guo
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jiale Zhu
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Shirui Luo
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
5
|
Lanthanide coordination polymer nanoparticles as a ratiometric fluorescence sensor for real-time and visual detection of tetracycline by a smartphone and test paper based on the analyte-triggered antenna effect and inner filter effect. Anal Chim Acta 2022; 1206:339809. [DOI: 10.1016/j.aca.2022.339809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 01/24/2023]
|
6
|
Wang Y, Li J, Zhou R, Zeng X, Zhao H, Chen Q, Wu P. Universal "Three-in-One" Matrix to Maximize Reactive Oxygen Species Generation from Food and Drug Administration-Approved Photosensitizers for Photodynamic Inactivation of Biofilms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15059-15068. [PMID: 35343225 DOI: 10.1021/acsami.2c02376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biofilms, an accumulation of microorganisms, cause persistent bacterial infection and low cure rate due to the remarkable drug resistance. Photodynamic inactivation (PDI) is a promising treatment modality for bacterial infections, but the formation of biofilms raises new challenges for photosensitizers (PSs), particularly the reactive oxygen species (ROS) generation efficiency. Herein, through targeting the Jablonski energy diagram, we proposed a universal "three-in-one" matrix of Gd3+-ADP assembly for encapsulation and fixing of PSs to inhibit non-radiative transitions and promoting intersystem crossing (ISC) by the heavy atom and paramagnetic effects of Gd3+, eventually resulted in boosted ROS generation from the existing PSs (1.5-9.0-fold). Particularly, photophysical studies indicated that the matrix resulted in simultaneous ISC promotion and triplet-state lifetime lengthening, which is essential for ROS boosting. The PDI performance of the matrix was confirmed through fast and effective elimination of bacterial biofilms in 10-30 min. Moreover, successful therapy of a Pseudomonas aeruginosa biofilm-infected all-thickness third-degree burn wound was achieved within 11 days with Ce 6@CNs (matrix) but not feasible for matrix-free PSs (Ce 6 only), which highlighted the role of "three-in-one" matrix in ROS boosting.
Collapse
Affiliation(s)
- Ying Wang
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Jiazhuo Li
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Yang Y, Liu Y, Tu D, Chen M, Zhang Y, Gao H, Chen X. Tumor-Microenvironment-Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Self-Assemblies toward Precise Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202116983. [PMID: 35084798 DOI: 10.1002/anie.202116983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 12/25/2022]
Abstract
Stimuli-responsive nanoagents, which simultaneously satisfy normal tissue clearance and tumor-specific responsive treatment, are highly attractive for precise cancer theranostics. Herein, we develop a unique template-induced self-assembly strategy for the exquisitely controlled synthesis of self-assembled lanthanide (Ln3+ ) nucleotide nanoparticles (LNNPs) with amorphous structure and tunable size from sub-5 nm to 105 nm. By virtue of the low-temperature (10 K) and high-resolution spectroscopy, the local site symmetry of Ln3+ in LNNPs is unraveled for the first time. The proposed LNNPs are further demonstrated to possess the ability for highly efficient loading and tumor-microenvironment-responsive release of doxorubicin. Particularly, sub-5 nm LNNPs not only exhibit excellent biocompatibility and predominant renal-clearance performance, but also enable efficient tumor retention. These findings reveal the great potential of LNNPs as a new generation of therapeutic platform to overcome the dilemma between efficient therapy and long-term toxicity of nanoagents for future clinical applications.
Collapse
Affiliation(s)
- Yingjie Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yunqin Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Hang Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
A novel multiemissive Ln/covalent-organic frameworks for ratiometric detection of 2,6-dipicolinic acid. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Yang Y, Liu Y, Tu D, Chen M, Zhang Y, Gao H, Chen X. Tumor‐Microenvironment‐Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Self‐Assemblies toward Precise Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Yang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Yan Liu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Datao Tu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Mingmao Chen
- Fuzhou University College of Biological Science and Engineering CHINA
| | - Yunqin Zhang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Hang Gao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Xueyuan Chen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 West Yangqiao Road Fuzhou CHINA
| |
Collapse
|
10
|
Li J, Wang Y, Jiang X, Wu P. An Aqueous Room-Temperature Phosphorescent Probe for Gd3+. Chem Commun (Camb) 2022; 58:2686-2689. [DOI: 10.1039/d1cc06229h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aqueous room-temperature phosphorescent (RTP) probe for Gd3+ is reported, based on Gd3+-induced intersystem promoting and the oxygen-shielding property of the Gd3+/AMP/fluorescein coordination polymer nanoparticles (CPNs). Besides selective Gd3+ detection,...
Collapse
|
11
|
Kim J, Lee K, Nam YS. Metal-polyphenol Complexes as Versatile Building Blocks for Functional Biomaterials. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Gorai T, Schmitt W, Gunnlaugsson T. Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Trans 2021; 50:770-784. [PMID: 33351011 DOI: 10.1039/d0dt03684f] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of lanthanide based coordination polymer and metal-organic framework (CPs and MOFs) nanomaterials as novel functional (e.g. luminescent and magnetic) materials has attracted significant attention in recent times. This is in part due to the wide, but yet unique coordination requirements that the f-metal ions possess, as well as their attractive physical properties, which are often transferred to the bulk material. Hence, there is no surprise, that the design, synthesis and characterisation of lanthanide based CP/MOF materials (featuring either 'pure' lanthanides, or a mixture of both f- and d-metal ions) for applications in gas and small molecule absorption, storage, conversion/catalysis, chemical sensing, bio-imaging, drug delivery, etc. has been a prominent feature in the scientific literature. In this review, we give a selected overview of some of the recent developments in the area of Ln CP/MOF based nanomaterials for sensing, optical materials and bio-medicine research, as well as making reference to some more established examples, with the view of introducing, particularly to new researchers to the field, the powerful and attractive features of lanthanide based materials.
Collapse
Affiliation(s)
- Tumpa Gorai
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
13
|
Qu F, Wang H, You J. Dual lanthanide-probe based on coordination polymer networks for ratiometric detection of glyphosate in food samples. Food Chem 2020; 323:126815. [PMID: 32334305 DOI: 10.1016/j.foodchem.2020.126815] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/31/2019] [Accepted: 04/13/2020] [Indexed: 02/01/2023]
Abstract
Herein, a new type of coordination polymer networks (CPNs), where both of 2,6-Pyridinedicarboxylic acid (DPA) and guanylate monophosphate (GMP) chelate with Eu3+, are firstly synthesized (GMP/Eu/DPA). After mixing with GMP/Tb CPNs, a novel ratiometric dual lanthanide nanoprobe is constructed. Alkaline phosphohydrolase (ALP) specifically induces the cleavage of phosphate ester group in GMP. Therefore, the addition of ALP causes the fluorescence quenching of GMP/Tb, and then the emissions of GMP/Eu/DPA enhance as the result of the formation of Eu/DPA complexes. Glyphosate, as an organophosphorus pesticide, can vehemently inhibit the catalytic activity of ALP, so a ratiometric detection of glyphosate can be achieved with a linear range from 0.015 to 8.45 μg/mL. The present strategy also shows good recoveries for measuring glyphosate in rice, millet, soybean, milk, tap water, and mountain spring water, suggesting a great potential for applications in foods.
Collapse
Affiliation(s)
- Fei Qu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Han Wang
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, China; The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, China; Key Laboratory of Tibetan Medicine Research & Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| |
Collapse
|
14
|
Huang Z, Liu B, Liu J. A high local DNA concentration for nucleating a DNA/Fe coordination shell on gold nanoparticles. Chem Commun (Camb) 2020; 56:4208-4211. [PMID: 32168370 DOI: 10.1039/d0cc01418d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Preparing DNA/Fe coordination nanoparticles in solution requires a high concentration of DNA. Herein we grew a DNA/Fe shell on DNA-functionalized gold nanoparticles. Taking advantage of the high local DNA density, the required DNA concentration decreased 60-fold, and the size can be controlled. This hybrid material allowed drug loading and colorimetric sensing.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
15
|
del Prado A, González‐Rodríguez D, Wu Y. Functional Systems Derived from Nucleobase Self-assembly. ChemistryOpen 2020; 9:409-430. [PMID: 32257750 PMCID: PMC7110180 DOI: 10.1002/open.201900363] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Dynamic and reversible non-covalent interactions endow synthetic systems and materials with smart adaptive functions that allow them to response to diverse stimuli, interact with external agents, or repair structural defects. Inspired by the outstanding performance and selectivity of DNA in living systems, scientists are increasingly employing Watson-Crick nucleobase pairing to control the structure and properties of self-assembled materials. Two sets of complementary purine-pyrimidine pairs (guanine:cytosine and adenine:thymine(uracil)) are available that provide selective and directional H-bonding interactions, present multiple metal-coordination sites, and exhibit rich redox chemistry. In this review, we highlight several recent examples that profit from these features and employ nucleobase interactions in functional systems and materials, covering the fields of energy/electron transfer, charge transport, adaptive nanoparticles, porous materials, macromolecule self-assembly, or polymeric materials with adhesive or self-healing ability.
Collapse
Affiliation(s)
- Anselmo del Prado
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
| | - David González‐Rodríguez
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| | - Yi‐Lin Wu
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
16
|
Tian Y, Zhang Z, Gao N, Huang P, Wu FY. A label-free luminescent assay for tyrosinase activity monitoring and inhibitor screening with responsive lanthanide coordination polymer nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117751. [PMID: 31727517 DOI: 10.1016/j.saa.2019.117751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 05/18/2023]
Abstract
In this work, a label-free, selective, and sensitive luminescent sensing platform was established for tyrosinase (TYR) activity monitoring and its inhibitor screening using one kind of lanthanide coordination polymer nanoparticles AMP-Tb/Ag+. By taking advantage of the specific binding and redox properties of Ag+ incorporated into the AMP-Tb network and dopamine (DA) as the product of the model substrate tyramine, the enzymatic reaction and the signal change of the sensing platform was effectively linked. The cooperative effect of a weakened energy transfer from AMP to Tb3+ by altering the electronic structure of Ag+ and an efficient photoinduced election transfer (PET) process caused by dopaquinone facilitated the luminescence quenching of Tb3+. Thus, this luminescent sensing platform could be employed for quantitative evaluation of TYR activity. There was a good linear range for TYR activity from 0.08 to 0.20 U mL-1 with a low detection limit of 0.004 U mL-1. Furthermore, this assay was successfully applied to accurate determination of TYR activity in human serum samples and efficient screening of TYR inhibitors. Considering unique spectral characteristics of lanthanides along with operation simplicity and superior analytical performance, this sensing platform is very promising in clinical diagnosis and drugs screening for TYR-associated diseases.
Collapse
Affiliation(s)
- Yao Tian
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zhipeng Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Nan Gao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
17
|
Sun C, Shi Y, Tang M, Hu X, Long Y, Zheng H. A signal amplification strategy for prostate specific antigen detection via releasing oxidase-mimics from coordination nanoparticles by alkaline phosphatase. Talanta 2020; 213:120827. [PMID: 32200923 DOI: 10.1016/j.talanta.2020.120827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022]
Abstract
A novel signal amplification method for prostate specific antigen (PSA) is developed by freeing fluorescein with photoinduced oxidase-like activity from coordination nanoparticles (CNPs) in the presence of alkaline phosphatase (ALP). CNPs loaded with fluorescein (F@CNPs) are obtained in aqueous solution by self-assembly using Tb3+ as metal ion, guanosine monophosphate (5'-GMP) as ligand, and fluorescein as signal molecule. The F@CNPs display outstanding properties of simple synthesis, low cost, good water solubility, negligible leakage and satisfactory load capacity. Fluorescein is quantitatively encapsulated in CNPs with a binding ratio of 92.72%. Meanwhile, ALP can specifically hydrolyze the phosphate group of 5'-GMP ligand, triggering the destruction of F@CNPs and leakage of fluorescein. Fluorescein, a photoinduced oxidase mimic, can catalyze the oxidation of non-fluorescent Amplex UltraRed (AUR) into fluorescent resorufin under LED lamp. This strategy exhibits good sensitivity for ALP detection. In addition, a new immunoassay for PSA is validated by labelling ALP on PSA antibody. The low detection limit of 0.04 ng mL-1 in detecting PSA is appropriate for PSA detection in real samples. Therefore, the work not only establishes a new strategy for ALP and PSA determination, but also provides a new conception for putting photoinduced oxidase-like fluorescein in practical application.
Collapse
Affiliation(s)
- Chaoqun Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Ying Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Menghuan Tang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Xuemei Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
18
|
Nishiyabu R, Takahashi Y, Yabuki T, Gommori S, Yamamoto Y, Kitagishi H, Kubo Y. Boronate sol-gel method for one-step fabrication of polyvinyl alcohol hydrogel coatings by simple cast- and dip-coating techniques. RSC Adv 2019; 10:86-94. [PMID: 35492531 PMCID: PMC9048246 DOI: 10.1039/c9ra08208e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
The self-assembly of polyvinyl alcohol (PVA) and benzene-1,4-diboronic acid (DBA) is employed as a sol–gel method for one-step fabrication of hydrogel coatings with versatile functionalities. A mixture of PVA and DBA in aqueous ethanol is prepared as a coating agent. The long pot life of the mixture allows for the coating of a wide range of materials with hydrogel films by simple cast- and dip-coating techniques. The resultant films show negligible dissolution in water and the intrinsic hydrophilicity of PVA provides the films with functional properties, such as improved antifogging property and resistance to protein and cell fouling. The self-assembling process shows adaptive inclusion properties toward nanoscale materials, such as metal–organic coordination polymers and inorganic nanoparticles, affording composite films. Furthermore, the coating film exhibits a unique secondary functionalization reactivity toward boronic acid-appended fluorescent dyes, through which a variety of materials are converted into fluorescent materials. The self-assembly of polyvinyl alcohol (PVA) and benzene-1,4-diboronic acid (DBA) is employed as a sol–gel method for one-step fabrication of hydrogel coatings with versatile functionalities.![]()
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Yuki Takahashi
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Taro Yabuki
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Shoji Gommori
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University Kyotanabe Kyoto 610-0321 Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-ohsawa Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
19
|
He Y, Lopez A, Zhang Z, Chen D, Yang R, Liu J. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Kouno H, Sasaki Y, Yanai N, Kimizuka N. Supramolecular Crowding Can Avoid Oxygen Quenching of Photon Upconversion in Water. Chemistry 2019; 25:6124-6130. [DOI: 10.1002/chem.201806076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Hironori Kouno
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yoichi Sasaki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- JST-PRESTO Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
21
|
|
22
|
Zou T, Han Y, Li X, Li W, Zhang J, Fu Y. Unexpected catalytic activity of Pd(II)-coordinated nucleotides in hydrogenation reduction. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Tregubov AA, Nikitin PI, Nikitin MP. Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chem Rev 2018; 118:10294-10348. [DOI: 10.1021/acs.chemrev.8b00198] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Andrey A. Tregubov
- Moscow Institute of Physics and Technology (State University), 1A Kerchenskaya St, Moscow 117303, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991, Russia
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology (State University), 1A Kerchenskaya St, Moscow 117303, Russia
| |
Collapse
|
24
|
Ding Z, Wang C, Feng G, Zhang X. Energy-Transfer Metal-Organic Nanoprobe for Ratiometric Sensing with Dual Response to Peroxynitrite and Hypochlorite. ACS OMEGA 2018; 3:9400-9406. [PMID: 31459073 PMCID: PMC6644704 DOI: 10.1021/acsomega.8b01489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/03/2018] [Indexed: 05/22/2023]
Abstract
An energy-transfer metal-organic nanoprobe is designed for ratiometric sensing with dual response to both peroxynitrite (ONOO-) and hypochlorite (ClO-). Here, a nanoscale metal-organic framework (NMOF) acts as the energy donor and molecular probe as the acceptor to construct a Förster resonance energy transfer (FRET) nanosystem. Biocompatible dextran conveniently binds to the NMOF surface through multiple weak coordination interactions to improve water dispersibility and cell uptake. Dextran can also coordinate with the molecular probe with arylboronic acid group, which enables the convenient grafting of molecular probes to the NMOF surface to construct energy-transfer nanoprobes. Because of efficient FRET, the bright blue fluorescence of NMOF is quenched, whereas red emission from the acceptor is enhanced. Upon reacting with ONOO-, the probe departs from NMOF and the fluorescence of NMOF is recovered because of the interruption of FRET. When reacting with ClO-, the phenothiazine moiety in the molecular probe is oxidized into phenothiazine-5-oxide, which leads to more efficient energy transfer and the fluorescence shifts from red to orange. The nanoprobes are also successfully applied to the detection of ONOO- and ClO- in living cells.
Collapse
Affiliation(s)
- Zhaoyang Ding
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Gang Feng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
25
|
Xu L, Zhang P, Liu Y, Fang X, Zhang Z, Liu Y, Peng L, Liu J. Continuously Tunable Nucleotide/Lanthanide Coordination Nanoparticles for DNA Adsorption and Sensing. ACS OMEGA 2018; 3:9043-9051. [PMID: 31459038 PMCID: PMC6644583 DOI: 10.1021/acsomega.8b01217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/07/2018] [Indexed: 05/02/2023]
Abstract
Metal-organic coordination polymers (CPs) have attracted great research interest because they are easy to prepare, porous, flexible in composition, and designable in structure. Their applications in biosensor development, drug delivery, and catalysis have been explored. Lanthanides and nucleotides can form interesting CPs, although most previous works have focused on a single type of metal ligand. In this work, we explored mixed nucleotides and studied their DNA adsorption properties using fluorescently labeled oligonucleotides. Adenosine monophosphate (AMP) and guanosine monophosphate (GMP) formed negatively charged CP nanoparticles with most lanthanides, and thus a salt was required to adsorb negatively charged DNA. DNA adsorption was faster and reached a higher capacity with lighter lanthanides. Desorption of pre-adsorbed DNA by inorganic phosphates, urea, proteins, surfactants, and competing DNA was successively carried out. The results suggested the importance of the DNA phosphate backbone, although hydrogen bonding and DNA bases also contributed to adsorption. The AMP CPs adsorbed DNA more strongly than the GMP ones, and using mixtures of AMP and GMP, continuous tuning of DNA adsorption affinity was achieved. Such CPs were also used as a sensor for DNA detection based on the different affinities of single- and double-stranded DNA, and a detection limit of 0.9 nM target DNA was achieved. Instead of tuning DNA adsorption by varying the length and sequence of DNA, the composition of CPs can also be controlled to achieve this goal.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Peipei Zhang
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
| | - Yan Liu
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
| | - Xiaoqiang Fang
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
| | - Zijie Zhang
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Yibo Liu
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| | - Lulu Peng
- School of Chemistry
and Chemical Engineering, Guangdong Pharmaceutical
University, Zhongshan 528458, P. R. China
| | - Juewen Liu
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
26
|
Bharmoria P, Hisamitsu S, Nagatomi H, Ogawa T, Morikawa MA, Yanai N, Kimizuka N. Simple and Versatile Platform for Air-Tolerant Photon Upconverting Hydrogels by Biopolymer-Surfactant-Chromophore Co-assembly. J Am Chem Soc 2018; 140:10848-10855. [PMID: 30052038 DOI: 10.1021/jacs.8b05821] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exploration of triplet-triplet annihilation based photon upconversion (TTA-UC) in aqueous environments faces difficulty such as chromophores insolubility and deactivation of excited triplets by dissolved oxygen molecules. We propose a new strategy of biopolymer-surfactant-chromophore coassembly to overcome these issues. Air-stable TTA-UC with a high upconversion efficiency of 13.5% was achieved in hydrogel coassembled from gelatin, Triton X-100 and upconverting chromophores (triplet sensitizer and emitter). This is comparable to the highest UC efficiency observed to date for air-saturated aqueous UC systems. Moreover, this is the first example of air-stable TTA-UC in the form of hydrogels, widening the applicability of TTA-UC in biological applications. The keys are two-fold. First, gelatin and the surfactant self-assemble in water to give a developed hierarchical structure with hydrophobic domains which accommodate chromophores up to high concentrations. Second, thick hydrogen-bonding networks of gelatin backbone prevent O2 inflow to the hydrophobic interior, as evidenced by long acceptor triplet lifetime of 4.9 ms. Air-stable TTA-UC was also achieved for gelatin with other nonionic surfactants (Tween 80 and Pluronic f127) and Triton X-100 with other gelling biopolymers (sodium alginate and agarose), demonstrating the versatility of current strategy.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Shota Hisamitsu
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Hisanori Nagatomi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Taku Ogawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Masa-Aki Morikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka , Nishi-ku , Fukuoka 819-0395 , Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka , Nishi-ku , Fukuoka 819-0395 , Japan
| |
Collapse
|
27
|
Wang C, Gao J, Tan H. Integrated Antibody with Catalytic Metal-Organic Framework for Colorimetric Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25113-25120. [PMID: 29993238 DOI: 10.1021/acsami.8b07225] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Enzyme-linked immunosorbent assay has been widely used as a gold standard in biomedical field, but some inevitable drawbacks still exist in its practical applications, especially the laborious preparation of enzyme-antibody conjugates by a covalent linkage. In this work, we proposed a new strategy to prepare enzyme-antibody conjugate by integrating antibody with catalytic metal-organic framework (MOF) to form dual-functional MOF/antibody composite. As models, rabbit antimouse immunoglobulin G antibody (RIgG) and Cu-MOF with peroxidase-like activity were used to fabricate RIgG@Cu-MOF composite for colorimetric immunoassay. It was found that Cu-MOF as a host not only has no influence on the original capture ability of RIgG to its corresponding antigen (mIgG), but also can shield RIgG against long-term storage, high temperature, and biological degradation. More importantly, upon the formation of sandwiched immunocomplex between RIgG@Cu-MOF and capture antibody, Cu-MOF can serve as a signal amplification unit to perform colorimetric immunoassay. The detection limit of RIgG@Cu-MOF toward mIgG was obtained at 0.34 ng/mL, which is 3-fold lower than that of horseradish peroxidase labeled RIgG. Furthermore, the successful determination of mIgG in serum sample demonstrates the applicability of RIgG@Cu-MOF in detecting real sample. Therefore, it is highly anticipated that this study can offer a new way to prepare enzyme-antibody conjugates, facilitating the exploration of MOF composites in biomedical field.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| | - Jie Gao
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| | - Hongliang Tan
- Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , P. R. China
| |
Collapse
|
28
|
Xu L, Zhang Z, Fang X, Liu Y, Liu B, Liu J. Robust Hydrogels from Lanthanide Nucleotide Coordination with Evolving Nanostructures for a Highly Stable Protein Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14321-14330. [PMID: 29644845 DOI: 10.1021/acsami.7b18005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metal coordination with organic ligands often produce crystalline metal-organic frameworks and sometimes amorphous nanoparticles. In this work, we explore a different type of material from the same chemistry: hydrogels. Lanthanides are chosen as the metal component because of their important technological applications and continuously tunable properties. Adenosine monophosphate (AMP) and lanthanides form two types of coordination materials: the lighter lanthanides from La3+ to Tb3+ form nanoparticles, whereas the rest heavier ones initially form nanoparticles but later spontaneously transform to hydrogels. This slow sol-to-gel transition is accompanied by heat release, as indicated by isothermal titration calorimetry. The transition is also accompanied by a morphology change from nanoparticles to nanofibers, as indicated by transmission electron microscopy. These gels are insensitive to ionic strength or temperature with excellent stability. Gelation is unique to AMP because other nucleotides or other adenine derivatives only yield nanoparticles or soluble products. Entrapment of guest molecules such as glucose oxidase is also explored, where the hydrogels allow a better enzyme activity and stability compared to nanoparticles. Further applications of lanthanide coordinated hydrogels might include biosensors, imaging agents, and drug delivery.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. China
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Zijie Zhang
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Xiaoqiang Fang
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. China
| | - Yibo Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Biwu Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| |
Collapse
|
29
|
Gao N, Zhang Y, Huang P, Xiang Z, Wu FY, Mao L. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores. Anal Chem 2018; 90:7004-7011. [DOI: 10.1021/acs.analchem.8b01365] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nan Gao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yunfang Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zhehao Xiang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
30
|
Pu F, Ren J, Qu X. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 2017; 47:1285-1306. [PMID: 29265140 DOI: 10.1039/c7cs00673j] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.
Collapse
Affiliation(s)
- Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
31
|
Gao RR, Shi S, Li YJ, Wumaier M, Hu XC, Yao TM. Coordination polymer nanoparticles from nucleotide and lanthanide ions as a versatile platform for color-tunable luminescence and integrating Boolean logic operations. NANOSCALE 2017; 9:9589-9597. [PMID: 28665422 DOI: 10.1039/c7nr03264a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Novel supramolecular coordination polymer nanoparticles (CPNs) were synthesized via the self-assembly of guanosine monophosphate (GMP) and lanthanide ions (Ln3+, including Tb3+, Eu3+ and Ce3+) in aqueous solution. These CPNs (GMP/Tb3+, GMP/Eu3+ and GMP/Ce3+) have an identical coordination environment but exhibit completely different luminescence properties responding to external stimuli such as dipicolinic acid (DPA), ethylene diamine tetraacetic acid (EDTA), pH and metal ions, which has inspired us to tune the emission color of the CPNs and perform multiple logic operations. Firstly, color-tunable luminescence from red to green can be easily achieved by modulating the doping ratio of Tb3+ and Eu3+ into GMP. Notably, trichromatic white light emitting CPNs can be successfully realized by simultaneously doping Tb3+, Eu3+ and Ce3+ into the host or just adjusting the pH of the solution. What's more, by employing GMP/Tb3+ CPNs as a logic operator, we have achieved the implementation of multilayered gate cascades (INH-INH, NOR-OR). When GMP/Eu3+ CPNs served as a logic operator, the logic elements can be integrated as another combinatorial gate (AND-INH). Moreover, by employing the red emission of Eu3+ and blue emission of GMP as the dual-output signal transducer, a set of parallel logic gates was established successfully. These results help elucidate the design rules by which simple logic can be integrated to construct cascaded logic gates and expand the applications of CPNs in light-emitting diode (LED) lamps and biological systems.
Collapse
Affiliation(s)
- Ru-Ru Gao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Sahub C, Tumcharern G, Chirawatkul P, Ruangpornvisuti V, Ekgasit S, Wanichweacharungruang S, Tuntulani T, Palaga T, Tomapatanaget B. Self-assembly of Gd 3+/SDS/HEPES complex and curcumin entrapment for enhanced stability, fluorescence image in cellular system. Colloids Surf B Biointerfaces 2017; 156:254-261. [PMID: 28538196 DOI: 10.1016/j.colsurfb.2017.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
At present, strategies to disperse hydrophobic molecules in water without altering their chemical structures include conventional surfactant-based micellar and vesicular systems, encapsulation into water dispersible polymeric nanoparticles, and loading onto the surface of various metal nanoparticles. Here, we report a simple and low cost platform to incorporate hydrophobic molecules into a stable water dispersible nanostructure that can significantly increase the stability of the encapsulated materials. The platform is based on the incorporation of hydrophobic molecules into the self-assembled complex of gadolinium ion (Gd3+), sodium dodecyl sulfate (SDS), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) called GdSH. After being incorporated, the two model hydrophobic dyes, curcumin and curcumin borondifluoride show approximately 50% and 30% improved stability, respectively. Investigation of the self-assembled 10-14 multilayered 60nm spheres with inter-layer distances of 4.25nm indicates coordination of SDS and HEPES with Gd3+. Incorporation of the hydrophobic molecules into the multilayered spheres results in reduction of the interlayer distance of the multilayer spheres to 4.17nm, suggesting enhanced packing of the hydrophobic chain of SDS and HEPES around the Gd3+. The incorporation of the two curcuminoids into the self-assembled complex also causes an increase in fluorescence quantum yield of the two dyes, thus suggesting spatial confinement of the packed dye molecules. The better cellular uptake of the nanoparticles is responsible for the expected enhancement in fluorescence image of the encapsulated materials.
Collapse
Affiliation(s)
- Chonticha Sahub
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Gamolwan Tumcharern
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Prae Chirawatkul
- Synchrotron Light Research Institute, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Vithaya Ruangpornvisuti
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sanong Ekgasit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
33
|
Qiu QM, Zhou P, Gu L, Hao L, Liu M, Li H. Cytosine-Cytosine Base-Pair Mismatch and Chirality in Nucleotide Supramolecular Coordination Complexes. Chemistry 2017; 23:7201-7206. [PMID: 28370519 DOI: 10.1002/chem.201700930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/11/2022]
Abstract
The base-pair sequences are the foundation for the biological processes of DNA or RNA, and base-pair mismatch is very important to reveal genetic diseases and DNA rearrangements. However, the lack of well-defined structural information about base-pair mismatch is obstructing the investigation of this issue. The challenge is to crystallize the materials containing the base-pair mismatch. Engineering the small-molecule mimics or model is an effective strategy to solve this issue. Here, six cytidine-5'-monophosphate (CMP) and 2'-deoxycytidine-5'-monophosphate (dCMP) coordination polymers were reported containing cytosine-cytosine base-pair mismatch (i-motif), and their single-crystal structures and chiralities were studied. The precise control over the formation of the i-motif was demonstrated, in which the regulating of supramolecular interactions was achieved based on molecular design. In addition, the chiralities of these coordination polymers were investigated according to their crystal structures and solution- and solid-state circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Qi-Ming Qiu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Pei Zhou
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Leilei Gu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liang Hao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
34
|
Paul M, Sarkar K, Deb J, Dastidar P. Hand-Ground Nanoscale ZnII
-Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells. Chemistry 2017; 23:5736-5747. [DOI: 10.1002/chem.201605674] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Mithun Paul
- Department of Organic Chemistry; Indian Association for the Cultivation of Science (IACS), 2A and 2B; Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Koushik Sarkar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science (IACS), 2A and 2B; Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Jolly Deb
- Department of Biological Chemistry; Indian Association for the Cultivation of Science (IACS), 2A and 2B; Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Parthasarathi Dastidar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science (IACS), 2A and 2B; Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| |
Collapse
|
35
|
Kimizuka N, Yanai N, Morikawa MA. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12304-12322. [PMID: 27759402 DOI: 10.1021/acs.langmuir.6b03363] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.
Collapse
Affiliation(s)
- Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Masa-Aki Morikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
36
|
Liu J, Morikawa MA, Lei H, Ishiba K, Kimizuka N. Hierarchical Self-Assembly of Luminescent Tartrate-Bridged Chiral Binuclear Tb(III) Complexes in Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10597-10603. [PMID: 27682007 DOI: 10.1021/acs.langmuir.6b02254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new family of supramolecular metalloamphiphiles carrying two metal centers is developed. They are formed by bridging two coordinatively unsaturated lipophilic Tb3+ complexes (TbL+) with chiral dicarboxylate anions. The formation of bridging coordination bonds is confirmed using UV spectroscopy, induced circular dichroism (ICD), increased luminescence intensity of TbL+, and electrospray ionization mass spectrometry (ESIMS) analysis. These supramolecular metalloamphiphiles hierarchically self-assemble in ethanol to give luminescent nanospheres, as observed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The two hydroxyl groups introduced in the bridging ligands of [TbL]2(d-/l-tartrate) significantly promote self-assembly by increasing coherent forces via intermolecular hydrogen bonding. The observed self-assembly in ethanol also merits mention because such polar alcoholic media have been unfavorable for conventional molecular self-assemblies. The present approach offers a new molecular design strategy for composable metalloamphiphiles.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Masa-Aki Morikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hairui Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710119, P. R. China
| | - Keita Ishiba
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
37
|
Sahoo J, Arunachalam R, Subramanian PS, Suresh E, Valkonen A, Rissanen K, Albrecht M. Coordinatively Unsaturated Lanthanide(III) Helicates: Luminescence Sensors for Adenosine Monophosphate in Aqueous Media. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jashobanta Sahoo
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Rajendran Arunachalam
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Palani S. Subramanian
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Eringathodi Suresh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Arto Valkonen
- University of Jyvaskyla; Department of Chemistry, Nanoscience Center; P.O. Box. 35 40014 University of Jyvaskyla Finland
| | - Kari Rissanen
- University of Jyvaskyla; Department of Chemistry, Nanoscience Center; P.O. Box. 35 40014 University of Jyvaskyla Finland
| | - Markus Albrecht
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
38
|
Sahoo J, Arunachalam R, Subramanian PS, Suresh E, Valkonen A, Rissanen K, Albrecht M. Coordinatively Unsaturated Lanthanide(III) Helicates: Luminescence Sensors for Adenosine Monophosphate in Aqueous Media. Angew Chem Int Ed Engl 2016; 55:9625-9. [DOI: 10.1002/anie.201604093] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/25/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jashobanta Sahoo
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Rajendran Arunachalam
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Palani S. Subramanian
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Eringathodi Suresh
- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI); Academy of Scientific and Innovative Research (AcSIR); Bhavnagar 364002 Gujarat India
| | - Arto Valkonen
- University of Jyvaskyla; Department of Chemistry, Nanoscience Center; P.O. Box. 35 40014 University of Jyvaskyla Finland
| | - Kari Rissanen
- University of Jyvaskyla; Department of Chemistry, Nanoscience Center; P.O. Box. 35 40014 University of Jyvaskyla Finland
| | - Markus Albrecht
- Institut für Organische Chemie; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
39
|
Zeng HH, Qiu WB, Zhang L, Liang RP, Qiu JD. Lanthanide Coordination Polymer Nanoparticles as an Excellent Artificial Peroxidase for Hydrogen Peroxide Detection. Anal Chem 2016; 88:6342-8. [PMID: 27220993 DOI: 10.1021/acs.analchem.6b00630] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lanthanide coordination polymer nanoparticles (Ln-CPNs) have been recently demonstrated as excellent platforms for biomolecule detection. In this work, we synthesized novel cerium coordination polymer nanoparticles ATP-Ce-Tris CPNs in a simple and quick way using ATP molecules as the biocompatible ligands to Ce(3+) ions in tris(hydroxymethyl)aminomethane hydrochloric (Tris-HCl) solution. In view of the excellent free radical scavenging property of cerium compounds, which is ascribed to the mixed valence state (Ce(3+), Ce(4+)) and the reversible switch from Ce(3+) to Ce(4+), the synthesized ATP-Ce-Tris CPNs was used as artificial peroxidase to selectively and sensitively detect H2O2. The sensing mechanism depends on the oxidation of the fluorescent ATP-Ce(III)-Tris CPNs to nonfluorescent ATP-Ce(IV)-Tris CPNs by H2O2. Compared with those inorganic cerium oxide sensors, this kind of fluoresence ATP-Ce-Tris CPNs sensor needs no additional organic redox dye, such as ABTS (2,20-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), TMB (3,3,5,5-tetramethylbenzidine), or fluorescein as signal molecules. Moreover, such ATP-Ce-Tris CPNs sensor exhibited a more sensitive response to H2O2 with a detection limit down to 0.6 nM, which is 2 orders of magnitude lower than those of cerium oxide sensors. This sensing platform was further extended to the detection of glucose in combination with the specific catalytic effect of glucose oxidase (GOx) for the oxidation of glucose and formation of H2O2.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Department of Chemistry, Nanchang University , Nanchang 330031, China.,Department of Materials and Chemical Engineering, Pingxiang University , Pingxiang 337055, China
| | - Wei-Bin Qiu
- Department of Chemistry, Nanchang University , Nanchang 330031, China
| | - Li Zhang
- Department of Chemistry, Nanchang University , Nanchang 330031, China
| | - Ru-Ping Liang
- Department of Chemistry, Nanchang University , Nanchang 330031, China
| | - Jian-Ding Qiu
- Department of Chemistry, Nanchang University , Nanchang 330031, China.,Department of Materials and Chemical Engineering, Pingxiang University , Pingxiang 337055, China
| |
Collapse
|
40
|
Kouno H, Ogawa T, Amemori S, Mahato P, Yanai N, Kimizuka N. Triplet energy migration-based photon upconversion by amphiphilic molecular assemblies in aerated water. Chem Sci 2016; 7:5224-5229. [PMID: 30155172 PMCID: PMC6020542 DOI: 10.1039/c6sc01047d] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/17/2016] [Indexed: 12/31/2022] Open
Abstract
A molecular self-assembly approach is developed to resolve an outstanding issue in triplet energy migration-based photon upconversion (TEM-UC), that is, air-stable TEM-UC in water. Amphiphilic cationic acceptor (emitter) molecules self-assemble in water via hydrophobic and hydrogen bonding interactions, with which anionic donor (sensitizer) molecules are integrated through electrostatic interactions. Triplet energy is quantitatively transferred from the excited donor to the acceptor, which is followed by effective triplet energy migration among the pre-organized acceptors. It leads to TTA and concomitant UC emission in water. The dense acceptor chromophore arrays with extended hydrogen bonding networks show efficient barrier properties against molecular oxygen, as demonstrated by the stable UC emission even in air-saturated water.
Collapse
Affiliation(s)
- Hironori Kouno
- Department of Chemistry and Biochemistry , Graduate School of Engineering , Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka, Nishi-ku , Fukuoka 819-0395 , Japan . ;
| | - Taku Ogawa
- Department of Chemistry and Biochemistry , Graduate School of Engineering , Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka, Nishi-ku , Fukuoka 819-0395 , Japan . ;
| | - Shogo Amemori
- Department of Chemistry and Biochemistry , Graduate School of Engineering , Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka, Nishi-ku , Fukuoka 819-0395 , Japan . ;
| | - Prasenjit Mahato
- Department of Chemistry and Biochemistry , Graduate School of Engineering , Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka, Nishi-ku , Fukuoka 819-0395 , Japan . ;
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry , Graduate School of Engineering , Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka, Nishi-ku , Fukuoka 819-0395 , Japan . ; .,PRESTO , JST , Honcho 4-1-8, Kawaguchi , Saitama 332-0012 , Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry , Graduate School of Engineering , Center for Molecular Systems (CMS) , Kyushu University , 744 Moto-oka, Nishi-ku , Fukuoka 819-0395 , Japan . ;
| |
Collapse
|
41
|
Li YY, Jiang XQ, Zhang M, Shi G. A visual and reversible assay for temperature using thioflavin T-doped lanthanide/nucleotide coordination polymers. Analyst 2016; 141:2347-50. [PMID: 27010102 DOI: 10.1039/c6an00274a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we prepared a type of thioflavin T (ThT)-doped lanthanide/nucleotide coordination polymer by the self-assembly of ThT, europium ions (Eu(3+)) and nucleotides (guanosine monophosphate, GMP) in aqueous solution (i.e. ThT/Eu/GMP). The Eu/GMP coordination polymers show excellent adaptive inclusion properties for ThT in a convenient one-step approach, which can readily enhance the fluorescence of ThT via the restricted effect. Moreover, the as-prepared hydrophilic ThT/Eu/GMP coordination polymers have the capability to act as a temperature-sensitive, visual and reversible sensor in aqueous solution under the irradiation of visible light. Our proposed design is cost-effective and simple to prepare without chemical modification or fluorescence labeling.
Collapse
Affiliation(s)
- Yan-Yun Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China.
| | | | | | | |
Collapse
|
42
|
Zhang X, Deng J, Xue Y, Shi G, Zhou T. Stimulus Response of Au-NPs@GMP-Tb Core-Shell Nanoparticles: Toward Colorimetric and Fluorescent Dual-Mode Sensing of Alkaline Phosphatase Activity in Algal Blooms of a Freshwater Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:847-855. [PMID: 26677868 DOI: 10.1021/acs.est.5b04600] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we demonstrate a colorimetric and fluorescent dual-mode method for alkaline phosphatase activity (APA) sensing in freshwater lake with stimuli-responsive gold nanoparticles@terbium-guanosine monophosphate (Au-NPs@GMP-Tb) core-shell nanoparticles. Initially, the core-shell nanoparticles were fabricated based on Au-NPs decorated with a fluorescent GMP-Tb shell. Upon being excited at 290 nm, the as-formed Au-NPs@GMP-Tb core-shell nanoparticles emit green fluorescence, and the decorated GMP-Tb shell causes the aggregation of Au-NPs. However, the addition of ALP destroys GMP-Tb shell, resulting in the release of Au-NPs from the shell into the solvent. As a consequence, the aggregated Au-NPs solubilizes with the changes in the UV-vis spectrum of the dispersion, and in the meantime, the fluorescence of GMP-Tb shell turns off, which constitutes a new mechanism for colorimetric and fluorescent dual-mode sensing of APA. With the method developed here, we could monitor the dynamic change of APA during an algal bloom of a freshwater lake, both by the naked eye and further confirmed by fluorometric determination. This study not only offers a new method for on-site visible detection of APA but also provides a strategy for dual-mode sensing mechanisms by the rational design of the excellent optical properties of Au-NPs and the adaptive inclusion properties of the luminescent infinite coordination polymers.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Yumeng Xue
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyue Shi
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
43
|
Hosoyamada M, Yanai N, Ogawa T, Kimizuka N. Molecularly Dispersed Donors in Acceptor Molecular Crystals for Photon Upconversion under Low Excitation Intensity. Chemistry 2016; 22:2060-2067. [DOI: 10.1002/chem.201503318] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/17/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Masanori Hosoyamada
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Center for Molecular Systems (CMS); Kyushu University; 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Center for Molecular Systems (CMS); Kyushu University; 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- PRESTO, JST; Honcho 4-1-8 Kawaguchi Saitama 332-0012 Japan
| | - Taku Ogawa
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Center for Molecular Systems (CMS); Kyushu University; 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Center for Molecular Systems (CMS); Kyushu University; 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
44
|
Yanai N, Kimizuka N. Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies. Chem Commun (Camb) 2016; 52:5354-70. [DOI: 10.1039/c6cc00089d] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This Feature Article reviews an emerging field of triplet energy migration-based photon upconversion (TEM-UC) that allows highly efficient photon upconversion at low excitation power.
Collapse
Affiliation(s)
- Nobuhiro Yanai
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Center for Molecular Systems (CMS)
- Kyushu University
- Nishi-ku
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Center for Molecular Systems (CMS)
- Kyushu University
- Nishi-ku
| |
Collapse
|
45
|
Paul M, Dastidar P. Coordination Polymers Derived from Non-Steroidal Anti-Inflammatory Drugs for Cell Imaging and Drug Delivery. Chemistry 2015; 22:988-98. [DOI: 10.1002/chem.201503706] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Mithun Paul
- Department of Organic Chemistry; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road Jadavpur, Kolkata 700032 West Bengal India), Fax
| | - Parthasarathi Dastidar
- Department of Organic Chemistry; Indian Association for the Cultivation of Science (IACS); 2A and 2B, Raja S. C. Mullick Road Jadavpur, Kolkata 700032 West Bengal India), Fax
| |
Collapse
|
46
|
Cai W, Chu CC, Liu G, Wáng YXJ. Metal-Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4806-22. [PMID: 26193176 DOI: 10.1002/smll.201500802] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/30/2015] [Indexed: 05/03/2023]
Abstract
Metal-organic frameworks (MOFs), which are a unique class of hybrid porous materials built from metal ions and organic linkers, have attracted significant research interest in recent years. Compared with conventional porous materials, MOFs exhibit a variety of advantages, including a large surface area, a tunable pore size and shape, an adjustable composition and structure, biodegradability, and versatile functionalities, which enable MOFs to perform as promising platforms for drug delivery, molecular imaging, and theranostic applications. In this article, the recent research progress related to nanoscale metal-organic frameworks (NMOFs) is summarized with a focus on synthesis strategies and drug delivery, molecular imaging, and theranostic applications. The future challenges and opportunities of NMOFs are also discussed in the context of translational medical research. More effort is warranted to develop clinically translatable NMOFs for various applications in nanomedicine.
Collapse
Affiliation(s)
- Wen Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Cheng-Chao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yì-Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
47
|
He C, Liu D, Lin W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers. Chem Rev 2015; 115:11079-108. [PMID: 26312730 DOI: 10.1021/acs.chemrev.5b00125] [Citation(s) in RCA: 631] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chunbai He
- Department of Chemistry, University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Demin Liu
- Department of Chemistry, University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
48
|
Guo J, Sun H, Alt K, Tardy BL, Richardson JJ, Suma T, Ejima H, Cui J, Hagemeyer CE, Caruso F. Boronate-Phenolic Network Capsules with Dual Response to Acidic pH and cis-Diols. Adv Healthc Mater 2015; 4:1796-801. [PMID: 26088356 DOI: 10.1002/adhm.201500332] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 01/10/2023]
Abstract
Dual-responsive boronate-phenolic network (BPN) capsules are fabricated by the complexation of phenylborate and phenolic materials. The BPN capsules are stable in the presence of competing carbohydrates, but dissociate at acidic pH or in the presence of competing cis-diols at physiological pH. This engineered capsule system provides a platform for a wide range of biological and biomedical applications.
Collapse
Affiliation(s)
- Junling Guo
- ARC Centre of Excellence in Convergent; Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Huanli Sun
- ARC Centre of Excellence in Convergent; Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Karen Alt
- Vascular Biotechnology; Baker IDI Heart and Diabetes Institute; Melbourne Victoria 3010 Australia
| | - Blaise L. Tardy
- ARC Centre of Excellence in Convergent; Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent; Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Tomoya Suma
- ARC Centre of Excellence in Convergent; Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Hirotaka Ejima
- ARC Centre of Excellence in Convergent; Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent; Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Christoph E. Hagemeyer
- Vascular Biotechnology; Baker IDI Heart and Diabetes Institute; Melbourne Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent; Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| |
Collapse
|
49
|
Huang P, Wu F, Mao L. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain. Anal Chem 2015; 87:6834-41. [DOI: 10.1021/acs.analchem.5b01155] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pengcheng Huang
- College
of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Fangying Wu
- College
of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
50
|
González-Monje P, Novio F, Ruiz-Molina D. Covalent Grafting of Coordination Polymers on Surfaces: The Case of Hybrid Valence Tautomeric Interphases. Chemistry 2015; 21:10094-9. [DOI: 10.1002/chem.201500671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 11/07/2022]
|