1
|
Oberhauser W, Evangelisti C, Nguyen XT, Filippi J, Poggini L, Capozzoli L, Manca G, Kitching EA, Slater TJA, Danaie M. Effect of Pt Nanoparticle Morphology on the Aerobic Oxidation of Ethylene Glycol to Glycolic Acid in Water. Inorg Chem 2024. [PMID: 39556095 DOI: 10.1021/acs.inorgchem.4c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pt nanoparticles (diameter <3 nm), generated by metal vapor synthesis and supported on a high surface area carbon, were used to catalyze the aerobic oxidation of ethylene glycol to glycolic acid (GA) in water under neutral and basic reaction conditions. Controlled heat treatment of the catalyst under a nitrogen atmosphere brought about the formation of a morphologically well-defined catalyst. A combination of atomic resolution electron microscopy, CO stripping voltammetry, and XPS analyses conducted on as-synthesized and heat-treated catalysts demonstrated the crucial role of the nanoparticles' morphology on the stabilization of catalytically highly active Pt-OH surface species, which were key species for the Pt-catalyzed oxidation of the alcohol to the carbonyl functionality. The boosting effect of base on the catalyst' s activity and GA selectivity has been proved experimentally (autoclave experiments). The effect of base on the nonmetal-catalyzed reaction steps (i.e., aerobic oxidation of carbonyl to acid functionality) has been proved by DFT calculations.
Collapse
Affiliation(s)
- Werner Oberhauser
- Istituto Di Chimica Dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Claudio Evangelisti
- Istituto Di Chimica Dei Composti Organometallici (CNR-ICCOM), Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Xuan Trung Nguyen
- Istituto Di Chimica Dei Composti Organometallici (CNR-ICCOM), Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Jonathan Filippi
- Istituto Di Chimica Dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Poggini
- Istituto Di Chimica Dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department of Chemistry "U. Schiff"-DICUS and INSTM Research Unit, University of Florence, Via Della Lastruccia, 3-13,50019 Sesto Fiorentino, Italy
| | - Laura Capozzoli
- Istituto Di Chimica Dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Gabriele Manca
- Istituto Di Chimica Dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Ella A Kitching
- Cardiff Catalysis Institute (CCI), Cardiff University, Maindy Road, Cardiff CF24 4HQ, U.K
| | - Thomas J A Slater
- Cardiff Catalysis Institute (CCI), Cardiff University, Maindy Road, Cardiff CF24 4HQ, U.K
| | - Mohsen Danaie
- electron Physical Science Imaging Centre (ePSIC), Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| |
Collapse
|
2
|
Lee S, Gadelrab K, Cheng L, Braaten JP, Wu H, Ross FM. Simultaneous 2D Projection and 3D Topographic Imaging of Gas-Dependent Dynamics of Catalytic Nanoparticles. ACS NANO 2024. [PMID: 39101356 DOI: 10.1021/acsnano.4c04903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Catalyst deactivation through pathways such as sintering of nanoparticles and degradation of the support is a critical factor when designing high-performance catalysts. Here, structural changes of supported nanoparticle catalysts are investigated in controlled gas environments (O2, H2O, and H2) at different temperatures by imaging simultaneously the nanoparticle structures in 2D projection and the 3D surface-sensitive topography. Platinum nanoparticles on carbon support as a model system are imaged in an environmental transmission electron microscope (ETEM), with concurrent acquisition of high-angle annular dark field scanning TEM (HAADF-STEM) and secondary electron (SE) images. Particle migration and coalescence occurs and shows gas-dependent kinetics, with nanoparticles moving across and through the support during and after coalescence. The temperature required for motion is lower in O2 than in H2O and H2, explained through the nature of the gas/nanoparticle interactions. In O2 and H2, the carbon support degrades by trench formation along migration pathways, and the particles move continuously, indicating a chemical reaction between gas and support. In H2O gas, motion is more discontinuous and oriented particle attachment occurs, as expected from theoretical predictions. These results suggest that multimodal imaging in ETEM that combines HAADF-STEM and SE data provides comprehensive information regarding catalyst dynamics and degradation mechanisms.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Karim Gadelrab
- Robert Bosch LLC, Watertown, Massachusetts 02472, United States
| | - Lei Cheng
- Bosch Research Center and Technology Center North America, Sunnyvale, California 94085, United States
| | - Jonathan P Braaten
- Bosch Research Center and Technology Center North America, Sunnyvale, California 94085, United States
| | - Hanglong Wu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Aso R, Midoh Y, Tanigaki T, Murakami Y. High-precision charge analysis in a catalytic nanoparticle by electron holography. Microscopy (Oxf) 2024; 73:301-307. [PMID: 38549513 DOI: 10.1093/jmicro/dfae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 07/31/2024] Open
Abstract
The charge state of supported metal catalysts is the key to understand the elementary processes involved in catalytic reactions. However, high-precision charge analysis of the metal catalysts at the atomic level is experimentally challenging. To address this critical challenge, high-sensitivity electron holography has recently been successfully applied for precisely measuring the elementary charges on individual platinum nanoparticles supported on a titanium dioxide surface. In this review, we introduce the latest advancements in high-precision charge analysis and discuss the mechanisms of charge transfer at the metal-support interface. The development of charge measurements is entering a new era, and charge analyses under conditions closer to practical working environments, such as real-time, real-space, and reactive gas environments, are expected to be realized in the near future.
Collapse
Affiliation(s)
- Ryotaro Aso
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihiro Midoh
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiaki Tanigaki
- Research and Development Group, Hitachi, Ltd., Akanuma 2520, Hatoyama, Saitama 350-0395, Japan
| | - Yasukazu Murakami
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Liu W, Liu H, Cui R, Cao Z, Dong Z, Luo L. Deciphering the Metal-Support Interaction of Au/ZnO Catalyst Induced by H 2 and O 2 Pretreatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305122. [PMID: 37718443 DOI: 10.1002/smll.202305122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Indexed: 09/19/2023]
Abstract
Metal-support interaction (MSI) provides great possibilities to tune the activity, selectivity, and stability of heterogeneous catalysts. Herein, the Au/ZnO catalyst is prepared by commercial ZnO and chloroauric acid, and the structure evolution of the catalyst pretreated by H2 and O2 gas at varied temperature is investigated to provide mechanistic insights of MSI. It is found that the H2 treatment at 300 °C and above can induce the formation of both the ZnOx overlayer and bulk Au-Zn alloy. In contrast, the O2 treatment can form the ZnOx overlayer at 500 °C and above without the formation of Au-Zn alloy. It is also revealed that the ZnOx overlayer is dynamically stable (permeable), which can provide access for reactant molecules during the reaction process. And, the Au-Zn alloy can recover to Au and ZnO under the CO oxidation reaction condition, which can be deemed as a re-activation process that endows H2 -treated samples with the superior activity and stability.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hongpeng Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ronghua Cui
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhongliang Cao
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
5
|
Qu J, Sui M, Li R. Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis. iScience 2023; 26:107072. [PMID: 37534164 PMCID: PMC10391733 DOI: 10.1016/j.isci.2023.107072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The process of heterogeneous catalytic reaction under working conditions has long been considered a "black box", which is mainly because of the difficulties in directly characterizing the structural changes of catalysts at the atomic level during catalytic reactions. The development of in situ transmission electron microscopy (TEM) techniques offers opportunities for introducing a realistic chemical reaction environment in TEM, making it possible to uncover the mystery of catalytic reactions. In this article, we present a comprehensive overview of the application of in situ TEM techniques in heterogeneous catalysis, highlighting its utility for observing gas-solid and liquid-solid reactions during thermal catalysis, electrocatalysis, and photocatalysis. in situ TEM has a unique advantage in revealing the complex structural changes of catalysts during chemical reactions. Revealing the real-time dynamic structure during reaction processes is crucial for understanding the intricate relationship between catalyst structure and its catalytic performance. Finally, we present a perspective on the future challenges and opportunities of in situ TEM in heterogeneous catalysis.
Collapse
Affiliation(s)
- Jiangshan Qu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
| |
Collapse
|
6
|
Moreira Da Silva C, Girard A, Le Bouar Y, Fossard F, Dragoe D, Ducastelle F, Loiseau A, Huc V. Structural Size Effect in Capped Metallic Nanoparticles. ACS NANO 2023; 17:5663-5672. [PMID: 36917747 DOI: 10.1021/acsnano.2c11825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The surfactant used during a colloidal synthesis is known to control the size and shape of metallic nanoparticles. However, its influence on the nanoparticle (NP) structure is still not well understood. In this study, we show that the surfactant can significantly modify the lattice parameter of a crystalline particle. First, our electron diffraction measurements reveals that NiPt nanoparticles around 4 nm in diameter covered by a mixture of oleylamine and oleic acid (50:50) display a lattice parameter expansion around 2% when compared to the same particles without surfactant. Using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX) techniques, we show that this expansion can not be explained by crystal defects, twinning, oxidation, or atoms insertion. Then, using covered NPs in the 4-22 nm size range, we show that the lattice parameter evolves linearly with the inverse of the NP size, as it is expected when a surface stress is present. Finally, the study is extended to pure nickel and pure platinum NPs, with different sizes, coated by different surfactants (oleylamine, trioctylphosphine, polyvinylpyrrolidone). The surfactants induce lattice parameter variations, whose magnitude could be related to the charge transfer between the surfactant and the particle surface.
Collapse
Affiliation(s)
- Cora Moreira Da Silva
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Armelle Girard
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
- Université Paris-Saclay, UVSQ, 78000 Versailles, France
| | - Yann Le Bouar
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Frédéric Fossard
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - François Ducastelle
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Annick Loiseau
- Université Paris-Saclay, ONERA, CNRS, Laboratoire d'Étude des Microstructures, Châtillon 92322, France
| | - Vincent Huc
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| |
Collapse
|
7
|
Insight into the transient inactivation effect on Au/TiO2 catalyst by in-situ DRIFT and UV–vis spectroscopy. Nat Commun 2022; 13:5458. [PMID: 36115847 PMCID: PMC9482617 DOI: 10.1038/s41467-022-33187-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Au catalysts have drawn broad attention for catalytic CO oxidation. However, a molecular-level understanding of the reaction mechanism on a fast time-resolved scale is still lacking. Herein, we apply in situ DRIFTS and UV-Vis spectroscopy to monitor the rapid dynamic changes during CO oxidation over Au/TiO2. A pronounced transient inactivation effect likely due to a structural change of Au/TiO2 induced by the reactants (CO and O2) is observed at the beginning of the reaction. The transient inactivation effect is affected by the ratio of CO and O2 concentrations. More importantly, during the unstable state, the electronic properties of the Au particles change, as indicated by the shift of the CO stretching vibration. UV-Vis spectroscopy corroborates the structure change of Au/TiO2 surface induced by the reactants, which leads to a weakening of the Au catalyst’s ability to be oxidized (less O2 adsorption), resulting in the transient inactivation effect. A molecular-level understanding of the Au-catalyzed CO oxidation on a fast time-resolved scale is still lacking. Here the authors monitor the rapid dynamic changes during CO oxidation over Au/TiO2 using in situ DRIFTS and UV-Vis spectroscopy, and reveal that the catalyst undergoes a surprising structural change at the beginning of the reaction.
Collapse
|
8
|
Ou Y, Li S, Wang F, Duan X, Yuan W, Yang H, Zhang Z, Wang Y. Reversible transformation between terrace and step sites of Pt nanoparticles on titanium under CO and O2 environments. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Thurner CW, Bonmassar N, Winkler D, Haug L, Ploner K, Delir Kheyrollahi Nezhad P, Drexler X, Mohammadi A, van Aken PA, Kunze-Liebhäuser J, Niaei A, Bernardi J, Klötzer B, Penner S. Who Does the Job? How Copper Can Replace Noble Metals in Sustainable Catalysis by the Formation of Copper–Mixed Oxide Interfaces. ACS Catal 2022; 12:7696-7708. [PMID: 35799767 PMCID: PMC9251726 DOI: 10.1021/acscatal.2c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Indexed: 11/28/2022]
Abstract
![]()
Following the need
for an innovative catalyst and material design
in catalysis, we provide a comparative approach using pure and Pd-doped
LaCuxMn1–xO3 (x = 0.3 and 0.5) perovskite
catalysts to elucidate the beneficial role of the Cu/perovskite and
the promoting effect of CuyPdx/perovskite interfaces developing in situ under model NO + CO reaction conditions. The observed bifunctional
synergism in terms of activity and N2 selectivity is essentially
attributed to an oxygen-deficient perovskite interface, which provides
efficient NO activation sites in contact with in situ exsolved surface-bound monometallic Cu and bimetallic CuPd nanoparticles.
The latter promotes the decomposition of the intermediate N2O at low temperatures, enhancing the selectivity toward N2. We show that the intelligent Cu/perovskite interfacial design is
the prerequisite to effectively replace noble metals by catalytically
equally potent metal–mixed-oxide interfaces. We have provided
the proof of principle for the NO + CO test reaction but anticipate
the extension to a universal concept applicable to similar materials
and reactions.
Collapse
Affiliation(s)
- Christoph W. Thurner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Nicolas Bonmassar
- Max Plank Institute for Solid State Research, Heisenbergstaße 1, D-70569 Stuttgart, Germany
| | - Daniel Winkler
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Leander Haug
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Kevin Ploner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Parastoo Delir Kheyrollahi Nezhad
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
- Reactor & Catalyst Research Laboratory, Department of Chemical and Petroleum Engineering, University of Tabriz, 29 Bahman Boulevard, Tabriz 51666-16471, Iran
| | - Xaver Drexler
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Asghar Mohammadi
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
- Reactor & Catalyst Research Laboratory, Department of Chemical and Petroleum Engineering, University of Tabriz, 29 Bahman Boulevard, Tabriz 51666-16471, Iran
| | - Peter A. van Aken
- Max Plank Institute for Solid State Research, Heisenbergstaße 1, D-70569 Stuttgart, Germany
| | - Julia Kunze-Liebhäuser
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Aligholi Niaei
- Reactor & Catalyst Research Laboratory, Department of Chemical and Petroleum Engineering, University of Tabriz, 29 Bahman Boulevard, Tabriz 51666-16471, Iran
| | - Johannes Bernardi
- University Service Centre for Transmission Electron Microscopy (USTEM), Technische Universität Wien, Wiedner Hauptstraße 8-10/057-02, A-1040 Wien, Austria
| | - Bernhard Klötzer
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Simon Penner
- Department of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Frey H, Beck A, Huang X, van Bokhoven JA, Willinger MG. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 2022; 376:982-987. [PMID: 35617409 DOI: 10.1126/science.abm3371] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dynamic interactions between noble metal particles and reducible metal-oxide supports can depend on redox reactions with ambient gases. Transmission electron microscopy revealed that the strong metal-support interaction (SMSI)-induced encapsulation of platinum particles on titania observed under reducing conditions is lost once the system is exposed to a redox-reactive environment containing oxygen and hydrogen at a total pressure of ~1 bar. Destabilization of the metal-oxide interface and redox-mediated reconstructions of titania lead to particle dynamics and directed particle migration that depend on nanoparticle orientation. A static encapsulated SMSI state was reestablished when switching back to purely oxidizing conditions. This work highlights the difference between reactive and nonreactive states and demonstrates that manifestations of the metal-support interaction strongly depend on the chemical environment.
Collapse
Affiliation(s)
- H Frey
- Scientific Center of Optical and Electron Microscopy (ScopeM), ETH Zürich, 8093 Zürich, Switzerland.,Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - A Beck
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.,Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - X Huang
- Scientific Center of Optical and Electron Microscopy (ScopeM), ETH Zürich, 8093 Zürich, Switzerland.,College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - J A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.,Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - M G Willinger
- Scientific Center of Optical and Electron Microscopy (ScopeM), ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Yu J, Sun X, Tong X, Zhang J, Li J, Li S, Liu Y, Tsubaki N, Abe T, Sun J. Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts. Nat Commun 2021; 12:7209. [PMID: 34893618 PMCID: PMC8664808 DOI: 10.1038/s41467-021-27557-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022] Open
Abstract
The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals.
Collapse
Affiliation(s)
- Jiafeng Yu
- grid.423905.90000 0004 1793 300XDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Xingtao Sun
- grid.423905.90000 0004 1793 300XDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xin Tong
- grid.423905.90000 0004 1793 300XDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jixin Zhang
- grid.423905.90000 0004 1793 300XDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Jie Li
- grid.268415.cSchool of Chemistry and Chemical Engineering, Yangzhou University, 225002 Yangzhou, China
| | - Shiyan Li
- grid.423905.90000 0004 1793 300XDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Takayuki Abe
- grid.267346.20000 0001 2171 836XHydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama, 930-8555 Japan
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| |
Collapse
|
12
|
Zhang J, Zhu D, Yan J, Wang CA. Strong metal-support interactions induced by an ultrafast laser. Nat Commun 2021; 12:6665. [PMID: 34795268 PMCID: PMC8602264 DOI: 10.1038/s41467-021-27000-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Supported metal catalysts play a crucial role in the modern industry. Constructing strong metal-support interactions (SMSI) is an effective means of regulating the interfacial properties of noble metal-based supported catalysts. Here, we propose a new strategy of ultrafast laser-induced SMSI that can be constructed on a CeO2-supported Pt system by confining electric field in localized interface. The nanoconfined field essentially boosts the formation of surface defects and metastable CeOx migration. The SMSI is evidenced by covering Pt nanoparticles with the CeOx thin overlayer and suppression of CO adsorption. The overlayer is permeable to the reactant molecules. Owing to the SMSI, the resulting Pt/CeO2 catalyst exhibits enhanced activity and stability for CO oxidation. This strategy of constructing SMSI can be extended not only to other noble metal systems (such as Au/TiO2, Pd/TiO2, and Pt/TiO2) but also on non-reducible oxide supports (such as Pt/Al2O3, Au/MgO, and Pt/SiO2), providing a universal way to engineer and develop high-performance supported noble metal catalysts.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Dezhi Zhu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianfeng Yan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Chang-An Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Tang M, Li S, Chen S, Ou Y, Hiroaki M, Yuan W, Zhu B, Yang H, Gao Y, Zhang Z, Wang Y. Facet‐Dependent Oxidative Strong Metal‐Support Interactions of Palladium–TiO
2
Determined by In Situ Transmission Electron Microscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | | | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Beien Zhu
- Interdisciplinary Research Center, Zhangjiang Laboratory Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201210 China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
14
|
Dong Z, Liu W, Zhang L, Wang S, Luo L. Structural Evolution of Cu/ZnO Catalysts during Water-Gas Shift Reaction: An In Situ Transmission Electron Microscopy Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41707-41714. [PMID: 34427430 DOI: 10.1021/acsami.1c11839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported metal catalysts experience significant structural evolution during the activation process and reaction conditions, which is critical to achieve a desired active surface and interface enabling efficient catalytic processes. However, such dynamic structural information and related mechanistic understandings remain largely elusive owing to the limitation of real-time capturing dynamic information under reaction conditions. Here, using in situ environment transmission electron microscopy, we demonstrate the atomic-scale structural evolution of the model Cu/ZnO catalyst under relevant water-gas shift reaction (WGSR) conditions. Under a CO gas environment, Cu nanoparticles decompose into smaller Cu species and redistribute on ZnO supports with either the crystalline Cu2O or amorphous CuOx phase due to a strong CO-Cu interaction. In addition, we visualize various metal-support interactions between Cu and ZnO under reaction conditions, e.g., ZnO clusters precipitating on Cu nanoparticles, which are critical to understand active sites of Cu/ZnO as catalysts for WGSR. These in situ atomic-scale observations highlight the dynamic interplays between Cu and ZnO that can be extended to other supported metal catalysts.
Collapse
Affiliation(s)
- Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Shuangbao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
15
|
Tang M, Li S, Chen S, Ou Y, Hiroaki M, Yuan W, Zhu B, Yang H, Gao Y, Zhang Z, Wang Y. Facet-Dependent Oxidative Strong Metal-Support Interactions of Palladium-TiO 2 Determined by In Situ Transmission Electron Microscopy. Angew Chem Int Ed Engl 2021; 60:22339-22344. [PMID: 34352928 DOI: 10.1002/anie.202106805] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/06/2022]
Abstract
The strong metal-support interaction (SMSI) is widely used in supported metal catalysts and extensive studies have been performed to understand it. Although considerable progress has been achieved, the surface structure of the support, as an important influencing factor, is usually ignored. We report a facet-dependent SMSI of Pd-TiO2 in oxygen by using in situ atmospheric pressure TEM. Pd NPs supported on TiO2 (101) and (100) surfaces showed encapsulation. In contrast, no such cover layer was observed in Pd-TiO2 (001) catalyst under the same conditions. This facet-dependent SMSI, which originates from the variable surface structure of the support, was demonstrated in a probe reaction of methane combustion catalyzed by Pd-TiO2 . Our discovery of the oxidative facet-dependent SMSI gives direct evidence of the important role of the support surface structure in SMSI and provides a new way to tune the interaction between metal NPs and the support as well as catalytic activity.
Collapse
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Beien Zhu
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese, Academy of Sciences, Shanghai, 201210, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese, Academy of Sciences, Shanghai, 201210, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
16
|
Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO 2 hydrogenation. Nat Commun 2021; 12:3884. [PMID: 34162865 PMCID: PMC8222268 DOI: 10.1038/s41467-021-24228-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
High-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements. Facile fabrication of high-entropy alloys (HEAs) nanoparticles (NPs) on conventional catalyst supports remains challenging. Here the authors show TiO2 is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA NPs with excellent activity and durability in CO2 hydrogenation.
Collapse
|
17
|
Song T, Dong J, Li R, Xu X, Hiroaki M, Yang B, Zhang R, Bai Y, Xin H, Lin L, Mu R, Fu Q, Bao X. Oxidative Strong Metal-Support Interactions between Metals and Inert Boron Nitride. J Phys Chem Lett 2021; 12:4187-4194. [PMID: 33900088 DOI: 10.1021/acs.jpclett.1c00934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The strong metal-support interaction (SMSI) is one of the most important concepts in heterogeneous catalysis, which has been widely investigated between metals and active oxides triggered by reductive atmospheres. Here, we report the oxidative strong metal-support interaction (O-SMSI) effect between Pt nanoparticles (NPs) and inert hexagonal boron nitride (h-BN) sheets, in which Pt NPs are encapsulated by oxidized boron (BOx) overlayers derived from the h-BN support under oxidative conditions. De-encapsulation of Pt NPs has been achieved by washing in water, and the residual ultrathin BOx overlayers work synergistically with surface Pt sites for enhancing CO oxidation reaction. The O-SMSI effect is also present in other h-BN-supported metal catalysts such as Au, Rh, Ru, and Ir within different oxidative atmospheres including O2 and CO2, which is determined by metal-boron interaction and O affinity of metals.
Collapse
Affiliation(s)
- Tongyuan Song
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhu Dong
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Matsumoto Hiroaki
- Hitachi High-Tech (Shanghai) Co., Ltd., Shanghai 201203, P. R. China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rankun Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunxing Bai
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hui Xin
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Le Lin
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
18
|
Srinivasan PD, Zhu H, Bravo-Suárez JJ. In situ UV–vis plasmon resonance spectroscopic assessment of oxygen and hydrogen adsorption location on supported gold catalysts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Zhang Y, Liu JX, Qian K, Jia A, Li D, Shi L, Hu J, Zhu J, Huang W. Structure Sensitivity of Au-TiO 2 Strong Metal-Support Interactions. Angew Chem Int Ed Engl 2021; 60:12074-12081. [PMID: 33709509 DOI: 10.1002/anie.202101928] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Indexed: 11/07/2022]
Abstract
Strong metal-support interactions (SMSI) is an important concept in heterogeneous catalysis. Herein, we demonstrate that the Au-TiO2 SMSI of Au/TiO2 catalysts sensitively depends on both Au nanoparticle (NP) sizes and TiO2 facets. Au NPs of ca. 5 nm are more facile undergo Au-TiO2 SMSI than those of ca. 2 nm, while TiO2 {001} and {100} facets are more facile than TiO2 {101} facets. The resulting capsulating TiO2-x overlayers on Au NPs exhibit an average oxidation state between +3 and +4 and a Au-to-TiO2-x charge transfer, which, combined with calculations, determines the Ti:O ratio as ca. 6:11. Both TiO2-x overlayers and TiO2-x -Au interface exhibit easier lattice oxygen activation and higher intrinsic activity in catalyzing low-temperature CO oxidation than the starting Au-TiO2 interface. These results advance fundamental understanding of SMSI and demonstrate engineering of metal NP size and oxide facet as an effective strategy to tune the SMSI for efficient catalysis.
Collapse
Affiliation(s)
- Yunshang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.,Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jin-Xun Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.,Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.,Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Aiping Jia
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Dan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.,Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lei Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.,Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
20
|
|
21
|
Chai Z. Light-Driven Alcohol Splitting by Heterogeneous Photocatalysis: Recent Advances, Mechanism and Prospects. Chem Asian J 2021; 16:460-473. [PMID: 33448692 PMCID: PMC7986840 DOI: 10.1002/asia.202001312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Indexed: 11/19/2022]
Abstract
Splitting of alcohols into hydrogen and corresponding carbonyl compounds, also called acceptorless alcohol dehydrogenation, is of great significance for both synthetic chemistry and hydrogen production. Light-Driven Alcohol Splitting (LDAS) by heterogeneous photocatalysis is a promising route to achieve such transformations, and it possesses advantages including high selectivity of the carbonyl compounds, extremely mild reaction conditions (room temperature and irradiation of visible light) and easy separation of the photocatalysts from the reaction mixtures. Because a variety of alcohols can be derived from biomass, LDAS can also be regarded as one of the most sustainable approaches for hydrogen production. In this Review, recent advances in the LDAS catalyzed by the heterogeneous photocatalysts are summarized, focusing on the mechanistic insights for the LDAS and aspects that influence the performance of the photocatalysts from viewpoints of metallic co-catalysts, semiconductors, and metal/semiconductor interfaces. In addition, challenges and prospects have been discussed in order to present a complete picture of this field.
Collapse
Affiliation(s)
- Zhigang Chai
- Department of Chemistry – Ångström LaboratoryUppsala University75121UppsalaSweden
| |
Collapse
|
22
|
Zhang H, Pan J, Zhou Q, Xia F. Nanometal Thermocatalysts: Transformations, Deactivation, and Mitigation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005771. [PMID: 33458963 DOI: 10.1002/smll.202005771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Nanometals have been proven to be efficient thermocatalysts in the last decades. Their enhanced catalytic activity and tunable functionalities make them intriguing candidates for a wide range of catalytic applications, such as gaseous reactions and compound synthesis/decomposition. On the other hand, the enhanced specific surface energy and reactivity of nanometals can lead to configuration transformation and thus catalytic deactivation during the synthesis and catalysis, which largely undermines the activity and service time, thereby calling for urgent research effort to understand the deactivating mechanisms and develop efficient mitigating methods. Herein, the recent progress in understanding the configuration transformation-induced catalytic deactivation within nanometals is reviewed. The major pathways of configuration transformations, and their kinetics controlled by the environmental factors are presented. The approaches toward mitigating the transformation-induced deactivation are also presented. Finally, a perspective on the future academic approaches toward in-depth understanding of the kinetics of the deactivation of nanometals is proposed.
Collapse
Affiliation(s)
- Hanlei Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| | - Jing Pan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| | - Qitao Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China
| |
Collapse
|
23
|
Yuan W, Zhu B, Fang K, Li XY, Hansen TW, Ou Y, Yang H, Wagner JB, Gao Y, Wang Y, Zhang Z. In situ manipulation of the active Au-TiO
2
interface with atomic precision during CO oxidation. Science 2021; 371:517-521. [DOI: 10.1126/science.abe3558] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2021] [Indexed: 01/13/2023]
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Beien Zhu
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Ke Fang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiao-Yan Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Thomas W. Hansen
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yang Ou
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jakob B. Wagner
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Yong Wang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| |
Collapse
|
24
|
Tang M, Yuan W, Ou Y, Li G, You R, Li S, Yang H, Zhang Z, Wang Y. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03335] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Qian K, Duan H, Li Y, Huang W. Electronic Oxide-Metal Strong Interaction (EOMSI). Chemistry 2020; 26:13538-13542. [PMID: 32427388 DOI: 10.1002/chem.202001003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Indexed: 11/09/2022]
Abstract
Strong metal-support interaction of supported metal catalysts is an important concept to describe the effect of metal-support interactions on the structures and catalytic performances of supported metal particles. By using an example of CeOx adlayers supported on Ag nanocrystals, herein a concept of electronic oxide-metal strong interaction (EOMSI) is put forward; this interaction significantly affects the electronic structures of oxide adlayers through metal-to-oxide charge transfer. The EOMSI can stabilize oxide adlayers in a low oxidation state under ambient conditions, which individually are not stable; moreover, the oxide adlayers experiencing the EOMSI are resistant to high-temperature oxidation in air to a certain extent. Such an EOMSI concept helps to generalize the strong influence of oxide-metal interactions on the structures and catalytic performance of oxide/metal inverse catalysts, which have been attracting increasing attention.
Collapse
Affiliation(s)
- Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and, Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and, Department of Chemical Physics, University of Science and Technology of China Institution, Hefei, 230026, P. R. China
| | - Huimei Duan
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and, Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and, Department of Chemical Physics, University of Science and Technology of China Institution, Hefei, 230026, P. R. China
| | - Yangyang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and, Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and, Department of Chemical Physics, University of Science and Technology of China Institution, Hefei, 230026, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and, Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and, Department of Chemical Physics, University of Science and Technology of China Institution, Hefei, 230026, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
26
|
Wang Y, Niu Y, Gao T, Liu S, Zhang B. Assessing the Effect of the Electron‐Beam Irradiation on Pd/Ga
2
O
3
Catalyst under Ambient Pressure. ChemCatChem 2020. [DOI: 10.1002/cctc.202000699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongzhao Wang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
- School of Materials Science and Engineering University of Science and Technology of China 72 Wenhua Road Shenyang 110016 P. R. China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
- School of Materials Science and Engineering University of Science and Technology of China 72 Wenhua Road Shenyang 110016 P. R. China
| | - Tongtong Gao
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
| | - Siyang Liu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016 P. R. China
- School of Materials Science and Engineering University of Science and Technology of China 72 Wenhua Road Shenyang 110016 P. R. China
| |
Collapse
|
27
|
Hou S, Li Q, Ding QR, Kang Y, Zhang J, Zhang L. Heterometallic Ag 2Ti 10 and Ag 4Ti 8-oxo clusters with different silver doping models: synthesis, structure, and theoretical studies. Dalton Trans 2020; 49:11005-11009. [PMID: 32729609 DOI: 10.1039/d0dt02396e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two heterometal-oxo Ag2Ti10 (PTC-221) and Ag4Ti8 (PTC-222) clusters were successfully synthesized and characterized, with the doped Ag atoms surrounded by the Ti-O core and exposed to the cluster surface, respectively. Density functional theory (DFT) calculations were carried out to study the electronic structures of PTC-221 and PTC-222, including the frontier orbitals and partial density of states (PDOS). The solid-state UV-vis absorption spectra of PTC-221 and PTC-222 were also recorded. Interestingly, PTC-221 shows intense visible light absorption with an absorption edge around 590 nm and exhibits good photocurrent response in the visible region.
Collapse
Affiliation(s)
- Simin Hou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. and College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| | - Qiaohong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Yao Kang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
28
|
Abstract
For decades, differentially pumped environmental transmission electron microscopy has been a powerful tool to study dynamic structural evolution of catalysts under a gaseous environment. With the advancement of micro-electromechanical system-based technologies, windowed gas cell became increasingly popular due to its ability to achieve high pressure and its compatibility to a wide range of microscopes with minimal modification. This enables a series of imaging and analytical technologies such as atomic resolution imaging, spectroscopy, and operando, revealing details that were unprecedented before. By reviewing some of the recent work, we demonstrate that the windowed gas cell has the unique ability to solve complicated catalysis problems. We also discuss what technical difficulties need to be addressed and provide an outlook for the future of in situ environmental transmission electron microscopy (TEM) technologies and their application to the field of catalysis development.
Collapse
|
29
|
Abstract
The strong metal-support interaction (SMSI) is one of the most important concepts in heterogeneous catalysis. Herein we report a study of Pt-TiO2 SMSI using Pt/rutile TiO2(110) model catalysts with different Pt particle sizes by means of X-ray photoelectron spectroscopy, ion scattering spectroscopy, and the adsorption of probe molecules. The acquired results unambiguously demonstrate a size dependence of the Pt-TiO2 SMSI, in which SMSI occurs barely between supported Pt clusters and the TiO2(110) substrate but obviously between supported Pt nanoparticles and the TiO2(110) substrate. Such a size-dependent SMSI could be associated with size-dependent electronic structures of the supported Pt particles. These results highlight the sensitivity of the SMSI to the size of supported metal particles, which greatly advances the fundamental understanding.
Collapse
Affiliation(s)
- Zongfang Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei 230026, P. R. China
| | - Yangyang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei 230026, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei 230026, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| |
Collapse
|
30
|
Luo L, Chen S, Xu Q, He Y, Dong Z, Zhang L, Zhu J, Du Y, Yang B, Wang C. Dynamic Atom Clusters on AuCu Nanoparticle Surface during CO Oxidation. J Am Chem Soc 2020; 142:4022-4027. [PMID: 32017551 DOI: 10.1021/jacs.9b13901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Supported alloy nanoparticles are prevailing alternative low-cost catalysts for both heterogeneous and electrochemical catalytic processes. Gas molecules selectively interacting with one metal element induces a dynamic structural change of alloy nanoparticles under reaction conditions and largely controls their catalytic properties. However, such a multicomponent dynamic-interaction-controlled evolution, both structural and chemical, remains far from clear. Herein, by using state-of-the-art environmental TEM, we directly visualize, in situ at the atomic scale, the evolution of a AuCu alloy nanoparticle supported on CeO2 during CO oxidation. We find that gas molecules can "free" metal atoms on the (010) surface and form highly mobile atom clusters. Remarkably, we discover that CO exposure induces Au segregation and activation on the nanoparticle surface, while O2 exposure leads to the segregation and oxidation of Cu on the particle surface. The as-formed Cu2O/AuCu interface may facilitate CO-O interaction corroborated by DFT calculations. These findings provide insights into the atomistic mechanisms on alloy nanoparticles during catalytic CO oxidation reaction and to a broad scope of rational design of alloy nanoparticle catalysts.
Collapse
Affiliation(s)
- Langli Luo
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry , Tianjin University , 92 Weijin Road , Tianjin 300072 , China
| | - Shuyue Chen
- School of Physical Science and Technology , Shanghai Tech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Qian Xu
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center for Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , China
| | - Yang He
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| | - Zejian Dong
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry , Tianjin University , 92 Weijin Road , Tianjin 300072 , China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry , Tianjin University , 92 Weijin Road , Tianjin 300072 , China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center for Suzhou Nano Science and Technology , University of Science and Technology of China , Hefei , Anhui 230029 , China
| | - Yingge Du
- Physical and Computational Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Bo Yang
- School of Physical Science and Technology , Shanghai Tech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 902 Battelle Boulevard , Richland , Washington 99352 , United States
| |
Collapse
|
31
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Umformung von Metallnanopartikeln unter Reaktionsbedingungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
32
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Reshaping of Metal Nanoparticles Under Reaction Conditions. Angew Chem Int Ed Engl 2020; 59:2171-2180. [DOI: 10.1002/anie.201906799] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
33
|
Yuan W, Zhu B, Li XY, Hansen TW, Ou Y, Fang K, Yang H, Zhang Z, Wagner JB, Gao Y, Wang Y. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 2020; 367:428-430. [DOI: 10.1126/science.aay2474] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/24/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
Imaging a reaction taking place at the molecular level could provide direct information for understanding the catalytic reaction mechanism. We used in situ environmental transmission electron microscopy and a nanocrystalline anatase titanium dioxide (001) surface with (1 × 4) reconstruction as a catalyst, which provided highly ordered four-coordinated titanium “active rows” to realize real-time monitoring of water molecules dissociating and reacting on the catalyst surface. The twin-protrusion configuration of adsorbed water was observed. During the water–gas shift reaction, dynamic changes in these structures were visualized on these active rows at the molecular level.
Collapse
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Xiao-Yan Li
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Thomas W. Hansen
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yang Ou
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ke Fang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Ze Zhang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jakob B. Wagner
- DTU Nanolab, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Yong Wang
- State Key Laboratory of Silicon Materials and Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| |
Collapse
|
34
|
Chen P, Murugappan K, Castell MR. Shapes of epitaxial gold nanocrystals on SrTiO3 substrates. Phys Chem Chem Phys 2020; 22:4416-4428. [DOI: 10.1039/c9cp06801e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Morphological control of gold nanocrystals is important as their catalytic and optical properties are highly shape dependent.
Collapse
Affiliation(s)
- Peiyu Chen
- Department of Materials
- University of Oxford
- Parks Road
- Oxford
- UK
| | | | | |
Collapse
|
35
|
Xu Q, Gao T, Zhang S, Zhang M, Li X, Liu X. Synthesis of gold nanoparticle-loaded magnetic carbon microsphere based on reductive and binding properties of polydopamine for recyclable catalytic applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj03216f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hierarchical nanostructure of Fe3O4@C–Au, with Fe3O4 as a core and carbon as a shell, was synthesized using a simple method.
Collapse
Affiliation(s)
- Qiang Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- P. R. China
| | - Taiping Gao
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- P. R. China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- P. R. China
| | - Mingming Zhang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- P. R. China
| | - Xin Li
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- P. R. China
| | - Xia Liu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- P. R. China
| |
Collapse
|
36
|
Woźniak P, Kraszkiewicz P, Małecka MA. Divergent influence of {1 1 1} vs. {1 0 0} crystal planes and Yb 3+ dopant on CO oxidation paths in mixed nano-sized oxide Au/Ce 1−xYb xO 2−x/2 ( x = 0 or 0.1) systems. CrystEngComm 2020. [DOI: 10.1039/d0ce00891e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, the fundamental information on interactions in systems concerning nanocrystalline gold disperses on the shaped (octahedron-like or cube-like) Ce1−xYbxO2−x/2 (x = 0 or 0.1) support has been discussed.
Collapse
Affiliation(s)
- Piotr Woźniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences
- 50-950 Wrocław 2
- Poland
| | - Piotr Kraszkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences
- 50-950 Wrocław 2
- Poland
| | - Małgorzata A. Małecka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences
- 50-950 Wrocław 2
- Poland
| |
Collapse
|
37
|
Barroo C, Wang ZJ, Schlögl R, Willinger MG. Imaging the dynamics of catalysed surface reactions by in situ scanning electron microscopy. Nat Catal 2019. [DOI: 10.1038/s41929-019-0395-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Ren M, Qian K, Huang W. Electronic Metal-Support Interaction-Modified Structures and Catalytic Activity of CeO x Overlayers in CeO x /Ag Inverse Catalysts. Chemistry 2019; 25:15978-15982. [PMID: 31591759 DOI: 10.1002/chem.201904134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/06/2019] [Indexed: 01/24/2023]
Abstract
Electronic metal-support interactions (EMSIs) of oxide-supported metal catalysts strongly modifies the electronic structures of the supported metal nanoparticles. The strong influence of EMSIs on the electronic structures of oxide overlayers on metal nanoparticles employing cerium oxides/Ag inverse catalysts is reported herein. Ce2 O3 overlayers were observed to exclusively form on Ag nanocrystals at low cerium loadings and be resistant to oxidation treatments up to 250 °C, whereas CeO2 overlayers gradually developed as the cerium loading increased. Ag cubes enclosed by {001} facets with a smaller work function exert a stronger EMSI effect on the CeOx overlayers than Ag cubes enclosed by {111} facets. Only the CeO2 overlayers with a fully developed bulk CeO2 electronic structure significantly promote the catalytic activity of Ag nanocrystals in CO oxidation, whereas cerium oxide overlayers with other electronic structures do not. These results successfully extend the concept of EMSIs from oxide-supported metal catalysts to metal-supported oxide catalysts.
Collapse
Affiliation(s)
- Muqing Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion, and Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion, and Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion, and Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, P. R. China
| |
Collapse
|
39
|
In situ reactor to image catalysts at work in three-dimensions by Bragg coherent X-ray diffraction. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Hung SH, McKenna K. First-Principles Investigation of the Structure and Properties of Au Nanoparticles Supported on ZnO. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:21185-21194. [PMID: 32064015 PMCID: PMC7011761 DOI: 10.1021/acs.jpcc.9b02639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/23/2019] [Indexed: 06/10/2023]
Abstract
We present a first-principles investigation of the structure, stability, and reactivity of Au nanoparticles (NPs) supported on ZnO. The morphologies of supported Au NPs are predicted using the formation energy of Au surfaces and the adhesion energy between Au and the dominant ZnO surfaces exposed on ZnO tetrapods. We show how Zn interstitials (a stable intrinsic defect in ZnO) are attracted toward the Au/ZnO interface and in the presence of oxygen can lead to the encapsulation of Au by ZnO, an effect that is observed experimentally. We find that O2 molecules absorb preferentially at the perimeter of the NP in contact with the ZnO support. These results provide atomistic insight into the structure of ZnO-supported Au NPs with relevance to CO oxidation.
Collapse
|
41
|
Suzana AF, Rochet A, Passos AR, Castro Zerba JP, Polo CC, Santilli CV, Pulcinelli SH, Berenguer F, Harder R, Maxey E, Meneau F. In situ three-dimensional imaging of strain in gold nanocrystals during catalytic oxidation. NANOSCALE ADVANCES 2019; 1:3009-3014. [PMID: 36133615 PMCID: PMC9417304 DOI: 10.1039/c9na00231f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/14/2019] [Indexed: 05/19/2023]
Abstract
The chemical properties of materials are dependent on dynamic changes in their three-dimensional (3D) structure as well as on the reactive environment. We report an in situ 3D imaging study of defect dynamics of a single gold nanocrystal. Our findings offer an insight into its dynamic nanostructure and unravel the formation of a nanotwin network under CO oxidation conditions. In situ/operando defect dynamics imaging paves the way to elucidate chemical processes at the single nano-object level towards defect-engineered nanomaterials.
Collapse
Affiliation(s)
- Ana Flavia Suzana
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM) 13083-970 Campinas SP Brazil
- Instituto de Química, UNESP Rua Professor Francisco Degni 14800-900 Araraquara SP Brazil
| | - Amélie Rochet
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM) 13083-970 Campinas SP Brazil
| | - Aline Ribeiro Passos
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM) 13083-970 Campinas SP Brazil
| | - João Paulo Castro Zerba
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM) 13083-970 Campinas SP Brazil
| | - Carla Cristina Polo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM) 13083-970 Campinas SP Brazil
| | | | | | - Felisa Berenguer
- Synchrotron SOLEIL L'Orme des Merisiers, BP48 Saint Aubin 91192 Gif-sur-Yvette France
| | - Ross Harder
- Advanced Photon Source, Argonne National Laboratory 9700 South Cass Avenue Argonne IL 60439 USA
| | - Evan Maxey
- Advanced Photon Source, Argonne National Laboratory 9700 South Cass Avenue Argonne IL 60439 USA
| | - Florian Meneau
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM) 13083-970 Campinas SP Brazil
| |
Collapse
|
42
|
Liu P, Wu T, Madsen J, Schiøtz J, Wagner JB, Hansen TW. Transformations of supported gold nanoparticles observed by in situ electron microscopy. NANOSCALE 2019; 11:11885-11891. [PMID: 31184684 DOI: 10.1039/c9nr02731a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxide supported metal nanoparticles play an important role in heterogeneous catalysis. However, understanding the metal/oxide interface and their evolution under reaction conditions remains challenging. Herein, we investigate the interface between Au nanoparticles and a CeO2 substrate by environmental transmission electron microscopy with atomic resolution. We find that the Au nanoparticles have two preferential epitaxial relationships with the substrate, i.e. Type I (111)[-110]CeO2//(111)[-110]Au and Type II (111)[-110]CeO2//(111)[1-10]Au orientation relationships, where Type I is preferred. In situ observations in the presence of O2 show that the gas can stimulate the supported Au nanoparticles to transform between these two orientations even at room temperature. Moreover, when increasing the temperature to 973 K, the transformation of an Au nanoparticle between the two orientation states and a non-crystalline state in the presence of O2 is also observed. DFT calculations of the binding between Au and CeO2 in the two relationships are strongly influenced by the presence of oxygen vacancies. For a given position of a vacancy, there is a significant energy difference between the energy of the two types. However, for some positions, Type I is preferred, and for others, Type II, but the most favourable position of the vacancy for the two types has a very similar energy. This is consistent with the observation of both types of adhesion.
Collapse
Affiliation(s)
- Pei Liu
- DTU Nanolab, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
43
|
Tamaoka T, Yoshida H, Takeda S. Oxidation and hydrogenation of Pd: suppression of oxidation by prolonged H 2 exposure. RSC Adv 2019; 9:9113-9116. [PMID: 35517653 PMCID: PMC9062043 DOI: 10.1039/c9ra00436j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023] Open
Abstract
We investigate the phase transition of a Pd surface in both oxidizing and reducing environments by environmental transmission electron microscopy (ETEM). ETEM allows us to study sequential exposure of Pd to O2 and H2 in the same TEM conditions. First, under ETEM observation, oxidation occurs at step edges but it can also occur at terraces. Second, as the most important result, we observed a novel process where previous exposure to H2 suppresses new oxidation of the Pd surface. Third, we show by electron energy loss spectroscopy (EELS) that this process, suppression of oxidation by previous exposure to H2, is not due to the formation of bulk β-phase Pd hydride. We also demonstrate that this process is not present in Pt. Finally, we discuss the hypothesis to explain this phenomenon: formation of surface-Pd-hydride suppresses the new oxidation. This observation, suppression of oxidation by H2 exposure, may eventually lead to new breakthroughs.
Collapse
Affiliation(s)
- Takehiro Tamaoka
- The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki Osaka 567-0047 Japan
- Department of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Hideto Yoshida
- The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki Osaka 567-0047 Japan
| | - Seiji Takeda
- The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki Osaka 567-0047 Japan
| |
Collapse
|
44
|
Niu Y, Liu X, Wang Y, Zhou S, Lv Z, Zhang L, Shi W, Li Y, Zhang W, Su DS, Zhang B. Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH
x. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yiming Niu
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
- School of Materials Science and EngineeringUniversity of Science and Technology of China Shenyang 110016 China
| | - Xi Liu
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
- School of Materials Science and EngineeringUniversity of Science and Technology of China Shenyang 110016 China
| | - Song Zhou
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Zhengang Lv
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Wen Shi
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
- School of Materials Science and EngineeringUniversity of Science and Technology of China Shenyang 110016 China
| | - Yongwang Li
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 China
- SynCat@BeijingSynfuels China Technology Co., Ltd. Beijing 101407 China
| | - Wei Zhang
- School of Materials Science & EngineeringElectron Microscopy CenterKey Laboratory of Automobile Materials MOEJilin University Changchun 130012 China
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of Sciences Shenyang 110016 China
| |
Collapse
|
45
|
Niu Y, Liu X, Wang Y, Zhou S, Lv Z, Zhang L, Shi W, Li Y, Zhang W, Su DS, Zhang B. Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH x. Angew Chem Int Ed Engl 2019; 58:4232-4237. [PMID: 30650222 DOI: 10.1002/anie.201812292] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/05/2018] [Indexed: 01/01/2023]
Abstract
Controllable synthesis of well-defined supported intermetallic catalysts is desirable because of their unique properties in physical chemistry. To accurately pinpoint the evolution of such materials at an atomic-scale, especially clarification of the initial state under a particular chemical environment, will facilitate rational design and optimal synthesis of such catalysts. The dynamic formation of a ZnO-supported PdZn catalyst is presented, whereby detailed analyses of in situ transmission electron microscopy, electron energy-loss spectroscopy, and in situ X-ray diffraction are combined to form a nanoscale understanding of PdZn phase transitions under realistic catalytic conditions. Remarkably, introduction of atoms (H and Zn in sequence) into the Pd matrix was initially observed. The resultant PdHx is an intermediate phase in the intermetallic formation process. The evolution of PdHx in the PdZn catalyst initializes at the PdHx /ZnO interfaces, and proceeds along the PdHx ⟨111⟩ direction.
Collapse
Affiliation(s)
- Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Xi Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Song Zhou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengang Lv
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wen Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.,SynCat@Beijing, Synfuels China Technology Co., Ltd., Beijing, 101407, China
| | - Wei Zhang
- School of Materials Science & Engineering, Electron Microscopy Center, Key Laboratory of Automobile Materials MOE, Jilin University, Changchun, 130012, China
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
46
|
Yuan W, Zhang D, Ou Y, Fang K, Zhu B, Yang H, Hansen TW, Wagner JB, Zhang Z, Gao Y, Wang Y. Direct In Situ TEM Visualization and Insight into the Facet‐Dependent Sintering Behaviors of Gold on TiO
2. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Dawei Zhang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Yang Ou
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Ke Fang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Thomas W. Hansen
- Center for Electron NanoscopyTechnical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Jakob B. Wagner
- Center for Electron NanoscopyTechnical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Ze Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
47
|
Yuan W, Zhang D, Ou Y, Fang K, Zhu B, Yang H, Hansen TW, Wagner JB, Zhang Z, Gao Y, Wang Y. Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO 2. Angew Chem Int Ed Engl 2018; 57:16827-16831. [PMID: 30397982 DOI: 10.1002/anie.201811933] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 11/09/2022]
Abstract
Preventing sintering of supported nanocatalysts is an important issue in nanocatalysis. A feasible way is to choose a suitable support. However, whether the metal-support interactions promote or prevent the sintering has not been fully identified. Now, completely different sintering behaviors of Au nanoparticles on distinct anatase TiO2 surfaces have been determined by in situ TEM. The full in situ sintering processes of Au nanoparticles were visualized on TiO2 (101) surface, which coupled the Ostwald ripening and particle migration coalescence. In contrast, no sintering of Au on TiO2 anatase (001) surface was observed under the same conditions. This facet-dependent sintering mechanism is fully explained by the density function theory calculations. This work not only offers direct evidence of the important role of supports in the sintering process, but also provides insightful information for the design of sintering-resistant nanocatalysts.
Collapse
Affiliation(s)
- Wentao Yuan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dawei Zhang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yang Ou
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ke Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Hangsheng Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Thomas W Hansen
- Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Jakob B Wagner
- Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Ze Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yong Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
48
|
Siemer N, Lüken A, Zalibera M, Frenzel J, Muñoz-Santiburcio D, Savitsky A, Lubitz W, Muhler M, Marx D, Strunk J. Atomic-Scale Explanation of O2 Activation at the Au–TiO2 Interface. J Am Chem Soc 2018; 140:18082-18092. [DOI: 10.1021/jacs.8b10929] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Niklas Siemer
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Alexander Lüken
- Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Michal Zalibera
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-812 37 Bratislava, Slovakia
| | - Johannes Frenzel
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | - Anton Savitsky
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
| | - Martin Muhler
- Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jennifer Strunk
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, 18059 Rostock, Germany
| |
Collapse
|
49
|
Albrecht W, van de Glind A, Yoshida H, Isozaki Y, Imhof A, van Blaaderen A, de Jongh PE, de Jong KP, Zečević J, Takeda S. Impact of the electron beam on the thermal stability of gold nanorods studied by environmental transmission electron microscopy. Ultramicroscopy 2018; 193:97-103. [DOI: 10.1016/j.ultramic.2018.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/13/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
|
50
|
Li Y, Chen Y, House SD, Zhao S, Wahab Z, Yang JC, Jin R. Interface Engineering of Gold Nanoclusters for CO Oxidation Catalysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29425-29434. [PMID: 30091579 DOI: 10.1021/acsami.8b07552] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Catalysts based on atomically precise gold nanoclusters serve as an ideal model to relate the catalytic activity to the geometrical and electronic structures as well as the ligand effect. Herein, we investigate three series of ligand (thiolate)-protected gold nanoclusters, including Au38(SR)24, Au36(SR')24, and Au25(SR″)18, with a focus on their interface effects using carbon monoxide (CO) oxidation as a probe reaction. The first comparison is within each series, which reveals the same trend for the three series that, rather than the bulkiness of carbon tails as commonly thought, the steric hindrance of ligands at the interface between the thiolate, Au, and CeO2 inhibits CO adsorption onto Au sites and hence adversely affects the activity of CO oxidation. The second comparison is between the sets Au38(SR)24 and Au36(SR')24 of nearly the same size, which reveals that the Au36(SR')24 nanoclusters (with face centered cubic structure) are not sensitive to thermal pretreatment conditions, whereas the Au38(SR)24 catalysts (icosahedral structure) are and an optimum activity is observed at a pretreatment temperature of 150 °C. Overall, the atomically precise Au n(SR) m nanoclusters have revealed unprecedented details on the catalytic interface and atomic structure effects. It is hoped that such insights will benefit the ultimate goal of catalysis in future design of enzymelike catalysts for environmentally friendly green catalysis.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Yuxiang Chen
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Stephen D House
- Department of Chemical and Petroleum Engineering, and Physics , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Shuo Zhao
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Zahid Wahab
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
- Department of Chemistry , Kohat University of Science and Technology , Kohat District 26000 , Khyber Pakhtunkhwa , Pakistan
| | - Judith C Yang
- Department of Chemical and Petroleum Engineering, and Physics , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Rongchao Jin
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|