1
|
Wang Z, Liu Y, Quan X, Zhang W, Tan R, Gu H, Sheng C, Duan C, Xing P, Wan JH. Planar Chiral Charge-Transfer Cyclophanes: Convenient Synthesis, Circularly Polarized Light-Responsive Photothermal Conversion and Supramolecular Chiral Assembly. Angew Chem Int Ed Engl 2025; 64:e202413295. [PMID: 39374321 DOI: 10.1002/anie.202413295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
We report herein a series of macrocycles in which the densely π-stacked charge-transfer (CT) donor/acceptor with naphthalenediimides (NDIs) or perylene diimide (PDI) as acceptor moiety pairing various donor moieties are locked by covalent bond. The X-ray crystallography of C8BDT-NDI reveals a short intramolecular π-stacking distance around 3.4 Å and the existence of intermolecular donor/acceptor π-stacking (3.7 Å). The intramolecular CT is highly dependent on the electron-donating ability of donor moiety and replacing carbazole (C8KZ) with benzo[1,2-b:4,5-b']dithiophene (C8BDT) or dihydroindolo[3,2-b]indole (C8DN) redshift CT absorption into NIR region. Notably, both C8BDT-NDI and C8DN-NDI demonstrate excellent photothermal performance, which is a result of the active non-radiative pathways. Interestingly, the different molecular symmetry between donor and acceptor moiety in cyclophanes endow C8BDT-NDI and C8DN-NDI with intrinsic planar chirality. The enantiomeric C8BDT-NDI shows chiral selectivity for incident light, i.e., when irradiated by left-circularly polarized light, (R)-C8BDT-NDI is more sensitive and a higher maximum stable temperature is achieved. While, enantiomeric C8DN-NDI pack with different orientations forming M- and P-handedness helix, respectively, demonstrating molecular planar chirality being transferred and amplified through molecular assembly. These results provide insight into the intramolecular charge transfer in enforced D/A π-stacks in which CT interactions and planar chirality would be engineered through structural control.
Collapse
Affiliation(s)
- Zhengyan Wang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Yiping Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Xiuni Quan
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Wenxuan Zhang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Renjun Tan
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Hao Gu
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Chunqi Sheng
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jun-Hua Wan
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
2
|
Song W, Shao X. Buckybowl-Based Fullerene Receptors. Chemistry 2025; 31:e202403383. [PMID: 39446344 DOI: 10.1002/chem.202403383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Buckybowls, bowl-shaped polyaromatic hydrocarbons, have received intensive interest owing to their multifaceted potentials in supramolecular chemistry and materials science. Buckybowls possess unique chemical and physical properties associated with their concave and convex faces. In view of the shape complementarity, which is one of the key factors for host-guest assembly, buckybowls are ideal receptors for fullerenes. In fact, the host-guest assembly between buckybowls and fullerenes is one of the most active topics in buckybowls chemistry, and the resulting supramolecular materials show promising applications in optoelectronics, biomaterials, and so forth. In this tutorial review, we present an overview for the progress on fullerene receptors based on buckybowls over the last decade.
Collapse
Affiliation(s)
- Wenru Song
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
3
|
Ren S, Qiao GY, Wu JR. Supramolecular-macrocycle-based functional organic cocrystals. Chem Soc Rev 2024; 53:10312-10334. [PMID: 39240538 DOI: 10.1039/d4cs00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.
Collapse
Affiliation(s)
- Susu Ren
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| | - Guan-Yu Qiao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jia-Rui Wu
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
4
|
Baharfar M, Hillier AC, Mao G. Charge-Transfer Complexes: Fundamentals and Advances in Catalysis, Sensing, and Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406083. [PMID: 39046077 DOI: 10.1002/adma.202406083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Supramolecular assemblies, formed through electronic charge transfer between two or more entities, represent a rich class of compounds dubbed as charge-transfer complexes (CTCs). Their distinctive formation pathway, rooted in charge-transfer processes at the interface of CTC-forming components, results in the delocalization of electronic charge along molecular stacks, rendering CTCs intrinsic molecular conductors. Since the discovery of CTCs, intensive research has explored their unique properties including magnetism, conductivity, and superconductivity. Their more recently recognized semiconducting functionality has inspired recent developments in applications requiring organic semiconductors. In this context, CTCs offer a tuneable energy gap, unique charge-transport properties, tailorable physicochemical interactions, photoresponsiveness, and the potential for scalable manufacturing. Here, an updated viewpoint on CTCs is provided, presenting them as emerging organic semiconductors. To this end, their electronic and chemical properties alongside their synthesis methods are reviewed. The unique properties of CTCs that benefit various related applications in the realms of organic optoelectronics, catalysts, and gas sensors are discussed. Insights for future developments and existing limitations are described.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Andrew C Hillier
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
5
|
Liu Y, Zhang R, Zou N, Li H, Hu X, Fan W, Cheng Y, Zheng LY, Cao QE. A luminescent organic cocrystal for detecting 2,4-dinitroaniline. Talanta 2024; 273:125919. [PMID: 38513470 DOI: 10.1016/j.talanta.2024.125919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
2,4-dinitroaniline (2,4DNBA), a significant hazardous chemical, is extensively used in industry and agriculture. The chemical accumulates in the environment for a long time, causing irreversible damage to the ecosystem. Currently, it is quite challenging to identify it by common analysis and detection techniques. Herein, a luminescent organic cocrystal (TCNB-8HQ) was prepared using 1,2,4,5-tetracyanobenzene (TCNB) as the electron acceptor and 8-hydroxyquinoline (8HQ) as the electron donor. The prepared TCNB-8HQ was used as a fluorescent probe with a fast and specific response to 2,4DNBA. This detection method possessed a linear range of 0.5-200 μmol/L with a detection limit as low as 0.085 μmol/L to detect 2,4DNBA in real samples with satisfactory spiking recovery. As revealed by fluorescence spectrum and UV-vis absorption spectrum, the detection mechanism involved competitive absorption between cocrystal material and 2,4DNBA. Moreover, the feasibility of the system was explored by preparing portable indicator strips for 2,4DNBA from organic cocrystal (TCNB-8HQ). This study not only provided an environmentally friendly gram-level preparation strategy to synthesize the fluorescent material but also investigated their application in chemical detection.
Collapse
Affiliation(s)
- Yanxiong Liu
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Ruiying Zhang
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Na Zou
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Hao Li
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Xin Hu
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Wenwen Fan
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Yi Cheng
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Li-Yan Zheng
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
| | - Qiu-E Cao
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
| |
Collapse
|
6
|
Xing C, Zhou B, Yan D, Fang W. Integrating Full-Color 2D Optical Waveguide and Heterojunction Engineering in Halide Microsheets for Multichannel Photonic Logical Gates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310262. [PMID: 38425136 PMCID: PMC11077683 DOI: 10.1002/advs.202310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Ensuring information security has emerged as a paramount concern in contemporary human society. Substantial advancements in this regard can be achieved by leveraging photonic signals as the primary information carriers, utilizing photonic logical gates capable of wavelength tunability across various time and spatial domains. However, the challenge remains in the rational design of materials possessing space-time-color multiple-resolution capabilities. In this work, a facile approach is proposed for crafting metal-organic halides (MOHs) that offer space-time-color resolution. These MOHs integrate time-resolved room temperature phosphorescence and color-resolved excitation wavelength dependencies with both space-resolved ex situ optical waveguides and in situ heterojunctions. Capitalizing on these multifaceted properties, MOHs-based two-dimensional (2D) optical waveguides and heterojunctions exhibit the ability to tune full-color emissions across the spectra from blue to red, operating within different spatial and temporal scales. Therefore, this work introduces an effective methodology for engineering space-time-color resolved MOH microstructures, holding significant promise for the development of high-density photonic logical devices.
Collapse
Affiliation(s)
- Chang Xing
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Bo Zhou
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Dongpeng Yan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| |
Collapse
|
7
|
Fisher JM, Williams ML, Palmer JR, Powers-Riggs NE, Young RM, Wasielewski MR. Long-Lived Charge Separation in Single Crystals of an Electron Donor Covalently Linked to Four Acceptor Molecules. J Am Chem Soc 2024; 146:9911-9919. [PMID: 38530990 DOI: 10.1021/jacs.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Crystalline donor-acceptor (D-A) systems serve as an excellent platform for studying CT exciton creation, migration, and dissociation into free charge carriers for solar energy conversion. Donor-acceptor cocrystals have been utilized to develop an understanding of CT exciton formation in ordered organic solids; however, the strong electronic coupling of the D and A units can sometimes limit charge separation lifetimes due to their close proximity. Covalent D-A systems that preorganize specific donor-acceptor structures can assist in engineering crystal morphologies that promote long-lived charge separation to overcome this limitation. Here we investigate photogenerated CT exciton formation in a single crystal of a 2,5,8,11-tetraphenylperylene (PerPh4) donor to which four identical naphthalene-(1,4:5,8)-bis(dicarboximide) (NDI) electron acceptors are covalently attached at the para positions of the PerPh4 phenyl groups to yield PerPh4-NDI4. X-ray crystallography shows that the four NDIs pack pairwise into two distinct motifs. Two NDI acceptors of one PerPh4-NDI4 are positioned over the PerPh4 donors of adjacent PerPh4-NDI4 molecules with the donor and acceptor π-systems having a large dihedral angle between them, while the other two NDIs of PerPh4-NDI4 form xylene-NDI van der Waals π-stacks with the corresponding NDIs in adjacent PerPh4-NDI4 molecules. Upon selective photoexcitation of PerPh4 in the single crystal, CT exciton formation occurs in <300 fs yielding electron-hole pairs that live for more than ∼16 μs. This demonstrates the effectiveness of covalently linked D-A systems for engineering single crystal structures that promote efficient and long-lived charge separation for solar energy conversion.
Collapse
Affiliation(s)
- Jeremy M Fisher
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Malik L Williams
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Jonathan R Palmer
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Natalia E Powers-Riggs
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| |
Collapse
|
8
|
Xu W, Huang G, Yang Z, Deng Z, Zhou C, Li JA, Li MD, Hu T, Tang BZ, Phillips DL. Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications. Nat Commun 2024; 15:2561. [PMID: 38519517 PMCID: PMC10959985 DOI: 10.1038/s41467-024-46869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Cocrystal engineering is an efficient and simple strategy to construct functional materials, especially for the exploitation of novel and multifunctional materials. Herein, we report two kinds of nucleic-acid-base cocrystal systems that imitate the strong hydrogen bond interactions constructed in the form of complementary base pairing. The two cocrystals studied exhibit different colors of phosphorescence from their monomeric counterparts and show the feature of rare high-temperature phosphorescence. Mechanistic studies reveal that the strong hydrogen bond network stabilizes the triplet state and suppresses non-radiative transitions, resulting in phosphorescence even at 425 K. Moreover, the isolation effects of the hydrogen bond network regulate the interactions between the phosphor groups, realizing the manipulation from aggregation to single-molecule phosphorescence. Benefiting from the long-lived triplet state with a high quantum yield, the generation of reactive oxygen species by energy transfer is also available to utilize for some applications such as in photodynamic therapy and broad-spectrum microbicidal effects. In vitro experiments show that the cocrystals efficiently kill bacteria on a tooth surface and significantly help prevent dental caries. This work not only provides deep insight into the relationship of the structure-properties of cocrystal systems, but also facilitates the design of multifunctional cocrystal materials and enriches their potential applications.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guanheng Huang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Zhan Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Ziqi Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Chen Zhou
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou, 515031, Guangdong, China
| | - Jian-An Li
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 510000, Guangdong, China
| | - Ming-De Li
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou, 515031, Guangdong, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| | - David Lee Phillips
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.
| |
Collapse
|
9
|
Zhu X, Wang Y, Nadinov I, Thomas S, Gutiérrez-Arzaluz L, He T, Wang JX, Alkhazragi O, Ng TK, Bakr OM, Alshareef HN, Ooi BS, Mohammed OF. Leveraging Intermolecular Charge Transfer for High-Speed Optical Wireless Communication. J Phys Chem Lett 2024; 15:2988-2994. [PMID: 38457267 PMCID: PMC10961838 DOI: 10.1021/acs.jpclett.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Intermolecular charge transfer (CT) complexes have emerged as versatile platforms with customizable optical properties that play a pivotal role in achieving tunable photoresponsive materials. In this study, we introduce an innovative approach for enhancing the modulation bandwidth and net data rates in optical wireless communications (OWCs) by manipulating combinations of monomeric molecules within intermolecular CT complexes. Concurrently, we extensively investigate the intermolecular charge transfer mechanism through diverse steady-state and ultrafast time-resolved spectral techniques in the mid-infrared range complemented by theoretical calculations using density functional theory. These intermolecular CT complexes empower precise control over the -3 dB bandwidth and net data rates in OWC applications. The resulting color converters exhibit promising performance, achieving a net data rate of ∼100 Mb/s, outperforming conventional materials commonly used in the manufacture of OWC devices. This research underscores the substantial potential of engineering intermolecular charge transfer complexes as an ongoing progression and commercialization within the OWC. This carries profound implications for future initiatives in high-speed and secure data transmission, paving the way for promising endeavors in this area.
Collapse
Affiliation(s)
- Xin Zhu
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Materials
Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Simil Thomas
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tengyue He
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Xin Wang
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar Alkhazragi
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tien Khee Ng
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N. Alshareef
- Materials
Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Boon S. Ooi
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Kinoshita Y, Oka K, Nakajima H, Tohnai N. Control of Relative Positions of Electron-Donor and Electron-Acceptor Molecules in Charge-Transfer Complexes for Luminescent Property Modulation. Chemistry 2024; 30:e202302965. [PMID: 37874268 DOI: 10.1002/chem.202302965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Charge-transfer complexes can exhibit various physical properties that depend on the relative positions of electron-donor and electron-acceptor molecules. Several studies have investigated the relationship between the relative positions of electron-donor and electron-acceptor molecules and their luminescence properties. However, elucidating the correlation between the relative positions and detailed luminescence processes without changing the molecular structures has not been explored. Herein, we report control of the relative position based on charge-assisted hydrogen bonds between sulfo and amino groups and on alkylamines' steric factors, and report concomitant modulation of the luminescent properties. Six charge-transfer complexes were prepared from anthracene-2,6-disulfonic acid and 1,2,4,5-tetracyanobenzene as electron-donor and electron-acceptor molecules, and various alkylamines. Different alkylamines' steric factors drastically and precisely changed the relative positions of the electron-donor and electron-acceptor molecules without changing their molecular structures. Consequently, the six crystals exhibited maximum emission wavelengths from 543 to 624 nm and different luminescence processes.
Collapse
Affiliation(s)
- Yo Kinoshita
- Department of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kouki Oka
- Department of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Center for Future Innovation (CFi) Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiromi Nakajima
- Department of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Hao L, Liu F, Wang X, Kang L, Wang Y, Wang L, Lin Z, Zhu W. Crystallography, Charge Transfer, and Two-Photon Absorption Relations in Molecular Cocrystals for Two-Photon Excited Fluorescence Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308470. [PMID: 38105598 DOI: 10.1002/smll.202308470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/25/2023] [Indexed: 12/19/2023]
Abstract
Two-photon excited fluorescence imaging requires high-performance two-photon absorption (TPA) active materials, which are commonly intramolecular charge transfer systems prepared by traditional chemical synthesis. However, this typically needs harsh conditions and new methods are becoming crucial. In this work, based on a collaborative intermolecular charge transfer (inter-CT) strategy, three centimeter-sized organic TPA cocrystals are successfully obtained. All three cocrystals exhibit a mixed stacking arrangement, which can effectively generate inter-CT between the donor and acceptor. The ground and excited state characterizations compare their inter-CT ability: 1,2-BTC > 2D-BTC > 1D-BTC. Transient absorption spectroscopy detects TCNB•- , indicating that the TPA mechanism arises from molecular polarization caused by inter-CT. Meanwhile, 1,2-BTC exhibits the highest excited-state absorption and the longest excited-state lifetime, suggesting a stronger TPA response. First-principles calculations also confirm the presence of inter-CT interactions, and the significant parameter Δµ which can assess the TPA capability indicates that inter-CT enhances the TPA response. Besides, cocrystals also demonstrate excellent water solubility and two-photon excited fluorescence imaging capabilities. This research not only provides an effective method for synthesizing TPA crystal materials and elucidates the connection between inter-CT ability and TPA property but also successfully applies them in the fields of multi-photon fluorescence bioimaging.
Collapse
Affiliation(s)
- Liangmeng Hao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Fan Liu
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China
| | - Lei Kang
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China
| | - Lingsong Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Zheshuai Lin
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
12
|
Krishnamoorthi S, Kasinathan GN, Paramasivam G, Rath SN, Prakash J. Selective Targeting of Lung Cancer Cells with Methylparaben-Tethered-Quinidine Cocrystals in 3D Spheroid Models. ACS OMEGA 2023; 8:46628-46639. [PMID: 38107962 PMCID: PMC10720001 DOI: 10.1021/acsomega.3c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
The development and design of pharmaceutical cocrystals for various biological applications has garnered significant interest. In this study, we have established methodologies for the growth of the methylparaben-quinidine cocrystal (MP-QU), which exhibits a well-defined order that favors structure-property correlation. To confirm the cocrystal formation, we subjected the cocrystals to various physicochemical analyses such as powder X-ray diffraction (PXRD), single-crystal X-ray diffraction (SCXRD), Raman, and IR spectroscopy. The results of the XRD pattern comparisons indicated no polymorphisms, and density functional theory (DFT) studies in both gaseous and liquid phases revealed enhanced stability. Our in silico docking studies demonstrated the cocrystal's high-affinity binding towards cancer-specific epidermal growth factor receptor (EGFR), Janus kinase (JAK), and other receptors. Furthermore, in vitro testing against three-dimensional (3D) spheroids of lung cancer (A549) and normal fibroblast cells (L929) demonstrated the cocrystal's higher anticancer potential, supported by cell viability measurements and live/dead assays. Interestingly, the cocrystal showed selectivity between cancerous and normal 3D spheroids. We found that the MP-QU cocrystal inhibited migration and invadopodia formation of cancer spheroids in a favorable 3D microenvironment.
Collapse
Affiliation(s)
- Sritharan Krishnamoorthi
- Department
of Chemistry, Indian Institute of Technology
(IIT) Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Gokula Nathan Kasinathan
- Regenerative
Medicine and Stem Cell Laboratory (RMS), Department of Biomedical
Engineering, Indian Institute of Technology
Hyderabad (IITH), Sangareddy, Telangana 502285, India
| | - Ganesan Paramasivam
- Department
of Chemistry, Indian Institute of Technology
(IIT) Madras, Chennai, Tamilnadu 600036, India
| | - Subha Narayan Rath
- Regenerative
Medicine and Stem Cell Laboratory (RMS), Department of Biomedical
Engineering, Indian Institute of Technology
Hyderabad (IITH), Sangareddy, Telangana 502285, India
| | - Jai Prakash
- Department
of Chemistry, Indian Institute of Technology
(IIT) Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
13
|
Abou Taka A, Reynolds JE, Cole-Filipiak NC, Shivanna M, Yu CJ, Feng P, Allendorf MD, Ramasesha K, Stavila V, McCaslin LM. Comparing the structures and photophysical properties of two charge transfer co-crystals. Phys Chem Chem Phys 2023; 25:27065-27074. [PMID: 37792449 DOI: 10.1039/d3cp03720g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Organic co-crystals have emerged as a promising class of semiconductors for next-generation optoelectronic devices due to their unique photophysical properties. This paper presents a joint experimental-theoretical study comparing the crystal structure, spectroscopy, and electronic structure of two charge transfer co-crystals. Reported herein is a novel co-crystal Npe:TCNQ, formed from 4-(1-naphthylvinyl)pyridine (Npe) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) via molecular self-assembly. This work also presents a revised study of the co-crystal composed of Npe and 1,2,4,5-tetracyanobenzene (TCNB) molecules, Npe:TCNB, herein reported with a higher-symmetry (monoclinic) crystal structure than previously published. Npe:TCNB and Npe:TCNQ dimer clusters are used as theoretical model systems for the co-crystals; the geometries of the dimers are compared to geometries of the extended solids, which are computed with periodic boundary conditions density functional theory. UV-Vis absorption spectra of the dimers are computed with time-dependent density functional theory and compared to experimental UV-Vis diffuse reflectance spectra. Both Npe:TCNB and Npe:TCNQ are found to exhibit neutral character in the S0 state and ionic character in the S1 state. The high degree of charge transfer in the S1 state of both Npe:TCNB and Npe:TCNQ is rationalized by analyzing the changes in orbital localization associated with the S1 transitions.
Collapse
Affiliation(s)
- Ali Abou Taka
- Sandia National Laboratories, Livermore, California 94550, USA.
| | | | | | - Mohana Shivanna
- Sandia National Laboratories, Livermore, California 94550, USA.
| | - Christine J Yu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Patrick Feng
- Sandia National Laboratories, Livermore, California 94550, USA.
| | | | - Krupa Ramasesha
- Sandia National Laboratories, Livermore, California 94550, USA.
| | - Vitalie Stavila
- Sandia National Laboratories, Livermore, California 94550, USA.
| | | |
Collapse
|
14
|
Lin X, Ouyang G, Liu M. Self-Assembled Charge-Transfer Chiral π-Materials: Stimuli-Responsive Circularly Polarized Luminescence and Chiroptical Photothermic Effects. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19741-19749. [PMID: 37036409 DOI: 10.1021/acsami.3c02237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Despite significant achievements in the field of chiroptical organic materials, the full utilization of both the excited state and ground state chiroptical properties in a single supramolecular system is still rarely disclosed. Here, we report that the rational combination of the charge-transfer (CT) interaction with the spacer effect and controlled protonation of π-histidine leads to chiroptical organic π-materials with both circularly polarized luminescence (CPL) and the supramolecular chirality-directed chiroptical photothermic effect. Three pyrene-conjugated histidine derivatives with varied acyl linkers (PyHis, PyC1His, and PyC3His) were designed to coassemble with electron-deficient 1,2,4,5-tetracyanobenzene (TCNB), leading to the formation of supramolecular CT complexes with intense orange to red CPL depending on the linker length. The linker length also affected the protonation-induced CPL responsiveness of the corresponding CT assemblies. Upon protonation of the histidine moiety, PyC3His/TCNB CT assemblies exhibited an inverted CPL signal, while PyHis/TCNB pairs gave quenched CPL due to the disassembly. The protonation-controlled PyC3His/TCNB CT assemblies at varied pH values showed different chiroptical photothermic effects (CPEs) for the same incident chiral light despite the molecular chirality of PyC3His remaining unchanged, supporting an interesting supramolecular chirality-directed photothermic effect.
Collapse
Affiliation(s)
- Xuerong Lin
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Guanghui Ouyang
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| | - Minghua Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing 100190, China
| |
Collapse
|
15
|
Meniscus-Assisted Solution Printing Enables Cocrystallization in Poly(3-alkylthiophene)-based Blends for Field-Effect Transistors. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
16
|
Jin JM, Chen WC, Tan JH, Li Y, Mu Y, Zhu ZL, Cao C, Ji S, Hu D, Huo Y, Zhang HL, Lee CS. Photo-controllable Luminescence from Radicals Leading to Ratiometric Emission Switching via Dynamic Intermolecular Coupling. Angew Chem Int Ed Engl 2023; 62:e202214281. [PMID: 36314420 DOI: 10.1002/anie.202214281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
The development of photoinduced luminescent radicals with dynamic emission color is still challenging. Herein we report a novel molecular radical system (TBIQ) that shows photo-controllable luminescence, leading to a wide range of ratiometric color changes via light excitation. The conjugated skeleton of TBIQ is decorated with steric-demanding tertiary butyl groups that enable appropriate intermolecular interaction to make dynamic intermolecular coupling possible for controllable behaviors. We reveal that the helicenic pseudo-planar conformation of TBIQ experiences a planarization process after light excitation, leading to more compactly stacked supermolecules and thus generating radicals via intermolecular charge transfer. The photo-controllable luminescent radical system is employed for a high-level information encryption application. This study may offer unique insight into molecular dynamic motion for optical manufacturing and broaden the scope of smart-responsive materials for advanced applications.
Collapse
Affiliation(s)
- Jia-Ming Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ji-Hua Tan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yang Li
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chen Cao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dehua Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hao-Li Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.,State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
17
|
Das R, Linseis M, Schupp SM, Gogesch FS, Schmidt-Mende L, Winter RF. Organic binary charge-transfer compounds of 2,2' : 6',2'' : 6'',6-trioxotriphenylamine and a pyrene-annulated azaacene as donors. RSC Adv 2023; 13:3652-3660. [PMID: 36756575 PMCID: PMC9890512 DOI: 10.1039/d2ra07322f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Three binary charge-transfer (CT) compounds resulting from the donor 2,2' : 6',2'' : 6'',6-trioxotriphenylamine (TOTA) and the acceptors F4TCNQ and F4BQ and of a pyrene-annulated azaacene (PAA) with the acceptor F4TCNQ are reported. The identity of these CT compounds are confirmed by single-crystal X-ray diffraction as well as by IR, UV-vis-NIR and EPR spectroscopy. X-ray diffraction analysis reveals a 1 : 1 stoichiometry for TOTA·F4TCNQ, a 2 : 1 donor : acceptor ratio in (TOTA)2·F4BQ, and a rare 4 : 1 stoichiometry in (PAA)4·F4TCNQ, respectively. Metrical parameters of the donor (D) and acceptor (A) constituents as well as IR spectra indicate full CT in TOTA·F4TCNQ, partial CT in (TOTA)2·F4BQ and only a very modest one in (PAA)4·F4TCNQ. Intricate packing motifs are present in the crystal lattice with encaged, π-stacked (F4TCNQ-)2 dimers in TOTA·F4TCNQ or mixed D/A stacks in the other two compounds. Their solid-state UV-vis-NIR spectra feature CT transitions. The CT compounds with F4TCNQ are electrical insulators, while (TOTA)2·F4BQ is weakly conducting.
Collapse
Affiliation(s)
- Rajorshi Das
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Stefan M Schupp
- Fachbereich Physik, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Franciska S Gogesch
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Lukas Schmidt-Mende
- Fachbereich Physik, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| | - Rainer F Winter
- Fachbereich Chemie, Universität Konstanz Universitätsstrasse 10, 78457 Konstanz Germany
| |
Collapse
|
18
|
Williams ML, Schlesinger I, Jacobberger RM, Wasielewski MR. Mechanism of Ultrafast Triplet Exciton Formation in Single Cocrystals of π-Stacked Electron Donors and Acceptors. J Am Chem Soc 2022; 144:18607-18618. [PMID: 36178390 DOI: 10.1021/jacs.2c08584] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ultrafast triplet formation in donor-acceptor (D-A) systems typically occurs by spin-orbit charge-transfer intersystem crossing (SOCT-ISC), which requires a significant orbital angular momentum change and is thus usually observed when the adjacent π systems of D and A are orthogonal; however, the results presented here show that subnanosecond triplet formation occurs in a series of D-A cocrystals that form one-dimensional cofacial π stacks. Using ultrafast transient absorption microscopy, photoexcitation of D-A single cocrystals, where D is coronene (Cor) or pyrene (Pyr) and A is N,N-bis(3'-pentyl)-perylene-3,4:9,10-bis(dicarboximide) (C5PDI) or naphthalene-1,4:5,8-tetracarboxydianhydride (NDA), results in formation of the charge transfer (CT) excitons Cor•+-C5PDI•-, Pyr•+-C5PDI•-, Cor•+-NDA•-, and Pyr•+-NDA•- in <300 fs, while triplet exciton formation occurs in τ = 125, 106, 484, and 958 ps, respectively. TDDFT calculations show that the SOCT-ISC rates correlate with charge delocalization in the CT exciton state. In addition, time-resolved EPR spectroscopy shows that Cor•+-C5PDI•- and Pyr•+-C5PDI•- recombine to form localized 3*C5PDI excitons with zero-field splittings of |D| = 1170 and 1250 MHz, respectively. In contrast, Cor•+-NDA•- and Pyr•+-NDA•- give triplet excitons in which |D| is only 1240 and 690 MHz, respectively, compared to that of NDA (2091 MHz), which is the lowest energy localized triplet exciton, indicating that the Cor-NDA and Pyr-NDA triplet excitons have significant CT character. These results show that charge delocalization in CT excitons impacts both ultrafast triplet formation as well as the CT character of the resultant triplet states.
Collapse
Affiliation(s)
- Malik L Williams
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Itai Schlesinger
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Robert M Jacobberger
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
19
|
Liu K, Li S, Fu L, Lei Y, Liao Q, Fu H. Cocrystallization tailoring radiative decay pathways for thermally activated delayed fluorescence and room-temperature phosphorescence emission. NANOSCALE 2022; 14:6305-6311. [PMID: 35420117 DOI: 10.1039/d2nr00757f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modulation of excited-state processes in binary organic cocrystals has been rarely explored so far. Here, we develop two charge-transfer (CT) cocrystal microrods with a 1 : 1 stoichiometric ratio where halogenated dibenzothiophene (DBT) compounds act as π-electron donors and 1,2,4,5-tetracyanobenzene (TCNB) acts as an acceptor. Unexpectedly, the cocrystal containing one bromine (Br) atom at the 3-position of DBT (3-BrTC) presents thermally activated delayed fluorescence (TADF), while the other one comprising one Br atom at the 4-position of DBT (4-BrTC) exhibits both TADF and room-temperature phosphorescence (RTP). Experimental and theoretical calculation results reveal that CT interactions in 3- and 4-BrTC decrease the S1-T2 energy gap, whereas abundant lone-pair electrons from the Br atom in 4-BrTC facilitate the n → π* transition. As a consequence, single TADF and dual-emissive TADF/RTP were realized, respectively. The present work offers wonderful insight into the effect of molecular structures on the excited-state pathways of organic CT cocrystals.
Collapse
Affiliation(s)
- Kun Liu
- Institute of Molecule Plus (IMP), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Shuai Li
- Institute of Molecule Plus (IMP), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Liyuan Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Yilong Lei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Hongbing Fu
- Institute of Molecule Plus (IMP), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
20
|
Jiang H, Ye J, Hu P, Zhu S, Liang Y, Cui Z, Kloc C, Hu W. Growth direction dependent separate-channel charge transport in the organic weak charge-transfer co-crystal of anthracene-DTTCNQ. MATERIALS HORIZONS 2022; 9:1057-1067. [PMID: 35048097 DOI: 10.1039/d1mh01767e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Co-crystallization is an efficient way of molecular crystal engineering to tune the electronic properties of organic semiconductors. In this work, we synthesized anthracene-4,8-bis(dicyanomethylene)4,8-dihydrobenzo[1,2-b:4,5-b']-dithiophene (DTTCNQ) single crystals as a template to study the crystal growth direction dependent charge transport properties and attempted to elucidate the mechanism by proposing a separate-channel charge transport model. Single-crystal anthracene-DTTCNQ field-effect transistors showed that ambipolar transport properties could be observed in all crystal growth directions. Furthermore, upon changing the measured crystal directions, the electronic properties experienced a weak change from n-type dominated ambipolar, balanced ambipolar, to p-type dominated ambipolar properties. The theoretical calculations at density functional theory (DFT) and higher theory levels suggested that the anthracene-DTTCNQ co-crystal motif was a weak charge-transfer complex, in line with the experiment. Furthermore, the detailed theoretical analysis also indicated that electron or hole transport properties originated from separated channels formed by DTTCNQ or anthracene molecules. We thus proposed a novel separate-channel transport mechanism to support additional theoretical analysis and calculations. The joint experimental and theoretical efforts in this work suggest that the engineering of co-crystallization of weak charge-transfer complexes can be a practical approach for achieving tuneable ambipolar charge transport properties by the rational choice of co-crystal formers.
Collapse
Affiliation(s)
- Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jun Ye
- Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Christian Kloc
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
21
|
Vaganova TA, Benassi E, Gatilov YV, Chuikov IP, Pishchur DP, Malykhin EV. Polyhalogenated aminobenzonitriles vs. their co-crystals with 18-crown-6: amino group position as a tool to control crystal packing and solid-state fluorescence. CrystEngComm 2022. [DOI: 10.1039/d1ce01469b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strengthening (para-isomers) or weakening (ortho-isomers) of π-electron aggregation due to the crystal structure rearrangement results in the bathochromic or hypsochromic shift of the fluorescence maximum.
Collapse
Affiliation(s)
- Tamara A. Vaganova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Enrico Benassi
- Novosibirsk State University, 2 Pirogova Avenue, 630090 Novosibirsk, Russian Federation
| | - Yurij V. Gatilov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Igor P. Chuikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Denis P. Pishchur
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Avenue, 630090 Novosibirsk, Russian Federation
| | - Evgenij V. Malykhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russian Federation
| |
Collapse
|
22
|
Mandal A. Tuning p-type to n-type Semiconductor Nature by Charge Transfer Cocrystallization: Effect of Transfer Integral vs. Reorganization Energy. CrystEngComm 2022. [DOI: 10.1039/d2ce00006g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, 1:2 mixed stack (··DADA·· arrangement) donor acceptor cocrystal comprised of hole transport material CBP (4,4ʹ-bis(9H-carbazole-9-yl)biphenyl) as the donor (D), and TCNQ (7,7ʹ,8,8ʹ-tetracyano-1,4-quinodimethane) as the acceptor (A) was...
Collapse
|
23
|
Gao J, Guo J, Chen Y, Deng S, Lu Q, Ren Y, Wang X, Fan H, Teng F, He X, Jiang H, Hu P. The competitive role of C–H⋯X (X = F, O) and π–π interactions in contributing to the degree of charge transfer in organic cocrystals: a case study of heteroatom-free donors with p-fluoranil (FA). CrystEngComm 2022. [DOI: 10.1039/d2ce00925k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four binary organic charge transfer cocrystals were grown by the slow cooling method. The competitive role of C–H⋯X (X = F, O) and π–π interactions in contributing to the degree of charge transfer in the cocrystals was investigated.
Collapse
Affiliation(s)
- Jiaoyang Gao
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Jinjia Guo
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Yi Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Shunlan Deng
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Qidong Lu
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Yuxin Ren
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Xiaoming Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Haibo Fan
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Feng Teng
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| | - Xuexia He
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, P.R. China
| |
Collapse
|
24
|
Sun L, Zhu W, Zhang X, Li L, Dong H, Hu W. Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. J Am Chem Soc 2021; 143:19243-19256. [PMID: 34730972 DOI: 10.1021/jacs.1c07678] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic cocrystal engineering refers to two or more organic molecules stoichiometrically combined and held together by noncovalent intermolecular interactions, which differs from standard chemical synthesis involving covalent bond breakage and formation. Organic cocrystals have unique properties and offer a new strategy for creating enhanced organics. First, however, some key questions need to be addressed: How do diverse monomers affect the intermolecular interaction kinetics during cocrystallization? How do the intermolecular forces in cocrystals affect cocrystal functions? In this Perspective, the definition and advantages of organic cocrystal engineering, specifically in the construction of a reliable intermolecular interaction-stacking structure-performance relationship, are outlined. Additionally, recent developments in the field and the questions above are discussed. Finally, a brief conclusion and some hints on likely future developments are provided.
Collapse
Affiliation(s)
- Lingjie Sun
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Weigang Zhu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science of Tianjin University, Tianjin 300072, China
| | - Liqiang Li
- Institute of Molecular Aggregation Science of Tianjin University, Tianjin 300072, China
| | - Huanli Dong
- Chinese Academy of Key Laboratory of Organic Solids, Institute of Chemistry Sciences, Beijing 100190, China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
25
|
Matsui J, Ebata K, Takeda M, Hua KN, Katagiri H, Nakayama K, Masuhara A, Yumusak C, Stadler P, Sharber MC, White MS, Sariciftci NS, Yoshida T, Furis M. Photoconductivity of Micrometer Long Organic Single Crystal Fiber Array Prepared by Evaporation‐Induced Self‐Assembled Method. Isr J Chem 2021. [DOI: 10.1002/ijch.202100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jun Matsui
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi Yamagata 990-8560 Japan
| | - Kazuki Ebata
- Faculty of Science Yamagata University 1-4-12 Kojirakawa-machi Yamagata 990-8560 Japan
| | - Masaki Takeda
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Kim Ngan Hua
- Department of Physics and Materials Science Program The University of Vermont Burlington VT 05405 USA
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Ken‐ichi Nakayama
- Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Akito Masuhara
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Cigdem Yumusak
- Linz Institute for Organic Solar Cells (LIOS) Physical Chemistry Johannes Kepler University Linz Altenbergerstraße 69 Linz 4040 Austria
| | - Philipp Stadler
- Linz Institute for Organic Solar Cells (LIOS) Physical Chemistry Johannes Kepler University Linz Altenbergerstraße 69 Linz 4040 Austria
| | - Markus Clark Sharber
- Linz Institute for Organic Solar Cells (LIOS) Physical Chemistry Johannes Kepler University Linz Altenbergerstraße 69 Linz 4040 Austria
| | - Matthew Schuette White
- Department of Physics and Materials Science Program The University of Vermont Burlington VT 05405 USA
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS) Physical Chemistry Johannes Kepler University Linz Altenbergerstraße 69 Linz 4040 Austria
| | - Tsukasa Yoshida
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Madalina Furis
- Department of Physics and Materials Science Program The University of Vermont Burlington VT 05405 USA
| |
Collapse
|
26
|
Deep insight into the charge transfer interactions in 1,2,4,5-tetracyanobenzene-phenazine cocrystal. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Du S, Ma S, Xu B, Tian W. Optical Waveguide and Photoluminescent Polarization in Organic Cocrystal Polymorphs. J Phys Chem Lett 2021; 12:9233-9238. [PMID: 34533321 DOI: 10.1021/acs.jpclett.1c02726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic cocrystals whose unique polymorphic feature can provide a feasible way to investigate and understand the relationship between luminescence properties and aggregate structures have attracted increasing attention in the area of organic optoelectronics. Herein, we prepare polymorphic cocrystals (C1, C2) by using 9,10-bis((E)-2-(pyridin-3-yl)vinyl)anthracene (BP3VA) as chromophore and 1,3,5-trifluoro-2,4,6-triiodobenzene (FIB) as conformer. Both C1 and C2 stack with segregated stacking form, but different intermolecular interactions promote the formation of sheet cocrystals C1 and needle cocrystals C2. C1 exhibits anisotropic optical waveguide property and photoluminescent polarization, while C2 only exhibits the quasi-one-dimensional optical waveguide property. The different optical properties originate from the varieties of molecular packing modes and directions of the optical transition dipole in the two polymorphic cocrystals, which can be clarified through the structure analysis and theoretical calculation. The study can provide a deep understanding of the structure-property relationship of cocrystals and benefit the rational design of novel functional materials.
Collapse
Affiliation(s)
- Sijia Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Suqian Ma
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
28
|
Chovnik O, Cohen SR, Pinkas I, Houben L, Gorelik TE, Feldman Y, Shimon LJW, Iron MA, Lahav M, van der Boom ME. Noncovalent Bonding Caught in Action: From Amorphous to Cocrystalline Molecular Thin Films. ACS NANO 2021; 15:14643-14652. [PMID: 34516094 DOI: 10.1021/acsnano.1c04355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate the solvent-free amorphous-to-cocrystalline transformations of nanoscale molecular films. Exposing amorphous films to vapors of a haloarene results in the formation of a cocrystalline coating. This transformation proceeds by gradual strengthening of halogen-bonding interactions as a result of the crystallization process. The gas-solid diffusion mechanism involves formation of an amorphous metastable phase prior to crystallization of the films. In situ optical microscopy shows mass transport during this process, which is confirmed by cross-section analysis of the final structures using focused ion beam milling combined with scanning electron microscopy. Nanomechanical measurements show that the rigidity of the amorphous films influences the crystallization process. This surface transformation results in molecular arrangements that are not readily obtained through other means. Cocrystals grown in solution crystallize in a monoclinic centrosymmetric space group, whereas the on-surface halogen-bonded assembly crystallizes into a noncentrosymmetric material with a bulk second-order nonlinear optical response.
Collapse
Affiliation(s)
- Olga Chovnik
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sidney R Cohen
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lothar Houben
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tatiana E Gorelik
- Electron Microscopy Group of Materials Science, Ulm University, Ulm 89081, Germany
| | - Yishay Feldman
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mark A Iron
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Lahav
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Milko E van der Boom
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
29
|
Molecular insertion regulates the donor-acceptor interactions in cocrystals for the design of piezochromic luminescent materials. Nat Commun 2021; 12:4084. [PMID: 34215739 PMCID: PMC8253821 DOI: 10.1038/s41467-021-24381-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Abstract
Developing a universal strategy to design piezochromic luminescent materials with desirable properties remains challenging. Here, we report that insertion of a non-emissive molecule into a donor (perylene) and acceptor (1,2,4,5-tetracyanobezene) binary cocrystal can realize fine manipulation of intermolecular interactions between perylene and 1,2,4,5-tetracyanobezene (TCNB) for desirable piezochromic luminescent properties. A continuous pressure-induced emission enhancement up to 3 GPa and a blue shift from 655 to 619 nm have been observed in perylene-TCNB cocrystals upon THF insertion, in contrast to the red-shifted and quenched emission observed when compressing perylene-TCNB cocrystals and other cocrystals reported earlier. By combining experiment with theory, it is further revealed that the inserted non-emissive THF forms blue-shifting hydrogen bonds with neighboring TCNB molecules and promote a conformation change of perylene molecules upon compression, causing the blue-shifted and enhanced emission. This strategy remains valid when inserting other molecules as non-emissive component into perylene-TCNB cocrystals for abnormal piezochromic luminescent behaviors.
Collapse
|
30
|
Molecular cocrystal odyssey to unconventional electronics and photonics. Sci Bull (Beijing) 2021; 66:512-520. [PMID: 36654186 DOI: 10.1016/j.scib.2020.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023]
Abstract
Cocrystal has been discovered and studied for more than 170 years since 1844, while the applications to optoelectronics only begin in the last decade. Several general questions that chemists and materials scientists currently seek to answer are: can we design and control the molecular self-assembly and cocrystal growth, what's the packing-property correlations, as well as how can we improve device parameters for real applications in industry. In this contribution, we review our and other groups' recent advances in the cocrystal research field sequentially including: (1) nucleation and growth mechanisms for selective preparation of cocrystals with different donor/acceptor ratio and morphology; (2) charge transport and electronic devices, particularly field-effect transistor (FET) and photo-response device. We discuss the in-situ single crystal device fabrication method, ambipolar charge transport, and molecular packing-charge separation correlation; (3) photonic and optical property, focusing on optical waveguide, photonic logic computation, and nonlinear optics (NLO). We present unusual optical properties revealed by advanced instruments and general structure-function relations for future study. Importantly, the extensive investigations described herein yield in-depth and detailed understandings of molecular cocrystals, and show that such bi-component material systems together with the developed instrument measurement methodologies have the potential to initiate unconventional electronic and photonic science and technology.
Collapse
|
31
|
Dual-function surfactant strategy for two-dimensional organic semiconductor crystals towards high-performance organic field-effect transistors. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9974-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Sun Q, Pan Q, Ban Y, Liu H, Fan C, Sun L, Zhao Y. Donor-Acceptor Interactions Induced Interfacial Synthesis of an Ultrathin Fluoric 2D Polymer by Photochemical [2+2] Cycloaddition. Chemistry 2021; 27:3661-3664. [PMID: 33264450 DOI: 10.1002/chem.202004797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2020] [Indexed: 01/02/2023]
Abstract
Two-dimensional polymers (2DPs) have attracted much interest due to their unique 2D atomic-thick covalent network with periodically linked monomers. The preparation of mono- or few-layered 2DPs with highly ordered structures is still a big challenge. Herein, we report a preparation of ultrathin 2DP film based on photo-triggered [2+2] cycloaddition at the air/water interface. The pre-assembly process induced by the D-A interactions before the polymerization plays a key role in constructing the highly ordered structure. The precise structure and chemical compositions of the continuous 2DP films were proved by selected area electron diffraction (SAED), Tip-Enhanced Raman Spectroscopy (TERS) and molecular-mechanics-based structural simulation.
Collapse
Affiliation(s)
- Qingzhu Sun
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qingyan Pan
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yanqi Ban
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hui Liu
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chunyan Fan
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lishui Sun
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingjie Zhao
- Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, College of, Polymer and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
33
|
Singha S, Jana R, Mondal R, Ray PP, Bag PP, Gupta K, Pakhira N, Rizzoli C, Mallick A, Kumar S, Saha R. Photo-responsive Schottky diode behavior of a donor–acceptor co-crystal with violet blue light emission. CrystEngComm 2021. [DOI: 10.1039/d1ce00020a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A blue light emitting semiconducting p-type tetrabromoterephthalic acid (donor)–quinoxaline (acceptor) based co-crystal made a Schottky barrier diode exhibiting photo responsive behaviour.
Collapse
Affiliation(s)
- Soumen Singha
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | - Rajkumar Jana
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
- Department of Physics
| | - Rituparna Mondal
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
- Department of Electronics
| | | | | | - Kajal Gupta
- Department of Chemistry
- Kazi Nazrul University
- Asansol-713340
- India
| | - Nandan Pakhira
- Department of Chemistry
- Kazi Nazrul University
- Asansol-713340
- India
| | | | - Arabinda Mallick
- Department of Chemistry
- Kazi Nazrul University
- Asansol-713340
- India
| | - Sanjay Kumar
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | - Rajat Saha
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
- Department of Chemistry
| |
Collapse
|
34
|
Liu JJ, Xia SB, Liu T, Liu JM, Cheng FX. A two-component molecular hybrid with enhanced emission characteristics and mechanoresponsive luminescence properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00465d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new binary charge transfer cocrystal system was successfully fabricated by virtue of donor–acceptor interaction and exhibited enhanced emission and sensitive mechanoresponsive luminescence properties.
Collapse
Affiliation(s)
- Jian-Jun Liu
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Shu-Biao Xia
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Teng Liu
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Jia-Ming Liu
- School of Metallurgy Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- PR China
| | - Fei-Xiang Cheng
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| |
Collapse
|
35
|
Ando R, Jin M, Ito H. Charge-transfer crystal with segregated packing structure constructed with hexaarylbenzene and tetracyanoquinodimethane. CrystEngComm 2021. [DOI: 10.1039/d1ce00726b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge-transfer (CT) crystals bearing segregated domains between the hexaarylbenzene and TCNQ are a promising platform for developing new organic functional solid-state materials.
Collapse
Affiliation(s)
- Rempei Ando
- Division of Applied Chemistry and Frontier Chemistry Center (FCC), Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Mingoo Jin
- Division of Applied Chemistry and Frontier Chemistry Center (FCC), Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center (FCC), Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
36
|
Zhu W, Sun Y, Liu J, Bai S, Zhang Z, Shi Q, Hu W, Fu H. Exciton Transport in Molecular Semiconductor Crystals for Spin-Optoelectronics Paradigm. Chemistry 2020; 27:222-227. [PMID: 32969556 DOI: 10.1002/chem.202003447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 11/07/2022]
Abstract
Organic semiconductors with long-range exciton diffusion length are highly desirable for optoelectronics but currently remain rare. Here, the estimated diffusion length of singlet excitons (LD ) in 2,6-diphenyl anthracene (DPA) crystals grown by solvent evaporation was shown to be up to approximately 124 nm. These crystals showed a previously unseen parallelogram morphology with layer-by-layer edge-on molecular stacking, isotropic optical waveguiding, radiation rate and non-radiation rate constants of 0.15 and 0.26 ns-1 respectively, as well as good field-effect transistor hole mobility and theoretically computed strong electronic couplings as high as 109 meV. Photoresponse experiments revealed that the photoconductivity of DPA crystals is surprisingly not related to the radiative pathway but associated with rapid exciton diffusion to the crystal surface for charge separation and carrier bimolecular recombination. Taken together, DPA was shown to be a promising semiconducting material for a new organic optoelectronics paradigm.
Collapse
Affiliation(s)
- Weigang Zhu
- Institute of Chemistry, Chinese Academy of Science (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P.R. China
| | - Yajing Sun
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences (TJ-MOS), Tianjin University (TJU), Tianjin, 300072, P.R. China
| | - Jie Liu
- Institute of Chemistry, Chinese Academy of Science (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P.R. China
| | - Shuming Bai
- Institute of Chemistry, Chinese Academy of Science (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P.R. China
| | - Zhicheng Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences (TJ-MOS), Tianjin University (TJU), Tianjin, 300072, P.R. China
| | - Qiang Shi
- Institute of Chemistry, Chinese Academy of Science (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P.R. China
| | - Wenping Hu
- Institute of Chemistry, Chinese Academy of Science (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P.R. China.,Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences (TJ-MOS), Tianjin University (TJU), Tianjin, 300072, P.R. China
| | - Hongbing Fu
- Institute of Chemistry, Chinese Academy of Science (ICCAS), Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P.R. China
| |
Collapse
|
37
|
Vriza A, Canaj AB, Vismara R, Kershaw Cook LJ, Manning TD, Gaultois MW, Wood PA, Kurlin V, Berry N, Dyer MS, Rosseinsky MJ. One class classification as a practical approach for accelerating π-π co-crystal discovery. Chem Sci 2020; 12:1702-1719. [PMID: 34163930 PMCID: PMC8179233 DOI: 10.1039/d0sc04263c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/03/2020] [Indexed: 11/21/2022] Open
Abstract
The implementation of machine learning models has brought major changes in the decision-making process for materials design. One matter of concern for the data-driven approaches is the lack of negative data from unsuccessful synthetic attempts, which might generate inherently imbalanced datasets. We propose the application of the one-class classification methodology as an effective tool for tackling these limitations on the materials design problems. This is a concept of learning based only on a well-defined class without counter examples. An extensive study on the different one-class classification algorithms is performed until the most appropriate workflow is identified for guiding the discovery of emerging materials belonging to a relatively small class, that being the weakly bound polyaromatic hydrocarbon co-crystals. The two-step approach presented in this study first trains the model using all the known molecular combinations that form this class of co-crystals extracted from the Cambridge Structural Database (1722 molecular combinations), followed by scoring possible yet unknown pairs from the ZINC15 database (21 736 possible molecular combinations). Focusing on the highest-ranking pairs predicted to have higher probability of forming co-crystals, materials discovery can be accelerated by reducing the vast molecular space and directing the synthetic efforts of chemists. Further on, using interpretability techniques a more detailed understanding of the molecular properties causing co-crystallization is sought after. The applicability of the current methodology is demonstrated with the discovery of two novel co-crystals, namely pyrene-6H-benzo[c]chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2).
Collapse
Affiliation(s)
- Aikaterini Vriza
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool Oxford Street Liverpool L7 3NY UK
| | - Angelos B Canaj
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Rebecca Vismara
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Laurence J Kershaw Cook
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Troy D Manning
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Michael W Gaultois
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool Oxford Street Liverpool L7 3NY UK
| | - Peter A Wood
- Cambridge Crystallographic Data Centre 12 Union Road Cambridge CB2 1EZ UK
| | - Vitaliy Kurlin
- Materials Innovation Factory, Computer Science Department, University of Liverpool Liverpool L69 3BX UK
| | - Neil Berry
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Matthew S Dyer
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool Oxford Street Liverpool L7 3NY UK
| | - Matthew J Rosseinsky
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Leverhulme Research Centre for Functional Materials Design, University of Liverpool Oxford Street Liverpool L7 3NY UK
| |
Collapse
|
38
|
Wang W, Luo L, Sheng P, Zhang J, Zhang Q. Multifunctional Features of Organic Charge-Transfer Complexes: Advances and Perspectives. Chemistry 2020; 27:464-490. [PMID: 32627869 DOI: 10.1002/chem.202002640] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/13/2022]
Abstract
The recent progress of charge-transfer complexes (CTCs) for application in many fields, such as charge transport, light emission, nonlinear optics, photoelectric conversion, and external stimuli response, makes them promising candidates for practical utility in pharmaceuticals, electronics, photonics, luminescence, sensors, molecular electronics and so on. Multicomponent CTCs have been gradually designed and prepared as novel organic active semiconductors with ideal performance and stability compared to single components. In this review, we mainly focus on the recently reported development of various charge-transfer complexes and their performance in field-effect transistors, light-emitting devices, lasers, sensors, and stimuli-responsive behaviors.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials, Jiangsu National Synergetic Innovation, Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lixing Luo
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials, Jiangsu National Synergetic Innovation, Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Peng Sheng
- Material Laboratory of State Grid Corporation of China, State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, Beijing, 102211, China
| | - Jing Zhang
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials, Jiangsu National Synergetic Innovation, Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
39
|
Li S, Lu B, Fang X, Yan D. Manipulating Light‐Induced Dynamic Macro‐Movement and Static Photonic Properties within 1D Isostructural Hydrogen‐Bonded Molecular Cocrystals. Angew Chem Int Ed Engl 2020; 59:22623-22630. [DOI: 10.1002/anie.202009714] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Shuzhen Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Bo Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
40
|
Li S, Lu B, Fang X, Yan D. Manipulating Light‐Induced Dynamic Macro‐Movement and Static Photonic Properties within 1D Isostructural Hydrogen‐Bonded Molecular Cocrystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuzhen Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Bo Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
41
|
Ling I, Sobolev AN, Dalgarno SJ. Cationic guests direct molecular capsule formation and the impact towards the extended self-assembly in combinatorial supramolecular systems. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1821884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Irene Ling
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Alexandre N. Sobolev
- School of Molecular Sciences and CMCA, M310, The University of Western Australia, Perth, Australia
| | - Scott J. Dalgarno
- School of Engineering and Physical Sciences, Institute of Chemical Sciences, Heriot-Watt University, Scotland, UK
| |
Collapse
|
42
|
Bolla G, Liao Q, Amirjalayer S, Tu Z, Lv S, Liu J, Zhang S, Zhen Y, Yi Y, Liu X, Fu H, Fuchs H, Dong H, Wang Z, Hu W. Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. Angew Chem Int Ed Engl 2020; 60:281-289. [PMID: 32697379 DOI: 10.1002/anie.202007655] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 01/26/2023]
Abstract
Amplified spontaneous emission (ASE) is intrinsically associated with lasing applications. Inefficient photon energy transfer to ASE is a long-standing issue for organic semiconductors that consist of multiple competing radiative decay pathways, far from being rationally regulated from the perspective of molecular arrangements. Herein, we achieve controllable molecular packing motifs by halogen-bonded cocrystallization, leading to ten times increased radiative decay rate, four times larger ASE radiative decay selectivity and thus remarkable ASE threshold decrease from 223 to 22 μJ cm-2 , albeit with a low photoluminescence quantum yield. We have made an in-depth investigation on the relationship among molecular arrangements, vibration modes, radiative decay profiles and ASE properties. The results suggest that cocrystallization presents a powerful approach to tailor the radiative decay pathways, which is fundamentally important to the development of organic ASE and lasing materials.
Collapse
Affiliation(s)
- Geetha Bolla
- Key Laboratory of Organic Solids, Bejing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Saeed Amirjalayer
- Center for Nanotechnology & Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Zeyi Tu
- Key Laboratory of Organic Solids, Bejing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Shaokai Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jie Liu
- Key Laboratory of Organic Solids, Bejing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Shuai Zhang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yonggang Zhen
- Key Laboratory of Organic Solids, Bejing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Yuanping Yi
- Key Laboratory of Organic Solids, Bejing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Xinfeng Liu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Harald Fuchs
- Center for Nanotechnology & Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
| | - Huanli Dong
- Key Laboratory of Organic Solids, Bejing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Zhaohui Wang
- Key Laboratory of Organic Solids, Bejing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Solids, Bejing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China.,Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
43
|
Bolla G, Liao Q, Amirjalayer S, Tu Z, Lv S, Liu J, Zhang S, Zhen Y, Yi Y, Liu X, Fu H, Fuchs H, Dong H, Wang Z, Hu W. Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Geetha Bolla
- Key Laboratory of Organic Solids Bejing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Saeed Amirjalayer
- Center for Nanotechnology & Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Zeyi Tu
- Key Laboratory of Organic Solids Bejing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Shaokai Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Jie Liu
- Key Laboratory of Organic Solids Bejing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Shuai Zhang
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yonggang Zhen
- Key Laboratory of Organic Solids Bejing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Yuanping Yi
- Key Laboratory of Organic Solids Bejing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Xinfeng Liu
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Harald Fuchs
- Center for Nanotechnology & Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Huanli Dong
- Key Laboratory of Organic Solids Bejing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Zhaohui Wang
- Key Laboratory of Organic Solids Bejing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences (ICCAS) Beijing 100190 China
| | - Wenping Hu
- Key Laboratory of Organic Solids Bejing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences (ICCAS) Beijing 100190 China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
44
|
Shen D, Ma C, Ng TW, Chandran HT, Lo MF, Lee CS. Organic-Inorganic Charge Transfer Complex with Charge Modulation after Electrical Pre-biasing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37384-37390. [PMID: 32706573 DOI: 10.1021/acsami.0c09064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several breakthroughs in organic optoelectronic devices with new applications and performance improvement have been made recently by exploiting novel properties of charge transfer complexes (CTCs). In this work, a CTC film formed by coevaporating molybdenum(VI) oxide and pentacene (MoO3:pentacene) shows a strong dipole of 2.4 eV with direction controllability via pre-biasing with an external voltage. While CTCs are most widely known for their much red-shifted energy gaps, there is so far no report on their controllable dipoles. By controlling this dipole with an electrical pre-bias in a MoO3:pentacene CTC based device, current changes over 2 orders of magnitude can be achieved. Kelvin probe force microscopy further confirms that surface potential of the MoO3:pentacene film can be modulated by an external electric field. It is shown for the first time that a dipole of controllable direction can be set up inside a CTC layer by pre-biasing. This concept is further tested by incorporating the CTC layer in organic photovoltaic (OPV) devices. It was demonstrated that by pre-biasing the OPV devices in different directions, their open circuit voltages (Voc) can be significantly tuned via the built-in potentials.
Collapse
Affiliation(s)
- Dong Shen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chunqing Ma
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tsz-Wai Ng
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Hrisheekesh Thachoth Chandran
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ming-Fai Lo
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
45
|
Gao Z, Yan F, Qiu S, Han Y, Wang F, Tian W. Acceptor-induced cooperative supramolecular co-assembly with emissive charge-transfer for advanced supramolecular encryption. Chem Commun (Camb) 2020; 56:9214-9217. [PMID: 32662795 DOI: 10.1039/d0cc03901b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel acceptor-induced cooperative supramolecular co-assembly based on a dendritic electron donor and 1,2,4,5-tetracyanobenzene acceptor has been successfully developed. The resulting co-assembly is capable of displaying emissive charge transfer properties and intriguing vapo-fluorochromic behaviors, which can be used for supramolecular encryption applications with reversible authentication.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | | | | | | | | | | |
Collapse
|
46
|
Schlesinger I, Powers-Riggs NE, Logsdon JL, Qi Y, Miller SA, Tempelaar R, Young RM, Wasielewski MR. Charge-transfer biexciton annihilation in a donor-acceptor co-crystal yields high-energy long-lived charge carriers. Chem Sci 2020; 11:9532-9541. [PMID: 34094218 PMCID: PMC8162030 DOI: 10.1039/d0sc03301d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Organic donor-acceptor (D-A) co-crystals have attracted much interest due to their important optical and electronic properties. Co-crystals having ⋯DADA⋯ π-stacked morphologies are especially interesting because photoexcitation produces a charge-transfer (CT) exciton, D˙+-A˙-, between adjacent D-A molecules. Although several studies have reported on the steady-state optical properties of this type of CT exciton, very few have measured the dynamics of its formation and decay in a single D-A co-crystal. We have co-crystallized a peri-xanthenoxanthene (PXX) donor with a N,N-bis(3-pentyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide) (Ph4PDI) acceptor to give an orthorhombic PXX-Ph4PDI ⋯DADA⋯ π-stacked co-crystal with a CT transition dipole moment that is perpendicular to the transition moments for S n ← S0 excitation of PXX and Ph4PDI. Using polarized, broadband, femtosecond pump-probe microscopy, we have determined that selective photoexcitation of Ph4PDI in the single co-crystal results in CT exciton formation within the 300 fs instrument response time. At early times (0.3 ≤ t ≤ 500 ps), the CT excitons decay with a t -1/2 dependence, which is attributed to CT biexciton annihilation within the one-dimensional ⋯DADA⋯ π-stacks producing high-energy, long-lived (>8 ns) electron-hole pairs in the crystal. These energetic charge carriers may prove useful in applications ranging from photovoltaics and opto-electronics to photocatalysis.
Collapse
Affiliation(s)
- Itai Schlesinger
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Natalia E Powers-Riggs
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Jenna L Logsdon
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Yue Qi
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Stephen A Miller
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Roel Tempelaar
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| |
Collapse
|
47
|
Wang Z, Yu F, Chen W, Wang J, Liu J, Yao C, Zhao J, Dong H, Hu W, Zhang Q. Rational Control of Charge Transfer Excitons Toward High‐Contrast Reversible Mechanoresponsive Luminescent Switching. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zongrui Wang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Fei Yu
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Wangqiao Chen
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Wang
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Jinyu Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changjiang Yao
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Zhao
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University, and Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- Department of Materials Science and Engineering City University of Hong Kong Kowloon, Hong Kong SAR China
| |
Collapse
|
48
|
Wang Z, Yu F, Chen W, Wang J, Liu J, Yao C, Zhao J, Dong H, Hu W, Zhang Q. Rational Control of Charge Transfer Excitons Toward High‐Contrast Reversible Mechanoresponsive Luminescent Switching. Angew Chem Int Ed Engl 2020; 59:17580-17586. [DOI: 10.1002/anie.202005933] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Zongrui Wang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Fei Yu
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Wangqiao Chen
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Wang
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Jinyu Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changjiang Yao
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Zhao
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University, and Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- Department of Materials Science and Engineering City University of Hong Kong Kowloon, Hong Kong SAR China
| |
Collapse
|
49
|
Sonoda Y, Tohnai N, Shimoi Y. Crystal Structures and Fluorescence Spectroscopic Properties of a Series of α,ω-Di(4-pyridyl)polyenes: Effect of Aggregation-Induced Emission. Chempluschem 2020; 85:1968-1980. [PMID: 32743941 DOI: 10.1002/cplu.202000285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/10/2020] [Indexed: 12/16/2022]
Abstract
Crystal structures and fluorescence spectroscopic properties were investigated for a series of all-(E) α,ω-di(4-pyridyl)polyenes (1-5) with different number of double bonds (n). Molecules 1 and 2 (n=1, 2) in crystals are arranged to form partially π-overlapped structures, whereas those of 3-5 (n=3-5) are stacked in a herringbone fashion. All these molecules, the shorter polyenes in particular, are almost nonfluorescent in solution. In the solid state, 1 and 2 are highly emissive as pure organic solids [fluorescence quantum yields (φf )=0.3-0.5], while 3 and 4 are only weakly fluorescent (φf <0.05). The strongly n-dependent fluorescence properties can be attributed to the largely different molecular arrangements in the crystals. Although 5 is nonfluorescent in the solid state, we observe a very clear structure-property relationship in 1-4. Compounds 1 and 2 become much more emissive in the solid state than in solution as a result of the aggregation-induced emission (AIE) effect.
Collapse
Affiliation(s)
- Yoriko Sonoda
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Yukihiro Shimoi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba, Ibaraki, 305-8568, Japan
| |
Collapse
|
50
|
Feng X, Sun Z, Pei K, Han W, Wang F, Luo P, Su J, Zuo N, Liu G, Li H, Zhai T. 2D Inorganic Bimolecular Crystals with Strong In-Plane Anisotropy for Second-Order Nonlinear Optics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003146. [PMID: 32589323 DOI: 10.1002/adma.202003146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Indexed: 05/07/2023]
Abstract
2D inorganic bimolecular crystals, consisting of two different inorganic molecules, are expected to possess novel physical and chemical properties due to the synergistic effect of the individual components. However, 2D inorganic bimolecular crystals remain unexploited because of the difficulties in preparation arising from non-typical layered structures and intricate intermolecular interactions. Here, the synthesis of 2D inorganic bimolecular crystal SbI3 ·3S8 nanobelts via a facile vertical microspacing sublimation strategy is reported. The as-synthesized SbI3 ·3S8 nanobelts exhibit strong in-plane anisotropy of phonon vibrations and intramolecular vibrations as well as show anisotropic light absorption with a high dichroism ratio of 3.9. Furthermore, it is revealed that the second harmonic generation intensity of SbI3 ·3S8 nanobelts is highly dependent on the excitation wavelength and crystallographic orientation. This work can inspire the growth of more 2D inorganic bimolecular crystals and excite potential applications for bimolecular optoelectronic devices.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Ke Pei
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Wei Han
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Fakun Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Peng Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jianwei Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Nian Zuo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Guiheng Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|