1
|
Zhang X, Chen Q, Bai X, Zhao YL, Li JR. Achieving Record C 2H 2 Packing Density for Highly Efficient C 2H 2/C 2H 4 Separation with a Metal-Organic Framework Prepared by a Scalable Synthesis in Water. Angew Chem Int Ed Engl 2024; 63:e202411744. [PMID: 39012658 DOI: 10.1002/anie.202411744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/17/2024]
Abstract
Adsorptive C2H2/C2H4 separation using metal-organic frameworks (MOFs) has emerged as a promising technology for the removal of C2H2 (acetylene) impurity (1 %) from C2H4 (ethylene). The practical application of these materials involves the optimization of separation performance as well as development of scalable and green production protocols. Herein, we report the efficient C2H2/C2H4 separation in a MOF, Cu(OH)INA (INA: isonicotinate) which achieves a record C2H2 packing density of 351 mg cm-3 at 0.01 bar through high affinity towards C2H2. DFT (density functional theory) calculations reveal the synergistic binding mechanism through pore confinement and the oxygen sites in pore wall. The weakly basic nature of binding sites leads to a relatively low heat of adsorption (Qst) of approximately 36 kJ/mol, which is beneficial for material regeneration and thermal management. Furthermore, a scalable and environmentally friendly synthesis protocol with a high space-time yield of 544 kg m-3 day-1 has been developed without using any modulating agents. This material also demonstrates enduring separation performance for multiple cycles, maintaining its efficacy after exposure to water or air for three months.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qiancheng Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Xuefeng Bai
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Liang Y, Xie G, Liu KK, Jin M, Chen Y, Yang X, Guan ZJ, Xing H, Fang Y. Mechanochemical "Cage-on-MOF" Strategy for Enhancing Gas Adsorption and Separation through Aperture Matching. Angew Chem Int Ed Engl 2024:e202416884. [PMID: 39275956 DOI: 10.1002/anie.202416884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Post-modification of porous materials with molecular modulators has emerged as a well-established strategy for improving gas adsorption and separation. However, a notable challenge lies in maintaining porosity and the limited applicability of the current method. In this study, we employed the mechanochemical "Cage-on-MOF" strategy, utilizing porous coordination cages (PCCs) with intrinsic pores and apertures as surface modulators to improve the gas adsorption and separation properties of the parent MOFs. We demonstrated the fast and facile preparation of 28 distinct MOF@PCC composites by combining 7 MOFs with 4 PCCs with varying aperture sizes and exposed functional groups through a mechanochemical reaction in 5 mins. Only the combinations of PCCs and MOFs with closely matched aperture sizes exhibited enhanced gas adsorption and separation performance. Specifically, MOF-808@PCC-4 exhibited a significantly increased C2H2 uptake (+64 %) and a longer CO2/C2H2 separation retention time (+40 %). MIL-101@PCC-4 achieved a substantial C2H2 adsorption capacity of 6.11 mmol/g. This work not only highlights the broad applicability of the mechanochemical "Cage-on-MOF" strategy for the functionalization of a wide range of MOFs but also establishes potential design principles for the development of hybrid porous materials with enhanced gas adsorption and separation capabilities, along with promising applications in catalysis and intracellular delivery.
Collapse
Affiliation(s)
- Yu Liang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Gongfu Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Kang-Kai Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Meng Jin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Yuanyuan Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xiaoxin Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zong-Jie Guan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Hang Xing
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yu Fang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
3
|
Li D, Gao MY, Deng CH, Li GB, Qin SJ, Yang QY, Song BQ. Cross-Linking CdSO 4-Type Nets with Hexafluorosilicate Anions to Form an Ultramicroporous Material for Efficient C 2H 2/CO 2 and C 2H 2/C 2H 4 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402523. [PMID: 38747010 DOI: 10.1002/smll.202402523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Indexed: 10/04/2024]
Abstract
A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4'-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF6 2- and F- anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol-1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF6 2- anion and coordinated F- anion.
Collapse
Affiliation(s)
- Dan Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Mei-Yan Gao
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Guo-Bi Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Shao-Jie Qin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bai-Qiao Song
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
4
|
Ma B, Hu P, Zou L, Zhu Q, Zhang L, Ishikawa S, Ueda W, Li Y, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultrahigh Porosity for High-temperature and High-humidity Alkyne/Alkene Separation. Angew Chem Int Ed Engl 2024; 63:e202406374. [PMID: 38627207 DOI: 10.1002/anie.202406374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Zeolitic octahedral metal oxide is a newly synthesized all-inorganic zeolitic material and has been used for adsorption, separation, and catalysis. Herein, a new zeolitic octahedral metal oxide was synthesized and characterized. The porous framework was established through the assembly of [P2Mo13O50] clusters with PO4 linkers. Guest molecules occupied the framework, which could be removed through heat treatment, thereby opening the micropores. The pore characteristics were controlled by the cations within the micropore, enabling the adjustment of the interactions with alkynes and alkenes. This resulted in good separation performance of ethylene/acetylene and propylene/propyne even under high temperature and humidity conditions. The high stability of the material enabled the efficient recovery and reuse without discernible loss in the separation performance. Due to the relatively weak interaction between the adsorbed alkyne and the framework, the adsorbent facilitated the recovery of a highly pure alkyne. This feature enhances the practical applicability of the material in various industrial processes.
Collapse
Affiliation(s)
- Baokai Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Panpan Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Liangcheng Zou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Qianqian Zhu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Lifeng Zhang
- Zhejiang Hymater New Materials Co., Ltd., Ningbo, Zhejiang, 315034, P. R. China
| | - Satoshi Ishikawa
- Faculty of Engineering, Kanagawa University Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan
| | - Wataru Ueda
- Faculty of Engineering, Kanagawa University Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
5
|
Sikdar N, Laha S, Jena R, Dey A, Rahimi FA, Maji TK. An adsorbate biased dynamic 3D porous framework for inverse CO 2 sieving over C 2H 2. Chem Sci 2024; 15:7698-7706. [PMID: 38784756 PMCID: PMC11110155 DOI: 10.1039/d3sc06611h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/07/2024] [Indexed: 05/25/2024] Open
Abstract
Separating carbon dioxide (CO2) from acetylene (C2H2) is one of the most critical and complex industrial separations due to similarities in physicochemical properties and molecular dimensions. Herein, we report a novel Ni-based three-dimensional framework {[Ni4(μ3-OH)2(μ2-OH2)2(1,4-ndc)3](3H2O)}n (1,4-ndc = 1,4-naphthalenedicarboxylate) with a one-dimensional pore channel (3.05 × 3.57 Å2), that perfectly matches with the molecular size of CO2 and C2H2. The dehydrated framework shows structural transformation, decorated with an unsaturated Ni(ii) centre and pendant oxygen atoms. The dynamic nature of the framework is evident by displaying a multistep gate opening type CO2 adsorption at 195, 273, and 298 K, but not for C2H2. The real time breakthrough gas separation experiments reveal a rarely attempted inverse CO2 selectivity over C2H2, attributed to open metal sites with a perfect pore aperture. This is supported by crystallographic analysis, in situ spectroscopic inspection, and selectivity approximations. In situ DRIFTS measurements and DFT-based theoretical calculations confirm CO2 binding sites are coordinatively unsaturated Ni(ii) and carboxylate oxygen atoms, and highlight the influence of multiple adsorption sites.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Subhajit Laha
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Rohan Jena
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Anupam Dey
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India +91-80-2208-2766 +91-80-2208-2826
| |
Collapse
|
6
|
Zhang L, Lang F, Xi XJ, Yin S, Pang J, Zheng W, Bu XH. A Highly Stable Microporous Calcium-Based MOF for C 2H 2/CO 2 Separation with Low Regenerative Energy. Inorg Chem 2024; 63:8329-8335. [PMID: 38648287 DOI: 10.1021/acs.inorgchem.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Most of the porous materials used for acetylene/carbon dioxide separation have the problems of poor stability and high energy requirements for regeneration, which significantly hinder their practical application in industries. Here, we report a novel calcium-based metal-organic framework (NKM-123) with excellent chemical stability against water, acids, and bases. Additionally, it has exceptional thermal stability, retaining its structural integrity at temperatures up to 300 °C. This material exhibits promising potential for separating C2H2 and CO2 gases. Furthermore, it demonstrates an adsorption heat of 29.3 kJ mol-1 for C2H2, which is lower than that observed in the majority of MOFs used for C2H2/CO2 separations. The preferential adsorption of C2H2 over that of CO2 is confirmed by dispersion-corrected density functional theory (DFT-D) calculations. In addition, the potential of industrial feasibility of NKM-123 for C2H2/CO2 separation is confirmed by transient breakthrough tests. The robust cycle performance and structural stability of NKM-123 during multiple breakthrough tests show great potential in the industrial separation of light hydrocarbons.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Xiao-Juan Xi
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shunxian Yin
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Wenjun Zheng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xian-He Bu
- College of Chemistry, Nankai University, Tianjin 300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Xing B, Yang SQ, Zhang Q, Hu TL. A microporous bismuth-based MOF for efficient separation of acetylene from carbon dioxide. Dalton Trans 2024; 53:6993-6999. [PMID: 38563111 DOI: 10.1039/d4dt00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The separation of acetylene from carbon dioxide is challenging due to their almost identical molecular sizes and volatilities. Metal-organic frameworks (MOFs) in general are strong candidates for the separation of gas mixtures owing to the presence of functional pore surfaces that can selectively capture specific target molecules. Herein, we report a stable and easily synthesized bismuth-based MOF, Bi-BTC, which can achieve the separation of acetylene and carbon dioxide. We performed a detailed analysis of the sorption properties of the Bi-MOF. Bi-BTC shows good adsorption capacities for C2H2 with a capacity of 53.8 cm3 g-1 at 298 K and 1.0 bar, and C2H2/CO2 selectivity of 5.14/7.69 at 298 K and 1.0/0.1 bar. IAST selectivity calculations indicate that Bi-BTC possesses good separation capacity, and dynamic breakthrough experiments were performed to prove the separation of C2H2 and CO2. Bi-MOFs as a group of relatively less studied types of MOFs have interesting adsorption characteristics, and this study on Bi-based MOF will enrich three-dimensional Bi-MOF adsorbents for gas adsorption and separation applications.
Collapse
Affiliation(s)
- Bo Xing
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Shan-Qing Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Zheng M, Xue W, Yan T, Jiang Z, Fang Z, Huang H, Zhong C. Fluorinated MOF-Based Hexafluoropropylene Nanotrap for Highly Efficient Purification of Octafluoropropane Electronic Specialty Gas. Angew Chem Int Ed Engl 2024; 63:e202401770. [PMID: 38361043 DOI: 10.1002/anie.202401770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
High-purity octafluoropropane (C3F8) electronic specialty gas is a key chemical raw material in semiconductor and integrated circuit manufacturing industry, while selective removal of hexafluoropropylene (C3F6) impurity for C3F8 purification is essential but a challenging task. Here we report a fluorinated cage-like MOF Zn-bzc-CF3 (bzc=5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid) for C3F6/C3F8 separation. The incorporation of -CF3 groups not only provides suitable pore aperture size for highly efficient size-exclusive C3F6/C3F8 separation, but also creates hydrophobic microenvironments, endowing Zn-bz-CF3 high chemical stability. Remarkably, Zn-bzc-CF3 exhibits high C3F6 adsorption capacity while excluding C3F8, achieving ideal molecular-sieving C3F6/C3F8 separation. Breakthrough experiments show that Zn-bzc-CF3 can efficiently separate C3F6/C3F8 mixture and high-purity C3F8 (99.9 %) can be obtained.
Collapse
Affiliation(s)
- Mingze Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes., Tianjin, 300387, P. R. China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes., Tianjin, 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Tongan Yan
- State Key Laboratory of Separation Membranes and Membrane Processes., Tianjin, 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Zefeng Jiang
- State Key Laboratory of Separation Membranes and Membrane Processes., Tianjin, 300387, P. R. China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhi Fang
- State Key Laboratory of Separation Membranes and Membrane Processes., Tianjin, 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes., Tianjin, 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes., Tianjin, 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
9
|
Lin H, Yang Y, Hsu YC, Zhang J, Welton C, Afolabi I, Loo M, Zhou HC. Metal-Organic Frameworks for Water Harvesting and Concurrent Carbon Capture: A Review for Hygroscopic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209073. [PMID: 36693232 DOI: 10.1002/adma.202209073] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
As water scarcity becomes a pending global issue, hygroscopic materials prove a significant solution. Thus, there is a good cause following the structure-performance relationship to review the recent development of hygroscopic materials and provide inspirational insight into creative materials. Herein, traditional hygroscopic materials, crystalline frameworks, polymers, and composite materials are reviewed. The similarity in working conditions of water harvesting and carbon capture makes simultaneously addressing water shortages and reduction of greenhouse effects possible. Concurrent water harvesting and carbon capture is likely to become a future challenge. Therefore, an emphasis is laid on metal-organic frameworks (MOFs) for their excellent performance in water and CO2 adsorption, and representative role of micro- and mesoporous materials. Herein, the water adsorption mechanisms of MOFs are summarized, followed by a review of MOF's water stability, with a highlight on the emerging machine learning (ML) technique to predict MOF water stability and water uptake. Recent advances in the mechanistic elaboration of moisture's effects on CO2 adsorption are reviewed. This review summarizes recent advances in water-harvesting porous materials with special attention on MOFs and expects to direct researchers' attention into the topic of concurrent water harvesting and carbon capture as a future challenge.
Collapse
Affiliation(s)
- Hengyu Lin
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Welton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Ibukun Afolabi
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Marshal Loo
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
10
|
Zhang M, He X, Chen M, Zhao H, Wang Y, Jiang J, Liu P, Dang R, Tang Y, Wang M, Sun T, Qin G, Wang S, Cui H. Expanding MOF with Unexpanded Channel via Ketone Decorated Ligand for Ethylene Purification and Stability Enhancement. Inorg Chem 2023. [PMID: 37988594 DOI: 10.1021/acs.inorgchem.3c02221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The concept of an expanding MOF with unexpanded channel size was realized in MOF NTUniv-61 by the utilization of a ketone-functional-group-decorated semirigid ligand and pillar-layer platform. After this unusual expansion, the preferential C2H6 adsorption was preserved via the unchanged pore size, and the functional group was inserted into the MOF. Interestingly, the C2H2 uptake ability, C2H4 selective adsorption ability, and structural stability were obviously enhanced due to the incorporation of the ketone functional group, which were further verified by isosteric heats of adsorption (Qst), GCMC modeling, and breakthrough experiments.
Collapse
Affiliation(s)
| | - Xingge He
- Nantong University, Nantong, Jiangsu 226019, China
| | - Meng Chen
- Nantong University, Nantong, Jiangsu 226019, China
| | | | - Yu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | | | - Penghui Liu
- Nantong University, Nantong, Jiangsu 226019, China
| | - Rui Dang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Yanfeng Tang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Miao Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Tongming Sun
- Nantong University, Nantong, Jiangsu 226019, China
| | - Guoping Qin
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Su Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Huihui Cui
- Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
11
|
Li X, Cao C, Fan Z, Liu J, Pham T, Forrest KA, Niu Z. An aliphatic MOF with a molecular sieving effect for efficient C 2H 2/C 2H 4 separation. Dalton Trans 2023; 52:15338-15342. [PMID: 37395109 DOI: 10.1039/d3dt01419c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A metal-organic framework, SDMOF-1, with rigid pores of about 3.4 Å, which is appropriate for accommodating C2H2 molecules, exhibits high C2H2 adsorption capacity and great separation capability of the C2H2/C2H4 mixture. This work provides a new method to design aliphatic MOFs with a molecular sieving effect to realize efficient gas separation.
Collapse
Affiliation(s)
- Xianzhen Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Chen Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Ziwen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jianfa Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Tony Pham
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205A, Tampa, Florida 33620-5250, USA
| | - Katherine A Forrest
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205A, Tampa, Florida 33620-5250, USA
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Zhang XY, Shi WJ, Wang GD, Hou L, Wang YY. One Co-MOF with F Active Sites for Separation of C 2H 2 from CO 2, C 2H 4, and CH 4. Inorg Chem 2023; 62:16574-16581. [PMID: 37753782 DOI: 10.1021/acs.inorgchem.3c02486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Separating acetylene (C2H2) from other light hydrocarbons and carbon dioxide (CO2) mixtures under mild conditions poses significant challenges due to the remarkably similar properties between C2H2 and those gases. For the goal of C2H2 separation, a F-functionalized organic linker, H2F-PyIP = 2-fluorine-5-(4-pyridyl)isophthalic acid, was designed, and the corresponding metal-organic framework (MOF), {[Co2(F-PyIP)2DMF]·4H2O}n (1), was constructed. The MOF with open channels decorated by the active sites of the F groups revealed the exceptional C2H2 uptake and selectivity over CO2, C2H4, and CH4. The breakthrough experiments with different molar ratios of C2H2-C2H4, C2H2-CO2, and other gas mixtures further verified superior separation capacity of the MOF. In particular, the dynamic separation time intervals for gas mixtures (C2H2/CO2 = 1:1, 1:5, 1:10, and 1:20) fell in the range 30-44 min, highlighting the potential of the MOF for tackling the challenging C2H2/CO2 separation process.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
13
|
Yuan W, Wang W, Cen P, Zhou H, Liu X, Liu B. Engineering of Stable Anionic/Neutral MOFs with Zinc-Adeninate Building Units for Efficient C 2H 2/CO 2 Separation. Inorg Chem 2023; 62:15110-15117. [PMID: 37658040 DOI: 10.1021/acs.inorgchem.3c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Using adenine and metal ions to form secondary building units (SBUs), further connected by a highly symmetrical multicarboxylic linker to construct an amino-modified porous framework with high porosity, is an effective strategy. By regulating the deprotonation and hydrolysis capacity of the synthesized solvent, it is possible to obtain different charged frameworks. In this work, two stable anionic/neutral MOFs, (Et2NH2)[Zn3(TCPE)(adenine)2CH3COO]·DEF·3H2O (1) and [Zn3.5(adenine)(TCPE)1.5(DMA)(H2O)0.5]·2DMA·2H2O (2), have been synthesized based on zinc-adeninate building units and symmetric tetrakis(4-carboxyphenyl)ethylene (H4TCPE) in N,N-diethylformamide (DEF) and N,N-dimethylacetamide (DMA) reaction systems, respectively. 1 is an anionic framework based on 1D rod zinc-adeninate SBU, containing 1D rectangular (14.3 × 6.3 Å2) and square (14.3 × 14.3 Å2) channels. While 2 is a neutral framework built from isolated zinc-adeninate SBU, it contains hexagonal cages with a dimension of 5.5 Å in the structure. Both of them have high porosity (61.6% for 1 and 46.3% for 2) and high stability in a wide range of pH. 1 and 2 show high C2H2 adsorption capacity at 298 K (48.1 and 70.1 cm3 g-1, respectively) and selective capacity for C2H2/CO2 mixtures, which was confirmed by the breakthrough experiments. Furthermore, the interaction between the frameworks and gas molecules has also been explained by theoretical calculation. This work provides a good example of the design and regulation of porous structures for adsorption and separation functions.
Collapse
Affiliation(s)
- Wenke Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Weize Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Peipei Cen
- College of Public Health, College of Basic Medical Science, Ningxia Medical University, Yinchuan 750021, China
| | - Huifang Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Liu
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
14
|
Fu XP, Le XY, Xiao YH, Zeng DM, Zhou KA, Huang L, Wang YL, Liu QY. Cucurbituril-Shaped Cd 18(triazolate) 12 Unit-Based Metal-Organic Framework Exhibiting an C 2H 2/CO 2 Separation Ability. Inorg Chem 2023; 62:15031-15038. [PMID: 37661926 DOI: 10.1021/acs.inorgchem.3c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Herein, a metal-organic framework (MOF), {[(Me2NH2)4][Cd(H2O)6][Cd18(TrZ)12(TPD)15(DMF)6]}n (denoted as JXNU-18, TrZ = triazolate), constructed from the unique cucurbituril-shaped Cd18(TrZ)12 secondary building units bridged by 2,5-thiophenedicarboxylic (TPD2-) ligands, is presented. The formation of the cucurbituril-shaped Cd18(TrZ)12 unit is unprecedented, demonstrating the geometric compatibility of the organic linkers and the coordination configurations of the cadmium atoms. Each Cd18(TrZ)12 unit is connected to eight neighboring Cd18(TrZ)12 units through 30 TPD2- linkers, affording the three-dimensional structure of JXNU-18. More interesting is that JXNU-18 displays an efficient C2H2/CO2 separation ability, as revealed by the gas adsorption experiments and dynamic gas breakthrough experiments, which afford insights into the potential applications of JXNU-18 in gas separation. The tubular pores composed of two Cd18(TrZ)12 units bridged by six 2,5-thiophenedicarboxylic linkers provide the suitable pore space for C2H2 trapping, as unveiled by computational simulations.
Collapse
Affiliation(s)
- Xing-Ping Fu
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, P. R. China
| | - Xi-Ying Le
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yan-Hong Xiao
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Dong-Mei Zeng
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Ke-Ai Zhou
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Lian Huang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Qing-Yan Liu
- College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- Department of Ecological and Resources Engineering, Fujian Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, P. R. China
| |
Collapse
|
15
|
Zheng F, Chen R, Ding Z, Liu Y, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. Interlayer Symmetry Control in Flexible-Robust Layered Metal-Organic Frameworks for Highly Efficient C 2H 2/CO 2 Separation. J Am Chem Soc 2023; 145:19903-19911. [PMID: 37661421 DOI: 10.1021/jacs.3c06138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Removal of the CO2 impurities from C2H2/CO2 mixtures is an essential process to produce high-purity C2H2. Fabricating an adsorbent capable of discriminating these species, which have close kinetic diameters, is critical for developing advanced adsorption processes. Herein, we demonstrate a strategy to exploit the tunability of interlayer and intralayer spaces of two-dimensional (2D) layered metal-organic frameworks to achieve high performance for C2H2/CO2 separation. This indicates that interlayer symmetrical control can achieve more efficient packing of C2H2 into Ni(4-DPDS)2CrO4, with a high C2H2 capacity of 45.7 cm3·g-1 at 0.01 bar and a selectivity of 67.7 (298 K, 1 bar), which strikes a good balance between working capacity and separation selectivity compared to other isostructural Ni(4-DPDS)2MO4 (M = Mo, W). Crystallographic studies and DFT-D calculations reveal that such a C2H2-selective adsorbent possesses strong binding interactions due to the tailored pore confinement provided by the angular anions and rich electronic environment. Experimental breakthrough results comprehensively demonstrate the efficient C2H2/CO2 separation performance of this unique material.
Collapse
Affiliation(s)
- Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zexiang Ding
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province 32400, P. R. China
| |
Collapse
|
16
|
Zhang Y, Sun W, Luan B, Li J, Luo D, Jiang Y, Wang L, Chen B. Topological Design of Unprecedented Metal-Organic Frameworks Featuring Multiple Anion Functionalities and Hierarchical Porosity for Benchmark Acetylene Separation. Angew Chem Int Ed Engl 2023; 62:e202309925. [PMID: 37458603 DOI: 10.1002/anie.202309925] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) or ethylene (C2 H4 ) is industrially important but still challenging so far. Herein, we developed two novel robust metal organic frameworks AlFSIX-Cu-TPBDA (ZNU-8) with znv topology and SIFSIX-Cu-TPBDA (ZNU-9) with wly topology for efficient capture of C2 H2 from CO2 and C2 H4 . Both ZNU-8 and ZNU-9 feature multiple anion functionalities and hierarchical porosity. Notably, ZNU-9 with more anionic binding sites and three distinct cages displays both an extremely large C2 H2 capacity (7.94 mmol/g) and a high C2 H2 /CO2 (10.3) or C2 H2 /C2 H4 (11.6) selectivity. The calculated capacity of C2 H2 per anion (4.94 mol/mol at 1 bar) is the highest among all the anion pillared metal organic frameworks. Theoretical calculation indicated that the strong cooperative hydrogen bonds exist between acetylene and the pillared SiF6 2- anions in the confined cavity, which is further confirmed by in situ IR spectra. The practical separation performance was explicitly demonstrated by dynamic breakthrough experiments with equimolar C2 H2 /CO2 mixtures and 1/99 C2 H2 /C2 H4 mixtures under various conditions with excellent recyclability and benchmark productivity of pure C2 H2 (5.13 mmol/g) or C2 H4 (48.57 mmol/g).
Collapse
Affiliation(s)
- Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Wanqi Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Binquan Luan
- IBM Thomas J. Watson Research, 10598, Yorktown Heights, NY, USA
| | - Jiahao Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, 510632, Guangzhou, P. R. China
| | - Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, China
| |
Collapse
|
17
|
Gu XW, Wu E, Wang JX, Wen HM, Chen B, Li B, Qian G. Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene. SCIENCE ADVANCES 2023; 9:eadh0135. [PMID: 37540740 PMCID: PMC10403210 DOI: 10.1126/sciadv.adh0135] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Porous physisorbents are attractive candidates for selective capture of trace gas or volatile compounds due to their low energy footprints. However, many physisorbents suffer from insufficient sorbate-sorbent interactions, resulting in low uptake or inadequate selectivity when gases are present at trace levels. Here, we report a strategy of programmed fluorine binding engineering in anion-pillared metal-organic frameworks to maximize C2H2 binding affinity for benchmark trace C2H2 capture from C2H4. A robust material (ZJU-300a) was elaborately designed to provide multiple-site fluorine binding model, resulting in an ultrastrong C2H2 binding affinity. ZJU-300a exhibits a record-high C2H2 uptake of 3.23 millimoles per gram (at 0.01 bar and 296 kelvin) and one of the highest C2H2/C2H4 selectivity (1672). The adsorption binding of C2H2 and C2H4 was visualized by gas-loaded ZJU-300a structures. The separation capacity was confirmed by breakthrough experiments for 1/99 C2H2/C2H4 mixtures, affording the maximal dynamic selectivity (264) and C2H4 productivity of 436.7 millimoles per gram.
Collapse
Affiliation(s)
- Xiao-Wen Gu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Enyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia-Xin Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Bin Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Su RH, Shi WJ, Zhang XY, Hou L, Wang YY. Cu-MOFs with Rich Open Metal and F Sites for Separation of C 2H 2 from CO 2 and CH 4. Inorg Chem 2023. [PMID: 37450355 DOI: 10.1021/acs.inorgchem.3c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Herein, we used the 4-fluoro-[1,1'-biphenyl]-3,4',5-tricarboxylic acid (H3fbptc) ligand to design and construct a new metal-organic framework (MOF), [Cu3(fbptc)2(H2O)3]·3NMP (1), which possesses rich accessible metal sites and F functional groups in the porous walls and shows high uptake for C2H2 (119.3 cm3 g-1) and significant adsorption selectivity for C2H2 over CH4 (14.4) and CO2 (3.6) at 298 K and 100 kPa. In particular, for the gas mixtures of C2H2-CH4 and C2H2-CO2, the MOF reveals large breakthrough time ratios (C2H2/CH4 = 13, C2H2/CO2 = 5.9), which are particularly prominent in dynamic breakthrough experiments, also confirming the excellent potential for the practical separation of C2H2 from two-component mixtures (C2H2-CH4 and C2H2-CO2) and even three-component mixtures (C2H2-CO2-CH4).
Collapse
Affiliation(s)
- Run-Han Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
19
|
Zeng S, Wang T, Zhang Y, Elmegreen BG, Luan B, Gu Z. Highly Efficient CO 2/C 2H 2 Separation by Porous Graphene via Quadrupole Gating Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37320857 DOI: 10.1021/acs.langmuir.3c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Acetylene (C2H2) is an important and widely used raw material in various industries (such as petrochemical). Generally, a product yield is proportional to the purity of C2H2; however, C2H2 from a typical industrial gas-production process is commonly contaminated by CO2. So far, the achievement of high-purity C2H2 separated from a CO2/C2H2 mixture is still challenging due to their very close molecular dimensions and boiling temperatures. Taking advantage of their quadrupoles with opposite signs, here, we show that the graphene membrane embedded with crown ether nanopores can achieve an unprecedented separation efficiency of CO2/C2H2. Combining the molecular dynamics simulation and the density functional theory (DFT) approaches, we discovered that the electrostatic gas-pore interaction favorably allows the fast transport of CO2 through crown ether nanopores while completely prohibiting C2H2 transport, which yields a remarkable permeation selectivity. In particular, the utilized crown ether pore is capable of allowing the individual transport of CO2 while completely rejecting the passage of C2H2, independent of the applied pressures, fed gases ratios, and exerted temperatures, featuring the superiority and robustness of the crown pore in CO2/C2H2 separation. Further, DFT and PMF calculations demonstrate that the transport of CO2 through the crown pore is energetically more favorable than the transport of C2H2. Our findings reveal the potential application of graphene crown pore for CO2 separation with outstanding performance.
Collapse
Affiliation(s)
- Shuming Zeng
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tian Wang
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bruce G Elmegreen
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
20
|
Yang SQ, Krishna R, Chen H, Li L, Zhou L, An YF, Zhang FY, Zhang Q, Zhang YH, Li W, Hu TL, Bu XH. Immobilization of the Polar Group into an Ultramicroporous Metal-Organic Framework Enabling Benchmark Inverse Selective CO 2/C 2H 2 Separation with Record C 2H 2 Production. J Am Chem Soc 2023. [PMID: 37311069 DOI: 10.1021/jacs.3c03265] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One-step harvest of high-purity light hydrocarbons without the desorption process represents an advanced and highly efficient strategy for the purification of target substances. The separation and purification of acetylene (C2H2) from carbon dioxide (CO2) by CO2-selective adsorbents are urgently demanded yet are very challenging owing to their similar physicochemical properties. Here, we employ the pore chemistry strategy to adjust the pore environment by immobilizing polar groups into an ultramicroporous metal-organic framework (MOF), achieving one-step manufacture of high-purity C2H2 from CO2/C2H2 mixtures. Embedding methyl groups into prototype stable MOF (Zn-ox-trz) not only changes the pore environment but also improves the discrimination of guest molecules. The methyl-functionalized Zn-ox-mtz thus exhibits the benchmark reverse CO2/C2H2 uptake ratio of 12.6 (123.32/9.79 cm3 cm-3) and an exceptionally high equimolar CO2/C2H2 selectivity of 1064.9 at ambient conditions. Molecular simulations reveal that the synergetic effect of pore confinement and surfaces decorated with methyl groups provides high recognition of CO2 molecules through multiple van der Waals interactions. The column breakthrough experiments suggest that Zn-ox-mtz dramatically achieved the one-step purification capacity of C2H2 from the CO2/C2H2 mixture with a record C2H2 productivity of 2091 mmol kg-1, surpassing all of the CO2-selective adsorbents reported so far. In addition, Zn-ox-mtz exhibits excellent chemical stability under different pH values of aqueous solutions (pH = 1-12). Moreover, the highly stable framework and excellent inverse selective CO2/C2H2 separation performance showcase its promising application as a C2H2 splitter for industrial manufacture. This work paves the way to developing reverse-selective adsorbents for the challenging gas separation process.
Collapse
Affiliation(s)
- Shan-Qing Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Rajamani Krishna
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hongwei Chen
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Lei Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yi-Feng An
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Fei-Yang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Ying-Hui Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Wei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
21
|
Zhang M, Zhao H, Wang Y, Jiang J, Chen M, He X, Liu P, Dang R, Cui H, Wang M, Sun T, Qin G, Tang Y, Wang S. Fine-Tuning MOFs with Amino Group for One-Step Ethylene Purification from the C2 Hydrocarbon Mixture. Inorg Chem 2023; 62:8428-8434. [PMID: 37200597 DOI: 10.1021/acs.inorgchem.3c01056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Due to the similar kinetic diameters of C2H2, C2H4, and C2H6, one-step purification of C2H4 from a ternary C2H2/C2H4/C2H6 mixture by adsorption separation is still a challenge. Based on a C2H6-trapping platform and crystal engineering strategy, the N atom and amino group were introduced into NTUniv-58 and NTUniv-59, respectively. Gas adsorption testing of NTUniv-58 showed that both the C2H2 and C2H4 uptake capacities and the C2H2/C2H4 separation ability were boosted compared with the original platform. However, the C2H4 uptake value exceeds the C2H6 adsorption data. For NTUniv-59, the C2H2 uptake at low pressure increased and the C2H4 uptake decreased; thus, the C2H2/C2H4 selectivity was enhanced and the one-step purification of C2H4 from a ternary C2H2/C2H4/C2H6 mixture was realized, which was supported by the enthalpy of adsorption (Qst) and breakthrough testing. Grand canonical monte carlo (GCMC) simulation indicated that the preference for C2H2 over C2H4 originates from multiple hydrogen-bonding interactions between amino groups and C2H2 molecules.
Collapse
Affiliation(s)
| | - Haitian Zhao
- Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | | | - Meng Chen
- Nantong University, Nantong, Jiangsu 226019, China
| | - Xingge He
- Nantong University, Nantong, Jiangsu 226019, China
| | - Penghui Liu
- Nantong University, Nantong, Jiangsu 226019, China
| | - Rui Dang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Huihui Cui
- Nantong University, Nantong, Jiangsu 226019, China
| | - Miao Wang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Tongming Sun
- Nantong University, Nantong, Jiangsu 226019, China
| | - Guoping Qin
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yanfeng Tang
- Nantong University, Nantong, Jiangsu 226019, China
| | - Su Wang
- Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
22
|
Metal-organic frameworks for C2H2/CO2 separation: Recent development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
23
|
Highly Selective Separation of C2H2/CO2 and C2H2/C2H4 in an N-Rich Cage-Based Microporous Metal-Organic Framework. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/4740672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The separation of acetylene (C2H2) from carbon dioxide (CO2) and the purification of ethylene (C2H4) from C2H2 are quite essential processes for the chemical industry. However, these processes are challenging due to their similar physical properties, including molecule sizes and boiling points. Herein, we report an N-rich cage-based microporous metal-organic framework (MOF), [Cd5(Tz)9](NO3) (termed as Cd-TZ, TZ stands for tetrazole), and its highly efficient separation of C2H2/CO2 and C2H2/C2H4. Single-component gas adsorption isotherms reveal that Cd-TZ exhibits high C2H2 adsorption capacity (3.10 mmol g-1 at 298 K and 1 bar). The N-rich cages in Cd-TZ can trap C2H2 with a higher isosteric heat of adsorption (40.8 kJ mol-1) than CO2 and C2H4 owing to the robust host-guest interactions between the noncoordinated N atoms and C2H2, which has been verified by molecular modeling studies. Cd-TZ shows a high IAST selectivity for C2H2/CO2 (8.3) and C2H2/C2H4 (13.3). The breakthrough simulations confirm the potential for separating C2H2/CO2 and the purification of C2H4 from C2H2.
Collapse
|
24
|
Wang JW, Fan SC, Li HP, Bu X, Xue YY, Zhai QG. De-Linker-Enabled Exceptional Volumetric Acetylene Storage Capacity and Benchmark C 2 H 2 /C 2 H 4 and C 2 H 2 /CO 2 Separations in Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202217839. [PMID: 36631412 DOI: 10.1002/anie.202217839] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
An ideal adsorbent for separation requires optimizing both storage capacity and selectivity, but maximizing both or achieving a desired balance remain challenging. Herein, a de-linker strategy is proposed to address this issue for metal-organic frameworks (MOFs). Broadly speaking, the de-linker idea targets a class of materials that may be viewed as being intermediate between zeolites and MOFs. Its feasibility is shown here by a series of ultra-microporous MOFs (SNNU-98-M, M=Mn, Co, Ni, Zn). SNNU-98 exhibit high volumetric C2 H2 uptake capacity under low and ambient pressures (175.3 cm3 cm-3 @ 0.1 bar, 222.9 cm3 cm-3 @ 1 bar, 298 K), as well as extraordinary selectivity (2405.7 for C2 H2 /C2 H4 , 22.7 for C2 H2 /CO2 ). Remarkably, SNNU-98-Mn can efficiently separate C2 H2 from C2 H2 /CO2 and C2 H2 /C2 H4 mixtures with a benchmark C2 H2 /C2 H4 (1/99) breakthrough time of 2325 min g-1 , and produce 99.9999 % C2 H4 with a productivity up to 64.6 mmol g-1 , surpassing values of reported MOF adsorbents.
Collapse
Affiliation(s)
- Jia-Wen Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai-Peng Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA-90840, USA
| | - Ying-Ying Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| |
Collapse
|
25
|
Zheng F, Chen R, Liu Y, Yang Q, Zhang Z, Yang Y, Ren Q, Bao Z. Strengthening Intraframework Interaction within Flexible MOFs Demonstrates Simultaneous Sieving Acetylene from Ethylene and Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207127. [PMID: 36703621 PMCID: PMC10037686 DOI: 10.1002/advs.202207127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Efficient separation of acetylene (C2 H2 )/ethylene (C2 H4 ) and acetylene/carbon dioxide (CO2 ) by adsorption is an industrially promising process, but adsorbents capable of simultaneously capturing trace acetylene from ethylene and carbon dioxide are scarce. Herein, a gate-opening effect on three isomorphous flexible metal-organic frameworks (MOFs) named Co(4-DPDS)2 MO4 (M = Cr, Mo, W; 4-DPDS = 4,4-dipyridyldisulfide) is modulated by anion pillars substitution. The shortest CrO4 2- strengthens intraframework hydrogen bonding and thus blocks structural transformation after activation, striking a good balance among working capacity, separation selectivity, and trace impurity removal of flexible MOFs out of nearly C2 H2 /C2 H4 and C2 H2 /CO2 molecular sieving. The exceptional separation performance of Co(4-DPDS)2 CrO4 is confirmed by dynamic breakthrough experiments. It reveals the specific threshold pressures control in anion-pillared flexible materials enabled elimination of the impurity leakage to realize high purity products through precise control of the intraframework interaction. The adsorption mechanism and multimode structural transformation property are revealed by both calculations and crystallography studies. This work demonstrates the feasibility of modulating flexibility for controlling gate-opening effect, especially for some cases of significant aperture shrinkage after activation.
Collapse
Affiliation(s)
- Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| |
Collapse
|
26
|
Tian J, Chen Q, Jiang F, Yuan D, Hong M. Optimizing Acetylene Sorption through Induced-fit Transformations in a Chemically Stable Microporous Framework. Angew Chem Int Ed Engl 2023; 62:e202215253. [PMID: 36524616 DOI: 10.1002/anie.202215253] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Developing practical storage technologies for acetylene (C2 H2 ) is important but challenging because C2 H2 is useful but explosive. Here, a novel metal-organic framework (MOF) (FJI-H36) with adaptive channels was prepared. It can effectively capture C2 H2 (159.9 cm3 cm-3 ) at 1 atm and 298 K, possessing a record-high storage density (561 g L-1 ) but a very low adsorption enthalpy (28 kJ mol-1 ) among all the reported MOFs. Structural analyses show that such excellent adsorption performance comes from the synergism of active sites, flexible framework, and matched pores; where the adsorbed-C2 H2 can drive FJI-H36 to undergo induced-fit transformations step by step, including deformation/reconstruction of channels, contraction of pores, and transformation of active sites, finally leading to dense packing of C2 H2 . Moreover, FJI-H36 has excellent chemical stability and recyclability, and can be prepared on a large scale, enabling it as a practical adsorbent for C2 H2 . This will provide a useful strategy for developing practical and efficient adsorbents for C2 H2 storage.
Collapse
Affiliation(s)
- Jindou Tian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
27
|
Xiao Y, Hong AN, Chen Y, Yang H, Wang Y, Bu X, Feng P. Developing Water-Stable Pore-Partitioned Metal-Organic Frameworks with Multi-Level Symmetry for High-Performance Sorption Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205119. [PMID: 36440683 DOI: 10.1002/smll.202205119] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
A new perspective is proposed in the design of pore-space-partitioned MOFs that is focused on ligand symmetry properties sub-divided here into three hierarchical levels: 1) overall ligand, 2) ligand substructure such as backbone or core, and 3) the substituent groups. Different combinations of the above symmetry properties exist. Given the close correlation between nature of chemical moiety and its symmetry, such a unique perspective into ligand symmetry and sub-symmetry in MOF design translates into the influences on MOF properties. Five new MOFs have been prepared that exhibit excellent hydrothermal stability and high-performance adsorption properties with potential applications such as C3 H6 /C2 H4 and C2 H2 /CO2 selective adsorption. The combination of high stability with high benzene/cyclohexane selectivity of ≈13.7 is also of particular interest.
Collapse
Affiliation(s)
- Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Anh N Hong
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Huajun Yang
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - Yanxiang Wang
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| |
Collapse
|
28
|
Ma LN, Wang ZH, Zhang L, Hou L, Wang YY, Zhu Z. Extraordinary Separation of Acetylene-Containing Mixtures in a Honeycomb Calcium-Based MOF with Multiple Active Sites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2971-2978. [PMID: 36600613 DOI: 10.1021/acsami.2c19321] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Acetylene (C2H2) separation from multicomponent mixtures is vitally important but industrially challenging for the collection of high-purity C2H2. To address this requirement, the reaction between the alkaline-earth Ca2+ ions with a dicarboxylate-diazolate linker, 4,6-di(1H-tetrazol-5-yl)isophthalic acid (H4dtzip), gave rise to a new metal-organic framework (MOF) material [Ca(dtzip)0.5H2O]·2H2O (1). The material presents unique regular tubular channels based on threefolded helical rod-like secondary building units with rich open metal sites and exposed organic hydrogen-bonding N/O acceptors that enhance the interactions with C2H2 molecules, endowing significant selectivity for C2H2 over C2H4 (5.4), C2H6 (5.6), CH4 (30.0), and CO2 (7.7) at 298 K and 100 kPa. Column breakthrough experiments confirmed the extraordinary C2H2 separation performance of the material with the separation time intervals in the range of 18-24 min g-1 for binary (C2H2-C2H4, C2H2-C2H6, C2H2-CO2, and C2H2-CH4) or ternary (C2H2-C2H4-C2H6 and C2H2-C2H4-CO2) gas mixtures under dynamic conditions.
Collapse
Affiliation(s)
- Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zi-Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Dutta S, More YD, Fajal S, Mandal W, Dam GK, Ghosh SK. Ionic metal-organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chem Commun (Camb) 2022; 58:13676-13698. [PMID: 36421063 DOI: 10.1039/d2cc05131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications. In the present review, we summarize the progress and future prospects of iMOFs both in terms of fundamental developments and potential applications. Furthermore, the design principles of ionic MOFs and their state-of-the-art ion exchange performances are discussed in detail and the future perspectives of these promising ionic materials are proposed.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
30
|
Jiang K, Gao Y, Zhang P, Lin S, Zhang L. A new perchlorate-based hybrid ultramicroporous material with rich bare oxygen atoms for high C2H2/CO2 separation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
MxCo3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Zeng H, Xie XJ, Wang Y, Luo D, Wei RJ, Lu W, Li D. Spatial disposition of square-planar mononuclear nodes in metal-organic frameworks for C 2H 2/CO 2 separation. Chem Sci 2022; 13:12876-12882. [PMID: 36519039 PMCID: PMC9645388 DOI: 10.1039/d2sc04324f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 01/25/2024] Open
Abstract
The efficient separation of acetylene (C2H2) from its mixture with carbon dioxide (CO2) remains a challenging industrial process due to their close molecular sizes/shapes and similar physical properties. Herein, we report a microporous metal-organic framework (JNU-4) with square-planar mononuclear copper(ii) centers as nodes and tetrahedral organic linkers as spacers, allowing for two accessible binding sites per metal center for C2H2 molecules. Consequently, JNU-4 exhibits excellent C2H2 adsorption capacity, particularly at 298 K and 0.5 bar (200 cm3 g-1). Detailed computational studies confirm that C2H2 molecules are indeed predominantly located in close proximity to the square-planar copper centers on both sides. Breakthrough experiments demonstrate that JNU-4 is capable of efficiently separating C2H2 from a 50 : 50 C2H2/CO2 mixture over a broad range of flow rates, affording by far the largest C2H2 capture capacity (160 cm3 g-1) and fuel-grade C2H2 production (105 cm3 g-1, ≥98% purity) upon desorption. Simply by maximizing accessible open metal sites on mononuclear metal centers, this work presents a promising strategy to improve the C2H2 adsorption capacity and address the challenging C2H2/CO2 separation.
Collapse
Affiliation(s)
- Heng Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Xiao-Jing Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Ying Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
33
|
Pal SC, Ahmed R, Manna AK, Das MC. Potential of a pH-Stable Microporous MOF for C 2H 2/C 2H 4 and C 2H 2/CO 2 Gas Separations under Ambient Conditions. Inorg Chem 2022; 61:18293-18302. [DOI: 10.1021/acs.inorgchem.2c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, West Bengal, India
| | - Raka Ahmed
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati517619, Andhra Pradesh, India
| | - Arun K. Manna
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Tirupati517619, Andhra Pradesh, India
| | - Madhab C. Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, West Bengal, India
| |
Collapse
|
34
|
Yang H, Chen Y, Dang C, Hong AN, Feng P, Bu X. Optimization of Pore-Space-Partitioned Metal–Organic Frameworks Using the Bioisosteric Concept. J Am Chem Soc 2022; 144:20221-20226. [PMID: 36305830 PMCID: PMC9650692 DOI: 10.1021/jacs.2c09349] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Pore space partitioning (PSP) is
methodically suited
for dramatically
increasing the density of guest binding sites, leading to the partitioned
acs (pacs) platform capable of record-high uptake for CO2 and small hydrocarbons such as C2Hx. For gas separation, achieving high selectivity amid PSP-enabled
high uptake offers an enticing prospect. Here we aim for high selectivity
by introducing the bioisosteric (BIS) concept, a widely used drug
design strategy, into the realm of pore-space-partitioned MOFs. New
pacs materials have high C2H2/CO2 selectivity of up to 29, high C2H2 uptake
of up to 144 cm3/g (298 K, 1 atm), and high separation
potential of up to 5.3 mmol/g, leading to excellent experimental breakthrough
performance. These metrics, coupled with exceptional tunability, high
stability, and low regeneration energy, demonstrate the broad potential
of the BIS-PSP strategy.
Collapse
Affiliation(s)
- Huajun Yang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Candy Dang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Anh N. Hong
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| |
Collapse
|
35
|
Shao K, Wen H, Liang C, Xiao X, Gu X, Chen B, Qian G, Li B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal‐Organic Framework for Simultaneous High C
2
H
2
Storage and Separation. Angew Chem Int Ed Engl 2022; 61:e202211523. [DOI: 10.1002/anie.202211523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Shao
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Hui‐Min Wen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Cong‐Cong Liang
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiaoyan Xiao
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xiao‐Wen Gu
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio TX 78249-0698 USA
| | - Guodong Qian
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Bin Li
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
36
|
Ma H, Yang BB, Wang Z, Wu K, Zhang C. A three dimensional graphdiyne-like porous triptycene network for gas adsorption and separation. RSC Adv 2022; 12:28299-28305. [PMID: 36320518 PMCID: PMC9531253 DOI: 10.1039/d2ra04031j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Graphdiyne, an emerging carbon allotrope, has attracted many researchers devoted to the study of its synthesis and application. The utilization of graphdiyne in gas adsorption and separation has been predicted by computer simulation with many examples. In this work, the triangular basic unit of graphdiyne was introduced into a triptycene-based porous organic polymer to obtain a three dimensional graphdiyne-like porous triptycene network named G-PTN. With high surface area and a microporous structure, G-PTN exhibited convincing application potential for the storage of gas molecules, especially for the selective adsorption of acetylene over ethylene. Computational simulation proved the importance of the triptycene units and three dimensional structure to the selectivity, as well as the potential of graphdiyne units as selective binding sites, suggesting that through judicious design, new three-dimensional porous graphdiyne could be acquired with better gas adsorption and separation performance.
Collapse
Affiliation(s)
- Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and TechnologyWuhan430074China
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and TechnologyWuhan430074China
| | - Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and TechnologyWuhan430074China
| | - Kai Wu
- Technology R&D Center, Hubei Tobacco (Group) Co., LtdWuhan430070China
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
37
|
Ma B, Li D, Zhu Q, Li Y, Ueda W, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultra‐Microporosity for Inverse CO
2
/C
2
H
2
Separation at High Temperature and Humidity. Angew Chem Int Ed Engl 2022; 61:e202209121. [DOI: 10.1002/anie.202209121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Baokai Ma
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Denan Li
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Qianqian Zhu
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
- Zhejiang Hymater New Materials Co., Ltd. Ningbo Zhejiang, 315034 P. R. China
| | - Wataru Ueda
- Faculty of Engineering Kanagawa University Rokkakubashi Kanagawa-ku, Yokohama-shi Kanagawa, 221-8686 Japan
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang, 315211 P. R. China
| |
Collapse
|
38
|
Shao K, Wen HM, Liang CC, Xiao X, Gu XW, Chen B, Qian G, Li B. Engineering Supramolecular Binding Sites in a Chemically Stable Metal−Organic Framework for Simultaneous High C2H2 Storage and Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Shao
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Hui-Min Wen
- Zhejiang University of Technology College of Chemical Engineering CHINA
| | - Cong-Cong Liang
- ZHEJIANG UNIVERSITY School of Materials Science and Engineering CHINA
| | - Xiaoyan Xiao
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Xiao-Wen Gu
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Banglin Chen
- University of Texas at San Antonio Department of Chemistry One UTSA Circle 78249 San Antonio UNITED STATES
| | - Guodong Qian
- Zhejiang University School of Materials Science and Engineering CHINA
| | - Bin Li
- Zhejiang University School of Materials Science and Engineering CHINA
| |
Collapse
|
39
|
Liu L, Wu S, Li D, Li Y, Zhang H, Li L, Jin S, Yao Z. Partial Linker Substitution Strategy to Construct a Quaternary HKUST-like MOF for Efficient Acetylene Storage and Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36882-36889. [PMID: 35920596 DOI: 10.1021/acsami.2c10346] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multicomponent metal-organic frameworks (MOFs) have received much attention as emerging materials capable of precisely programing exquisite structures and specific functions. Here, we applied a partial linker substitution strategy to compile an HKUST-1-like quaternary MOF by introducing a bifunctional ligand into the well-known HKUST-1 structure. FUT-1, a new HKUST-like tbo topology MOF, was assembled with paddlewheel [Cu2(COO)4], triangular metallocycle pyrazole cluster Cu3(μ3-OH) (NN)3 building blocks, and two distinct linkers. FUT-1 exhibited good mechanical stability, water stability, and chemical stability (pH = 3-12) in aqueous solutions. Moreover, the porous environments created by this multicomponent primitive endow FUT-1 with high C2H2 storage and significantly selective separation performance of C2H2/CO2. Dynamic breakthrough experiments and ideal adsorbed solution theory calculations further demonstrate that FUT-1 can selectively capture C2H2 from C2H2/CO2 mixtures under ambient conditions. Based on grand canonical Monte Carlo simulations, the high C2H2 separation performance of FUT-1 is attributed to the π-complex formed between the C2H2 molecule and the trinuclear metallocycle clusters on the wall, which provides stronger affinity for C2H2 recognition than the CO2 molecule.
Collapse
Affiliation(s)
- Lizhen Liu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Susu Wu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Dandan Li
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, Fujian, P. R. China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Shaowei Jin
- National Supercomputing Center in Shenzhen, Shenzhen 518000, P. R. China
| | - Zizhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
40
|
Li Y, Hu J, Cui J, Wang Q, Xing H, Cui X. Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Ma B, Li D, Zhu Q, Li Y, Ueda W, Zhang Z. A Zeolitic Octahedral Metal Oxide with Ultra‐Microporosity for Inverse CO2/C2H2 Separation at High Temperature and Humidity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baokai Ma
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Denan Li
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Qianqian Zhu
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Yanshuo Li
- Ningbo University School of Materials Science and Chemical Engineering CHINA
| | - Wataru Ueda
- Kanagawa University: Kanagawa Daigaku Faculty of Engineering JAPAN
| | - Zhenxin Zhang
- Ningbo University School of Material Science and Chemical Engineering Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan. 315211 Ningbo CHINA
| |
Collapse
|
42
|
Chen J, Wu J, Zhuang G, Li B, Li J. Effect of Orbital-Symmetry Matching in a Metal-Organic Framework for Highly Efficient C 2H 2/C 2H 4 and C 2H 2/CO 2 Separations. Inorg Chem 2022; 61:10263-10266. [PMID: 35767466 DOI: 10.1021/acs.inorgchem.2c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The detailed mechanism of metal-organic-framework (MOF)-based separation materials is still obscure, which obviously hinders their actual application. To address this problem, a trinuclear Cu-cluster-based MOF with a minimum metal-active plane was synthesized for the study of the very challenging C2H2/C2H4 and C2H2/CO2 separations. Via dispersion-corrected density functional theory calculations, it is indicated that the difference of the adsorption energy accounts for the excellent separation properties toward C2H2/C2H4 and C2H2/CO2 mixtures, while the frontier molecular orbitals demonstrate that the adsorption-energy difference originates from the orbital-symmetry difference of gas molecules. All of these results provide not only deep insight into the separation mechanism but also an alternative strategy to prepare efficient adsorbents.
Collapse
Affiliation(s)
- Jing Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Guilin Zhuang
- Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jia Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
43
|
Hao C, Ren H, Zhu H, Chi Y, Zhao W, Liu X, Guo W. CO2-favored metal–organic frameworks SU-101(M) (M = Bi, In, Ga, and Al) with inverse and high selectivity of CO2 from C2H2 and C2H4. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Zhang B, Li XY, Lu YK, Hou L, Wang YY, Zhu Z. C 2H 2 capture and separation in a MOF based on Ni 6 trigonal-prismatic units. Chem Commun (Camb) 2022; 58:6208-6211. [PMID: 35506933 DOI: 10.1039/d2cc01506d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A honeycomb MOF, based on rare Ni6 trigonal-prismatic supermolecular building blocks, was fabricated by utilizing an unexploited [1,1'-biphenyl]-3,3',5,5'-tetracarboxylic acid linker with -NH2 substituent groups. The MOF contains novel building blocks and an enchanting structure, and also exhibits water-stable characteristics. Uniquely, the accessible adsorption sites, arising due to the high-density Lewis-basic amino-coordinated groups and uncoordinated carboxylate O atoms in the pores, endow the MOF with excellent capture and separation capabilities for C2H2.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Xiu-Yuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, P. R. China
| | - Yu-Ke Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
45
|
Wang H, Duan Y, Wang Y, Huang Y, Ge K, Wang S, Zheng B, Wang Z, Bai J, Duan J. Anion Regulates scu Topological Porous Coordination Polymers into the Acetylene Trap. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13550-13559. [PMID: 35274924 DOI: 10.1021/acsami.2c01940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of efficient porous absorbents with high uptake and selectivity remains a great challenge, especially for the recovery of acetylene (C2H2) from its carbon dioxide (CO2)-containing mixtures. Here, we propose and report an anion-planting strategy for regulating the scu topological porous coordination polymers (PCPs) into the C2H2 trap. The three electronegative anions SiF62-, TiF62-, and ZrF62-, in addition to the ligand of 3,5-di(1H-imidazol-1-yl)benzoic acid (HL) and Cu2+ ion, were employed to construct highly porous PCPs (NTU-60, NTU-61, and NTU-62) with varied window aperture. Especially, due to a matching distance (dF-F) of 5.7 Å along the c-axis, the limited space that can be assigned as a single C2H2 trap enables NTU-61 to show optimal ability for C2H2 (van der Waals (vdW) parameters of the two H atoms: ∼5.72 Å) recognition, validated by Grand Canonical Monte Carlo (GCMC) calculations and Raman spectra. These characteristics allow the NTU-series to show higher C2H2 uptake, as well as excellent C2H2/CO2 separation performance under dynamic conditions. The molecular insight and strategy here not only permit balanced adsorption and separation in a single domain but also exhibit an opportunity to develop advanced adsorbents in nearly all frameworks with lattice or coordinated ions, which may act as the platforms for various selective guest trappings with on-demand time and/or spatial resolution.
Collapse
Affiliation(s)
- Huijie Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yuefeng Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ying Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuhang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Kai Ge
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Junfeng Bai
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
46
|
Lee J, Seo Y, Kang DW, Park S, Kim H, Kim J, Kim K, Hong CS, Lim DW, Lee E. Reversible ammonia uptake at room temperature in a robust and tunable metal-organic framework. RSC Adv 2022; 12:7605-7611. [PMID: 35424727 PMCID: PMC8982270 DOI: 10.1039/d2ra01270g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Ammonia is useful for the production of fertilizers and chemicals for modern technology, but its high toxicity and corrosiveness are harmful to the environment and human health. Here, we report the recyclable and tunable ammonia adsorption using a robust imidazolium-based MOF (JCM-1) that uptakes 5.7 mmol g−1 of NH3 at 298 K reversibly without structural deformation. Furthermore, a simple substitution of NO3− with Cl− in a post-synthetic manner leads to an increase in the NH3 uptake capacity of JCM-1(Cl−) up to 7.2 mmol g−1. Recyclable and tunable ammonia adsorption with JCM-1 and JCM-1(Cl−) at room temperature occurs reversibly without structural decomposition.![]()
Collapse
Affiliation(s)
- Jaechul Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Younggyu Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| | - Seungjae Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Hyunyong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jaheon Kim
- Department of Chemistry, Soongsil University Seoul 06978 Republic of Korea
| | - Kimoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea .,Division of Advanced Materials Science, Pohang University of Science and Technology Pohang 37673 Republic of Korea.,Center for Self-assembly and Complexity, Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| | - Dae-Woon Lim
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan.,Department of Chemistry and Medical Chemistry, Yonsei University Wonju 26493 Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea .,Division of Advanced Materials Science, Pohang University of Science and Technology Pohang 37673 Republic of Korea
| |
Collapse
|
47
|
Zhu BY, Zhang T, Li CH, Cao JW, Zhang ZQ, Qi W, Wang GY, Rong ZH, Wang Y, Chen KJ. A (3,8)-Connected Metal-Organic Framework with Bending Dicarboxylate Linkers for C 2H 2/CO 2 Separation. Inorg Chem 2022; 61:4555-4560. [PMID: 35257588 DOI: 10.1021/acs.inorgchem.2c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, by replacement of the linear terephthalate linker with the bending 2,5-thiophenedicarboxylate (tdc2-) linker in the typical (3,9)-connected metal-organic framework, with a reduced 8-connected hydroxyl-centered trinuclear cluster, a new (3,8)-connected network, [Ni3(μ3-OH)(tdc)3(tpp)] [DZU-1; tpp = 2,4,6-tris(4-pyridyl)pyridine], was synthesized. The modified pore environment enables DZU-1 to selectively adsorb C2H2 over CO2 in an efficient manner.
Collapse
Affiliation(s)
- Bao-Yong Zhu
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Tao Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Chun-Hui Li
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Jian-Wei Cao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhu-Qing Zhang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Wei Qi
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Guang-Yin Wang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Zhi-Hui Rong
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, P. R. China
| | - Yu Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
48
|
|
49
|
Lv HJ, Zhang JW, Jiang YC, Li SN, Hu MC, Zhai QG. Micropore Regulation in Ultrastable [Sc 3O]-Organic Frameworks for Acetylene Storage and Purification. Inorg Chem 2022; 61:3553-3562. [PMID: 35148476 DOI: 10.1021/acs.inorgchem.1c03562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High storage capacity, high separation selectivity, and high structure stability are essential for an idea gas adsorbent. However, it is not easy to achieve all three at the same time, even for the promising metal-organic framework (MOF) adsorbents. We demonstrate herein that robust [Sc3O]-organic frameworks could be regulated by a micropore combination strategy for high-performance acetylene adsorption. Under the same solvent system with formic acid as a modulator, similar tritopic ligands extend [Sc3O(COO)6] trigonal-prismatic clusters to generate SNNU-5-Sc and SNNU-150-Sc adsorbents. Notably, the two Sc-MOFs can keep their architectures over 24 h in water at different pH values (2-12) or at 90 °C. Modulated by the linker symmetry, the final stacking metal-organic polyhedral cages produce open window sizes of about 10 Å for SNNU-5-Sc and 5 Å + 7 Å for SNNU-150-Sc. Due to such micropore combinations, SNNU-5-Sc exhibits a top-level C2H2 uptake of 211.2 cm3 g-1 (1 atm and 273 K) and SNNU-150-Sc shows high C2H2/CH4, C2H2/C2H4, and C2H2/CO2 selectivities of 80.65, 4.03, and 8.19, respectively, under ambient conditions. Dynamic breakthrough curves obtained on a fixed-bed column and grand canonical Monte Carlo (GCMC) simulations further support their prominent acetylene storage and purification performance. High framework stability, storage capacity, and separation selectivity make SNNU-5-Sc and SNNU-150-Sc ideal acetylene adsorbents in practical applications.
Collapse
Affiliation(s)
- Hong-Juan Lv
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Jian-Wei Zhang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, People's Republic of China
| | - Yu-Cheng Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Man-Cheng Hu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| |
Collapse
|
50
|
Gu XW, Wang JX, Wu E, Wu H, Zhou W, Qian G, Chen B, Li B. Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. J Am Chem Soc 2022; 144:2614-2623. [PMID: 35109657 DOI: 10.1021/jacs.1c10973] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purification of C2H4 from a ternary C2H2/C2H6/C2H4 mixture by one-step adsorption separation is of prime importance but challenging in the petrochemical industry; however, effective strategies to design high-performance adsorbents are lacking. We herein report for the first time the incorporation of Lewis basic sites into a C2H6-selective MOF, enabling efficient one-step production of polymer-grade C2H4 from ternary mixtures. Introduction of amino groups into highly stable C2H6-selective UiO-67 can not only partition large pores into smaller cagelike pockets to provide suitable pore confinement but also offer additional binding sites to simultaneously enhance C2H2 and C2H6 adsorption capacities over C2H4. The amino-functionalized UiO-67-(NH2)2 thus exhibits exceptionally high C2H2 and C2H6 uptakes as well as benchmark C2H2/C2H4 and C2H6/C2H4 selectivities, surpassing all of the C2H2/C2H6-selective materials reported so far. Theoretical calculations combined with in situ infrared spectroscopy indicate that the synergetic effect of suitable pore confinement and functional surfaces decorated with amino groups provides overall stronger multipoint van der Waals interactions with C2H2 and C2H6 over C2H4. The exceptional performance of UiO-67-(NH2)2 was evidenced by breakthrough experiments for C2H2/C2H6/C2H4 mixtures under dry and wet conditions, providing a remarkable C2H4 productivity of 0.55 mmol g-1 at ambient conditions.
Collapse
Affiliation(s)
- Xiao-Wen Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia-Xin Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Enyu Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Bin Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|