1
|
Sun M, Wang A, Zhang M, Zou S, Wang H. Interband and Intraband Hot Carrier-Driven Photocatalysis on Plasmonic Bimetallic Nanoparticles: A Case Study of Au-Cu Alloy Nanoparticles. ACS NANOSCIENCE AU 2024; 4:360-373. [PMID: 39430378 PMCID: PMC11487664 DOI: 10.1021/acsnanoscienceau.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024]
Abstract
Photoexcited nonthermal electrons and holes in metallic nanoparticles, known as hot carriers, can be judiciously harnessed to drive interesting photocatalytic molecule-transforming processes on nanoparticle surfaces. Interband hot carriers are generated upon direct photoexcitation of electronic transitions between different electronic bands, whereas intraband hot carriers are derived from nonradiative decay of plasmonic electron oscillations. Due to their fundamentally distinct photogeneration mechanisms, these two types of hot carriers differ strikingly from each other in terms of energy distribution profiles, lifetimes, diffusion lengths, and relaxation dynamics, thereby exhibiting remarkably different photocatalytic behaviors. The spectral overlap between plasmon resonances and interband transitions has been identified as a key factor that modulates the interband damping of plasmon resonances, which regulates the relative populations, energy distributions, and photocatalytic efficacies of intraband and interband hot carriers in light-illuminated metallic nanoparticles. As exemplified by the Au-Cu alloy nanoparticles investigated in this work, both the resonant frequencies of plasmons and the energy threshold for the d-to-sp interband transitions can be systematically tuned in bimetallic alloy nanoparticles by varying the compositional stoichiometries and particle sizes. Choosing photocatalytic degradation of Rhodamine B as a model reaction, we elaborate on how the variation of the particle sizes and compositional stoichiometries profoundly influences the photocatalytic efficacies of interband and intraband hot carriers in Au-Cu alloy nanoparticles under different photoexcitation conditions.
Collapse
Affiliation(s)
- Mengqi Sun
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Ankai Wang
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Min Zhang
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| | - Shengli Zou
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Hui Wang
- Department
of Chemistry and Biochemistry, University
of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
2
|
Jeong J, Shin HH, Kim ZH. Unveiling the Mechanism of Plasmon Photocatalysis via Multiquantum Vibrational Excitation. ACS NANO 2024; 18:25290-25301. [PMID: 39185823 DOI: 10.1021/acsnano.4c08521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Plasmon photocatalysis reactions are thought to occur through vibrationally activated reactants, driven by nonthermal energy transfer from plasmon-induced hot carriers. However, a detailed quantum-state-level understanding and quantification of the activation have been lacking. Using anti-Stokes surface-enhanced Raman scattering (SERS) spectroscopy, we mapped the vibrational population distributions of reactants on plasmon-excited nanostructures. Our results reveal a highly nonthermal distribution with an anomalously enhanced population of multiquantum excited states (v ≥ 2). The shape of the distribution and its dependence on local field intensity and excitation wavelength cannot be explained by photothermal heating or vibronic optical transitions of the metal-molecule complex. Instead, it can be modeled by hot electron-molecule energy transfer mediated by the transient negative ions, establishing direct links among nonthermal reactant activation, plasmon-induced hot electrons, and negative ion resonances. Moreover, the presence of multiquantum excited reactants, which are far more reactive than those in the ground state or first excited state, presents opportunities for vibrationally controlling chemical selectivities.
Collapse
Affiliation(s)
- Jaeyoung Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Lyu P, Hoffman L, Cahua DV, Nguyen SC. From Precious to Earth-Abundant Metallic Nanoparticles: A Trend of Interband Transitions in Photocatalyzed Nitrobenzene Reduction. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:14674-14682. [PMID: 39257549 PMCID: PMC11382268 DOI: 10.1021/acs.jpcc.4c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Metallic nanoparticles have been demonstrated to be versatile photocatalysts, as exemplified by those made from noble and precious metals. Transitioning from precious to earth-abundant metals for sustainable photocatalysis requires benchmarking their catalytic performance. In this work, we attempt to compare the photocatalytic activities of Au, Pd, and Co-B nanoparticles in the reduction of nitrobenzene by hydrazine. Despite their different morphologies and surface structures, Co-B nanoparticles offer the highest catalytic enhancement when comparing their reaction rates under irradiation to those under nonirradiation conditions. The trend of improved photocatalytic performance when transitioning from Au to Pd, and then to Co-B, can be explained by the nature of their d-band positions and corresponding hot carriers photogenerated from interband transitions.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
- Department of Chemistry and Biochemistry, University of North Carolina, Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Lauren Hoffman
- Department of Chemistry and Biochemistry, University of North Carolina, Asheville, 1 University Heights, Asheville, North Carolina 28804, United States
| | - Daniel Valenzuela Cahua
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Son C Nguyen
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
4
|
Liang W, Xie M, Li D, Qin W, Dai C, Wang Y, Zhang H, Zhao B, Jin G, Sun Y, Jiang L. Plasmon-Promoted Interatomic Hot Carriers Regulation Enhanced Electrocatalytic Nitrogen Reduction Reaction. Angew Chem Int Ed Engl 2024:e202409484. [PMID: 39218790 DOI: 10.1002/anie.202409484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Utilizing hot carriers for efficient plasmon-mediated chemical reactions (PMCRs) to convert solar energy into secondary energy is one of the most feasible solutions to the global environmental and energy crisis. Finding a plasmonic heterogeneous nanostructure with a more efficient and reasonable hot carrier transport path without affecting the intrinsic plasmonic properties is still a major challenge that urgently needs to be solved in this field. Herein, the mechanism by which plasmon-promoted interatomic hot electron redistribution on the surface of Au3Cu alloy nanoparticles promotes the electrocatalytic nitrogen reduction reaction (ENRR) is successfully clarified. The localized surface plasmon resonance (LSPR) effect can boost the transfer of plasmon hot electrons from Au atoms to Cu atoms, trigger the interatomic electron regulation of Au3Cu alloy nanoparticles, enhance the desorption of ammonia molecules, and increase the ammonia yield by approximately 93.9 %. This work provides an important reference for rationally designing and utilizing the LSPR effect to efficiently regulate the distribution and mechanism of plasmon hot carriers on the surface of heterogeneous alloy nanostructures.
Collapse
Affiliation(s)
- Wenkai Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
- Nonequilibrium Chemical Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Miao Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Dong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Wei Qin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Chang Dai
- Innovation Centre for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
| | - Yawen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Bo Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Guangyao Jin
- Jinglan Advanced Material Co., Ltd., 214100, Wuxi, China
| | - Yinghui Sun
- Innovation Centre for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, 450000, Zhengzhou, P. R. China
| | - Lin Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| |
Collapse
|
5
|
Buravets V, Gorin O, Burtsev V, Zabelina A, Zabelin D, Kosina J, Maixner J, Svorcik V, Kolganov AA, Pidko EA, Lyutakov O. Plasmon-Mediated Organic Photoelectrochemistry Applied to Amination Reactions. Chempluschem 2024; 89:e202400020. [PMID: 38747893 DOI: 10.1002/cplu.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Indexed: 08/15/2024]
Abstract
Organic electrochemistry is currently experiencing an era of renaissance, which is closely related to the possibility of carrying out organic transformations under mild conditions, with high selectivity, high yields, and without the use of toxic solvents. Combination of organic electrochemistry with alternative approaches, such as photo-chemistry was found to have great potential due to induced synergy effects. In this work, we propose for the first time utilization of plasmon triggering of enhanced and regio-controlled organic chemical transformation performed in photoelectrochemical regime. The advantages of the proposed route is demonstrated in the model amination reaction with formation of C-N bond between pyrazole and substituted benzene derivatives. Amination was performed in photo-electrochemical mode on the surface of plasmon active Au@Pt electrode with attention focused on the impact of plasmon triggering on the reaction efficiency and regio-selectivity. The ability to enhance the reaction rate significantly and to tune products regio-selectivity is demonstrated. We also performed density functional theory calculations to inquire about the reaction mechanism and potentially explain the plasmon contribution to electrochemical reaction rate and regioselectivity.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Oleg Gorin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Anna Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Denis Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jiri Kosina
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jaroslav Maixner
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Alexander A Kolganov
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
6
|
Huang X, Zhang W, Liang W. Time-dependent Kohn-Sham electron dynamics coupled with nonequilibrium plasmonic response via atomistic electromagnetic model. J Chem Phys 2024; 160:214106. [PMID: 38828813 DOI: 10.1063/5.0205845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Computational modeling of plasmon-mediated molecular photophysical and photochemical behaviors can help us better understand and tune the bound molecular properties and reactivity and make better decisions to design and control nanostructures. However, computational investigations of coupled plasmon-molecule systems are challenging due to the lack of accurate and efficient protocols to simulate these systems. Here, we present a hybrid scheme by combining the real-time time-dependent density functional theory (RT-TDDFT) approach with the time-domain frequency dependent fluctuating charge (TD-ωFQ) model. At first, we transform ωFQ in the frequency-domain, an atomistic electromagnetic model for the plasmonic response of plasmonic metal nanoparticles (PMNPs), into the time-domain and derive its equation-of-motion formulation. The TD-ωFQ introduces the nonequilibrium plasmonic response of PMNPs and atomistic interactions to the electronic excitation of the quantum mechanical (QM) region. Then, we combine TD-ωFQ with RT-TDDFT. The derived RT-TDDFT/TD-ωFQ scheme allows us to effectively simulate the plasmon-mediated "real-time" electronic dynamics and even the coupled electron-nuclear dynamics by combining them with the nuclear dynamics approaches. As a first application of the RT-TDDFT/TD-ωFQ method, we study the nonradiative decay rate and plasmon-enhanced absorption spectra of two small molecules in the proximity of sodium MNPs. Thanks to the atomistic nature of the ωFQ model, the edge effect of MNP on absorption enhancement has also been investigated and unveiled.
Collapse
Affiliation(s)
- Xunkun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Wenshu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
7
|
Fusco Z, Koenig D, Smith SC, Beck FJ. Ab initio investigation of hot electron transfer in CO 2 plasmonic photocatalysis in the presence of hydroxyl adsorbate. NANOSCALE HORIZONS 2024; 9:1030-1041. [PMID: 38623705 DOI: 10.1039/d4nh00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Photoreduction of carbon dioxide (CO2) on plasmonic structures is of great interest in photocatalysis to aid selectivity. While species commonly found in reaction environments and associated intermediates can steer the reaction down different pathways by altering the potential energy landscape of the system, they are often not addressed when designing efficient plasmonic catalysts. Here, we perform an atomistic study of the effect of the hydroxyl group (OH) on CO2 activation and hot electron generation and transfer using first-principles calculations. We show that the presence of OH is essential in breaking the linear symmetry of CO2, which leads to a charge redistribution and a decrease in the OCO angle to 134°, thereby activating CO2. Analysis of the partial density of states (pDOS) demonstrates that the OH group mediates the orbital hybridization between Au and CO2 resulting in more accessible states, thus facilitating charge transfer. By employing time-dependent density functional theory (TDDFT), we quantify the fraction of hot electrons directly generated into hybridized molecular states at resonance, demonstrating a broader energy distribution and an 11% increase in charge-transfer in the presence of OH groups. We further show that the spectral overlap between excitation energy and plasmon resonance plays a critical role in efficiently modulating electron transfer processes. These findings contribute to the mechanistic understanding of plasmon-mediated reactions and demonstrate the importance of co-adsorbed species in tailoring the electron transfer processes, opening new avenues for enhancing selectivity.
Collapse
Affiliation(s)
- Zelio Fusco
- Renewable Fuel Group, School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2601, Australia.
| | - Dirk Koenig
- Integrated Materials Design Lab, The Australian National University, Canberra, ACT 2601, Australia
| | - Sean C Smith
- Integrated Materials Design Lab, The Australian National University, Canberra, ACT 2601, Australia
| | - Fiona Jean Beck
- Renewable Fuel Group, School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
8
|
Pei Q, Zheng X, Tan J, Luo Y, Ye S. Probing the Local Near-Field Intensity of Plasmonic Nanoparticles in the Mid-infrared Spectral Region. J Phys Chem Lett 2024; 15:5390-5396. [PMID: 38739421 DOI: 10.1021/acs.jpclett.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The enhanced local field of gold nanoparticles (AuNPs) in mid-infrared spectral regions is essential for improving the detection sensitivity of vibrational spectroscopy and mediating photochemical reactions. However, it is still challenging to measure its intensity at subnanometer scales. Here, using the NO2 symmetric stretching mode (νNO2) of self-assembled 4-nitrothiophenol (4-NTP) monolayers on AuNPs as a model, we demonstrated that the percentage of excited νNO2 mode, determined by femtosecond time-resolved sum-frequency generation vibrational spectroscopy, allows us to directly detect the local field intensity of the AuNP surface in subnanometer ranges. The local-field intensity is tuned by AuNP diameters. An approximate 17-fold enhancement was observed for the local field on 80 nm AuNPs compared to the Au film. Additionally, the local field can regulate the anharmonicity of the νNO2 mode by synergistic effect with molecular orientation. This work offers a promising approach to probe the local field intensity distribution around plasmonic NP surfaces at subnanometer scales.
Collapse
Affiliation(s)
- Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
9
|
Al-Amin M, Hemmer JV, Joshi PB, Fogelman K, Wilson AJ. Quantification and description of photothermal heating effects in plasmon-assisted electrochemistry. Commun Chem 2024; 7:70. [PMID: 38561493 PMCID: PMC10984925 DOI: 10.1038/s42004-024-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
A growing number of reports have demonstrated plasmon-assisted electrochemical reactions, though debate exists around the mechanisms underlying the enhanced activity. Here we address the impact of plasmonic photothermal heating with cyclic voltammetry measurements and finite-element simulations. We find that plasmonic photothermal heating causes a reduction in the hysteresis of the anodic and cathodic waves of the voltammograms along with an increase in mass-transport limiting current density due to convection induced by a temperature gradient. At slow scan rates, a temperature difference as low as 1 K between the electrode surface and bulk electrolytic solution enhances the current density greater than 100%. Direct interband excitation of Au exclusively enhances current density by photothermal heating, while plasmon excitation leads to photothermal and nonthermal enhancements. Our study reveals the role of temperature gradients in plasmon-assisted electrochemistry and details a simple control experiment to account for photothermal heating.
Collapse
Affiliation(s)
- Md Al-Amin
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA
| | - Johann V Hemmer
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA
| | - Padmanabh B Joshi
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA
- Duke University, Durham, NC, 27708, USA
| | - Kimber Fogelman
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA
| | - Andrew J Wilson
- Department of Chemistry, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
10
|
Muhammed MM, Mokkath JH. Plasmon-induced hot carrier distribution in a composite nanosystem: role of the adsorption site. Phys Chem Chem Phys 2024; 26:9037-9050. [PMID: 38440841 DOI: 10.1039/d4cp00322e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The generation of hot carriers (HCs) through the excitation of localized surface plasmon resonance (LSPR) in metal nanostructures is a fascinating phenomenon that fuels both fundamental and applied research. However, gaining insights into HCs at a microscopic level has posed a complex challenge, limiting our ability to create efficient nanoantennas that utilize these energized carriers. In this investigation, we employ real-time time-dependent density functional theory (rt-TDDFT) calculations to examine the creation and distribution of HCs within a model composite system consisting of a silver (Ag) nanodisk and a carbon monoxide (CO) molecule. We find that the creation and distribution of HCs are notably affected by the CO adsorption site. Particularly, when the CO molecule adsorbs onto the hollow site of the Ag nanodisk, it exhibits the highest potential among various composite systems in terms of structural stability, enhanced orbital hybridization, and HC generation and transfer. Utilizing a Gaussian laser pulse adjusted to match the LSPR frequency, we observe a marked buildup of hot electrons and hot holes on the C and O atoms. Conversely, the region encompassing the C-O bond exhibits a depletion of hot electrons and hot holes. We believe that these findings could have significant implications in the field of HC photocatalysis.
Collapse
Affiliation(s)
| | - Junais Habeeb Mokkath
- College of Integrative Studies, Abdullah Al Salem University (AASU), Block 3, Khaldiya, Kuwait.
| |
Collapse
|
11
|
Mokkath JH. Plasmon induced hot carrier distribution in Ag 20 -CO composite. Chemphyschem 2024; 25:e202300602. [PMID: 38185742 DOI: 10.1002/cphc.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
The interaction between plasmons and the molecules leads to the transfer of plasmon-induced hot carriers, presenting innovative opportunities for controlling chemical reactions on sub-femtosecond timescales. Through real-time time-dependent density functional theory simulations, we have investigated the enhancement of the electric field due to plasmon excitation and the subsequent generation and transfer of plasmon-induced hot carriers in a linear atomic chain of Ag20 and an Ag20 -CO composite system. By applying a Gaussian laser pulse tuned to align with the plasmon frequency, we observe a plasmon-induced transfer of hot electrons from the occupied states of Ag to the unoccupied molecular orbitals of CO. Remarkably, there is a pronounced accumulation of hot electrons and hot holes on the C and O atoms. This phenomenon arises from the electron migration from the inter-nuclear regions of the C-O bond towards the individual C and O atoms. The insights garnered from our study hold the potential to drive advancements in the development of more efficient systems for catalytic processes empowered by plasmonic interactions.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box, 27235, Kuwait
| |
Collapse
|
12
|
Wang Z, Henriques A, Rouvière L, Callizot N, Tan L, Hotchkin MT, Rossignol R, Mortenson MG, Dorfman AR, Ho KS, Wang H. A Mechanism Underpinning the Bioenergetic Metabolism-Regulating Function of Gold Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304082. [PMID: 37767608 DOI: 10.1002/smll.202304082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Indexed: 09/29/2023]
Abstract
Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD+ ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | | | | | - Lin Tan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Rodrigue Rossignol
- Cellomet, CARF Center, University of Bordeaux, 146 rue Léo Saignat, Bordeaux, 33000, France
| | - Mark G Mortenson
- Clene Nanomedicine, Inc., Salt Lake City, UT, 84117, USA
- Clene Nanomedicine, Inc., North East, MD, 21901, USA
| | | | - Karen S Ho
- Clene Nanomedicine, Inc., Salt Lake City, UT, 84117, USA
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
13
|
Dall’Osto G, Marsili M, Vanzan M, Toffoli D, Stener M, Corni S, Coccia E. Peeking into the Femtosecond Hot-Carrier Dynamics Reveals Unexpected Mechanisms in Plasmonic Photocatalysis. J Am Chem Soc 2024; 146:2208-2218. [PMID: 38199967 PMCID: PMC10811681 DOI: 10.1021/jacs.3c12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Plasmonic-driven photocatalysis may lead to reaction selectivity that cannot be otherwise achieved. A fundamental role is played by hot carriers, i.e., electrons and holes generated upon plasmonic decay within the metal nanostructure interacting with molecular species. Understanding the elusive microscopic mechanism behind such selectivity is a key step in the rational design of hot-carrier reactions. To accomplish that, we present state-of-the-art multiscale simulations, going beyond density functional theory, of hot-carrier injections for the rate-determining step of a photocatalytic reaction. We focus on carbon dioxide reduction, for which it was experimentally shown that the presence of a rhodium nanocube under illumination leads to the selective production of methane against carbon monoxide. We show that selectivity is due to a (predominantly) direct hole injection from rhodium to the reaction intermediate CHO. Unexpectedly, such an injection does not promote the selective reaction path by favoring proper bond breaking but rather by promoting bonding of the proper molecular fragment to the surface.
Collapse
Affiliation(s)
- Giulia Dall’Osto
- Dipartimento
di Scienze Chimiche, Università di
Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Margherita Marsili
- Dipartimento
di Fisica e Astronomia “Augusto Righi”, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Mirko Vanzan
- Dipartimento
di Scienze Chimiche, Università di
Padova, via F. Marzolo 1, 35131 Padova, Italy
- Dipartimento
di Fisica, University of Milan, Via Giovanni Celoria 16, 20133 Milano, Italy
| | - Daniele Toffoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, University
of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Mauro Stener
- Dipartimento
di Scienze Chimiche e Farmaceutiche, University
of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Stefano Corni
- Dipartimento
di Scienze Chimiche, Università di
Padova, via F. Marzolo 1, 35131 Padova, Italy
- Istituto
Nanoscienze-CNR, via
Campi 213/A, 41125 Modena, Italy
| | - Emanuele Coccia
- Dipartimento
di Scienze Chimiche e Farmaceutiche, University
of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
14
|
Kazuma E. Key Factors for Controlling Plasmon-Induced Chemical Reactions on Metal Surfaces. J Phys Chem Lett 2024; 15:59-67. [PMID: 38131658 DOI: 10.1021/acs.jpclett.3c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Plasmon-induced chemical reactions based on direct interactions between the plasmons of metal nanostructures and molecules have attracted increasing attention as a means of efficiently utilizing sunlight. In recent years, achievements in complex synthetic reactions as well as simple dissociation reactions of gaseous molecules using plasmons have been reported. However, recent research progress has revealed that multiple factors govern plasmon-induced chemical reactions. This perspective provides an overview of the key factors that influence plasmon-induced chemical reactions on metal surfaces and discusses the difficulty of controlling the reactions, which is caused by the entanglement of the key factors. A strategy for designing plasmonic metal catalysts to achieve the desired reactions is also discussed based on the current understanding, and directions for further research are provided.
Collapse
Affiliation(s)
- Emiko Kazuma
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
16
|
Wang Z, Wang H. Au@C/Pt core@shell/satellite supra-nanostructures: plasmonic antenna-reactor hybrid nanocatalysts. NANOSCALE ADVANCES 2023; 5:5435-5448. [PMID: 37822901 PMCID: PMC10563835 DOI: 10.1039/d3na00498h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/19/2023] [Indexed: 10/13/2023]
Abstract
Integration of plasmonic nanoantennas with catalytically active reactors in deliberately designed hybrid supra-nanostructures creates a dual-functional materials platform, based upon which precise modulation of catalytic reaction kinetics becomes accomplishable through optical excitations of plasmon resonances. Here, we have developed a multistep synthetic approach that enables us to assemble colloidal Au@C/Pt core@shell/satellite supra-nanostructures, in which the Au core functions as a light-harvesting plasmonic nanoantenna, the Pt satellites act as catalytically active reactors, and the C shell serves as a nanoscale dielectric spacer separating the reactors from the antenna, respectively. By adjusting several synthetic parameters, the size of the Au core, the thickness of the C shell, and the surface coverage of Pt satellites can all be tuned independently. Choosing Pt-catalyzed cascade oxidation of 3,3',5,5'-tetramethylbenzidine in an aerobic aqueous environment as a model reaction, we have systematically studied the detailed kinetic features of the catalytic reactions both in the dark and under visible light illumination over a broad range of reaction conditions, which sheds light on the interplay between plasmonic and catalytic effects in these antenna-reactor nanohybrids. The plasmonic antenna effect can be effectively harnessed to kinetically modulate multiple crucial steps during the cascade reactions, benefiting from plasmon-enhanced interband electronic transitions in the Pt satellites and plasmon-enhanced intramolecular electronic excitations in chromogenic intermediate species. In addition to the plasmonic antenna effect, photothermal transduction derived from plasmonic excitations can also provide significant contributions to the kinetic enhancements under visible light illumination. The knowledge gained from this work serves as important guiding principles for rational design and structural optimization of plasmonic antenna-reactor hybrid nanomaterials, endowing us with enhanced capabilities to kinetically modulate targeted catalytic/photocatalytic molecule-transforming processes through light illumination.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA +1-803-777-9521 +1-803-777-2203
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA +1-803-777-9521 +1-803-777-2203
| |
Collapse
|
17
|
Zhu Z, Tang R, Li C, An X, He L. Promises of Plasmonic Antenna-Reactor Systems in Gas-Phase CO 2 Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302568. [PMID: 37338243 PMCID: PMC10460874 DOI: 10.1002/advs.202302568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
18
|
Celis F, Aracena A, García M, Segura del Río R, Sanchez-Cortes S, Leyton P. Plasmon Chemistry on Ag Nanostars: Experimental and Theoretical Raman/SERS Study of the Pesticide Thiacloprid Bond Cleavage by the Plasmon Deactivation Effect. ACS OMEGA 2023; 8:22887-22898. [PMID: 37396249 PMCID: PMC10308575 DOI: 10.1021/acsomega.3c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Silver nanoparticles (AgNPs) were synthetized and employed in surface-enhanced Raman scattering measurements to study the chemical behavior when thiacloprid (Thia) interacts with the surface of Ag nanospheres (AgNSp) and Ag nanostars (AgNSt) upon excitation of the system with a 785 nm laser. Experimental results show that the deactivation of the localized surface plasmon resonance induces structural changes in Thia. When AgNSp are used, it is possible to observe a mesomeric effect in the cyanamide moiety. On the other hand, when AgNSt are employed, it promotes the cleavage of the methylene (-CH2-) bridge in Thia to produce two molecular fragments. To support these results, theoretical calculations based on topological parameters described by the atoms in molecules theory, Laplacian of the electron density at the bond critical point (∇2ρ BCP), Laplacian bond order, and bond dissociation energies were made, confirming that the bond cleavage is centered at the -CH2- bridge in Thia.
Collapse
Affiliation(s)
- Freddy Celis
- Laboratorio
de Procesos Fotónicos y Electroquímicos, Facultad de
Ciencias Naturales y Exactas, Universidad
de Playa Ancha, Valparaíso 2360002, Chile
| | - Andrés Aracena
- Instituto
de Ciencias Naturales, Universidad de las
Américas, Manuel Montt 948, Santiago 7500000, Chile
| | - Macarena García
- Laboratorio
de Procesos Fotónicos y Electroquímicos, Facultad de
Ciencias Naturales y Exactas, Universidad
de Playa Ancha, Valparaíso 2360002, Chile
| | - Rodrigo Segura del Río
- Instituto
de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2362735, Chile
| | - Santiago Sanchez-Cortes
- Instituto
de Estructura de la Materia, Consejo Superior
de Investigaciones Científicas, CSIC, Serrano 121, Madrid 28006, Spain
| | - Patricio Leyton
- Pontificia
Universidad Católica de Valparaíso, Instituto de Química, Valparaíso 46383, Chile
| |
Collapse
|
19
|
Kumar N, Maiti N, Thomas S. Insights into Plasmon-Induced Dimerization of Rhodanine-A Surface-Enhanced Raman Scattering Study. J Phys Chem A 2023; 127:4429-4439. [PMID: 37184576 DOI: 10.1021/acs.jpca.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Plasmon-mediated chemical reactions (PMCRs) have attracted considerable interest in recent times. The PMCR initiated by hot carriers is known to be influenced by the type of metals and the excitation wavelength. Herein, we have carried out the surface-enhanced Raman scattering (SERS) investigation of rhodanine (Rd), an important pharmacologically active heterocyclic compound, adsorbed on silver and gold nanoparticles (AgNP and AuNP) using 514.5 and 632.8 nm lasers. The prominent Raman band at 1566 cm-1 observed in the SERS spectra is attributed to the characteristic ν(C═C) stretching vibration of the Rd dimer and not of Rd tautomers. The chemical transformation of Rd to Rd dimer on metal surfaces is plausibly triggered by the indirect transfer of energetic hot electrons generated during the non-radiative decay of plasmon. The mechanism involved in the dimerization of Rd via the indirect transfer of hot electrons is also presented. The effect of wavelength on the dimerization of Rd is also observed on the AgNP surface, which indicates that the dimerization occurs more efficiently on the AgNP surface with excitation at 514.5 nm wavelength.
Collapse
Affiliation(s)
- Naveen Kumar
- Infrared Laser Spectroscopy Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Nandita Maiti
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Susy Thomas
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
20
|
Wu X, van der Heide T, Wen S, Frauenheim T, Tretiak S, Yam C, Zhang Y. Molecular dynamics study of plasmon-mediated chemical transformations. Chem Sci 2023; 14:4714-4723. [PMID: 37181766 PMCID: PMC10171182 DOI: 10.1039/d2sc06648c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Heterogeneous catalysis of adsorbates on metallic surfaces mediated by plasmons has potential high photoelectric conversion efficiency and controllable reaction selectivity. Theoretical modeling of dynamical reaction processes enables in-depth analyses complementing experimental investigations. Especially for plasmon-mediated chemical transformations, light absorption, photoelectric conversion, electron-electron scattering, and electron-phonon coupling occur simultaneously on different timescales, making it very challenging to delineate the complex interplay of different factors. In this work, a trajectory surface hopping non-adiabatic molecular dynamics method is used to investigate the dynamics of plasmon excitation in an Au20-CO system, including hot carrier generation, plasmon energy relaxation, and CO activation induced by electron-vibration coupling. The electronic properties indicate that when Au20-CO is excited, a partial charge transfer takes place from Au20 to CO. On the other hand, dynamical simulations show that hot carriers generated after plasmon excitation transfer back and forth between Au20 and CO. Meanwhile, the C-O stretching mode is activated due to non-adiabatic couplings. The efficiency of plasmon-mediated transformations (∼40%) is obtained based on the ensemble average of these quantities. Our simulations provide important dynamical and atomistic insights into plasmon-mediated chemical transformations from the perspective of non-adiabatic simulations.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute Longhua District Shenzhen 518110 China
| | - Tammo van der Heide
- Bremen Center for Computational Materials Science, University of Bremen Bremen 28359 Germany
| | - Shizheng Wen
- Jiangsu Province Key Laboratory of Modern Measurement Technology and Intelligent Systems, School of Physics and Electronic Electrical Engineering, Huaiyin Normal University Huaian 223300 China
| | - Thomas Frauenheim
- Shenzhen JL Computational Science and Applied Research Institute Longhua District Shenzhen 518110 China
- Bremen Center for Computational Materials Science, University of Bremen Bremen 28359 Germany
- Beijing Computational Science Research Center Haidian District Beijing 100193 China
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
- Center of Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - ChiYung Yam
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China Shenzhen 518000 China
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| |
Collapse
|
21
|
Chen K, Wang H. Origin of Superlinear Power Dependence of Reaction Rates in Plasmon-Driven Photocatalysis: A Case Study of Reductive Nitrothiophenol Coupling Reactions. NANO LETTERS 2023; 23:2870-2876. [PMID: 36921149 DOI: 10.1021/acs.nanolett.3c00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The superlinear dependence of the reaction rate on the power of the excitation light, which may arise from both thermal and nonthermal effects, has been a hallmark of plasmon-driven photocatalysis on nanostructured metal surfaces. However, it remains challenging to distinguish and quantify the thermal and nonthermal effects because even slight uncertainties in measuring the local temperatures at the active surface sites may lead to significant errors in assessing thermal and nonthermal contributions to the overall reaction rates. Here we employ surface-enhanced Raman scattering as a surface-sensitive in situ spectroscopic tool to correlate detailed kinetic features of plasmon-mediated molecular transformations to the local temperatures at the active sites on photocatalyst surfaces. Our spectroscopic results clearly reveal that the superlinearity in the power dependence of the reaction rate observed in a plasmon-driven model reaction, specifically the reductive coupling of para-nitrothiophenol adsorbates on Ag nanoparticle surfaces, originates essentially from photothermal heating rather than nonthermal plasmonic effects.
Collapse
Affiliation(s)
- Kexun Chen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
22
|
Vanzan M, Gil G, Castaldo D, Nordlander P, Corni S. Energy Transfer to Molecular Adsorbates by Transient Hot Electron Spillover. NANO LETTERS 2023; 23:2719-2725. [PMID: 37010208 PMCID: PMC10103299 DOI: 10.1021/acs.nanolett.3c00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Hot electron (HE) photocatalysis is one of the most intriguing fields of nanoscience, with a clear potential for technological impact. Despite much effort, the mechanisms of HE photocatalysis are not fully understood. Here we investigate a mechanism based on transient electron spillover on a molecule and subsequent energy release into vibrational modes. We use state-of-the-art real-time Time Dependent Density Functional Theory (rt-TDDFT), simulating the dynamics of a HE moving within linear chains of Ag or Au atoms, on which CO, N2, or H2O are adsorbed. We estimate the energy a HE can release into adsorbate vibrational modes and show that certain modes are selectively activated. The energy transfer strongly depends on the adsorbate, the metal, and the HE energy. Considering a cumulative effect from multiple HEs, we estimate this mechanism can transfer tenths of an eV to molecular vibrations and could play an important role in HE photocatalysis.
Collapse
Affiliation(s)
- Mirko Vanzan
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Department
of Physics, University of Milan, Via Celoria 16, 20133 Milan, Italy
| | - Gabriel Gil
- Instituto
de Cibernetica, Matematica y Física, Calle E esq 15 Vedado, 10400 La Habana, Cuba
| | - Davide Castaldo
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Peter Nordlander
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Stefano Corni
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- CNR
Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
23
|
Abstract
A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses. Also, examples are discussed in which machine learning has been useful in this field. There are many areas at the frontier in condensed matter theory and simulation that are or could be beneficial in this area and these prospects for future progress are discussed.
Collapse
Affiliation(s)
- Kristen A Fichthorn
- Department of Chemical Engineering and Department of Physics The Pennsylvania State University University Park, Pennsylvania 16803 United States
| |
Collapse
|
24
|
Wang F, Lu Z, Guo H, Zhang G, Li Y, Hu Y, Jiang W, Liu G. Plasmonic Photocatalysis for CO 2 Reduction: Advances, Understanding and Possibilities. Chemistry 2023; 29:e202202716. [PMID: 36806292 DOI: 10.1002/chem.202202716] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Plasmonic photocatalysis for CO2 reduction is attracting increasing attention due to appealing properties and great potential for real applications. In this review, the fundamentals of plasmonic photocatalysis and the most recent developments regarding its application in driving CO2 reduction are reported. Firstly, we present the review on the mechanism of plasmonic photocatalytic CO2 reduction, the energy transfer of plasmon, and the CO2 reduction process on the catalyst surface. Then, the modulation on the plasmonic nanostructures and also the semiconductor counterpart to regulate CO2 photoreduction is discussed. Next, the influence of the core-shell structure and the interface between the plasmonic metal and semiconductor on the CO2 photoreduction performance is also outlined. In addition, the latest progress on the emerging direction regarding the plasmonic photocatalysis for methane dry reforming with CO2 is especially emphasized. Finally, a summary on the challenges and prospects of this promising field are provided.
Collapse
Affiliation(s)
- Fangmu Wang
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| | - Zhehong Lu
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| | - Hu Guo
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| | - Guangpu Zhang
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| | - Yan Li
- School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China
| | - Yubing Hu
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| | - Guigao Liu
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
| |
Collapse
|
25
|
Votkina D, Petunin P, Miliutina E, Trelin A, Lyutakov O, Svorcik V, Audran G, Havot J, Valiev R, Valiulina LI, Joly JP, Yamauchi Y, Mokkath JH, Henzie J, Guselnikova O, Marque SRA, Postnikov P. Uncovering the Role of Chemical and Electronic Structures in Plasmonic Catalysis: The Case of Homolysis of Alkoxyamines. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Darya Votkina
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
| | - Pavel Petunin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
| | - Elena Miliutina
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Andrii Trelin
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Vaclav Svorcik
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Gérard Audran
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Jeffrey Havot
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Rashid Valiev
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | | | - Jean-Patrick Joly
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Yusuke Yamauchi
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 Brisbane, QLD, Australia
| | - Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, P.O.
Box 27235, Safat 13058, Kuwait
City, Kuwait
| | - Joel Henzie
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Sylvain R. A. Marque
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| |
Collapse
|
26
|
Casey É, Holmes JD, Collins G. PdAu Nanosheets for Visible-Light-Driven Suzuki Cross-Coupling Reactions. ACS APPLIED NANO MATERIALS 2022; 5:16196-16206. [PMID: 36466303 PMCID: PMC9706499 DOI: 10.1021/acsanm.2c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Combining a two-dimensional (2D) morphology and plasmonic photocatalysis represents an efficient design for light-driven organic transformations. We report a one-pot synthesis of surfactant templated PdAu nanosheets (NSs). Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses show the formation of 2D PdAu structures was initiated through nanoparticle seeds dispersed in the alkyl ammonium salt surfactant which acted as a template for the growth into NSs. The PdAu NSs were used for visible-light-enhanced Suzuki cross coupling. The PdAu bimetallic NSs outperformed monometallic Pd NSs and commercial Pd/C in room-temperature Suzuki cross-coupling reactions. The high catalytic activity is attributed to a combination of the 2D morphology giving rise to plasmon-enhanced catalysis and a high density of surface atoms, the electron-rich Pd surface due to alloying, and the presence of weakly bound amines. A comparative study of surfactant-assisted NSs and CO-assisted NSs was also carried out to assess the influence of surface ligands on the catalytic and photocatalytic enhancement of NSs with similar morphology. The surfactant-assisted NSs showed substantially superior performance compared to the CO-assisted for room-temperature Suzuki coupling reactions.
Collapse
Affiliation(s)
- Éadaoin Casey
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Justin D. Holmes
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Gillian Collins
- School
of Chemistry, University College Cork, Cork T12 YN60, Ireland
- AMBER
Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
27
|
Pei Z, Mao Y, Shao Y, Liang W. Analytic high-order energy derivatives for metal nanoparticle-mediated infrared and Raman scattering spectra within the framework of quantum mechanics/molecular mechanics model with induced charges and dipoles. J Chem Phys 2022; 157:164110. [PMID: 36319412 PMCID: PMC9616608 DOI: 10.1063/5.0118205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
This work is devoted to deriving and implementing analytic second- and third-order energy derivatives with respect to the nuclear coordinates and external electric field within the framework of the hybrid quantum mechanics/molecular mechanics method with induced charges and dipoles (QM/DIM). Using these analytic energy derivatives, one can efficiently compute the harmonic vibrational frequencies, infrared (IR) and Raman scattering (RS) spectra of the molecule in the proximity of noble metal clusters/nanoparticles. The validity and accuracy of these analytic implementations are demonstrated by the comparison of results obtained by the finite-difference method and the analytic approaches and by the full QM and QM/DIM calculations. The complexes formed by pyridine and two sizes of gold clusters (Au18 and Au32) at varying intersystem distances of 3, 4, and 5 Å are used as the test systems, and Raman spectra of 4,4'-bipyridine in the proximity of Au2057 and Ag2057 metal nanoparticles (MNP) are calculated by the QM/DIM method and compared with experimental results as well. We find that the QM/DIM model can well reproduce the IR spectra obtained from full QM calculations for all the configurations, while although it properly enhances some of the vibrational modes, it artificially overestimates RS spectral intensities of several modes for the systems with very short intersystem distance. We show that this could be improved, however, by incorporating the hyperpolarizability of the gold metal cluster in the evaluation of RS intensities. Additionally, we address the potential impact of charge migration between the adsorbate and MNPs.
Collapse
Affiliation(s)
- Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
28
|
Salavati-fard T, Wang B. Plasmon-Assisted Direct Interfacial Charge Transfer Enables Molecular Photodissociation on Metal Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Taha Salavati-fard
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma73069, United States
| | - Bin Wang
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma73069, United States
| |
Collapse
|
29
|
Gutowski Ł, Liszewska M, Bartosewicz B, Budner B, Weyher JL, Jankiewicz BJ. Investigation of organic monoradicals reactivity using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121312. [PMID: 35537259 DOI: 10.1016/j.saa.2022.121312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/28/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) and self-assembled monolayer (SAM) approaches were used to investigate the reactions of organic monoradicals with methanol. An attempt was made to generate monoradicals from thiophenols and phenylmethanethiols substituted with bromine, iodine, and nitro groups by irradiation with UV light. Monolayers of radical precursors were deposited on SERS substrates, which were then immersed in methanol and irradiated for 1 and/or 3, 6, 12 and 24 h in a UV photochemical reactor. Pre- and postreaction SERS spectra were obtained by using a confocal Raman microscope and compared with the spectra of expected products of the radical reaction with methanol. Our studies have shown that the efficiency of monoradical generation is highly dependent on the chemical structure of the precursor. In addition, it is shown that both the SERS substrate and experimental conditions used strongly influence the obtained results.
Collapse
Affiliation(s)
- Łukasz Gutowski
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Malwina Liszewska
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Bogusław Budner
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Jan L Weyher
- Institute of High-Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland.
| | - Bartłomiej J Jankiewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| |
Collapse
|
30
|
Zhao J, Wang J, Brock AJ, Zhu H. Plasmonic heterogeneous catalysis for organic transformations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Wang X, Zhang C, Zhou X, Fu Z, Yan L, Li J, Zhang Z, Zheng H. Plasmonic Effect of Ag/Au Composite Structures on the Material Transition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172927. [PMID: 36079965 PMCID: PMC9457859 DOI: 10.3390/nano12172927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 05/14/2023]
Abstract
Noble metal nanostructures can produce the surface plasmon resonance under appropriate photoexcitation, which can be used to promote or facilitate chemical reactions, as well as photocatalytic materials, due to their strong plasmon resonance in the visible light region. In the current work, Ag/Au nanoislands (NIs) and Ag NIs/Au film composite systems were designed, and their thermocatalysis performance was investigated using luminescence of Eu3+ as a probe. Compared with Ag NIs, the catalytic efficiency and stability of surface plasmons of Ag/Au NIs and Ag NIs/Au film composite systems were greatly improved. It was found that the metal NIs can also generate strong localized heat at low temperature environment, enabling the transition of NaYF4:Eu3+ to Y2O3: Eu3+, and anti-oxidation was realized by depositing gold on the surface of silver, resulting in the relative stability of the constructed complex.
Collapse
Affiliation(s)
- Xiaohua Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Chengyun Zhang
- School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
| | - Xilin Zhou
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Zhengkun Fu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Lei Yan
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Jinping Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
- Correspondence: (J.L.); (H.Z.)
| | - Zhenglong Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
| | - Hairong Zheng
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
- Correspondence: (J.L.); (H.Z.)
| |
Collapse
|
32
|
Li Z, Zhang C, Sheng H, Wang J, Zhu Y, Yu L, Wang J, Peng Q, Lu G. Molecular Cocatalyst of p-Mercaptophenylboronic Acid Boosts the Plasmon-Mediated Reduction of p-Nitrothiophenol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38302-38310. [PMID: 35943401 DOI: 10.1021/acsami.2c08327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Localized surface plasmon resonance (LSPR) has been demonstrated to be highly effective in the initialization or acceleration of chemical reactions because of its unique optical properties. However, because of the ultrashort lifetime (fs to ps) of plasmon-generated hot carriers, the potential of LSPR in photochemical reactions has not been fully exploited. Herein, we demonstrate an acceleration of the plasmon-mediated reduction of p-nitrothiophenol (PNTP) molecules on the surface of silver nanoparticles (AgNPs) with in situ Raman spectroscopy. p-Mercaptophenylboronic acid (PMPBA) molecules coadsorbed on AgNP surfaces act as a molecular cocatalyst in the plasmon-mediated reaction, resulting in a boosting of the PNTP reduction. This boosting is attributed to the improved transfer and separation of the plasmon-generated hot carriers at the interface of the AgNPs and coadsorbed PMPBA molecules. Our finding provides a highly simple, cost-effective, and highly effective strategy to promote plasmonic photochemistry by introducing a molecular cocatalyst, and this strategy can be extended to promote various plasmon-mediated reactions.
Collapse
Affiliation(s)
- Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chengyu Zhang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Huixiang Sheng
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jin Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
33
|
Lin C, Liu H, Guo M, Zhao Y, Su X, Zhang P, Zhang Y. Plasmon-induced broad spectrum photocatalytic overall water splitting: Through non-noble bimetal nanoparticles hybrid with reduced graphene oxide. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Wu X, Wen S, Song H, Frauenheim T, Tretiak S, Yam C, Zhang Y. Nonadiabatic Molecular Dynamics Simulations Based on Time-Dependent Density Functional Tight-Binding Method. J Chem Phys 2022; 157:084114. [DOI: 10.1063/5.0100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonadiabatic excited-state molecular dynamics underpin many photophysical and photochemical phenomena, such as exciton dynamics, charge separation and transport. In this work, we present an efficient nonadiabatic molecular dynamic (NAMD) simulation method based on time-dependent density functional tight-binding (TDDFTB) theory. Specifically, the adiabatic electronic structure, an essential NAMD input, is described at the TDDFTB level. The nonadiabatic effects originating from the coupled motions of electrons and nuclei are treated by the trajectory surface hopping algorithm. To improve the computational efficiency, nonadiabatic couplings between excited states within the TDDFTB method are derived and implemented using an analytical approach. Further, the time-dependent nonadiabatic coupling scalars are calculated based on the overlap between molecular orbitals rather than the Slater determinants to speed up the simulations. In addition, the electronic decoherence scheme and a state reassigned unavoided crossings algorithm, which has been implemented in the NEXMD software, are used to improve the accuracy of the simulated dynamics and handle trivial unavoided crossings. Finally, the photoinduced nonadiabatic dynamics of a benzene molecule are simulated to demonstrate our implementation. The results for excited state NAMD simulations of benzene molecule based on TDDFTB method compare well that obtained with numerically expensive time-dependent density functional theory. The proposed methodology provides an attractive theoretical simulation tool for predicting the photophysical and photochemical properties of complex materials.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen JL Computational Science and Applied Research Institute, China
| | | | - Huajing Song
- Los Alamos National Laboratory, United States of America
| | | | - Sergei Tretiak
- Theoretical Division, T-1, Los Alamos National Laboratory, United States of America
| | - ChiYung Yam
- Beijing Computational Science Research Center, Beijing Computational Science Research Center, China
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, United States of America
| |
Collapse
|
35
|
Toda K, Hirose Y, Kazuma E, Kim Y, Taketsugu T, Iwasa T. Excited States of Metal-Adsorbed Dimethyl Disulfide: A TDDFT Study with Cluster Model. J Phys Chem A 2022; 126:4191-4198. [PMID: 35759698 PMCID: PMC9272398 DOI: 10.1021/acs.jpca.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optical near field refers to a localized light field near a surface that can induce photochemical phenomena such as dipole-forbidden transitions. Recently, the photodissociation of the S-S bond of dimethyl disulfide (DMDS) was investigated using a scanning tunneling microscope with far- and near-field light. This reaction is thought to be initiated by the lowest-energy highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition of the DMDS molecule under far-field light. In near-field light, photodissociation proceeds at lower photon energies than in far-field light. To gain insight into the underlying mechanism, we theoretically investigated the excited states of DMDS adsorbed on Cu and Ag surfaces modeled by a tetrahedral 20-atom cluster. The frontier orbitals of the molecule were delocalized by the interaction with the metal, resulting in narrowing of the HOMO-LUMO gap energy. The excited-state distribution was analyzed using the Mulliken population analysis, decomposing molecular orbitals into metal and DMDS fragments. The excited states of the intra-DMDS transitions were found over a wider energy range, but at low energies, their oscillator strengths were negligible, which is consistent with the experimental results. Sparse modeling analysis showed that typical electronic transitions differed between the higher and lower excited states. If these low-lying excited states are efficiently excited by near-field light with different selection rules, the S-S bond dissociation reaction can proceed.
Collapse
Affiliation(s)
- Keijiro Toda
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshihiro Hirose
- School
of Interdisciplinary Mathematical Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Emiko Kazuma
- Surface
and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- JST
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yousoo Kim
- Surface
and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tetsuya Taketsugu
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060−0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
- ESICB, Kyoto University, Kyoto 615-8245, Japan
| | - Takeshi Iwasa
- JST
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060−0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
- ESICB, Kyoto University, Kyoto 615-8245, Japan
| |
Collapse
|
36
|
Shangguan W, Liu Q, Wang Y, Sun N, Liu Y, Zhao R, Li Y, Wang C, Zhao J. Molecular-level insight into photocatalytic CO 2 reduction with H 2O over Au nanoparticles by interband transitions. Nat Commun 2022; 13:3894. [PMID: 35794088 PMCID: PMC9259601 DOI: 10.1038/s41467-022-31474-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Achieving CO2 reduction with H2O on metal photocatalysts and understanding the corresponding mechanisms at the molecular level are challenging. Herein, we report that quantum-sized Au nanoparticles can photocatalytically reduce CO2 to CO with the help of H2O by electron-hole pairs mainly originating from interband transitions. Notably, the Au photocatalyst shows a CO production rate of 4.73 mmol g-1 h-1 (~100% selectivity), ~2.5 times the rate during CO2 reduction with H2 under the same experimental conditions, under low-intensity irradiation at 420 nm. Theoretical and experimental studies reveal that the increased activity is induced by surface Au-O species formed from H2O decomposition, which synchronously optimizes the rate-determining steps in the CO2 reduction and H2O oxidation reactions, lowers the energy barriers for the *CO desorption and *OOH formation, and facilitates CO and O2 production. Our findings provide an in-depth mechanistic understanding for designing active metal photocatalysts for efficient CO2 reduction with H2O.
Collapse
Affiliation(s)
- Wenchao Shangguan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qing Liu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Ning Sun
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yu Liu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Zhao
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingxuan Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
37
|
Chen K, Wang H. Plasmon-Driven Oxidative Coupling of Aniline-Derivative Adsorbates: A Comparative Study of para-Ethynylaniline and para-Mercaptoaniline. J Chem Phys 2022; 156:204705. [DOI: 10.1063/5.0094890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmon-driven photocatalysis has emerged as a paradigm-shifting approach, based upon which the energy of photons can be judiciously harnessed to trigger interfacial molecular transformations on metallic nanostructure surfaces in a regioselective manner with nanoscale precision. Over the past decade, the formation of aromatic azo compounds through plasmon-driven oxidative coupling of thiolated aniline-derivative adsorbates has become a testbed for developing detailed mechanistic understanding of plasmon-mediated photochemistry. Such photocatalytic bimolecular coupling reactions may occur not only between thiolated aniline-derivative adsorbates but between their nonthiolated analogues as well. How the nonthiolated adsorbates behave differently from their thiolated counterparts during the plasmon-driven coupling reactions, however, remains largely unexplored. Here, we systematically compare an alkynylated aniline-derivative, para-ethynylaniline, to its thiolated counterpart, para-mercaptoaniline, in terms of their adsorption conformations, structural flexibility, photochemical reactivity, and transforming kinetics on Ag nanophotocatalyst surfaces. We employ surface-enhanced Raman scattering as an in situ spectroscopic tool to track the detailed structural evolution of the transforming molecular adsorbates in real time during the plasmon-driven coupling reactions. Rigorous analysis of the spectroscopic results, further aided by density functional theory calculations, lays an insightful knowledge foundation that enables us to elucidate how the alteration of the chemical nature of metal-adsorbate interactions profoundly influences the transforming behaviors of the molecular adsorbates during plasmon-driven photocatalytic reactions.
Collapse
Affiliation(s)
- Kexun Chen
- University of South Carolina Department of Chemistry and Biochemistry, United States of America
| | - Hui Wang
- Chemistry and Biochemistry, University of South Carolina Department of Chemistry and Biochemistry, United States of America
| |
Collapse
|
38
|
Lu Y, Wu LW, Cao W, Huang YF. Finding a Sensitive Surface-Enhanced Raman Spectroscopic Thermometer at the Nanoscale by Examining the Functional Groups. Anal Chem 2022; 94:6011-6016. [PMID: 35377614 DOI: 10.1021/acs.analchem.2c00633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Temperature variation at the nanoscale is pivotal for the thermodynamics and kinetics of small entities. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for monitoring temperature variations at the nanoscale. A key but ambiguous topic is methods to design a sensitive SERS thermometer. Here, we elucidate that the type of chemical bond of molecular probes and the surface chemical bonding effect are crucial for maximizing the sensitivity of the SERS thermometer, as illustrated by the variable-temperature SERS measurements and quantum chemistry calculations for the frequency-temperature functions of a series of molecules. The sensitivity of the frequency-temperature function follows the sequence of triple bond > double bond > single bond, which is available for both aliphatic and aromatic molecules. The surface chemical bonding effect between the SERS substrate and molecular probe substantially increases the sensitivity of the frequency-temperature function. These results provide universally available guidelines for the rational design of a sensitive SERS thermometer by examining the functional groups of molecular probes.
Collapse
Affiliation(s)
- Yang Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Li-Wen Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wumei Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
39
|
Experimental characterization techniques for plasmon-assisted chemistry. Nat Rev Chem 2022; 6:259-274. [PMID: 37117871 DOI: 10.1038/s41570-022-00368-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/19/2022]
Abstract
Plasmon-assisted chemistry is the result of a complex interplay between electromagnetic near fields, heat and charge transfer on the nanoscale. The disentanglement of their roles is non-trivial. Therefore, a thorough knowledge of the chemical, structural and spectral properties of the plasmonic/molecular system being used is required. Specific techniques are needed to fully characterize optical near fields, temperature and hot carriers with spatial, energetic and/or temporal resolution. The timescales for all relevant physical and chemical processes can range from a few femtoseconds to milliseconds, which necessitates the use of time-resolved techniques for monitoring the underlying dynamics. In this Review, we focus on experimental techniques to tackle these challenges. We further outline the difficulties when going from the ensemble level to single-particle measurements. Finally, a thorough understanding of plasmon-assisted chemistry also requires a substantial joint experimental and theoretical effort.
Collapse
|
40
|
Lee M, Kazuma E, Jung J, Trenary M, Kim Y. Dissociation of Single O 2 Molecules on Ag(110) by Electrons, Holes, and Localized Surface Plasmons. CHEM REC 2022; 22:e202200011. [PMID: 35332649 DOI: 10.1002/tcr.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Indexed: 11/06/2022]
Abstract
A detailed understanding of the dissociation of O2 molecules on metal surfaces induced by various excitation sources, electrons/holes, light, and localized surface plasmons, is crucial not only for controlling the reactivity of oxidation reactions but also for developing various oxidation catalysts. The necessity of mechanistic studies at the single-molecule level is increasingly important for understanding interfacial interactions between O2 molecules and metal surfaces and to improve the reaction efficiency. We review single-molecule studies of O2 dissociation on Ag(110) induced by various excitation sources using a scanning tunneling microscope (STM). The comprehensive studies based on the STM and density functional theory calculations provide fundamental insights into the excitation pathway for the dissociation reaction.
Collapse
Affiliation(s)
- Minhui Lee
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Nam-gu, Ulsan 44776, Republic of Korea
| | - Michael Trenary
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
41
|
Minamimoto H, Zhou R, Fukushima T, Murakoshi K. Unique Electronic Excitations at Highly Localized Plasmonic Field. Acc Chem Res 2022; 55:809-818. [PMID: 35184549 DOI: 10.1021/acs.accounts.1c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusUnder visible light illuminations, noble metal nanostructures can condense photon energy into the nanoscale region. By precisely tuning the metal nanostructures, the ultimate confinement of photoenergy at the molecular scale can be obtained. At such a confined photon energy field, various unique photoresponses of molecules, such as efficient visible light energy conversion processes or efficient multielectron transfer reactions, can be observed. Light-matter interactions also increase with the condensation of photons with nanoscale regions, leading to efficient light energy utilizations. Moreover, the strong field confinement can often modulate electronic excitations beyond normal selection rules. Such unique electronic excitations could realize innovative photoenergy conversion systems. On the other hand, such interactions lead to changes in the optical absorption property of the system via the formation of hybridized electronic energy states. This hybridized state is expected to have the potential to modulate the chemical reaction pathways. Taking these facts into consideration, a probe for the molecular absorption process with high sensitivity allows us to find novel ways for further precise tuning of light-matter interactions. In this Account, we review phenomena of unique electronic excitations from the perspective of our previous investigations using surface-enhanced Raman scattering (SERS) spectroscopy at electrified interfaces. Because the enhancement mechanism of Raman scattering at interfaces is deeply correlated with the photon absorption process accompanied by the electronic excitations between molecules and electrode surfaces, the detailed SERS investigations of the well-defined system can provide information on the electronic excitation processes. Through SERS observations of single-molecule junctions at electrodes or well-defined low-dimensional carbon materials, we have observed the characteristic Raman bands containing additional polarization tensors, indicating the occurrence of electronic polarization induced by electronic excitations based on a distinct selection rule. The origins for the observed facts were attributed to the highly condensed electric field producing the huge intensity gradient at the nano scale. The electrochemical potential control of the system would be valuable for the control of the excitation process. Additionally, from Raman spectra of dye molecules coupled to the plasmonic field, the changes in the Raman scattering intensity depending on the strength of interactions suggested the modulation of the absorption characteristics of the system. In addition, we have proved that the electrochemical potential control method can be a powerful tool for the active tuning of the light-matter interaction, leading to the change in the light absorption property. The molecular behaviors of dyes in the strong-coupling regime were reversibly tuned to show intense SERS. The current descriptions provide novel insights for these unique electronic excitations, realized by the plasmon excitation, that lead to advanced photoenergy conversions beyond the limits of present systems.
Collapse
Affiliation(s)
- Hiro Minamimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
| | - Ruifeng Zhou
- Department of Chemistry, Faculty of Science, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohiro Fukushima
- Department of Chemistry, Faculty of Science, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, N10W8, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
42
|
Schürmann R, Titov E, Ebel K, Kogikoski S, Mostafa A, Saalfrank P, Milosavljević AR, Bald I. The electronic structure of the metal-organic interface of isolated ligand coated gold nanoparticles. NANOSCALE ADVANCES 2022; 4:1599-1607. [PMID: 35399325 PMCID: PMC8922996 DOI: 10.1039/d1na00737h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Light induced electron transfer reactions of molecules on the surface of noble metal nanoparticles (NPs) depend significantly on the electronic properties of the metal-organic interface. Hybridized metal-molecule states and dipoles at the interface alter the work function and facilitate or hinder electron transfer between the NPs and ligand. X-ray photoelectron spectroscopy (XPS) measurements of isolated AuNPs coated with thiolated ligands in a vacuum have been performed as a function of photon energy, and the depth dependent information of the metal-organic interface has been obtained. The role of surface dipoles in the XPS measurements of isolated ligand coated NPs is discussed and the binding energy of the Au 4f states is shifted by around 0.8 eV in the outer atomic layers of 4-nitrothiophenol coated AuNPs, facilitating electron transport towards the molecules. Moreover, the influence of the interface dipole depends significantly on the adsorbed ligand molecules. The present study paves the way towards the engineering of the electronic properties of the nanoparticle surface, which is of utmost importance for the application of plasmonic nanoparticles in the fields of heterogeneous catalysis and solar energy conversion.
Collapse
Affiliation(s)
- Robin Schürmann
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Evgenii Titov
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Kenny Ebel
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Sergio Kogikoski
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Amr Mostafa
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Peter Saalfrank
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | | | - Ilko Bald
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| |
Collapse
|
43
|
Zhu X, Xu Y, Zhao C, Jia C, Guo X. Recent Advances in Photochemical Reactions on Single-Molecule Electrical Platforms. Macromol Rapid Commun 2022; 43:e2200017. [PMID: 35150177 DOI: 10.1002/marc.202200017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/05/2022] [Indexed: 11/08/2022]
Abstract
The photochemical reaction is a very important type of chemical reactions. Visualizing and controlling photo-mediated reactions is a long-standing goal and challenge. In this regard, single-molecule electrical detection with label-free, real-time and in situ characteristics has unique advantages in monitoring the dynamic process of photoreactions at the single-molecule level. In this Review, we provide a valuable summary of the latest process of single-molecule photochemical reactions based on single-molecule electrical platforms. The single-molecule electrical detection platforms for monitoring photoreactions are displayed, including their fundamental principles, construction methods and practical applications. The single-molecule studies of two different types of light-mediated reactions are summarized as below: i) photo-induced reactions, including reversible cyclization, conformational isomerization and other photo-related reactions; ii) plasmon-mediated photoreactions, including reaction mechanisms and concrete examples, such as plasmon-induced photolysis of S-S/O-O bonds and tautomerization of porphycene. In addition, the prospects for future research directions and challenges in this field are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xin Zhu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Yanxia Xu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Cong Zhao
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| |
Collapse
|
44
|
Mahapatra S, Schultz JF, Li L, Zhang X, Jiang N. Controlling Localized Plasmons via an Atomistic Approach: Attainment of Site-Selective Activation inside a Single Molecule. J Am Chem Soc 2022; 144:2051-2055. [PMID: 34978804 DOI: 10.1021/jacs.1c11547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical reactions such as bond dissociation and formation assisted by localized surface plasmons (LSPs) of noble metal nanostructures hold promise in solar-to-chemical energy conversion. However, the precise control of localized plasmons to activate a specific moiety of a molecule, in the presence of multiple chemically equivalent parts within a single molecule, is scarce due to the relatively large lateral distribution of the plasmonic field. Herein, we report the plasmon-assisted dissociation of a specific molecular site (C-Si bond) within a polyfunctional molecule adsorbed on a Cu(100) surface in the scanning tunneling microscope (STM) junction. The molecular site to be activated can be selected by carefully positioning the tip and bringing the tip extremely close to the molecule (atomistic approach), thereby achieving plasmonic nanoconfinement at the tip apex. Furthermore, multiple reactive sites are activated in a sequential manner at the sub-molecular scale, and different sets of products are created and visualized by STM topography and density functional theory (DFT) modeling. The illustration of site-selective activation achieved by localized surface plasmons implies the realization of molecular-scale resolution for bond-selected plasmon-induced chemistry.
Collapse
Affiliation(s)
- Sayantan Mahapatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Jeremy F Schultz
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Linfei Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Xu Zhang
- Department of Physics and Astronomy, California State University, Northridge, California 91330, United States
| | - Nan Jiang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
45
|
Lyu P, Espinoza R, Khan MI, Spaller WC, Ghosh S, Nguyen SC. Mechanistic insight into deep holes from interband transitions in Palladium nanoparticle photocatalysts. iScience 2022; 25:103737. [PMID: 35118357 PMCID: PMC8792079 DOI: 10.1016/j.isci.2022.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022] Open
Abstract
Utilizing hot electrons generated from localized surface plasmon resonance is of widespread interest in the photocatalysis of metallic nanoparticles. However, hot holes, especially generated from interband transitions, have not been fully explored for photocatalysis yet. In this study, a photocatalyzed Suzuki-Miyaura reaction using mesoporous Pd nanoparticle photocatalyst served as a model to study the role of hot holes. Quantum yields of the photocatalysts increase under shorter wavelength excitations and correlate to “deeper” energy of the holes from the Fermi level. This work suggests that deeper holes in the d-band catalyze the oxidative addition of aryl halide R-X onto Pd0 at the nanoparticles' surface to form R-PdII-X complex, thus accelerating the rate-determining step of the catalytic cycle. The hot electrons do not play a decisive role. In the future, catalytic mechanisms induced by deep holes should deserve as much attention as the well-known hot electron transfer mechanism. Comparison of quantum yield across different wavelengths Interband transitions from shorter wavelength excitation offering deeper holes Deeper holes with stronger oxidizing power for higher quantum yield
Collapse
|
46
|
Zurkova M, Šloufová I, Gajdošová V, Vlčková B. Plasmon-Catalysed Decarboxylation of Dicarboxybipyridine Ligands in Ru(II) Complexes Chemisorbed on Ag Nanoparticles: Conditions, Proposed Mechanism and Role of Ag(0) Adsorption Sites. Phys Chem Chem Phys 2022; 24:15034-15047. [DOI: 10.1039/d2cp00765g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmon-catalyzed decarboxylation reactions of Ru(II) bis(2,2‘-bipyridine)(4,4‘-dicarboxy-bipyridine) denoted as Ru(bpy)2(dcbpy) and Ru(II) tris(4,4‘-dicarboxy-bipyridine) denoted as Ru(dcbpy)3 complexes in hydrosol systems with Ag nanoparticles (NPs) conditioned by the presence of Ag(0) adsorption...
Collapse
|
47
|
Wang G, Wang K, Zhang C, Zhu Y, Jiang X, Li Z, Yin C, Ma H, Liu J, Huang X, Lu G. Modulating the plasmon-mediated silver oxidation using thiophenol molecules as monitored by in situ SERS spectroscopy. Phys Chem Chem Phys 2021; 23:26385-26391. [PMID: 34792049 DOI: 10.1039/d1cp03864h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective charge separation is essential in plasmon-mediated photochemistry and is usually achieved by constructing plasmon-semiconductor interfaces, which is usually challenging. In this work, by monitoring the plasmon-mediated silver oxidation with in situ Raman spectroscopy, we demonstrate that the adsorbed thiophenol molecules could modulate the rate of photochemical reactions by tuning the charge separation at the plasmon-molecule interfaces. It is found that the thiophenol molecules with strong electron-withdrawing or donating functional groups could accelerate or decelerate the rate of plasmon-mediated silver oxidation, respectively. Owing to the easy tuning of the electronic structures of organic molecules via substitution, our method provides a versatile and convenient approach for the fine modulation of plasmon-mediated photochemical reactions.
Collapse
Affiliation(s)
- Guilin Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Kai Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Chengyu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xueyan Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Chengrong Yin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China. .,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
48
|
Zhou B, Ou W, Shen J, Zhao C, Zhong J, Du P, Bian H, Li P, Yang L, Lu J, Li YY. Controlling Plasmon-Aided Reduction of p-Nitrothiophenol by Tuning the Illumination Wavelength. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Binbin Zhou
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Weihui Ou
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Junda Shen
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Chenghao Zhao
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Jing Zhong
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Peng Du
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
| | - Haidong Bian
- Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen 518055, P. R. China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Jian Lu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, P. R. China
| | - Yang Yang Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R.China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 99907, Hong Kong SAR, P. R. China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
49
|
Zhang H, Lam SH, Guo Y, Yang J, Lu Y, Shao L, Yang B, Xiao L, Wang J. Selective Deposition of Catalytic Metals on Plasmonic Au Nanocups for Room-Light-Active Photooxidation of o-Phenylenediamine. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51855-51866. [PMID: 33908755 DOI: 10.1021/acsami.1c03806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic hotspots can enhance hot charge carrier generation, offering new opportunities for improving the photocatalytic activity. In this work, eight types of heteronanostructures are synthesized by selectively depositing catalytic metals at the different sites of highly asymmetric Au nanocups for the photocatalytic oxidation of o-phenylenediamine. The oxidation of this molecule has so far mainly relied on the use of H2O2 as an oxidizing agent in the presence of an appropriate catalyst. The photocatalytic oxidation under visible light has not been reported before. The Au nanocups with AgPt nanoparticles grown at the opening edge and bottom exhibit the highest photocatalytic activity. The generated hot electrons and holes both participate in the reaction. The hot carriers from the interband and intraband transitions are both utilized. The optimal catalyst shows a favorable activity even under room light. Simulations reveal that the profound electric field enhancement at the hotspots boosts the hot-carrier density in the catalytic nanoparticles, explaining the overwhelming photocatalytic activity of the optimal catalyst.
Collapse
Affiliation(s)
- Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shiu Hei Lam
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yanzhen Guo
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Jianhua Yang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yao Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Shao
- Beijing Computational Science Research Centre, Beijing 100193, China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
50
|
Zhao J, Xue S, Ji R, Li B, Li J. Localized surface plasmon resonance for enhanced electrocatalysis. Chem Soc Rev 2021; 50:12070-12097. [PMID: 34533143 DOI: 10.1039/d1cs00237f] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalysis plays a vital role in energy conversion and storage in modern society. Localized surface plasmon resonance (LSPR) is a highly attractive approach to enhance the electrocatalytic activity and selectivity with solar energy. LSPR excitation can induce the transfer of hot electrons and holes, electromagnetic field enhancement, lattice heating, resonant energy transfer and scattering, in turn boosting a variety of electrocatalytic reactions. Although the LSPR-mediated electrocatalysis has been investigated, the underlying mechanism has not been well explained. Moreover, the efficiency is strongly dependent on the structure and composition of plasmonic metals. In this review, the currently proposed mechanisms for plasmon-mediated electrocatalysis are introduced and the preparation methods to design supported plasmonic nanostructures and related electrodes are summarized. In addition, we focus on the characterization strategies used for verifying and differentiating LSPR mechanisms involved at the electrochemical interface. Following that are highlights of representative examples of direct plasmonic metal-driven and indirect plasmon-enhanced electrocatalytic reactions. Finally, this review concludes with a discussion on the remaining challenges and future opportunities for coupling LSPR with electrocatalysis.
Collapse
Affiliation(s)
- Jian Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Rongrong Ji
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Bing Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jinghong Li
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|