1
|
Chu Z, Li J, Chen F, Cao Y, Chen L, Zhou F, Ma H, Yang Q, Zhang Z, Qiao K, Ren Q, Bao Z. Planar Group Functionalization of Quasi-Discrete Pores in Metal-Organic Frameworks for Enhanced Isomeric Separation in Simulated Moving Bed Processes. ACS CENTRAL SCIENCE 2024; 10:1861-1870. [PMID: 39463840 PMCID: PMC11503489 DOI: 10.1021/acscentsci.4c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024]
Abstract
The efficient separation of 4-methyl-1-pentene (4MP1) from its structural isomers is crucial for industrial applications but remains challenging due to the similar physicochemical properties of these compounds. This study introduces a novel strategy using metal-organic frameworks (MOFs), specifically an engineered variant of ZIF-108, which demonstrates remarkable improvements in the thermodynamic and kinetic properties for 4MP1 separation. By substituting the methyl groups in ZIF-8 with planar nitro groups, we achieved a strategic resizing of the pore windows and cavity dimensions in ZIF-108. This adjustment not only enhanced the molecular affinity and selectivity toward 4MP1 but also facilitated a diffusion rate that is 164 times faster than that observed in ZIF-8. These properties significantly elevated the performance of ZIF-108 in simulated moving bed (SMB) processes, achieving up to 96.5% recovery of high-purity 4MP1, outperforming traditional adsorbents. Comprehensive characterization, including density functional theory (DFT) calculations and molecular dynamics (MD) simulations, provided insights into the interactions and the stability of the adsorption process. The findings suggest that the strategic modification of the pore architecture in MOFs holds significant potential for optimizing the separation processes of industrially relevant mixtures.
Collapse
Affiliation(s)
- Zhe Chu
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Jiaqi Li
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Fuqiang Chen
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yifeng Cao
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Lihang Chen
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Feng Zhou
- SINOPEC
(Dalian) Research Institute of Petroleum and Petrochemicals Co., Ltd., 96 Nankai Street, Lvshunkou District, Dalian 116045, P.R. China
| | - Huixia Ma
- SINOPEC
(Dalian) Research Institute of Petroleum and Petrochemicals Co., Ltd., 96 Nankai Street, Lvshunkou District, Dalian 116045, P.R. China
| | - Qiwei Yang
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Zhiguo Zhang
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Kai Qiao
- SINOPEC
(Dalian) Research Institute of Petroleum and Petrochemicals Co., Ltd., 96 Nankai Street, Lvshunkou District, Dalian 116045, P.R. China
| | - Qilong Ren
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key
Laboratory of Biomass Chemical Engineering of ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|
2
|
Xie W, Fu Q, Yang LZ, Yan L, Zhang J, Zhao X. Methane Storage and Purification of Natural Gas in Metal-Organic Frameworks. CHEMSUSCHEM 2024:e202401382. [PMID: 39196965 DOI: 10.1002/cssc.202401382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Natural gas, primarily composed of methane (CH4), represent an excellent choice for a potentially sustainable renewable energy transition. However, the process of compressing and liquefying CH4 for transport and storage typically results in significant energy losses. In addition, in order to optimize its efficacy as a fuel, the CH4 content of natural gas needs to be increased to a level of at least 97 % to ensure its quality and efficiency in various applications. Metal-organic frameworks (MOFs) represent a novel category of porous materials that possess exceptional capability in modifying pore size and chemical environment, making them ideally suited for the storage of CH4 and the adsorption of propane (C3H8), ethane (C2H6), carbon dioxide (CO2), nitrogen (N2), and hydrogen sulfide (H2S) to facilitate the purification process of CH4 from natural gas. In this paper, we systematically summarize the mechanism by which MOF materials facilitate the storage of CH4 and the purification of CH4 from natural gas, leveraging the structural characteristics inherent to MOF materials. The focus of further research should also be directed towards the investigation of CH4 storage by flexible MOFs, the resolution of the trade-off dilemma, and the commercial application of MOFs.
Collapse
Affiliation(s)
- Wenpeng Xie
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qiuju Fu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ling-Zhi Yang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jun Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuebo Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
3
|
Zhang Z, Zhou J, Xie J, Ma X, Chen X, Yan T, Du L, Zhao Q. Breathing Behavior and Superprotonic Conductivity of Two-Dimensional Flexible Metal-Organic Frameworks Tuned with Alkoxy Groups. Inorg Chem 2024; 63:10278-10287. [PMID: 38772015 DOI: 10.1021/acs.inorgchem.4c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Flexible metal-organic frameworks (FMOFs) exhibit reversible structural transitions ("breathing" behaviors), which can regulate the proton transport passageway effectively. This property offers remarkable advantages for improving the proton conductivity. Our objective of this work is to design a single-variable flexibility synergistic strategy for the fabrication of FMOFs with high conductivity. Herein, four two-dimensional FMOFs, {[Co(4-bpdb)(R-ip)]·xsolvents}n (x = rich, 1-4), have been successfully designed and assembled (4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene and R-ip = MeO/EtO/n-PrO/n-BuO-isophthalate). Upon the release and/or absorption of different solvent molecules, they display reversible breathing behaviors, thereby resulting in the formation of the partial and complete solvent-free compounds {[Co(4-bpdb)(R-ip)]·ysolvents}n (y = free or poor, 1A-4A). This breathing behavior involves the synergistic self-adaption of the dynamic torsion of alkoxy groups and reversible structural transformation, leading to remarkable changes in cell parameters and void space, as evidenced by single-crystal X-ray diffraction, powder X-ray diffraction, and N2 and CO2 adsorption analyses. At 363 K and 98% relative humidity, 2A exhibits the best proton conductivity among the FMOFs. Its conductivity reaches 4.08 × 10-2 S cm-1 and is one of the highest conductivities shown by reported unmodified MOF-based proton conductors.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R China
| | - Jie Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R China
| | - Jinhong Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R China
| | - Xun Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R China
| | - Xue Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R China
| | - Tong Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R China
| | - Qihua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R China
| |
Collapse
|
4
|
Abylgazina L, Senkovska I, Engemann R, Bönisch N, Gorelik TE, Bachetzky C, Kaiser U, Brunner E, Kaskel S. Chemoselectivity Inversion of Responsive Metal-Organic Frameworks by Particle Size Tuning in the Micrometer Regime. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307285. [PMID: 38225688 DOI: 10.1002/smll.202307285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Gated adsorption is one of the unique physical properties of flexible metal-organic frameworks with high application potential in selective adsorption and sensing of molecules. Despite recent studies that have provided some guidelines in understanding and designing structural flexibility for controlling gate opening by chemical modification of the secondary building units, currently, there is no established strategy to design a flexible MOF showing selective gated adsorption for a specific guest molecule. In a present contribution it is demonstrated for the first time, that the selectivity in the gate opening of a particular compound can be tuned, changed, and even reversed using particle size engineering DUT-8(Zn) ([Zn2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane, DUT = Dresden University of Technology) experiences phase transition from open (op) to closed (cp) pore phase upon removal of solvent from the pores. Microcrystals show selective reopening in the presence of dichloromethane (DCM) over alcohols. Crystal downsizing to micron size unexpectedly reverses the gate opening selectivity, causing DUT-8(Zn) to open its nanosized pores for alcohols but suppressing the responsivity toward DCM.
Collapse
Affiliation(s)
- Leila Abylgazina
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Irena Senkovska
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Richard Engemann
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Nadine Bönisch
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Tatiana E Gorelik
- Electron Microscopy Group of Materials Science (EMMS), Central Facility for Electron Microscopy, Universität Ulm, Oberberghof 3/1, 89081, Ulm, Germany
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Department of Pharmacy, Saarland University, Universitätscampus E8 1, 66123, Saarbrücken, Germany
| | | | - Ute Kaiser
- Electron Microscopy Group of Materials Science (EMMS), Central Facility for Electron Microscopy, Universität Ulm, Oberberghof 3/1, 89081, Ulm, Germany
| | - Eike Brunner
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Stefan Kaskel
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| |
Collapse
|
5
|
Huang C, Zhang Q, Zhang Y, Wang F, Zhang YY, Qiu M, Zhang Y, Zhai L. Self-driven electrochemical system using solvent-regulated structural diversity of cadmium(II) metal-organic frameworks. J Colloid Interface Sci 2024; 662:953-961. [PMID: 38382378 DOI: 10.1016/j.jcis.2024.02.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Optimizing friction materials based on molecular diversity in a molecular framework system is an effective method to improve the output performance of triboelectric nanogenerators (TENGs). In this study, three cadmium(II) metal-organic frameworks (Cd-MOFs) with different cavities were synthesized solvothermally by the assembly of cadmium nitrate (Cd(NO3)2·4H2O), 4',4'''-carbonylbis(([1,1'-biphenyl]-3,5-dicarboxylic acid)) (H4CBBD), and trans-1,2-bis(4-pyridyl)ethylene (4,4'-bpe) via a solvent-regulated strategy. The topology and porosity of Cd-MOFs could be controlled effectively by the solvent constituents and were demonstrated to be closely related to their triboelectric behaviors. Theoretical calculations and experimental characterizations revealed that the TENGs fabricated by the Cd-MOF with maximum porosity exhibited the best triboelectric performance owing to the enhanced specific surface area and surface potential. In the applications, the high-output TENGs can be successfully used as an efficient power supply for electrochemical systems, enabling the direct bromination of aromatic compounds in high yields with good regioselectivity. This study provides a simple and feasible method to optimize positive friction materials at the molecular level and develops the practical applications of TENGs in electrochemical systems.
Collapse
Affiliation(s)
- Chao Huang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou, Henan 450007, PR China
| | - Qiang Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou, Henan 450007, PR China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yue Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou, Henan 450007, PR China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Fei Wang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou, Henan 450007, PR China; School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Ying-Ying Zhang
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou, Henan 450007, PR China.
| | - Mei Qiu
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Lipeng Zhai
- Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou, Henan 450007, PR China.
| |
Collapse
|
6
|
Kurihara T, Souri Y, Inukai M, Mizuno M. CO 2-induced gate-opening structural transition process of a porous coordination polymer revealed by solid-state 13C NMR. Chem Commun (Camb) 2024; 60:5074-5077. [PMID: 38639070 DOI: 10.1039/d4cc01180e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
This study investigates the gate-opening closed-to-open-pore structural transition of a porous coordination polymer induced by CO2 adsorption. Solid-state 13C NMR examination of adsorbed CO2 and framework dynamics reveals the surface adsorption state of the closed structure below the transition pressure and an intermediate structure during the transition process.
Collapse
Affiliation(s)
- Takuya Kurihara
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Yue Souri
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Munehiro Inukai
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506, Japan
| | - Motohiro Mizuno
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
- Nanomaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
7
|
Salvador FE, Tegudeer Z, Locke H, Gao WY. Facile mechanochemical synthesis of MIL-53 and its isoreticular analogues with a glance at reaction reversibility. Dalton Trans 2024; 53:4406-4411. [PMID: 38379516 DOI: 10.1039/d4dt00372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
MIL-53 represents one of the most notable metal-organic frameworks given its unique structural flexibility and remarkable thermal stability. In this study, a shaker-type ball milling method has been developed into a facile and generalizable synthetic strategy to access a family of MIL-53 type materials under ambient conditions. During the explorations of [M(OH)(fumarate)] (M = Al, Ga, and In), we report a positive correlation between the metal-ligand (M-L) bond reversibility and the size of resultant crystallites under the mechanochemical process. The more kinetically labile the M-L bond is, the larger the afforded crystallite size is.
Collapse
Affiliation(s)
- Fillipp Edvard Salvador
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| | | | - Halie Locke
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| | - Wen-Yang Gao
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
8
|
Sugamata K, Zhang Y, Amanokura N, Shirai A, Minoura M. Alkoxy-Functionalized Hydroxamate/Zinc Metal-Organic Frameworks and the Effects of Substituents and Acid Addition on Their Structures. Inorg Chem 2024; 63:2454-2459. [PMID: 38276883 DOI: 10.1021/acs.inorgchem.3c03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Single crystals of alkoxy-functionalized hydroxamate/zinc metal-organic frameworks (MOFs) were obtained by fixating the hydroxamate moiety via intramolecular hydrogen bonding. The resulting MOF structures depend on the steric demand of the alkoxy groups, whereby the incorporation of bulky isopropyl groups affords porous hydroxamate/zinc MOFs. The topological structures of the isopropyl-substituted MOFs could be controlled by adding acid.
Collapse
Affiliation(s)
- Koh Sugamata
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yanhua Zhang
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Natsuki Amanokura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Nippon Soda Co. LTD., 2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-7010, Japan
| | - Akihiro Shirai
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
- Nippon Soda Co. LTD., 2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-7010, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
9
|
Song BQ, Shivanna M, Gao MY, Wang SQ, Deng CH, Yang QY, Nikkhah SJ, Vandichel M, Kitagawa S, Zaworotko MJ. Shape-Memory Effect Enabled by Ligand Substitution and CO 2 Affinity in a Flexible SIFSIX Coordination Network. Angew Chem Int Ed Engl 2023; 62:e202309985. [PMID: 37770385 DOI: 10.1002/anie.202309985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
We report that linker ligand substitution involving just one atom induces a shape-memory effect in a flexible coordination network. Specifically, whereas SIFSIX-23-Cu, [Cu(SiF6 )(L)2 ]n , (L=1,4-bis(1-imidazolyl)benzene, SiF6 2- =SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX-23-CuN , [Cu(SiF6 )(LN )2 ]n (LN =2,5-bis(1-imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2 . As-synthesized SIFSIX-23-CuN , α, transformed to less open, γ, and closed, β, phases during activation. β did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α', a shape-memory phase which subsequently exhibited type-I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2 /N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst =45-51 kJ/mol) and excellent CO2 /N2 selectivity (up to 700). Interestingly, α' reverted to β after re-solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX-23-CuN .
Collapse
Affiliation(s)
- Bai-Qiao Song
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 610059, Chengdu, China
| | - Mohana Shivanna
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Ushinomiya, Yoshida, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Mei-Yan Gao
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX, Limerick, Republic of Ireland
| | - Shi-Qiang Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Fusionopolis Way, 138634, Singapore, Singapore
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX, Limerick, Republic of Ireland
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Sousa Javan Nikkhah
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX, Limerick, Republic of Ireland
| | - Matthias Vandichel
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX, Limerick, Republic of Ireland
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Ushinomiya, Yoshida, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Michael J Zaworotko
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX, Limerick, Republic of Ireland
| |
Collapse
|
10
|
Song D, Jiang F, Yuan D, Chen Q, Hong M. Optimizing Sieving Effect for CO 2 Capture from Humid Air Using an Adaptive Ultramicroporous Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302677. [PMID: 37357172 DOI: 10.1002/smll.202302677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Indexed: 06/27/2023]
Abstract
Excessive CO2 in the air can not only lead to serious climate problems but also cause serious damage to humans in confined spaces. Here, a novel metal-organic framework (FJI-H38) with adaptive ultramicropores and multiple active sites is prepared. It can sieve CO2 from air with the very high adsorption capacity/selectivity but the lowest adsorption enthalpy among the reported physical adsorbents. Such excellent adsorption performances can be retained even at high humidity. Mechanistic studies show that the polar ultramicropore is very suitable for molecular sieving of CO2 from N2 , and the distinguishable adsorption sites for H2 O and CO2 enable them to be co-adsorbed. Notably, the adsorbed-CO2 -driven pore shrinkage can further promote CO2 capture while the adsorbed-H2 O-induced phase transitions in turn inhibit H2 O adsorption. Moreover, FJI-H38 has excellent stability and recyclability and can be synthesized on a large scale, making it a practical trace CO2 adsorbent. This will provide a new strategy for developing practical adsorbents for CO2 capture from the air.
Collapse
Affiliation(s)
- Danhua Song
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
11
|
Yu C, Cen X, Zhang Z, Sun Y, Xue W, Qiao Z, Guiver MD, Zhong C. Step-Nucleation In Situ Self-Repair to Prepare Rollable Large-Area Ultrathin MOF Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307013. [PMID: 37643466 DOI: 10.1002/adma.202307013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Ultrathin membranes with ultrahigh permeance and good gas selectivity have the potential to greatly decrease separation process costs, but it requires the practical preparation of large area membranes for implementation. Metal-organic frameworks (MOFs) are very attractive for membrane gas separation applications. However, to date, the largest MOF membrane area reported in the literature is only about 100 cm2 . In the present study, a new step-nucleation in situ self-repair strategy is proposed that enables the preparation of large-area (2400 cm2 ) ultrathin and rollable MOF membranes deposited on an inexpensive flexible polymer membrane support layer for the first time, combining a polyvinyl alcohol (PVA)-metal-ion layer and a pure metal-ion layer. The main role of the pure metal-ion layer is to act as the main nucleation sites for MOF membrane growth, while the PVA-metal-ion layer acts as a slow-release metal-ion source, which supplements MOF crystal nucleation to repair any defects occurring. Membrane modules are necessary components for membrane applications, and spiral-wound modules are among the most common module formats that are widely applied in gas separation. A 4800 cm2 spiral-wound membrane module was successfully prepared, demonstrating the practical implementation of large-area MOF membranes.
Collapse
Affiliation(s)
- Caijiao Yu
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xixi Cen
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
12
|
Song Z, Zheng Y, Chen Y, Cai Y, Wei RJ, Gao J. Halogen-modified metal-organic frameworks for efficient separation of alkane from natural gas. Dalton Trans 2023; 52:15462-15466. [PMID: 37477392 DOI: 10.1039/d3dt01554h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
As a rich green energy source, natural gas is widely used in many fields such as the chemical industry, automobile energy, and daily life. However, it is very challenging to separate and recover C2H6 and C3H8 from natural gas. Metal-organic frameworks (MOFs) as an emerging type of multi-pore porous materials show huge potential in gas adsorption separation. Herein, we report pillar-layered MOFs, Ni (BDC)(DABCO)0.5 (DMOF-X), modified by halogen atoms (F, Cl, Br), and investigate their CH4/C2H6/C3H8 separation performance. The experimental results show that DMOF-Cl exhibited a extremely high adsorption capacity for C3H8 and C2H6. Under the conditions of 298 K and 100 kPa, the adsorption capacities for C3H8 and C2H6 on DMOF-Cl are as high as 6.23 and 4.94 mmol g-1, which are superior to the values for most of the porous materials that have been reported. In addition, DMOF-Cl also shows high C3H8/CH4 (5: 85, V/V) and C2H6/CH4 (10: 85, V/V) separation selectivities, with values of 130.9 and 12.5, respectively. Finally, DMOF-Cl also demonstrated great potential as an adsorbent for separating C3H8/C2H6/CH4.
Collapse
Affiliation(s)
- Zhirong Song
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yanchun Zheng
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yiqi Chen
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Youlie Cai
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
13
|
Li X, Tan TTY, Lin Q, Lim CC, Goh R, Otake KI, Kitagawa S, Loh XJ, Lim JYC. MOF-Thermogel Composites for Differentiated and Sustained Dual Drug Delivery. ACS Biomater Sci Eng 2023; 9:5724-5736. [PMID: 37729089 DOI: 10.1021/acsbiomaterials.3c01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In recent years, multidrug therapy has gained increasing popularity due to the possibility of achieving synergistic drug action and sequential delivery of different medical payloads for enhanced treatment efficacy. While a number of composite material release platforms have been developed, few combine the bottom-up design versatility of metal-organic frameworks (MOFs) to tailor drug release behavior, with the convenience of temperature-responsive hydrogels (or thermogels) in their unique ease of administration and formulation. Yet, despite their potential, MOF-thermogel composites have been largely overlooked for simultaneous multidrug delivery. Herein, we report the first systematic study of common MOFs (UiO-66, MIL-53(Al), MIL-100(Fe), and MOF-808) with different pore sizes, geometries, and hydrophobicities for their ability to achieve simultaneous dual drug release when embedded within PEG-containing thermogel matrices. After establishing that MOFs exert small influences on the rheological properties of the thermogels despite the penetration of polymers into the MOF pores in solution, the release profiles of ibuprofen and caffeine as model hydrophobic and hydrophilic drugs, respectively, from MOF-thermogel composites were investigated. Through these studies, we elucidated the important role of hydrophobic matching between MOF pores and loaded drugs in order for the MOF component to distinctly influence drug release kinetics. These findings enabled us to identify a viable MOF-thermogel composite containing UiO-66 that showed vastly different release kinetics between ibuprofen and caffeine, enabling temporally differentiated yet sustained simultaneous drug release to be achieved. Finally, the MOF-thermogel composites were shown to be noncytotoxic in vitro, paving the way for these underexploited composite materials to find possible clinical applications for multidrug therapy.
Collapse
Affiliation(s)
- Xin Li
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Tristan T Y Tan
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Qianyu Lin
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chen Chuan Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Rubayn Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| |
Collapse
|
14
|
Zhou ZB, Sun HH, Qi QY, Zhao X. Gradually Tuning the Flexibility of Two-Dimensional Covalent Organic Frameworks via Stepwise Structural Transformation and Their Flexibility-Dependent Properties. Angew Chem Int Ed Engl 2023; 62:e202305131. [PMID: 37496161 DOI: 10.1002/anie.202305131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Flexible covalent organic frameworks (COFs) are intriguing for their dynamic properties distinctive from rigid counterparts but still suffer from limited accessibility. Especially, controlling flexibility of COFs is challenging and the impact of different flexibility on properties of COFs has rarely been unveiled. This article reports stepwise adjustment on flexibility of two-dimensional COFs, which is realized by the designed synthesis of rigid COF (R-COF), semi-flexible COF (SF-COF), and flexible COF (F-COF) through polymerization, linker exchange, and linkage conversion with a newly developed method for reduction of hydrazone, respectively. Significant difference in breathing behavior and self-adaptive capability of the three COFs are uncovered through vapor response and iodine capture experiments. Gas sorption experiments indicate that the porosity of F-COF could switch from "close" state in nitrogen to "open" state in carbon dioxide, which are not observed for R-COF and SF-COF. This study not only develops a strategy to adjust the flexibility of COFs by tuning their linkers and linkages, but also provides a deep insight into the impact of different flexibility on properties of COFs, which lays a foundation for the development of this new class of dynamic porous materials.
Collapse
Affiliation(s)
- Zhi-Bei Zhou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hui-Hui Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
15
|
Hayashi R, Tashiro S, Asakura M, Mitsui S, Shionoya M. Effector-dependent structural transformation of a crystalline framework with allosteric effects on molecular recognition ability. Nat Commun 2023; 14:4490. [PMID: 37563107 PMCID: PMC10415384 DOI: 10.1038/s41467-023-40091-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Structurally flexible porous crystals that combine high regularity and stimuli responsiveness have received attracted attention in connection with natural allostery found in regulatory systems of activity and function in biological systems. Porous crystals with molecular recognition sites in the inner pores are particularly promising for achieving elaborate functional control, where the local binding of effectors triggers their distortion to propagate throughout the structure. Here we report that the structure of a porous molecular crystal can be allosterically controlled by local adsorption of effectors within low-symmetry nanochannels with multiple molecular recognition sites. The exchange of effectors at the allosteric site triggers diverse conversion of the framework structure in an effector-dependent manner. In conjunction with the structural conversion, it is also possible to switch the molecular affinity at different recognition sites. These results may provide a guideline for the development of supramolecular materials with flexible and highly-ordered three-dimensional structures for biological applications.
Collapse
Affiliation(s)
- Ryunosuke Hayashi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masahiro Asakura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shinya Mitsui
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
16
|
Li GB, Chen J, Liu HR, Song BQ, Ni S, Pan RK, Yang QY. Efficient and Reversible Separation of Chloroform from Chlorinated Hydrocarbons and Water Utilizing a Two-Dimensional Coordination Network. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37602-37608. [PMID: 37504065 DOI: 10.1021/acsami.3c09009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Chloroform is a volatile organic solvent and a contaminant that is slightly soluble in water, making the reversible separation of chloroform from water a critical and challenging task within the chemical and environmental industries. In this study, we present a newly developed coordination framework, [Zn(4-pmntd)(opa)] [4-pmntd, N,N'-bis(4-pyridylmethyl)naphthalene diimide; opa, o-phthalic acid], which demonstrates a high adsorption capacity for chloroform (2.5 mmol/g) and an excellent ability to separate chloroform from water. The effectiveness of chloroform extraction by Zn(4-pmntd)(opa) was confirmed through vapor sorption, grand canonical Monte Carlo simulation, and 1H nuclear magnetic resonance spectroscopy. The porous framework was also utilized to create a filtration film using natural rubber, which successfully separated chloroform from water with a minimum test concentration of approximately 1 × 10-6 mol/L and a chloroform purity of 99.2%. [Zn(4-pmntd)(opa)] therefore has significant potential for low-energy separation and recycling of chloroform from water under ambient conditions.
Collapse
Affiliation(s)
- Guo-Bi Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, People's Republic of China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, People's Republic of China
| | - Hao-Ran Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Bai-Qiao Song
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, People's Republic of China
| | - Shuang Ni
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Rong-Kai Pan
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, People's Republic of China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| |
Collapse
|
17
|
Van Speybroeck V. Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220239. [PMID: 37211031 PMCID: PMC10200353 DOI: 10.1098/rsta.2022.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 05/23/2023]
Abstract
The question is addressed in how far current modelling strategies are capable of modelling dynamic phenomena in realistic nanostructured materials at operating conditions. Nanostructured materials used in applications are far from perfect; they possess a broad range of heterogeneities in space and time extending over several orders of magnitude. Spatial heterogeneities from the subnanometre to the micrometre scale in crystal particles with a finite size and specific morphology, impact the material's dynamics. Furthermore, the material's functional behaviour is largely determined by the operating conditions. Currently, there exists a huge length-time scale gap between attainable theoretical length-time scales and experimentally relevant scales. Within this perspective, three key challenges are highlighted within the molecular modelling chain to bridge this length-time scale gap. Methods are needed that enable (i) building structural models for realistic crystal particles having mesoscale dimensions with isolated defects, correlated nanoregions, mesoporosity, internal and external surfaces; (ii) the evaluation of interatomic forces with quantum mechanical accuracy albeit at much lower computational cost than the currently used density functional theory methods and (iii) derivation of the kinetics of phenomena taking place in a multi-length-time scale window to obtain an overall view of the dynamics of the process. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
|
18
|
Wang SM, Shivanna M, Lama P, Yang QY, Barbour LJ, Zaworotko MJ. Metal Doping to Control Gate Opening and Increase Methane Working Capacity in Isostructural Flexible Diamondoid Networks. CHEMSUSCHEM 2023; 16:e202300069. [PMID: 36745466 DOI: 10.1002/cssc.202300069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 05/06/2023]
Abstract
Adsorbed natural gas (ANG) systems involve using porous materials to increase the working capacity and/or reduce the storage pressure compared to compressed natural gas (CNG). Flexible metal-organic materials (FMOMs) are particularly interesting in this context since their stepped isotherms can afford increased working capacity if the adsorption/desorption steps occur within the proper pressure range. We report herein that metal doping in a family of isostructural FMOMs, ML2 (M=Co, Ni or Nix Co1-x , L=4-(4-pyridyl)-biphenyl-4-carboxylic acid), enables control over the gate opening between non-porous (closed) and porous (open) phases at pressures relevant to methane storage. Specifically, methane-induced phase transformations can be fine-tuned by using different Ni/Co ratios to enhance methane working capacity. The optimal working capacity from 5 to 35 bar at 298 K (153 cm3 cm-3 ) was found for Ni0.89 Co0.11 L2 (X-dia-1-Ni0.89 Co0.11 ), which is greater than that of benchmark rigid MOFs.
Collapse
Affiliation(s)
- Shao-Min Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mohana Shivanna
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Prem Lama
- Indian Institute of Petroleum Mokhampur, Dehradun-248005, Uttarakhand, India
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, 7602, South Africa
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| |
Collapse
|
19
|
Nikolayenko VI, Castell DC, Sensharma D, Shivanna M, Loots L, Forrest KA, Solanilla-Salinas CJ, Otake KI, Kitagawa S, Barbour LJ, Space B, Zaworotko MJ. Reversible transformations between the non-porous phases of a flexible coordination network enabled by transient porosity. Nat Chem 2023; 15:542-549. [PMID: 36781909 PMCID: PMC10070188 DOI: 10.1038/s41557-022-01128-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/15/2022] [Indexed: 02/15/2023]
Abstract
Flexible metal-organic materials that exhibit stimulus-responsive switching between closed (non-porous) and open (porous) structures induced by gas molecules are of potential utility in gas storage and separation. Such behaviour is currently limited to a few dozen physisorbents that typically switch through a breathing mechanism requiring structural contortions. Here we show a clathrate (non-porous) coordination network that undergoes gas-induced switching between multiple non-porous phases through transient porosity, which involves the diffusion of guests between discrete voids through intra-network distortions. This material is synthesized as a clathrate phase with solvent-filled cavities; evacuation affords a single-crystal to single-crystal transformation to a phase with smaller cavities. At 298 K, carbon dioxide, acetylene, ethylene and ethane induce reversible switching between guest-free and gas-loaded clathrate phases. For carbon dioxide and acetylene at cryogenic temperatures, phases showing progressively higher loadings were observed and characterized using in situ X-ray diffraction, and the mechanism of diffusion was computationally elucidated.
Collapse
Affiliation(s)
- Varvara I Nikolayenko
- Department of Chemical Sciences, University of Limerick, Limerick, Republic of Ireland
- Bernal Institute, University of Limerick, Limerick, Republic of Ireland
| | - Dominic C Castell
- Department of Chemical Sciences, University of Limerick, Limerick, Republic of Ireland
- Bernal Institute, University of Limerick, Limerick, Republic of Ireland
| | - Debobroto Sensharma
- Department of Chemical Sciences, University of Limerick, Limerick, Republic of Ireland
- Bernal Institute, University of Limerick, Limerick, Republic of Ireland
| | - Mohana Shivanna
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Kyoto, Japan
| | - Leigh Loots
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | | | | | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Kyoto, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Kyoto, Japan
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Brian Space
- Department of Chemistry, University of South Florida, Tampa, FL, USA
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Michael J Zaworotko
- Department of Chemical Sciences, University of Limerick, Limerick, Republic of Ireland.
- Bernal Institute, University of Limerick, Limerick, Republic of Ireland.
| |
Collapse
|
20
|
Dong A, Chen D, Li Q, Qian J. Metal-Organic Frameworks for Greenhouse Gas Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201550. [PMID: 36563116 DOI: 10.1002/smll.202201550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Using petrol to supply energy for a car or burning coal to heat a building generates plenty of greenhouse gas (GHG) emissions, including carbon dioxide (CO2 ), water vapor (H2 O), methane (CH4 ), nitrous oxide (N2 O), ozone (O3 ), fluorinated gases. These up-and-coming metal-organic frameworks (MOFs) are structurally endowed with rigid inorganic nodes and versatile organic linkers, which have been extensively used in the GHG-related applications to improve the lives and protect the environment. Porous MOF materials and their derivatives have been demonstrated to be competitive and promising candidates for GHG separation, storage and conversions as they shows facile preparation, large porosity, adjustable nanostructure, abundant topology, and tunable physicochemical property. Enormous progress has been made in GHG storage and separation intrinsically stemmed from the different interaction between guest molecule and host framework from MOF itself in the recent five years. Meanwhile, the use of porous MOF materials to transform GHG and the influence of external conditions on the adsorption performance of MOFs for GHG are also enclosed. In this review, it is also highlighted that the existing challenges and future directions are discussed and envisioned in the rational design, facile synthesis and comprehensive utilization of MOFs and their derivatives for practical applications.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657099, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
21
|
Maliuta M, Senkovska I, Thümmler R, Ehrling S, Becker S, Romaka V, Bon V, Evans JD, Kaskel S. Particle size-dependent flexibility in DUT-8(Cu) pillared layer metal-organic framework. Dalton Trans 2023; 52:2816-2824. [PMID: 36752342 DOI: 10.1039/d3dt00085k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nature of metal in the isomorphous flexible metal-organic frameworks is often reported to influence flexibility and responsivity. A prominent example of such behaviour is the DUT-8(M) family ([M2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane), where the isostructural compounds with Ni, Zn, Co, and Cu in the paddle wheel cluster are known. The macro-sized crystals of Ni, Co, and Zn based compounds transform to the closed pore (cp) phase under desolvation and show typical gate opening behaviour upon adsorption. The choice of metal, in this case, allows the adjustment of switching kinetics, selectivity in adsorption, and gate-opening pressures. The submicron-sized crystals of of Ni, Co, and Zn based compounds remain in the open pore (op) phase after desolvation. In this contribution, we demonstrate that the presence of Cu in the paddle wheel leads to fundamentally different flexible behaviour. The DUT-8(Cu) desolvation does not lead to the formation of the cp phase, independent of the particle size regime. However, according to in situ powder diffraction analysis, the desolvated, macro-sized crystals of DUT-8(Cu)_op show breathing upon adsorption of CO2 at 195 K. The submicron-sized particles show rigid, nonresponsive behaviour.
Collapse
Affiliation(s)
- Mariia Maliuta
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Irena Senkovska
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Ronja Thümmler
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Sebastian Ehrling
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Sophi Becker
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Vitaliy Romaka
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Volodymyr Bon
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Jack D Evans
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Stefan Kaskel
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| |
Collapse
|
22
|
Tian J, Chen Q, Jiang F, Yuan D, Hong M. Optimizing Acetylene Sorption through Induced-fit Transformations in a Chemically Stable Microporous Framework. Angew Chem Int Ed Engl 2023; 62:e202215253. [PMID: 36524616 DOI: 10.1002/anie.202215253] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Developing practical storage technologies for acetylene (C2 H2 ) is important but challenging because C2 H2 is useful but explosive. Here, a novel metal-organic framework (MOF) (FJI-H36) with adaptive channels was prepared. It can effectively capture C2 H2 (159.9 cm3 cm-3 ) at 1 atm and 298 K, possessing a record-high storage density (561 g L-1 ) but a very low adsorption enthalpy (28 kJ mol-1 ) among all the reported MOFs. Structural analyses show that such excellent adsorption performance comes from the synergism of active sites, flexible framework, and matched pores; where the adsorbed-C2 H2 can drive FJI-H36 to undergo induced-fit transformations step by step, including deformation/reconstruction of channels, contraction of pores, and transformation of active sites, finally leading to dense packing of C2 H2 . Moreover, FJI-H36 has excellent chemical stability and recyclability, and can be prepared on a large scale, enabling it as a practical adsorbent for C2 H2 . This will provide a useful strategy for developing practical and efficient adsorbents for C2 H2 storage.
Collapse
Affiliation(s)
- Jindou Tian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
23
|
Zhang C, Qi Q, Mei Y, Hu J, Sun M, Zhang Y, Huang B, Zhang L, Yang S. Rationally Reconstructed Metal-Organic Frameworks as Robust Oxygen Evolution Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208904. [PMID: 36369974 DOI: 10.1002/adma.202208904] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Reconstructing metal-organic framework (MOFs) toward a designed framework structure provides breakthrough opportunities to achieve unprecedented oxygen evolution reaction (OER) electrocatalytic performance, but has rarely, if ever, been proposed and investigated yet. Here, the first successful fabrication of a robust OER electrocatalyst by precision reconstruction of an MOF structure is reported, viz., from MOF-74-Fe to MIL-53(Fe)-2OH with different coordination environments at the active sites. Due to the radically reduced eg -t2g crystal-field splitting in Fe-3d and the much suppressed electron-hopping barriers through the synergistic effects of the O species the efficient OER of in MIL-53(Fe)-2OH is guaranteed. Benefiting from this desired electronic structure, the designed MIL-53(Fe)-2OH catalyst exhibits high intrinsic OER activity, including a low overpotential of 215 mV at 10 mA cm-2 , low Tafel slope of 45.4 mV dec-1 and high turnover frequency (TOF) of 1.44 s-1 at 300 mV overpotential, over 80 times that of the commercial IrO2 catalyst (0.0177 s-1 ).Consistent with the density functional theory (DFT) calculations, the real-time kinetic simulation reveals that the conversion from O* to OOH* is the rate-determining step on the active sites of MIL-53(Fe)-2OH.
Collapse
Affiliation(s)
- Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qianglong Qi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yunjie Mei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Minzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| |
Collapse
|
24
|
Zhang Y, Xue C, Xu Y, Cui S, Ganeev AA, Kistenev YV, Gubal A, Chuchina V, Jin H, Cui D. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection. NANO RESEARCH 2022; 16:2968-2979. [PMID: 36090613 PMCID: PMC9440655 DOI: 10.1007/s12274-022-4914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 05/28/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted widespread interest due to their unique and unprecedented advantages in microstructures and properties. Besides, surface-enhanced Raman scattering (SERS) technology has also rapidly developed into a powerful fingerprint spectroscopic technique that can provide rapid, non-invasive, non-destructive, and ultra-sensitive detection, even down to single molecular level. Consequently, a considerable amount of researchers combined MOFs with the SERS technique to further improve the sensing performance and broaden the applications of SERS substrates. Herein, representative synthesis strategies of MOFs to fabricate SERS-active substrates are summarized and their applications in ultra-sensitive biomedical trace detection are also reviewed. Besides, relative barriers, advantages, disadvantages, future trends, and prospects are particularly discussed to give guidance to relevant researchers.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yuli Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Alexander A. Ganeev
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Yury V. Kistenev
- Tomsk State University, Lenina Av. 36, Tomsk, Tomsk, 634050 Russia
| | - Anna Gubal
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Victoria Chuchina
- St Petersburg University, 7/9 Universitetskaya Emb., St Petersburg, 199034 Russia
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241 China
| |
Collapse
|
25
|
Bon V, Busov N, Senkovska I, Bönisch N, Abylgazina L, Khadiev A, Novikov D, Kaskel S. The importance of crystal size for breathing kinetics in MIL-53(Al). Chem Commun (Camb) 2022; 58:10492-10495. [PMID: 36043355 DOI: 10.1039/d2cc02662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we analyze the switching kinetics of a breathing framework MIL-53(Al) with respect to different crystallite size regimes. Synchrotron time-resolved powder X-ray diffraction (PXRD) and adsorption rate analysis of n-butane physisorption at 298 K demonstrate the decisive role of crystal size affecting the time domain of breathing transitions in MIL-53(Al).
Collapse
Affiliation(s)
- Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Nikita Busov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Nadine Bönisch
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Leila Abylgazina
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Azat Khadiev
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dmitri Novikov
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| |
Collapse
|
26
|
Large breathing effect in ZIF-65(Zn) with expansion and contraction of the SOD cage. Nat Commun 2022; 13:4569. [PMID: 35931702 PMCID: PMC9355966 DOI: 10.1038/s41467-022-32332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
The flexibility and guest-responsive behavior of some metal-organic frameworks (MOFs) indicate their potential in the fields of sensors and molecular recognition. As a subfamily of MOFs, the flexible zeolitic imidazolate frameworks (ZIFs) typically feature a small displacive transition due to the rigid zeolite topology. Herein, an atypical reversible displacive transition (6.4 Å) is observed for the sodalite (SOD) cage in flexible ZIF-65(Zn), which represents an unusually large breathing effect compared to other ZIFs. ZIF-65(Zn) exhibits a stepwise II → III → I expansion between an unusual ellipsoidal SOD cage (8.6 Å × 15.9 Å for II) and a spherical SOD cage (15.0 Å for I). The breathing behavior of ZIF-65(Zn) varies depending on the nature of the guest molecules (polarity and shape). Computational simulations are employed to rationalize the differences in the breathing behavior depending on the structure of the ZIF-65(Zn) cage and the nature of the guest-associated host–guest and guest–guest interactions. Flexible metal-organic frameworks have potential applications in the development of sensors and switching materials. Here, the authors report a large breathing effect in a zeolitic imidazolate framework upon guest adsorption.
Collapse
|
27
|
Wang P, Xue Z, Ken-Ichi O, Kitagawa S. Nitroxyl radical-containing flexible porous coordination polymer for controllable size-aelective aerobic oxidation of alcohols. Chem Commun (Camb) 2022; 58:9026-9029. [PMID: 35875985 DOI: 10.1039/d2cc02772k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of flexible porous coordination polymers (PCPs) to change their structure in response to various stimuli has not been exploited in the design of tunable-selectivity catalysts. Herein, we make use of this ability and prepare nitroxyl radical-containing flexible PCP that can reversibly switch between large- and contracted-pore configurations in response to solvent change and thus promote the controllable size-selective aerobic oxidation of alcohols.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Ziqian Xue
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Otake Ken-Ichi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
28
|
|
29
|
Chen JR, Luo YQ, He S, Zhou HL, Huang XC. Ligand Tailoring Strategy of a Metal-Organic Framework for Optimizing Methane Storage Working Capacities. Inorg Chem 2022; 61:10417-10424. [PMID: 35767723 DOI: 10.1021/acs.inorgchem.2c01130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Methane, as the main component of natural gas, shale gas, and marsh gas, is regarded as an ideal clean energy to replace traditional fossil fuels and reduce carbon emissions. Porous materials with superior methane storage capacities are the key to the wide application of adsorbed natural gas technology in vehicle transportation. In this work, we applied a ligand tailoring strategy to a metal-organic framework (NOTT-101) to fine-tune its pore geometry, which was well characterized by gas and dye sorption measurements. High-pressure methane sorption isotherms revealed that the methane storage performance of the modified NOTT-101 can be effectively improved by decreasing the unusable uptake at 5 bar and increasing the total uptake under high pressures, achieving a substantially high volumetric methane storage working capacity of 190 cm3 (STP) cm-3 at 298 K and 5-80 bar.
Collapse
Affiliation(s)
- Jian-Rui Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yan-Qi Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shan He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Hao-Long Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
30
|
A spin-crossover framework endowed with pore-adjustable behavior by slow structural dynamics. Nat Commun 2022; 13:3510. [PMID: 35717382 PMCID: PMC9206640 DOI: 10.1038/s41467-022-31274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 06/11/2022] [Indexed: 12/04/2022] Open
Abstract
Host-guest interactions play critical roles in achieving switchable structures and functionalities in porous materials, but design and control remain challenging. Here, we report a two-dimensional porous magnetic compound, [FeII(prentrz)2PdII(CN)4] (prentrz = (1E,2E)−3-phenyl-N-(4H-1,2,4-triazol-4-yl)prop-2-en-1-imine), which exhibits an atypical pore transformation that directly entangles with a spin state transition in response to water adsorption. In this material, the adsorption-induced, non-uniform pedal motion of the axial prentrz ligands and the crumpling/unfolding of the layer structure actuate a reversible narrow quasi-discrete pore (nqp) to large channel-type pore (lcp) change that leads to a pore rearrangement associated with simultaneous pore opening and closing. The unusual pore transformation results in programmable adsorption in which the lcp structure type must be achieved first by the long-time exposure of the nqp structure type in a steam-saturated atmosphere to accomplish the gate-opening adsorption. The structural transformation is accompanied by a variation in the spin-crossover (SCO) property of FeII, i.e., two-step SCO with a large plateau for the lcp phase and two-step SCO with no plateau for the nqp phase. The unusual adsorption-induced pore rearrangement and the related SCO property offer a way to design and control the pore structure and physical properties of dynamic frameworks. Host-guest interactions can play a critical role in achieving switchable porous materials, but controlling them remains challenging. Here the authors report an atypical pore rearrangement in a magnetic 2D porous framework upon water adsorption; the structural transformation affects the magnetic properties of the material.
Collapse
|
31
|
Wang K, Li Y, Xie LH, Li X, Li JR. Construction and application of base-stable MOFs: a critical review. Chem Soc Rev 2022; 51:6417-6441. [PMID: 35702993 DOI: 10.1039/d1cs00891a] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials constructed from organic ligands and metal ions/clusters. Owing to their unique advantages, they have attracted more and more attention in recent years and numerous studies have revealed their great potential in various applications. Many important applications of MOFs inevitably involve harsh alkaline operational environments. To achieve high performance and long cycling life in these applications, high stability of MOFs against bases is necessary. Therefore, the construction of base-stable MOFs has become a critical research direction in the MOF field. This review gives a historic summary of the development of base-stable MOFs in the last few years. The key factors that can determine the robustness of MOFs under basic conditions are analyzed. We also demonstrate the exciting achievements that have been made by utilizing base-stable MOFs in different applications. In the end, we discuss major challenges for the further development of base-stable MOFs. Some possible methods to address these problems are presented.
Collapse
Affiliation(s)
- Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yaping Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiangyu Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
32
|
Sun L, Yin M, Li Z, Tang S. Facile microwave-assisted solvothermal synthesis of rod-like aluminum terephthalate [MIL-53(Al)] for CO2 adsorption. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Assembly of a 3D Cobalt(II) Supramolecular Framework and Its Applications in Hydrofunctionalization of Ketones and Aldehydes. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A ditopic nitrogen ligand (E)-N′-(pyridin-4-ylmethylene)isonicotinohydrazide (L) containing both divergent pyridyl coordination sites and a hydrogen-bonding hydrazide–hydrazone moiety was synthesized. The Co(NCS)2-mediated self-assembly of L has resulted in the synthesis of a novel 3-dimensional (3D) supramolecular framework (1) that features both coordination and hydrogen bonding interactions. X-ray structural analysis reveals the formation and coordination mode of 1 in the solid state. The rational utilization of coordination bonds and hydrogen bonding interactions is confirmed and responsible for constructing the 3D materials. Catalytic studies using 1 in the presence of an activator are performed for the hydroboration and hydrosilylation reactions of ketones and aldehydes, and the results are compared with previously reported cobalt-based polymeric catalysts.
Collapse
|
34
|
Liu X, Xie H, Mao J. Morphology-controlled synthesis of La[Fe(CN)6] and the porous erythrocyte-like derivant applied for high-performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Li Y, Wang Y, Fan W, Sun D. Flexible metal-organic frameworks for gas storage and separation. Dalton Trans 2022; 51:4608-4618. [PMID: 35225319 DOI: 10.1039/d1dt03842g] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flexible metal-organic frameworks (MOFs) have gradually attracted much attention due to their reversible structural changes and flexible structural responses. The basic research of flexible MOFs is to study their dynamic responses under different external stimuli and translate the responses into applications. Most research studies on flexible MOFs focus on gas storage and separation, but lack a systematic summary. Here, we review the development of flexible MOFs, the structural transformation under the external effects of temperature, pressure, and guest molecules, and their applications in gas storage and separation. Microporous MOFs with flexible structures provide unique opportunities for fine-tuning their performance because the pore shape and size can be controlled by external stimuli. The characteristics of breathing phenomena and large specific surface area make flexible MOFs suitable candidates for gas storage and separation. Finally, the application prospects of flexible MOFs are reported.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yutong Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
36
|
Ma Y, Tang X, Chen M, Mishima A, Li L, Hori A, Wu X, Ding L, Kusaka S, Matsuda R. Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility. Chem Commun (Camb) 2022; 58:1139-1142. [PMID: 34981084 DOI: 10.1039/d1cc05893b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An octa-nuclear zinc (Zn8) cluster-based two-fold interpenetrated metal-organic framework (MOF) of [(CH3)2NH2]2[Zn8O3(FDC)6]·7DMF (denoted as Zn8-as; H2FDC = 9H-fluorene-2,7-dicarboxylic acid; DMF = N,N-dimethylformamide) was synthesized by the reaction of a hard base of a curved dicarboxylate ligand (H2FDC) with the borderline acid of Zn(II) under solvothermal conditions. Zn8-as shows significant crystal volume shrinkage upon heating, yielding a solvate-free framework of [(CH3)2NH2]2[Zn8O3(FDC)6] (Zn8-de). Zn8-de displays gated adsorption for C2H2 and type-I adsorption for CO2, attributed to the framework flexibility and the different interactions between the gas molecules and the host framework.
Collapse
Affiliation(s)
- Yunsheng Ma
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China. .,Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Xiaoyan Tang
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China. .,Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Ming Chen
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Akio Mishima
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Akihiro Hori
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Xiaoyu Wu
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China
| | - Lifeng Ding
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China
| | - Shinpei Kusaka
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Ryotaro Matsuda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
37
|
Zhao H, Huang J, Zhang PP, Zhang JJ, Fang WJ, Song XD, Liu S, Duan C. The role of thermodynamically stable configuration in enhancing crystallographic diffraction quality of flexible MOFs. iScience 2021; 24:103398. [PMID: 34841232 PMCID: PMC8605418 DOI: 10.1016/j.isci.2021.103398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Single-crystal X-ray diffraction (SCXRD) is a widely used method for structural characterization. Generally, low temperature is of great significance for improving the crystallographic diffraction quality. Herein we observe that this practice is not always effective for flexible metal-organic frameworks (f-MOFs). An abnormal crystallography, that is, more diffraction spots at a high angle and better resolution of diffraction data as the temperature increases in the f-MOF (1-g), is observed. XRD results reveal that 1-g has a reversible anisotropic thermal expansion behavior with a record-high c-axial positive expansion coefficient of 1,401.8 × 10-6 K-1. Calculation results indicate that the framework of 1-g has a more stable thermodynamic configuration as the temperature increases. Such configuration has lower-frequency vibration and may play a key role in promoting higher Bragg diffraction quality at room temperature. This work is of great significance for how to obtain high-quality SCXRD diffraction data.
Collapse
Affiliation(s)
- He Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxiang Huang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pei-Pei Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jian-Jun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wang-Jian Fang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xue-Dan Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuqin Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Zhang Dayu College of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
38
|
Hobday CL, Krause S, Rogge SMJ, Evans JD, Bunzen H. Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials. Front Chem 2021; 9:772059. [PMID: 34858946 PMCID: PMC8631963 DOI: 10.3389/fchem.2021.772059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 01/05/2023] Open
Abstract
Miniaturization is a key aspect of materials science. Owing to the increase in quality experimental and computational tools available to researchers, it has become clear that the crystal size and morphology of porous framework materials, including metal-organic frameworks and covalent organic frameworks, play a vital role in defining the physicochemical behaviour of these materials. However, given the multiscale and multidisciplinary challenges associated with establishing how crystal size and morphology affect the structure and behaviour of a material–from local to global structural modifications and from static to dynamic effects–a comprehensive mechanistic understanding of size and morphology effects is missing. Herein, we provide our perspective on the current state-of-the-art of this topic, drawn from various complementary disciplines. From a fundamental point of view, we discuss how controlling the crystal size and morphology can alter the mechanical and adsorption properties of porous framework materials and how this can impact phase stability. Special attention is also given to the quest to develop new computational tools capable of modelling these multiscale effects. From a more applied point of view, given the recent progress in this research field, we highlight the importance of crystal size and morphology control in drug delivery. Moreover, we provide an outlook on how to advance each discussed field by size and morphology control, which would open new design opportunities for functional porous framework materials.
Collapse
Affiliation(s)
- Claire L Hobday
- Centre for Science at Extreme Conditions and EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, United Kingdom
| | - Simon Krause
- Nanochemistry Department, Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Sven M J Rogge
- Center for Molecular Modeling (CMM), Ghent University, Ghent, Belgium
| | - Jack D Evans
- Centre for Advanced Nanomaterials and Department of Chemistry, University of Adelaide, Adelaide, SA, Australia
| | - Hana Bunzen
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Augsburg, Germany
| |
Collapse
|
39
|
Wang P, Kajiwara T, Otake KI, Yao MS, Ashitani H, Kubota Y, Kitagawa S. Xylene Recognition in Flexible Porous Coordination Polymer by Guest-Dependent Structural Transition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52144-52151. [PMID: 34347426 DOI: 10.1021/acsami.1c10061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xylene isomers are crucial chemical intermediates in great demand worldwide; the almost identical physicochemical properties render their current separation approach energy consuming. In this study, we utilized the soft porous coordination polymer (PCP)'s isomer-specific structural transformation, realizing o-xylene (oX) recognition/separation from the binary and ternary isomer mixtures. This PCP has a flexible structure that contains flexible aromatic pendant groups, which both work as recognition sites and induce structural flexibility of the global framework. The PCP exhibits guest-triggered "breathing"-type structural changes, which are accompanied by the rearrangement of the intraframework π-π interaction. By rebuilding π-π stacking with isomer species, the PCP discriminated oX from the other isomers by its specific guest-loading configuration and separated oX from the isomer mixture via selective adsorption. The xylene-selective property of the PCP is dependent on the solvent; in diluted hexane solution, the PCP favors p-xylene (pX) uptake. The separation results combined with crystallographic analyses revealed the effect of the isomer selectivity of the PCP on xylene isomer separation via structural transition and demonstrated its potential as a versatile selective adsorptive medium for challenging separations.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hirotaka Ashitani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
40
|
Mao H, Li SH, Xu LH, Wang S, Liu WM, Lv MY, Lv J, Zhao ZP. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: Crystal evolution and preferential orientation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Mao H, Li SH, Zhang AS, Xu LH, Lu HX, Lv J, Zhao ZP. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118813] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Vandenhaute S, Rogge SMJ, Van Speybroeck V. Large-Scale Molecular Dynamics Simulations Reveal New Insights Into the Phase Transition Mechanisms in MIL-53(Al). Front Chem 2021; 9:718920. [PMID: 34513797 PMCID: PMC8429608 DOI: 10.3389/fchem.2021.718920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023] Open
Abstract
Soft porous crystals have the ability to undergo large structural transformations upon exposure to external stimuli while maintaining their long-range structural order, and the size of the crystal plays an important role in this flexible behavior. Computational modeling has the potential to unravel mechanistic details of these phase transitions, provided that the models are representative for experimental crystal sizes and allow for spatially disordered phenomena to occur. Here, we take a major step forward and enable simulations of metal-organic frameworks containing more than a million atoms. This is achieved by exploiting the massive parallelism of state-of-the-art GPUs using the OpenMM software package, for which we developed a new pressure control algorithm that allows for fully anisotropic unit cell fluctuations. As a proof of concept, we study the transition mechanism in MIL-53(Al) under various external pressures. In the lower pressure regime, a layer-by-layer mechanism is observed, while at higher pressures, the transition is initiated at discrete nucleation points and temporarily induces various domains in both the open and closed pore phases. The presented workflow opens the possibility to deduce transition mechanism diagrams for soft porous crystals in terms of the crystal size and the strength of the external stimulus.
Collapse
Affiliation(s)
| | - Sven M J Rogge
- Center for Molecular Modeling (CMM), Ghent University, Ghent, Belgium
| | | |
Collapse
|
43
|
Affiliation(s)
- Jagdeep Kaur
- Department of chemistry Chandigarh University Gharuan Punjab 140413 India
| | - Gurmeet Kaur
- Department of chemistry Chandigarh University Gharuan Punjab 140413 India
| |
Collapse
|
44
|
Zhang Y, Gikonyo B, Khodja H, Gauthier M, Foy E, Goetz B, Serre C, Coste Leconte S, Pimenta V, Surblé S. MIL-53 Metal-Organic Framework as a Flexible Cathode for Lithium-Oxygen Batteries. MATERIALS 2021; 14:ma14164618. [PMID: 34443140 PMCID: PMC8399480 DOI: 10.3390/ma14164618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Li-air batteries possess higher specific energies than the current Li-ion batteries. Major drawbacks of the air cathode include the sluggish kinetics of the oxygen reduction (OER), high overpotentials and pore clogging during discharge processes. Metal-Organic Frameworks (MOFs) appear as promising materials because of their high surface areas, tailorable pore sizes and catalytic centers. In this work, we propose to use, for the first time, aluminum terephthalate (well known as MIL-53) as a flexible air cathode for Li-O2 batteries. This compound was synthetized through hydrothermal and microwave-assisted routes, leading to different particle sizes with different aspect ratios. The electrochemical properties of both materials seem to be equivalent. Several behaviors are observed depending on the initial value of the first discharge capacity. When the first discharge capacity is higher, no OER occurs, leading to a fast decrease in the capacity during cycling. The nature and the morphology of the discharge products are investigated using ex situ analysis (XRD, SEM and XPS). For both MIL-53 materials, lithium peroxide Li2O2 is found as the main discharge product. A morphological evolution of the Li2O2 particles occurs upon cycling (stacked thin plates, toroids or pseudo-spheres).
Collapse
Affiliation(s)
- Yujie Zhang
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
| | - Ben Gikonyo
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
- Laboratoire des Multimatériaux et Interfaces, Université Claude Bernard Lyon 1, UMR CNRS 5615, 69622 Villeurbanne, France
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure de Paris, CNRS, PSL University, 75005 Paris, France; (B.G.); (C.S.); (V.P.)
| | - Hicham Khodja
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
| | - Magali Gauthier
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
| | - Eddy Foy
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
| | - Bernard Goetz
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure de Paris, CNRS, PSL University, 75005 Paris, France; (B.G.); (C.S.); (V.P.)
| | - Christian Serre
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure de Paris, CNRS, PSL University, 75005 Paris, France; (B.G.); (C.S.); (V.P.)
| | - Servane Coste Leconte
- INSTN, Ecole de spécialisation des énergies bas carbone et des technologies de la santé, Unité d’Enseignement de Saclay, CEA, 91191 Gif-sur-Yvette, France;
| | - Vanessa Pimenta
- Institut des Matériaux Poreux de Paris (IMAP), ESPCI Paris, Ecole Normale Supérieure de Paris, CNRS, PSL University, 75005 Paris, France; (B.G.); (C.S.); (V.P.)
| | - Suzy Surblé
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France; (Y.Z.); (B.G.); (H.K.); (M.G.); (E.F.)
- Correspondence: ; Tel.: +33-01-6908-8190
| |
Collapse
|
45
|
Van Speybroeck V, Vandenhaute S, Hoffman AE, Rogge SM. Towards modeling spatiotemporal processes in metal–organic frameworks. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Roztocki K, Rauche M, Bon V, Kaskel S, Brunner E, Matoga D. Combining In Situ Techniques (XRD, IR, and 13C NMR) and Gas Adsorption Measurements Reveals CO 2-Induced Structural Transitions and High CO 2/CH 4 Selectivity for a Flexible Metal-Organic Framework JUK-8. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28503-28513. [PMID: 34101414 PMCID: PMC8289234 DOI: 10.1021/acsami.1c07268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Flexible metal-organic frameworks (MOFs) are promising materials in gas-related technologies. Adjusting the material to processes requires understanding of the flexibility mechanism and its influence on the adsorption properties. Herein, we present the mechanistic understanding of CO2-induced pore-opening transitions of the water-stable MOF JUK-8 ([Zn(oba)(pip)]n, oba2- = 4,4'-oxybis(benzenedicarboxylate), pip = 4-pyridyl-functionalized benzene-1,3-dicarbohydrazide) as well as its potential applicability in gas purification. Detailed insights into the global structural transformation and subtle local MOF-adsorbate interactions are obtained by three in situ techniques (XRD, IR, and 13CO2-NMR). These results are further supported by single-crystal X-ray diffraction (SC-XRD) analysis of the solvated and guest-free phases. High selectivity toward carbon dioxide derived from the single-gas adsorption experiments of CO2 (195 and 298 K), Ar (84 K), O2 (90 K), N2 (77 K), and CH4 (298 K) is confirmed by high-pressure coadsorption experiments of the CO2/CH4 (75:25 v/v) mixture at different temperatures (288, 293, and 298 K) and in situ NMR studies of the coadsorption of 13CO2/13CH4 (50:50 v/v; 195 K).
Collapse
Affiliation(s)
- Kornel Roztocki
- Faculty
of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61-614 Poznań, Poland
| | - Marcus Rauche
- Chair
of Bioanalytical Chemistry, Technische Universität
Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Volodymyr Bon
- Chair
of Inorganic Chemistry, Technische Universität
Dresden, Bergstrasse
66, 01062 Dresden, Germany
| | - Stefan Kaskel
- Chair
of Inorganic Chemistry, Technische Universität
Dresden, Bergstrasse
66, 01062 Dresden, Germany
| | - Eike Brunner
- Chair
of Bioanalytical Chemistry, Technische Universität
Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Dariusz Matoga
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
47
|
Wang L, Li SR, Chen YZ, Jiang HL. Encapsulating Copper Nanocrystals into Metal-Organic Frameworks for Cascade Reactions by Photothermal Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004481. [PMID: 33458947 DOI: 10.1002/smll.202004481] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/04/2020] [Indexed: 06/12/2023]
Abstract
Composite materials with multifunctional properties usually possess synergetic effects in catalysis toward cascade reactions. In this work, a facile strategy to the encapsulation of octahedral Cu2 O nanocrystals (NCs) by metal-organic frameworks (MOFs) is reported, and an oriented growth of MOF enclosures (namely, HKUST-1) around Cu2 O NCs with desired feedstock ratio is achieved. The strategy defines the parameter range that precisely controls the etching rate of metal oxide and the MOF crystallization rate. Finally, the Cu@HKUST-1 composites with uniform morphology and controlled MOF thickness have been successfully fabricated after the reduction of Cu2 O to Cu NCs in HKUST-1. The integration of Cu NCs properties with MOF advantages helps to create a multifunctional catalyst, which exhibits cooperative catalytic activity and improved recyclability toward the one-pot cascade reactions under mild conditions involving visible-light irradiation. The superior performance can be attributed to the plasmonic photothermal effect of Cu NCs, while HKUST-1 shell provides Lewis acid sites, substrates and H2 enrichment, and stabilizes the Cu cores.
Collapse
Affiliation(s)
- Lin Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Shu-Rong Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Yu-Zhen Chen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
48
|
Adaptive response of a metal-organic framework through reversible disorder-disorder transitions. Nat Chem 2021; 13:568-574. [PMID: 34045713 DOI: 10.1038/s41557-021-00684-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/17/2021] [Indexed: 11/08/2022]
Abstract
The ultrahigh porosity and varied functionalities of porous metal-organic frameworks make them excellent candidates for applications that range widely from gas storage and separation to catalysis and sensing. An interesting feature of some frameworks is the ability to open their pores to a specific guest, enabling highly selective separation. A prerequisite for this is bistability of the host structure, which enables the framework to breathe, that is, to switch between two stability minima in response to its environment. Here we describe a porous framework DUT-8(Ni)-which consists of nickel paddle wheel clusters and carboxylate linkers-that adopts a configurationally degenerate family of disordered states in the presence of specific guests. This disorder originates from the nonlinear linkers arranging the clusters in closed loops of different local symmetries that in turn propagate as complex tilings. Solvent exchange stimulates the formation of distinct disordered frameworks, as demonstrated by high-resolution transmission electron microscopy and diffraction techniques. Guest exchange was shown to stimulate repeatable switching transitions between distinct disorder states.
Collapse
|
49
|
Zhang X, Cui H, Lin RB, Krishna R, Zhang ZY, Liu T, Liang B, Chen B. Realization of Ethylene Production from Its Quaternary Mixture through Metal-Organic Framework Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22514-22520. [PMID: 33956439 DOI: 10.1021/acsami.1c03923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ethylene production from oxidative coupling of methane is a sustainable and economically attractive alternative to that through traditional hydrocarbon cracking technology. However, efficient ethylene separation from the complex reaction mixture is a daunting challenge that hinders the practical adoption of this technology. Herein, we report the efficient adsorptive separation of the CH4/CO2/C2H4/C2H6 mixture using three representative metal-organic frameworks (MOFs) (UTSA-74, MOF-74, and HKUST-1) with diverse open metal sites. The efficient separation relies on tuning the selectivity through the convergence of characteristics including Lewis acidity of open metal sites, pore space, and cooperative binding behavior. The separation performance of these materials has been evaluated through single-component gas adsorption and dynamic breakthrough experiments. HKUST-1 provides the highest separation potential (4.1 mmol/g) thanks to its simultaneously high ideal adsorbed solution theory (IAST) selectivity and ethylene adsorption capacity, representing a benchmark material for such a challenging quaternary separation.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Hui Cui
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Rajamani Krishna
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Zhi-Yin Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Ting Liu
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Bin Liang
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
50
|
Zhu W, He Y, Tong M, Lai X, Liang S, Wang X, Li Y, Yan X. Exploring the methods on improving CH4 delivery performance to surpass the Advanced Research Project Ageney-Energy target. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|