1
|
Schindl A, Hagen ML, Cooley I, Jäger CM, Warden AC, Zelzer M, Allers T, Croft AK. Ion-combination specific effects driving the enzymatic activity of halophilic alcohol dehydrogenase 2 from Haloferax volcanii in aqueous ionic liquid solvent mixtures. RSC SUSTAINABILITY 2024; 2:2559-2580. [PMID: 39211508 PMCID: PMC11353702 DOI: 10.1039/d3su00412k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/30/2024] [Indexed: 09/04/2024]
Abstract
Biocatalysis in ionic liquids enables novel routes for bioprocessing. Enzymes derived from extremophiles promise greater stability and activity under ionic liquid (IL) influence. Here, we probe the enzyme alcohol dehydrogenase 2 from the halophilic archaeon Haloferax volcanii in thirteen different ion combinations for relative activity and analyse the results against molecular dynamics (MD) simulations of the same IL systems. We probe the ionic liquid property space based on ion polarizability and molecular electrostatic potential. Using the radial distribution functions, survival probabilities and spatial distribution functions of ions, we show that cooperative ion-ion interactions determine ion-protein interactions, and specifically, strong ion-ion interactions equate to higher enzymatic activity if neither of the ions interact strongly with the protein surface. We further demonstrate a tendency for cations interacting with the protein surface to be least detrimental to enzymatic activity if they show a low polarizability when combined with small hydrophilic anions. We also find that the IL ion influence is not mitigated by the surplus of negatively charged residues of the halophilic enzyme. This is shown by free energy landscape analysis in root mean square deviation and distance variation plots of active site gating residues (Trp43 and His273) demonstrating no protection of specific structural elements relevant to preserving enzymatic activity. On the other hand, we observe a general effect across all IL systems that a tight binding of water at acidic residues is preferentially interrupted at these residues through the increased presence of potassium ions. Overall, this study demonstrates a co-ion interaction dependent influence on allosteric surface residues controlling the active/inactive conformation of halophilic alcohol dehydrogenase 2 and the necessity to engineer ionic liquid systems for enzymes that rely on the integrity of functional surface residues regardless of their halophilicity or thermophilicity for use in bioprocessing.
Collapse
Affiliation(s)
- Alexandra Schindl
- Sustainable Process Technologies Group, Department of Chemical and Environmental Engineering, University of Nottingham Nottingham NG7 2RD UK
- School of Pharmacy, University of Nottingham, University Park Campus Nottingham NG7 2RD UK
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Nottingham NG7 2UH UK
- School of Molecular and Cellular Biology, University of Leeds Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds Leeds LS2 9JT UK
| | - M Lawrence Hagen
- Sustainable Process Technologies Group, Department of Chemical and Environmental Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Isabel Cooley
- Department of Chemical Engineering, Loughborough University LE11 3TU UK
| | - Christof M Jäger
- Sustainable Process Technologies Group, Department of Chemical and Environmental Engineering, University of Nottingham Nottingham NG7 2RD UK
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg Pepparedsleden 1 SE-431 83 Mölndal Sweden
| | - Andrew C Warden
- CSIRO Environment, Commonwealth Scientific and Industrial Research Organization (CSIRO), Research and Innovation Park Acton Canberra ACT 2600 Australia
- Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Research and Innovation Park Acton Canberra ACT 2600 Australia
| | - Mischa Zelzer
- School of Pharmacy, University of Nottingham, University Park Campus Nottingham NG7 2RD UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Nottingham NG7 2UH UK
| | - Anna K Croft
- Department of Chemical Engineering, Loughborough University LE11 3TU UK
| |
Collapse
|
2
|
Liu E, Mercado MIV, Segato F, Wilkins MR. A green pathway for lignin valorization: Enzymatic lignin depolymerization in biocompatible ionic liquids and deep eutectic solvents. Enzyme Microb Technol 2024; 174:110392. [PMID: 38171172 DOI: 10.1016/j.enzmictec.2023.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Lignin depolymerization, which enables the breakdown of a complex and heterogeneous aromatic polymer into relatively uniform derivatives, serves as a critical process in valorization of lignin. Enzymatic lignin depolymerization has become a promising biological strategy to overcome the heterogeneity of lignin, due to its mild reaction conditions and high specificity. However, the low solubility of lignin compounds in aqueous environments prevents efficient lignin depolymerization by lignin-degrading enzymes. The employment of biocompatible ionic liquids (ILs) and deep eutectic solvents (DESs) in lignin fractionation has created a promising pathway to enzymatically depolymerize lignin within these green solvents to increase lignin solubility. In this review, recent research progress on enzymatic lignin depolymerization, particularly in a consolidated process involving ILs/DESs is summarized. In addition, the interactions between lignin-degrading enzymes and solvent systems are explored, and potential protein engineering methodology to improve the performance of lignin-degrading enzymes is discussed. Consolidation of enzymatic lignin depolymerization and biocompatible ILs/DESs paves a sustainable, efficient, and synergistic way to convert lignin into value-added products.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Fernando Segato
- Department of Biotechnology, University of São Paulo, Lorena, SP, Brazil
| | - Mark R Wilkins
- Carl and Melinda Helwig Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
3
|
Wang X, Sheng Y, Cui H, Qiao J, Song Y, Li X, Huang H. Corner Engineering: Tailoring Enzymes for Enhanced Resistance and Thermostability in Deep Eutectic Solvents. Angew Chem Int Ed Engl 2024; 63:e202315125. [PMID: 38010210 DOI: 10.1002/anie.202315125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Deep eutectic solvents (DESs), heralded for their synthesis simplicity, economic viability, and reduced volatility and flammability, have found increasing application in biocatalysis. However, challenges persist due to a frequent diminution in enzyme activity and stability. Herein, we developed a general protein engineering strategy, termed corner engineering, to acquire DES-resistant and thermostable enzymes via precise tailoring of the transition region in enzyme structure. Employing Bacillus subtilis lipase A (BSLA) as a model, we delineated the engineering process, yielding five multi-DESs resistant variants with highly improved thermostability, such as K88E/N89 K exhibited up to a 10.0-fold catalytic efficiency (kcat /KM ) increase in 30 % (v/v) choline chloride (ChCl): acetamide and 4.1-fold in 95 % (v/v) ChCl: ethylene glycol accompanying 6.7-fold thermal resistance improvement than wild type at ≈50 °C. The generality of the optimized approach was validated by two extra industrial enzymes, endo-β-1,4-glucanase PvCel5A (used for biofuel production) and esterase Bs2Est (used for plastics degradation). The molecular investigations revealed that increased water molecules at substrate binding cleft and finetuned helix formation at the corner region are two dominant determinants governing elevated resistance and thermostability. This study, coupling corner engineering with obtained molecular insights, illuminates enzyme-DES interaction patterns and fosters the rational design of more DES-resistant and thermostable enzymes in biocatalysis and biotransformation.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
- Current address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| |
Collapse
|
4
|
Roman BH, Charęza M, Janus E, Drozd R. Evaluation of new L-amino acids triethanolammonium salts usability for controlling protease activity. Int J Biol Macromol 2023; 231:123218. [PMID: 36634803 DOI: 10.1016/j.ijbiomac.2023.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Twenty new triethanolammonium amino acid salts (TEA AA) have been prepared from triethanolammonium hydroxide and L-amino acids. The physicochemical properties of TEA AA depended on the applied amino acid. Five of the synthesised salts, i.e. mono- and bis-salts of L-glutamic acid, L-aspartic acid, and TEA salt of l-glutamine were solids with melting points between 127.32 °C to 171.51 °C. The other TEA AA exhibited glass transition temperatures from -68.45 °C for TEA Ser to -6.27 °C for TEA Trp and were assigned as amino acid ionic liquids (AAILs). The TEA His was characterised by the highest thermal stability, with an average temperature of 5 % weight loss at 186.4 °C, whereas the lowest stability was determined for TEA Asp (107.5 °C). The developed salts were tested as reaction medium additives for proteolytic enzymes (papain, subtilisin, bromelain). Most AAILs showed an inhibitory effect on tested proteases but with different mechanisms related to the enzyme substrate specificity and structural diversity. The TEA Ser was the most effective competitive inhibitor (Ki = 0.24 10-4 mol/L) for bromelain, while TEA Val uncompetitive inhibitor for papain (Ki = 0.25 10-4 mol/L). The developed TEA AA salts exhibit potential as enzyme-controlling agents for use in industrial processes.
Collapse
Affiliation(s)
- Barbara Hanna Roman
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic Chemical Technology and Polymeric Materials, Pułaski Ave.10, PL, 70-322 Szczecin, Poland
| | - Magdalena Charęza
- West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Microbiology and Biotechnology, Piastów Ave. 45, 70-311 Szczecin, Poland
| | - Ewa Janus
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic Chemical Technology and Polymeric Materials, Pułaski Ave.10, PL, 70-322 Szczecin, Poland
| | - Radosław Drozd
- West Pomeranian University of Technology Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Microbiology and Biotechnology, Piastów Ave. 45, 70-311 Szczecin, Poland.
| |
Collapse
|
5
|
Ullah A, Zhang Y, Liu C, Qiao Q, Shao Q, Shi J. Process intensification strategies for green solvent mediated biomass pretreatment. BIORESOURCE TECHNOLOGY 2023; 369:128394. [PMID: 36442603 DOI: 10.1016/j.biortech.2022.128394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Demonstrated to be highly effective for lignocellulosic biomass pretreatment, deep eutectic solvent (DES) has attracted increasing attention owing to its advantages of simple synthesis, relatively low chemical cost, and better biocompatibility as compared to certain ionic liquids. Here we provide a critical review of the status of the design/selection of DES for the pretreatment of biomass feedstocks with an emphasis on the process intensification strategies: 1) integration of microwave, ultrasound, and high solid extrusion for pretreating biomass, 2) one-pot DES pretreatment, enzymatic hydrolysis, and fermentation, 3) strategies for DES recycling and product recovery; and 4) recent progress on molecular simulations toward understanding the interactions between DES and biomass compounds such as lignin and cellulose. Lastly, we provide perspectives toward cost-effective, continuous, high-solid, environmental-benign, and industrial-relevant applications and point to future research directions to address the challenges associated with DES pretreatment.
Collapse
Affiliation(s)
- Ahamed Ullah
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Yuxuan Zhang
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Can Liu
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Qi Qiao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Jian Shi
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|
6
|
Zhou Y, Pedersen JN, Pedersen JN, Jones NC, Hoffmann SV, Petersen SV, Pedersen JS, Perriman A, Gao R, Guo Z. Superanionic Solvent-Free Liquid Enzymes Exhibit Enhanced Structures and Activities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202359. [PMID: 35988154 PMCID: PMC9661855 DOI: 10.1002/advs.202202359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The surface of a carboxylate-enriched octuple mutant of Bacillus subtilis lipase A (8M) is chemically anionized to produce core (8M)-shell (cationic polymer surfactants) bionanoconjugates in protein liquid form, which are termed anion-type biofluids. The resultant lipase biofluids exhibit a 2.5-fold increase in hydrolytic activity when compared with analogous lipase biofluids based on anionic polymer surfactants. In addition, the applicability of the anion-type biofluid using Myoglobin (Mb) that is well studied in anion-type solvent-free liquid proteins is evaluated. Although anionization resulted in the complete unfolding of Mb, the active α-helix level is partially recovered in the anion-type biofluids, and the effect is accentuated in the cation-type Mb biofluids. These highly active anion-type solvent-free liquid enzymes exhibit increased thermal stability and provide a new direction in solvent-free liquid protein research.
Collapse
Affiliation(s)
- Ye Zhou
- Key Laboratory for Molecular Enzymology and EngineeringThe Ministry of EducationSchool of Life SciencesJilin UniversityNo. 2699, Qianjin StreetChangchun130012P. R. China
- Department of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 10Aarhus8000Denmark
| | - Jannik Nedergaard Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus8000Denmark
| | - Jacob Nedergaard Pedersen
- Department of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 10Aarhus8000Denmark
| | - Nykola C. Jones
- ISADepartment of Physics and AstronomyAarhus UniversityNy Munkegade 120Aarhus8000Denmark
| | | | - Steen Vang Petersen
- Department of BiomedicineAarhus UniversityWilhelm Meyers Allé 4Aarhus8000Denmark
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus8000Denmark
| | - Adam Perriman
- School of Cellular and Molecular MedicineUniversity of BristolBS8 1TSBristolUK
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and EngineeringThe Ministry of EducationSchool of Life SciencesJilin UniversityNo. 2699, Qianjin StreetChangchun130012P. R. China
| | - Zheng Guo
- Department of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 10Aarhus8000Denmark
| |
Collapse
|
7
|
Ghanta KP, Mondal S, Bandyopadhyay S. Exploring the Dynamic Heterogeneity at the Interface of a Protein in Aqueous Ionic Liquid Solutions. J Phys Chem B 2022; 126:7271-7285. [DOI: 10.1021/acs.jpcb.2c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
8
|
Stevens JC, Shi J. Modifying Surface Charges of a Thermophilic Laccase Toward Improving Activity and Stability in Ionic Liquid. Front Bioeng Biotechnol 2022; 10:880795. [PMID: 35757805 PMCID: PMC9213733 DOI: 10.3389/fbioe.2022.880795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The multicopper oxidase enzyme laccase holds great potential to be used for biological lignin valorization alongside a biocompatible ionic liquid (IL). However, the IL concentrations required for biomass pretreatment severely inhibit laccase activity. Due to their ability to function in extreme conditions, many thermophilic enzymes have found use in industrial applications. The thermophilic fungal laccase from Myceliophthora thermophila was found to retain high levels of activity in the IL [C2C1Im][EtSO4], making it a desirable biocatalyst to be used for lignin valorization. In contrast to [C2C1Im][EtSO4], the biocompatibility of [C2C1Im][OAC] with the laccase was markedly lower. Severe inhibition of laccase activity was observed in 15% [C2C1Im][OAc]. In this study, the enzyme surface charges were modified via acetylation, succinylation, cationization, or neutralization. However, these modifications did not show significant improvement in laccase activity or stability in [C2C1Im][OAc]. Docking simulations show that the IL docks close to the T1 catalytic copper, likely interfering with substrate binding. Although additional docking locations for [OAc]- are observed after making enzyme modifications, it does not appear that these locations play a role in the inhibition of enzyme activity. The results of this study could guide future enzyme engineering efforts by showing that the inhibition mechanism of [C2C1Im][OAc] toward M. thermophila laccase is likely not dependent upon the IL interacting with the enzyme surface.
Collapse
Affiliation(s)
- Joseph C Stevens
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| | - Jian Shi
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Li Z, Han Q, Wang K, Song S, Xue Y, Ji X, Zhai J, Huang Y, Zhang S. Ionic liquids as a tunable solvent and modifier for biocatalysis. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2074359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhuang Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Kun Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shaoyu Song
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Green Manufacture, CAS, Beijing, China
- Dalian National Laboratory for Clean Energy, CAS, Dalian, Liaoning, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
El Harrar T, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis. Comput Struct Biotechnol J 2022; 20:399-409. [PMID: 35070165 PMCID: PMC8752993 DOI: 10.1016/j.csbj.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial processes involving biocatalysts, but often reduce enzyme activity. Experimental and computational methods are applied to predict favorable substitution sites and, most often, subsequent site-directed surface charge modifications are introduced to enhance enzyme resistance towards aIL. However, almost no studies evaluate the prediction precision with random mutagenesis or the application of simple data-driven filtering processes. Here, we systematically and rigorously evaluated the performance of 22 previously described structure-based approaches to increase enzyme resistance to aIL based on an experimental complete site-saturation mutagenesis library of Bacillus subtilis Lipase A (BsLipA) screened against four aIL. We show that, surprisingly, most of the approaches yield low gain-in-precision (GiP) values, particularly for predicting relevant positions: 14 approaches perform worse than random mutagenesis. Encouragingly, exploiting experimental information on the thermostability of BsLipA or structural weak spots of BsLipA predicted by rigidity theory yields GiP = 3.03 and 2.39 for relevant variants and GiP = 1.61 and 1.41 for relevant positions. Combining five simple-to-compute physicochemical and evolutionary properties substantially increases the precision of predicting relevant variants and positions, yielding GiP = 3.35 and 1.29. Finally, combining these properties with predictions of structural weak spots identified by rigidity theory additionally improves GiP for relevant variants up to 4-fold to ∼10 and sustains or increases GiP for relevant positions, resulting in a prediction precision of ∼90% compared to ∼9% in random mutagenesis. This combination should be applicable to other enzyme systems for guiding protein engineering approaches towards improved aIL resistance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Corresponding author at: John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Str., 52428 Jülich, Germany.
| |
Collapse
|
11
|
Giri P, Pagar AD, Patil MD, Yun H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol Adv 2021; 53:107868. [PMID: 34774927 DOI: 10.1016/j.biotechadv.2021.107868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mahesh D Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
12
|
Ghanta KP, Mondal S, Mondal S, Bandyopadhyay S. Contrasting Effects of Ionic Liquids of Varying Degree of Hydrophilicity on the Conformational and Interfacial Properties of a Globular Protein. J Phys Chem B 2021; 125:9441-9453. [PMID: 34433280 DOI: 10.1021/acs.jpcb.1c04167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ionic liquids (ILs), depending on their cation-anion combinations, are known to influence the conformational properties and activities of proteins in a nonuniform manner. To obtain microscopic understanding of such influence, it is important to characterize protein-IL interactions and explore the modified solvation environment around the protein. In this work, molecular dynamics (MD) simulations of the globular protein α-lactalbumin have been carried out in aqueous IL solutions containing 1-butyl-3-methylimidazolium cations (BMIM+) in combination with a series of anions with varying degree of hydrophilicity, namely, hexafluorophosphate (PF6-), ethyl sulfate (ETS-), acetate (OAc-), chloride (Cl-), dicyanamide (DCA-), and nitrate (NO3-) . The calculations revealed that ILs with hydrophobic and hydrophilic anions have contrasting influence on conformational flexibility of the protein. It is further observed that the BMIM+ cations exhibit site-specific orientations at the interface depending on the hydrophilicity of the anion component. Most importantly, the results demonstrated enhanced propensity of hydrophilic ILs to replace relatively weaker protein-water hydrogen bonds by stronger protein-IL hydrogen bonds at the protein surface as compared to the hydrophobic ILs. Such breaking of protein-water hydrogen bonds at a greater extent leads to greater loss of water hydrating the protein in the presence of hydrophilic ILs, thereby reducing the protein's stability.
Collapse
Affiliation(s)
- Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
13
|
Imam HT, Krasňan V, Rebroš M, Marr AC. Applications of Ionic Liquids in Whole-Cell and Isolated Enzyme Biocatalysis. Molecules 2021; 26:4791. [PMID: 34443378 PMCID: PMC8399596 DOI: 10.3390/molecules26164791] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids have unique chemical properties that have fascinated scientists in many fields. The effects of adding ionic liquids to biocatalysts are many and varied. The uses of ionic liquids in biocatalysis include improved separations and phase behaviour, reduction in toxicity, and stabilization of protein structures. As the ionic liquid state of the art has progressed, concepts of what can be achieved in biocatalysis using ionic liquids have evolved and more beneficial effects have been discovered. In this review ionic liquids for whole-cell and isolated enzyme biocatalysis will be discussed with an emphasis on the latest developments, and a look to the future.
Collapse
Affiliation(s)
- Hasan Tanvir Imam
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| | - Vladimír Krasňan
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Andrew Craig Marr
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| |
Collapse
|
14
|
El Harrar T, Frieg B, Davari MD, Jaeger KE, Schwaneberg U, Gohlke H. Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways. Comput Struct Biotechnol J 2021; 19:4248-4264. [PMID: 34429845 PMCID: PMC8355836 DOI: 10.1016/j.csbj.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/25/2023] Open
Abstract
Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for biocatalysis due to their unique properties. On the other hand, the incubation of enzymes in IL or aIL often reduces enzyme activity. Recent studies proposed various aIL-induced effects to explain the reduction, classified as direct effects, e.g., local dehydration or competitive inhibition, and indirect effects, e.g., structural perturbations or disturbed catalytic site integrity. However, the molecular origin of indirect effects has largely remained elusive. Here we show by multi-μs long molecular dynamics simulations, free energy computations, and rigidity analyses that aIL favorably interact with specific residues of Bacillus subtilis Lipase A (BsLipA) and modify the local structural stability of this model enzyme by inducing long-range perturbations of noncovalent interactions. The perturbations percolate over neighboring residues and eventually affect the catalytic site and the buried protein core. Validation against a complete experimental site saturation mutagenesis library of BsLipA (3620 variants) reveals that the residues of the perturbation pathways are distinguished sequence positions where substitutions highly likely yield significantly improved residual activity. Our results demonstrate that identifying these perturbation pathways and specific IL ion-residue interactions there effectively predicts focused variant libraries with improved aIL tolerance.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Benedikt Frieg
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52428 Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI – Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
| | - Holger Gohlke
- John-von-Neumann-Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
16
|
Hebal H, Boucherba N, Binay B, Turunen O. Activity and stability of hyperthermostable cellulases and xylanases in ionic liquids. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1882430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hakim Hebal
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de La Nature et de La Vie (FSNV), Université de Bejaia, Bejaia, Algeria
- Faculty of Exact Sciences and Sciences of Nature and Life, Department of Biology, Mohamed Khider University of Biskra, Biskra, Algeria
| | - Nawel Boucherba
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de La Nature et de La Vie (FSNV), Université de Bejaia, Bejaia, Algeria
| | - Baris Binay
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
17
|
Xu C, Suo H, Xue Y, Qin J, Chen H, Hu Y. Experimental and theoretical evidence of enhanced catalytic performance of lipase B from Candida antarctica acquired by the chemical modification with amino acid ionic liquids. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
19
|
Sundaram V, Ramanan RN, Selvaraj M, Vijayaraghavan R, MacFarlane DR, Ooi CW. Structural stability of insulin aspart in aqueous cholinium aminoate ionic liquids based on molecular dynamics simulation studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Electrochemical impedimetric biosensors, featuring the use of Room Temperature Ionic Liquids (RTILs): Special focus on non-faradaic sensing. Biosens Bioelectron 2020; 177:112940. [PMID: 33444897 DOI: 10.1016/j.bios.2020.112940] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/24/2020] [Indexed: 01/26/2023]
Abstract
Over the last decade, significant advancements have been made in the field of biosensing technology. With the rising demand for personalized healthcare and health management tools, electrochemical sensors are proving to be reliable solutions; specifically, impedimetric sensors are gaining considerable attention primarily due to their ability to perform label-free sensing. The novel approach of using Room Temperature Ionic Liquids (RTILs) to improve the sensitivity and stability of these detection systems makes long-term continuous sensing feasible towards a wide range of sensing applications, predominantly biosensing. Through this review, we aim to provide an update on current scientific progress in using impedimetric biosensing combined with RTILs for the development of sensitive biosensing platforms. This review also summarizes the latest trends in the field of biosensing and provides an update on the current challenges that remain unsolved.
Collapse
|
21
|
Zou B, Yan Y, Xia J, Zhang L, Adesanya IO. Enhancing bio-catalytic activity and stability of lipase nanogel by functional ionic liquids modification. Colloids Surf B Biointerfaces 2020; 195:111275. [PMID: 32739774 DOI: 10.1016/j.colsurfb.2020.111275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/02/2023]
Abstract
A novel integrated lipase nanogel based on functional ionic liquid modification and polymerization immobilization with improved stability was designed. Characterization before and after modification and polymerization was conducted using infrared spectroscopy, Circular dichroism spectroscopy, fluorescence spectroscopy, and scanning electron microscopy. It was shown that the modification of the ionic liquid influenced the catalytic behavior of lipase significantly due to the changed structure and surface properties of lipase. The enzymatic properties, including acid-base stability, thermal stability, organic solvents stability, and storage stability of CRL nanogel, were investigated in the p-nitrophenyl palmitate hydrolysis reaction (CRL, Lipase from Candida Rugosa). The results indicated that CRL nanogel has a better pH, heat, and organic solvent tolerance after immobilization. After seven weeks of storage, the natural CRL gradually lost its enzymatic activity, and only 17.5±1.7 % of the catalytic activity remained, the residual activity of CRL nanogel was 97.3±1.8 %. It was indicated that the novel CRL nanogel was an excellent biocatalyst.
Collapse
Affiliation(s)
- Bin Zou
- School of Food and Biological Engineering, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yan Yan
- School of Food and Biological Engineering, China
| | - Jiaojiao Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Zhang
- School of Food and Biological Engineering, China
| | | |
Collapse
|
22
|
Li C, Zhao J, Zhang Z, Jiang Y, Bilal M, Jiang Y, Jia S, Cui J. Self-assembly of activated lipase hybrid nanoflowers with superior activity and enhanced stability. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107582] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Pérez‐Venegas M, Tellez‐Cruz MM, Solorza‐Feria O, López‐Munguía A, Castillo E, Juaristi E. Thermal and Mechanical Stability of Immobilized
Candida antarctica
Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mario Pérez‐Venegas
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | - Miriam M. Tellez‐Cruz
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | - Omar Solorza‐Feria
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | - Agustín López‐Munguía
- Department of cellular engineering and biocatalysisUniversidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa 62210 Cuernavaca Mexico
| | - Edmundo Castillo
- Department of cellular engineering and biocatalysisUniversidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa 62210 Cuernavaca Mexico
| | - Eusebio Juaristi
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
- El Colegio Nacional Luis Gonzáles Obregón 23 Ciudad de México 06020 Mexico
| |
Collapse
|
24
|
Pedersen JN, Zhou Y, Guo Z, Pérez B. Genetic and chemical approaches for surface charge engineering of enzymes and their applicability in biocatalysis: A review. Biotechnol Bioeng 2019; 116:1795-1812. [DOI: 10.1002/bit.26979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/10/2019] [Accepted: 03/28/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Ye Zhou
- Department of EngineeringAarhus UniversityAarhus Denmark
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life ScienceJilin UniversityChangchun China
| | - Zheng Guo
- Department of EngineeringAarhus UniversityAarhus Denmark
| | - Bianca Pérez
- AgrotechDanish Technological InstituteAarhus Denmark
| |
Collapse
|
25
|
Das S, Balasubramanian S. pH-Induced Rotation of Lidless Lipase LipA from Bacillus subtilis at Lipase-Detergent Interface. J Phys Chem B 2018; 122:4802-4812. [PMID: 29623706 DOI: 10.1021/acs.jpcb.8b02296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lipases exhibit a unique process during the catalysis of the hydrolysis of triglyceride substrates called interfacial activation. Surfactants are used as cosolvents with water not only to offer a less polar environment to the lipases needed for their interfacial activation but also to solvate the substrate which are poorly soluble in water. However, the presence of detergent in the medium can affect both the lipase and the substrate, making the construction of a microkinetic model for lipase activity in the presence of the detergent difficult. Herein, we study the interfacial activation of a lidless lipase LipA from Bacillus subtilis using extensive atomistic molecular dynamics simulations at different concentrations of the surfactant, Thesit (C12E8), at two pH values. Residues which bind to the monomeric detergent are found to be the same as the ones which have been reported earlier to bind to the substrate. Very importantly, a pH-induced rotation of the enzyme with respect to surfactant aggregate has been observed which not only explains the experimentally observed pH-dependent enzymatic activity of this lidless lipase, but also suggests its reorientation at an aqueous-lipodophilic interface.
Collapse
Affiliation(s)
- Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| |
Collapse
|
26
|
Designing tailored microbial and enzymatic response in ionic liquids for lignocellulosic biorefineries. Biophys Rev 2018; 10:911-913. [PMID: 29687273 DOI: 10.1007/s12551-018-0418-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/08/2018] [Indexed: 01/08/2023] Open
|
27
|
Uralcan B, Kim SB, Markwalter CE, Prud’homme RK, Debenedetti PG. A Computational Study of the Ionic Liquid-Induced Destabilization of the Miniprotein Trp-Cage. J Phys Chem B 2018; 122:5707-5715. [DOI: 10.1021/acs.jpcb.8b01722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Betul Uralcan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sang Beom Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Chester E. Markwalter
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Xu C, Yin X, Zhang C, Chen H, Huang H, Hu Y. Improving Catalytic Performance of Burkholderiacepacia Lipase by Chemical Modification with Functional Ionic Liquids. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7246-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Sprenger KG, Plaks JG, Kaar JL, Pfaendtner J. Elucidating sequence and solvent specific design targets to protect and stabilize enzymes for biocatalysis in ionic liquids. Phys Chem Chem Phys 2018. [PMID: 28650512 DOI: 10.1039/c7cp03013d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
For many different frameworks, the structure, function, and dynamics of an enzyme is largely determined by the nature of its interactions with the surrounding host environment, thus a molecular level understanding of enzyme/host interactions is essential to the design of new processes and applications. Ionic liquid (IL) solvents are a popular class of solvents in which to study enzyme behavior, yet it is still not possible to predict how a given enzyme will behave in a given IL solvent. Furthermore, a dearth of experimental data with which to evaluate simulation force fields has prevented the full integration of experimental and computational techniques to gain a complete picture of enzyme/IL interactions. Utilizing recently published crystallographic data of an enzyme in complex with an IL, this study aims to validate the use of current molecular force fields for studying enzyme/IL interactions, and to provide new mechanistic insight into enzyme stabilization in IL solvents. Classical molecular dynamics (MD) simulations have been performed on both the folded and unfolded state of Bacillus subtilis lipase A and a quadruple-mutant version of lipase A, in solutions of aqueous 1-butyl-3-methylimidazolium chloride. Results show classical MD simulations can predict the preferred surface binding locations of IL cations as well as reductions in IL anion binding to mutated surface residues with high accuracy. The results also point to a mechanistic difference between IL binding to the folded and unfolded state of an enzyme, which we call the "counter-ion effect". These findings could have important implications for future rational design efforts to stabilize enzymes in non-conventional media.
Collapse
Affiliation(s)
- K G Sprenger
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, USA.
| | | | | | | |
Collapse
|
30
|
Zhao J, Frauenkron-Machedjou VJ, Fulton A, Zhu L, Davari MD, Jaeger KE, Schwaneberg U, Bocola M. Unraveling the effects of amino acid substitutions enhancing lipase resistance to an ionic liquid: a molecular dynamics study. Phys Chem Chem Phys 2018; 20:9600-9609. [DOI: 10.1039/c7cp08470f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The key properties affecting lipase resistance towards an ionic liquid are uncovered through a molecular dynamics study.
Collapse
Affiliation(s)
- Jing Zhao
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Tianjin Institute of Industrial Biotechnology
| | | | - Alexander Fulton
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52426 Jülich
- Germany
| | - Leilei Zhu
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Tianjin Institute of Industrial Biotechnology
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52426 Jülich
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institute for Interactive Materials
| | - Marco Bocola
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
31
|
Cummings CS, Obermeyer AC. Phase Separation Behavior of Supercharged Proteins and Polyelectrolytes. Biochemistry 2017; 57:314-323. [PMID: 29210575 DOI: 10.1021/acs.biochem.7b00990] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membraneless organelles, like membrane-bound organelles, are essential to cell homeostasis and provide discrete cellular subcompartments. Unlike classical organelles, membraneless organelles possess no physical barrier but rather arise by phase separation of the organelle components from the surrounding cytoplasm or nucleoplasm. Complex coacervation, the liquid-liquid phase separation of oppositely charged polyelectrolytes, is one of several phenomena that are hypothesized to drive the formation and regulation of some membraneless organelles. Studies of the molecular properties of globular proteins that drive complex coacervation are limited as many proteins do not form complexes with oppositely charged macromolecules at neutral pH and moderate ionic strengths. Protein supercharging overcomes this problem and drives complexation with oppositely charged macromolecules. In this work, several distinct cationic supercharged green fluorescent protein (GFP) variants were designed to examine the phase behavior with oppositely charged polyanionic macromolecules. Cationic GFP variants phase separated with oppositely charged macromolecules at various mixing ratios, salt concentrations, and pH values. Efficient protein incorporation in the macromolecule rich phase occurred over a range of protein and polymer mass fractions, but the protein encapsulation efficiency was highest at the midpoint of the phase separation regime. More positively charged proteins phase separated over broader pH and salt ranges than those of proteins with a lower charge density. Interestingly, each GFP variant phase separated at higher salt concentrations with anionic synthetic macromolecules compared to anionic biological macromolecules. Optical microscopy revealed that most variants, depending on solution conditions, formed liquid-liquid phase separations, except for GFP/DNA pairs that formed solid aggregates under all tested conditions.
Collapse
Affiliation(s)
- Chad S Cummings
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| |
Collapse
|
32
|
Carmali S, Murata H, Amemiya E, Matyjaszewski K, Russell AJ. Tertiary Structure-Based Prediction of How ATRP Initiators React with Proteins. ACS Biomater Sci Eng 2017; 3:2086-2097. [DOI: 10.1021/acsbiomaterials.7b00281] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sheiliza Carmali
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Erika Amemiya
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
33
|
Munje RD, Muthukumar S, Jagannath B, Prasad S. A new paradigm in sweat based wearable diagnostics biosensors using Room Temperature Ionic Liquids (RTILs). Sci Rep 2017; 7:1950. [PMID: 28512341 PMCID: PMC5434046 DOI: 10.1038/s41598-017-02133-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Successful commercialization of wearable diagnostic sensors necessitates stability in detection of analytes over prolonged and continuous exposure to sweat. Challenges are primarily in ensuring target disease specific small analytes (i.e. metabolites, proteins, etc.) stability in complex sweat buffer with varying pH levels and composition over time. We present a facile approach to address these challenges using RTILs with antibody functionalized sensors on nanoporous, flexible polymer membranes. Temporal studies were performed using both infrared spectroscopic, dynamic light scattering, and impedimetric spectroscopy to demonstrate stability in detection of analytes, Interleukin-6 (IL-6) and Cortisol, from human sweat in RTILs. Temporal stability in sensor performance was performed as follows: (a) detection of target analytes after 0, 24, 48, 96, and 168 hours post-antibody sensor functionalization; and (b) continuous detection of target analytes post-antibody sensor functionalization. Limit of detection of IL-6 in human sweat was 0.2 pg/mL for 0-24 hours and 2 pg/mL for 24-48 hours post-antibody sensor functionalization. Continuous detection of IL-6 over 0.2-200 pg/mL in human sweat was demonstrated for a period of 10 hours post-antibody sensor functionalization. Furthermore, combinatorial detection of IL-6 and Cortisol in human sweat was established with minimal cross-talk for 0-48 hours post-antibody sensor functionalization.
Collapse
Affiliation(s)
- Rujuta D Munje
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | | | - Badrinath Jagannath
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Shalini Prasad
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA.
| |
Collapse
|
34
|
Kumar A, Bisht M, Venkatesu P. Biocompatibility of ionic liquids towards protein stability: A comprehensive overview on the current understanding and their implications. Int J Biol Macromol 2017; 96:611-651. [DOI: 10.1016/j.ijbiomac.2016.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
|
35
|
Wiedemann C, Ohlenschläger O, Mrestani-Klaus C, Bordusa F. NMR spectroscopic studies of a TAT-derived model peptide in imidazolium-based ILs: influence on chemical shifts and the cis/trans equilibrium state. Phys Chem Chem Phys 2017; 19:24115-24125. [DOI: 10.1039/c7cp03295a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of ionic liquids on the chemical shifts and the cis/trans equilibrium state of a model peptide was systematically investigated by NMR spectroscopy.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Institute of Biochemistry and Biotechnology
- Martin-Luther-University Halle-Wittenberg
- D-06120 Halle
- Germany
| | | | - Carmen Mrestani-Klaus
- Institute of Biochemistry and Biotechnology
- Martin-Luther-University Halle-Wittenberg
- D-06120 Halle
- Germany
| | - Frank Bordusa
- Institute of Biochemistry and Biotechnology
- Martin-Luther-University Halle-Wittenberg
- D-06120 Halle
- Germany
| |
Collapse
|
36
|
Das S, Karmakar T, Balasubramanian S. Molecular Mechanism behind Solvent Concentration-Dependent Optimal Activity of Thermomyces lanuginosus Lipase in a Biocompatible Ionic Liquid: Interfacial Activation through Arginine Switch. J Phys Chem B 2016; 120:11720-11732. [DOI: 10.1021/acs.jpcb.6b08534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sudip Das
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tarak Karmakar
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
37
|
Kaar JL. Lipase Activation and Stabilization in Room-Temperature Ionic Liquids. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2016; 1504:25-35. [PMID: 27770412 DOI: 10.1007/978-1-4939-6499-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Widespread interest in the use of room-temperature ionic liquids (RTILs) as solvents in anhydrous biocatalytic reactions has largely been met with underwhelming results. Enzymes are frequently inactivated in RTILs as a result of the influence of solvent on the enzyme's microenvironment, be it through interacting with the enzyme or enzyme-bound water molecules. The purpose of this chapter is to present a rational approach to mediate RTIL-enzyme interactions, which is essential if we are to realize the advantages of RTILs over conventional solvents for biocatalysis in full. The underlying premise for this approach is the stabilization of enzyme structure via multipoint covalent immobilization within a polyurethane foam matrix. Additionally, the approach entails the use of salt hydrates to control the level of hydration of the immobilized enzyme, which is critical to the activation of enzymes in nonaqueous media. Although lipase is used as a model enzyme, this approach may be effective in activating and stabilizing virtually any enzyme in RTILs.
Collapse
Affiliation(s)
- Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 596, Boulder, CO, 80309, USA.
| |
Collapse
|
38
|
|
39
|
Cui J, Zhao Y, Liu R, Zhong C, Jia S. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci Rep 2016; 6:27928. [PMID: 27297609 PMCID: PMC4906385 DOI: 10.1038/srep27928] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Increasing numbers of materials have been extensively used as platforms for enzyme immobilization to improve catalytic performance. However, activity of the most of the enzymes was declined after immobilization. Here, we develop a surfactant-activated lipase-inorganic flowerlike hybrid nanomaterials with rational design based on interfacial activation and self-assembly. The resulting surfactant-activated lipase-inorganic hybird nanoflower (activated hNF-lipase) exhibited 460% and 200% higher activity than native lipase and conventional lipase-inorganic hybird nanoflower (hNF-lipase). Furthermore, the activated hNF-lipase displayed good reusability due to its monodispersity and mechanical properties, and had excellent long-time stability. The superior catalytic performances were attributed to both the conformational modulation of surfactants and hierarchical structure of nanoflowers, which not only anchored lipases in an active form, but also decreased the enzyme-support negative interaction and mass-transfer limitations. This new biocatalytic system is promising to find widespread use in applications related to biomedicine, biosensor, and biodiesel.
Collapse
Affiliation(s)
- Jiandong Cui
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhang 050000, P R China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| | - Yamin Zhao
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhang 050000, P R China
| | - Ronglin Liu
- Research Center for Fermentation Engineering of Hebei, College of Bioscience and Bioengineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhang 050000, P R China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| | - Shiru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P R China
| |
Collapse
|
40
|
Xu P, Du PX, Zong MH, Li N, Lou WY. Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell. Sci Rep 2016; 6:26158. [PMID: 27185089 PMCID: PMC4868980 DOI: 10.1038/srep26158] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/27/2016] [Indexed: 01/23/2023] Open
Abstract
The efficient anti-Prelog asymmetric reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cells was successfully performed in a biphasic system consisting of deep eutectic solvent (DES) and water-immiscible ionic liquid (IL). Various DESs exerted different effects on the synthesis of (R)-2-octanol. Choline chloride/ethylene glycol (ChCl/EG) exhibited good biocompatibility and could moderately increase the cell membrane permeability thus leading to the better results. Adding ChCl/EG increased the optimal substrate concentration from 40 mM to 60 mM and the product e.e. kept above 99.9%. To further improve the reaction efficiency, water-immiscible ILs were introduced to the reaction system and an enhanced substrate concentration (1.5 M) was observed with C4MIM·PF6. Additionally, the cells manifested good operational stability in the reaction system. Thus, the efficient biocatalytic process with ChCl/EG and C4MIM·PF6 was promising for efficient synthesis of (R)-2-octanol.
Collapse
Affiliation(s)
- Pei Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.,Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng-Xuan Du
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Min-Hua Zong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ning Li
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen-Yong Lou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.,Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
41
|
Sprenger K, Choudhury A, Kaar JL, Pfaendtner J. Lytic Polysaccharide Monooxygenases ScLPMO10B and ScLPMO10C Are Stable in Ionic Liquids As Determined by Molecular Simulations. J Phys Chem B 2016; 120:3863-72. [DOI: 10.1021/acs.jpcb.6b01688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K.G. Sprenger
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Alaksh Choudhury
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L. Kaar
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Jim Pfaendtner
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
42
|
Sprenger K, Pfaendtner J. Using Molecular Simulation to Study Biocatalysis in Ionic Liquids. Methods Enzymol 2016; 577:419-41. [DOI: 10.1016/bs.mie.2016.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Xu J, Xiong P, He B. Advances in improving the performance of cellulase in ionic liquids for lignocellulose biorefinery. BIORESOURCE TECHNOLOGY 2016; 200:961-70. [PMID: 26602145 DOI: 10.1016/j.biortech.2015.10.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 05/07/2023]
Abstract
Ionic liquids (ILs) have been considered as a class of promising solvents that can dissolve lignocellulosic biomass and then provide enzymatic hydrolyzable holocellulose. However, most of available cellulases are completely or partially inactivated in the presence of even low concentrations of ILs. To more fully exploit the benefits of ILs to lignocellulose biorefinery, it is critical to improve the compatibility between cellulase and ILs. Various attempts have been made to screen natural IL-tolerant cellulases from different microhabitats. Several physical and chemical methods for stabilizing cellulases in ILs were also developed. Moreover, recent advances in protein engineering have greatly facilitated the rational engineering of cellulases by site-directed mutagenesis for the IL stability. This review is aimed to provide the first detailed overview of the current advances in improving the performance of cellulase in non-natural IL environments. New ideas from the most representative progresses and technical challenges will be summarized and discussed.
Collapse
Affiliation(s)
- Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, 111 Changjiangxi Road, Huaian 223300, China.
| | - Peng Xiong
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, 111 Changjiangxi Road, Huaian 223300, China; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, 30 Puzhunan Road, Nanjing 210000, China
| |
Collapse
|
44
|
Li X, Zhang C, Li S, Huang H, Hu Y. Improving Catalytic Performance of Candida rugosa Lipase by Chemical Modification with Polyethylene Glycol Functional Ionic Liquids. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01881] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiujuan Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Chuan Zhang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Shuang Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - He Huang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| |
Collapse
|
45
|
Zhao J, Jia N, Jaeger KE, Bocola M, Schwaneberg U. Ionic liquid activatedBacillus subtilislipase A variants through cooperative surface substitutions. Biotechnol Bioeng 2015; 112:1997-2004. [DOI: 10.1002/bit.25617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/27/2015] [Accepted: 04/06/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Zhao
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3; 52074 Aachen Germany
| | - Ning Jia
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3; 52074 Aachen Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology; Heinrich-Heine-University Düsseldorf; Forschungszentrum Jülich; 52426 Jülich Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3; 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Worringerweg 3; 52074 Aachen Germany
| |
Collapse
|
46
|
Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Jha I, Kumar A, Venkatesu P. The Overriding Roles of Concentration and Hydrophobic Effect on Structure and Stability of Heme Protein Induced by Imidazolium-Based Ionic Liquids. J Phys Chem B 2015; 119:8357-68. [DOI: 10.1021/acs.jpcb.5b04660] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Indrani Jha
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Awanish Kumar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
48
|
Plaks JG, Falatach R, Kastantin M, Berberich JA, Kaar JL. Multisite clickable modification of proteins using lipoic acid ligase. Bioconjug Chem 2015; 26:1104-12. [PMID: 25982177 DOI: 10.1021/acs.bioconjchem.5b00161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approaches that allow bioorthogonal and, in turn, site-specific chemical modification of proteins present considerable opportunities for modulating protein activity and stability. However, the development of such approaches that enable site-selective modification of proteins at multiple positions, including internal sites within a protein, has remained elusive. To overcome this void, we have developed an enzymatic approach for multisite clickable modification based on the incorporation of azide moieties in proteins using lipoic acid ligase (LplA). The ligation of azide moieties to the model protein, green fluorescent protein (GFP), at the N-terminus and two internal sites using lipoic acid ligase was shown to proceed efficiently with near-complete conversion. Modification of the ligated azide groups with poly(ethylene glycol) (PEG), α-d-mannopyranoside, and palmitic acid resulted in highly homogeneous populations of protein-polymer, protein-sugar, and protein-fatty acid conjugates. The homogeneity of the conjugates was confirmed by mass spectrometry (MALDI-TOF) and SDS-PAGE electrophoresis. In the case of PEG attachment, which involved the use of strain-promoted azide-alkyne click chemistry, the conjugation reaction resulted in highly homogeneous PEG-GFP conjugates in less than 30 min. As further demonstration of the utility of this approach, ligated GFP was also covalently immobilized on alkyne-terminated self-assembled monolayers. These results underscore the potential of this approach for, among other applications, site-specific multipoint protein PEGylation, glycosylation, fatty acid modification, and protein immobilization.
Collapse
Affiliation(s)
- Joseph G Plaks
- †Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Rebecca Falatach
- ‡Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Mark Kastantin
- †Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Jason A Berberich
- ‡Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Joel L Kaar
- †Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
49
|
Frauenkron-Machedjou VJ, Fulton A, Zhu L, Anker C, Bocola M, Jaeger KE, Schwaneberg U. Towards Understanding Directed Evolution: More than Half of All Amino Acid Positions Contribute to Ionic Liquid Resistance ofBacillus subtilisLipase A. Chembiochem 2015; 16:937-45. [DOI: 10.1002/cbic.201402682] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Indexed: 01/17/2023]
|
50
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|