1
|
Peng Z, Yang Z. Optical blood glucose non-invasive detection and its research progress. Analyst 2024. [PMID: 39246261 DOI: 10.1039/d4an01048e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Blood glucose concentration is an important index for the diagnosis of diabetes, its self-monitoring technology is the method for scientific diabetes management. Currently, the typical household blood glucose meters have achieved great success in diabetes management, but they are discrete detection methods, and involve invasive blood sampling procedures. Optical detection technologies, which use the physical properties of light to detect the glucose concentration in body fluids non-invasively, have shown great potential in non-invasive blood glucose detection. This article summarized and analyzed the basic principles, research status, existing problems, and application prospects of different optical glucose detection technologies. In addition, this article also discusses the problems of optical detection technology in wearable sensors and perspectives on the future of non-invasive blood glucose detection technology to improve blood glucose monitoring in diabetic patients.
Collapse
Affiliation(s)
- Zhiqing Peng
- College of Mechanical and Electronic Engineering, Pingxiang University, Pingxiang 330073, P.R. China.
| | - Zhuanqing Yang
- Big Data and Internet of Things School, Chongqing Vocational Institute of Engineering, Chongqing 402260, China
| |
Collapse
|
2
|
Wang C, Zhang Y, Gong W, Wang S. Highly selective detection of deoxyribonucleic acid in living cells using RecA-green fluorescent protein-single-stranded deoxyribonucleic acid filament fluorescence resonance energy transfer probe. LUMINESCENCE 2024; 39:e4716. [PMID: 38497410 DOI: 10.1002/bio.4716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
A fluorescence resonance energy transfer (FRET) method was developed for double-stranded deoxyribonucleic acid (dsDNA) detection in living cells using the RecA-GFP (green fluorescent protein) fusion protein filament. In brief, the thiol-modified single-stranded DNA (ssDNA) was attached to gold nanoparticles (AuNPs); on the contrary, the prepared RecA-GFP fusion protein interacted with ssDNA. Due to the FRET between AuNPs and RecA-GFP, fluorescence of RecA-GFP fusion protein was quenched. In the presence of homologous dsDNA, homologous recombination occurred to release RecA-GFP fusion protein. Thus, the fluorescence of RecA-GFP was recovered. The dsDNA concentration was detected using fluorescence intensity of RecA-GFP. Under optimal conditions, this method could detect dsDNA activity as low as 0.015 optical density (OD) Escherichia coli cells, with a wide linear range from 0.05 to 0.9 OD cells, and the regression equation was ΔF = 342.7c + 78.9, with a linear relationship coefficient of 0.9920. Therefore, it provided a promising approach for the selective detection of dsDNA in living cells for early clinical diagnosis of genetic diseases.
Collapse
Affiliation(s)
- Chunlei Wang
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Yuanfu Zhang
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Wenyue Gong
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| | - Shuhao Wang
- Key Laboratory of Food Safety and Life Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Patra S, Sahu KM, Reddy AA, Swain SK. Polymer and biopolymer based nanocomposites for glucose sensing. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - A. Amulya Reddy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
4
|
A non-invasive method for the detection of glucose in human exhaled breath by condensation collection coupled with ion chromatography. J Chromatogr A 2022; 1685:463564. [DOI: 10.1016/j.chroma.2022.463564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
|
5
|
Jeon HJ, Kim HS, Chung E, Lee DY. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022; 12:6308-6338. [PMID: 36168630 PMCID: PMC9475463 DOI: 10.7150/thno.72152] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. However, many natural enzymes have inherent defects, limiting their extensive application. Recently, nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and mechanisms, recent machine learning based analytic methods, quantification systems, applications and future directions for monitoring and managing diabetes.
Collapse
Affiliation(s)
- Hee-Jae Jeon
- Weldon School of Biomedical Engineering, Purdue University, Indiana 47906, USA
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- AI Graduate School, GIST, Gwangju 61005, Republic of Korea
- Research Center for Photon Science Technology, GIST, Gwangju 61005, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul 07463, Republic of Korea
| |
Collapse
|
6
|
Zhang Y, Tang H, Chen W, Zhang J. Nanomaterials Used in Fluorescence Polarization Based Biosensors. Int J Mol Sci 2022; 23:8625. [PMID: 35955779 PMCID: PMC9369394 DOI: 10.3390/ijms23158625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Fluorescence polarization (FP) has been applied in detecting chemicals and biomolecules for early-stage diagnosis, food safety analyses, and environmental monitoring. Compared to organic dyes, inorganic nanomaterials such as quantum dots have special fluorescence properties that can enhance the photostability of FP-based biosensing. In addition, nanomaterials, such as metallic nanoparticles, can be used as signal amplifiers to increase fluorescence polarization. In this review paper, different types of nanomaterials used in in FP-based biosensors have been reviewed. The role of each type of nanomaterial, acting as a fluorescent element and/or the signal amplifier, has been discussed. In addition, the advantages of FP-based biosensing systems have been discussed and compared with other fluorescence-based techniques. The integration of nanomaterials and FP techniques allows biosensors to quickly detect analytes in a sensitive and cost-effective manner and positively impact a variety of different fields including early-stage diagnoses.
Collapse
Affiliation(s)
- Yingqi Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; (Y.Z.); (W.C.)
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada;
| | - Wei Chen
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; (Y.Z.); (W.C.)
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; (Y.Z.); (W.C.)
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada;
| |
Collapse
|
7
|
Zhu Q, Du J, Feng S, Li J, Yang R, Qu L. Highly selective and sensitive detection of glutathione over cysteine and homocysteine with a turn-on fluorescent biosensor based on cysteamine-stabilized CdTe quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120492. [PMID: 34666265 DOI: 10.1016/j.saa.2021.120492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In this work, cysteamine (CA) stabilized CdTe quantum dots (QDs) (CA-CdTe QDs) and sodium citrate stabilized gold nanoparticles (AuNPs) were prepared. Because of the strong electrostatic interaction and spectral overlap of emission spectrum of CA-CdTe QDs and absorption spectrum of AuNPs, a highly effective fluorescence resonance energy transfer (FRET) system was formed and the fluorescence of CA-CdTe QDs was strongly quenched. The synthesized CA-CdTe and AuNPs were self-assembled to large clusters due to the electrostatic attraction and the fluorescence of CA-CdTe was sharply quenched as a result of FRET. Under the optimum pH of 5.5, the positive GSH could assemble with negative AuNPs through electrostatic interaction and destroy the FRET system of CA-CdTe and AuNPs, due to the red shift of absorption wavelength of AuNPs caused by aggregation. The fluorescence of CA-CdTe recovered, and the recovered fluorescence efficiency shows a linear function against the GSH concentrations from 6.7 nM to 0.40 μM, with a detecting limit of 3.3 nM. The quenched emission of CA-CdTe could be recovered attributed to the aggregation of AuNPs by GSH. Under optimal conditions, the sensing system was successfully applied in the detection of GSH in real human blood plasma samples with a recovery of 99.5-102.3%, showing a promising future for the highly sensitive and selective GSH detection in the human blood plasma samples.
Collapse
Affiliation(s)
- Qianqian Zhu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Du
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Suxiang Feng
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, China
| | - Jianjun Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, China
| |
Collapse
|
8
|
John BK, Abraham T, Mathew B. A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection. J Fluoresc 2022; 32:449-471. [DOI: 10.1007/s10895-021-02852-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
|
9
|
Zhang S, Wang C, Wu T, Fan D, Hu L, Wang H, Wei Q, Wu D. A sandwiched photoelectrochemical biosensing platform for detecting Cytokeratin-19 fragments based on Ag 2S-sensitized BiOI/Bi 2S 3 heterostructure amplified by sulfur and nitrogen co-doped carbon quantum dots. Biosens Bioelectron 2022; 196:113703. [PMID: 34656853 DOI: 10.1016/j.bios.2021.113703] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 01/20/2023]
Abstract
A sandwiched photoelectrochemical (PEC) immunosensor based on BiOI/Bi2S3/Ag2S was designed for the quantitative detection of cytokeratin-19 fragments (CYFRA21-1) in serum. In this work, due to the intervention of the narrow band gap Bi2S3, the absorption of the light source by the BiOI/Bi2S3 heterostructure has been significantly enhanced. Meanwhile, the matched band structure of BiOI, Bi2S3 and Ag2S promoted the rapid transfer of electrons between the conduction bands and effectively inhibited the recombination of electron-hole pairs, thus enhanced the photoelectric signals. Sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) with up-conversion luminescence properties provided more light energy for the base materials. On the other hand, S,N-CQDs were combined with Ab2 through polydopamine (PDA), as secondary antibody labels, further enhanced the sensitivity of the sensor. Herein, the linear range of the sensor was from 0.001 to 100 ng mL-1 and the detection limit was 1.72 pg mL-1. In addition, the sensor provides a feasible way for the detection of tumor markers due to its excellent selectivity, repeatability and good stability.
Collapse
Affiliation(s)
- Shitao Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Lihua Hu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| |
Collapse
|
10
|
Kim J, Noh S, Park JA, Park SC, Park SJ, Lee JH, Ahn JH, Lee T. Recent Advances in Aptasensor for Cytokine Detection: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:8491. [PMID: 34960590 PMCID: PMC8705356 DOI: 10.3390/s21248491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Cytokines are proteins secreted by immune cells. They promote cell signal transduction and are involved in cell replication, death, and recovery. Cytokines are immune modulators, but their excessive secretion causes uncontrolled inflammation that attacks normal cells. Considering the properties of cytokines, monitoring the secretion of cytokines in vivo is of great value for medical and biological research. In this review, we offer a report on recent studies for cytokine detection, especially studies on aptasensors using aptamers. Aptamers are single strand nucleic acids that form a stable three-dimensional structure and have been receiving attention due to various characteristics such as simple production methods, low molecular weight, and ease of modification while performing a physiological role similar to antibodies.
Collapse
Affiliation(s)
- Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Seong Jun Park
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea;
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Yangsan 50612, Korea;
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Yuseong-gu, Daejeon 34134, Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-gu, Seoul 01897, Korea; (J.K.); (S.N.); (J.A.P.)
| |
Collapse
|
11
|
Mahani M, Taheri M, Divsar F, Khakbaz F, Nomani A, Ju H. Label-free triplex DNA-based biosensing of transcription factor using fluorescence resonance energy transfer between N-doped carbon dot and gold nanoparticle. Anal Chim Acta 2021; 1181:338919. [PMID: 34556210 DOI: 10.1016/j.aca.2021.338919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Herein, a new turn-on fluorescent assay was established as a platform for the sensing of transcription factor NF-kB p50 based on triplex DNA labeled with N-doped carbon dots (NCDs) and gold nanoparticles (AuNPs) as donors and acceptors, respectively in the fluorescence resonance energy transfer (FRET) system. The synthetized nanoparticles were studied by different characterization techniques. A labeled DNA molecule was designed to form a triplex when no target protein existence and reported its formation by the change in FRET efficiency. While the triplex DNA was formed, the fluorescence of carbon dots at 503 nm (excitation at 460 nm) was quenched by FRET between NCD and AuNP. However, presence of NF-kB p50 followed by the considerable enhancement in the fluorescence intensity caused by the release of AuNPs labeled single stranded DNA from the triplex DNA structure, used for sensitive determination of the transcription factor. This technique showed a linearity (R2 = 0.9943) in the range of 20-150 pM with a limit of detection of 9 pM for the determination of NF-kB p50. Moreover, the sequence-specific triplex-based biosensor could discriminate NF-kB p50 from the other proteins with high selectively. Our results suggest that the biosensor provides a generalizable platform for rapid detection of NF-kB p50 in synthetic medium, promising in prevention and early diagnosis of cancer.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Maryam Taheri
- Department of Nanotechnology, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor Universtiy (PNU), P. O. BOX 19395-3697, Tehran, Iran
| | - Faeze Khakbaz
- Department of NanoChemistry, Faculty of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Alireza Nomani
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Xu L, Zhang X, Wang Z, Haidry AA, Yao Z, Haque E, Wang Y, Li G, Daeneke T, McConville CF, Kalantar-Zadeh K, Zavabeti A. Low dimensional materials for glucose sensing. NANOSCALE 2021; 13:11017-11040. [PMID: 34152349 DOI: 10.1039/d1nr02529e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosensors are essential components for effective healthcare management. Since biological processes occur on molecular scales, nanomaterials and nanosensors intrinsically provide the most appropriate landscapes for developing biosensors. Low-dimensional materials have the advantage of offering high surface areas, increased reactivity and unique physicochemical properties for efficient and selective biosensing. So far, nanomaterials and nanodevices have offered significant prospects for glucose sensing. Targeted glucose biosensing using such low-dimensional materials enables much more effective monitoring of blood glucose levels, thus providing significantly better predictive diabetes diagnostics and management. In this review, recent advances in using low dimensional materials for sensing glucose are summarized. Sensing fundamentals are discussed, as well as invasive, minimally-invasive and non-invasive sensing methods. The effects of morphological characteristics and size-dependent properties of low dimensional materials are explored for glucose sensing, and the key performance parameters such as selectivity, stability and sensitivity are also discussed. Finally, the challenges and future opportunities that low dimensional materials can offer for glucose sensing are outlined.
Collapse
Affiliation(s)
- Linling Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Xianfei Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhe Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhengjun Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Yichao Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Gang Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia.
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| |
Collapse
|
13
|
Vasilescu A, Hrinczenko B, Swain GM, Peteu SF. Exhaled breath biomarker sensing. Biosens Bioelectron 2021; 182:113193. [PMID: 33799031 DOI: 10.1016/j.bios.2021.113193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
This goal of this minireview is to introduce the reader to the area of research concerned with exhaled breath analysis for the purpose of detecting abnormal levels of physiologically-relevant chemical markers reflective of respiratory diseases. Two main two groups of sensing methods are reviewed: mass spectrometry and (bio)sensors. The discussion focuses on biosensor applications for EB and EBC analyses, which are presented in detail. The review finishes with conclusions and future perspectives, including recommendations for future near-term and long-term development of EBC biomarker sensing.
Collapse
Affiliation(s)
| | - Borys Hrinczenko
- Division of Hematology & Oncology, Breslin Cancer Center, Michigan State University, USA
| | - Greg M Swain
- Department of Chemistry, Michigan State University, USA; Neuroscience Program, Michigan State University, USA
| | - Serban F Peteu
- Department of Chemistry, Michigan State University, USA.
| |
Collapse
|
14
|
Kadam VV, Balakrishnan RM, Ettiyappan JP. Fluorometric detection of bisphenol A using β-cyclodextrin-functionalized ZnO QDs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11882-11892. [PMID: 31993908 DOI: 10.1007/s11356-020-07797-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The estrogenic property of bisphenol A (BPA) leads to potential adverse health and ecological effects. A simple, selective, and cost-effective sensor capable of detecting BPA would have a noteworthy relevance for the environmental system. The present work illustrates the synthesis and characterization of β-cyclodextrin (β-CD) functionalized zinc oxide (ZnO) quantum dots (QDs) for the selective detection of BPA. BPA has a fluorescence quenching effect on functionalized ZnO QDs, and the decrease in fluorescence intensity is associated with the BPA concentration between 2 and 10 μM. Under the optimum reaction condition, a good linear correlation was obtained between relative fluorescence-quenching intensity of β-cyclodextrin-functionalized ZnO QDs and BPA concentration (R2 = 0.9891). The lower detection limit of functionalized QDs for BPA was estimated to be 0.19 μM, which is lower than the toxic limits in aquatic biota. The fluorescence-based detection of BPA may be ascribed to the electron transfer mechanism, which is elucidated with scientific details from the literature.
Collapse
Affiliation(s)
- Vrushali Vinayak Kadam
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Karnataka, 575025, India
| | - Raj Mohan Balakrishnan
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Karnataka, 575025, India.
| | | |
Collapse
|
15
|
Recent Trends in Noble Metal Nanoparticles for Colorimetric Chemical Sensing and Micro-Electronic Packaging Applications. METALS 2021. [DOI: 10.3390/met11020329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Noble metal NPs are highly attractive candidates because of their unique combination of physical, chemical, mechanical, and structural properties. A lot of developments in this area are still fascinating the materials research community, and are broadly categorized in various sectors such as chemical sensors, biosensors, Förster resonance energy transfer (FRET), and microelectronic applications. The related function and properties of the noble metals in these areas can be further tailored by tuning their chemical, optical, and electronic properties that are influenced by their size, shape, and distribution. The most widely used Au and Ag NPs in dispersed phase below 100 nm exhibit strong color change in the visible range which alters upon aggregation of the NPs. The chemical sensing of the analyte is influenced by these NPs aggregates. In this article, we have summarized the uniqueness of noble metal NPs, their synthesis methods, nucleation and growth process, and their important applications in chemical sensing, microelectronic packaging, and Förster resonance energy transfer.
Collapse
|
16
|
Application of Aptamer-based Biosensor in Bisphenol A Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60077-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Hameed MK, Parambath JBM, Kanan SM, Mohamed AA. FRET-based fluorescent probe for drug assay from amino acid@gold-carbon nanoparticles. Anal Bioanal Chem 2021; 413:1117-1125. [PMID: 33409672 DOI: 10.1007/s00216-020-03075-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022]
Abstract
Biocompatible and luminescent nanostructures synthesized by capping gold-carbon nanoparticles (HOOC-4-C6H4-AuNPs) with amino acids tyrosine, tryptophan, and cysteine were used for the quantitative estimation of ranitidine (RNH), a peptic ulcer and gastroesophageal reflux drug. We applied a fluorescence quenching mechanism to investigate the viability of the energy transfer based on gold-carbon nanosensors. Förster resonance energy transfer (FRET) calculations showed a donor-acceptor distance of 1.69 nm (Tyr@AuNPs), 2.27 nm (Trp@AuNPs), and 2.32 nm (Cys@AuNPs). The constant time-resolved fluorescence lifetime measurements supported the static quenching nature. This method was successfully utilized in the detection and quantification of RNH, with a limit of detection (LOD) of 0.174, 0.56, and 0.332 μM for Tyr@AuNP, Trp@AuNP, and Cys@AuNP bioconjugates, respectively. This approach was also successful in the quantification of RNH in spiked serum samples.
Collapse
Affiliation(s)
- Mehavesh K Hameed
- Department of Chemistry, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Javad B M Parambath
- Department of Chemistry, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sofian M Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Ahmed A Mohamed
- Department of Chemistry, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
18
|
Castro RC, Lopes AFR, Soares JX, Ribeiro DSM, Santos JLM. Determination of atenolol based on the reversion of the fluorescence resonance energy transfer between AgInS 2 quantum dots and Au nanoparticles. Analyst 2020; 146:1004-1015. [PMID: 33295361 DOI: 10.1039/d0an01874k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present work focused on the development of a fluorescence resonance energy transfer (FRET)-based sensing platform for the monitoring of atenolol in pharmaceutical formulations. The implemented approach involved the assembly of d-penicillamine-capped AgInS2/ZnS quantum dots (QDs), as energy donors, and gold nanoparticles (AuNPs) as acceptors and the establishment of electrostatic interaction between both capping ligands at the nanoparticle surface, which induced the inhibition of the ternary QD photoluminescence (PL). The presence of a ZnS shell around the ternary QD core and the use of cysteamine (CA) as the AuNP capping ligand, instead of the typical citrate, allowed a more efficient FRET process to occur. The ability of Cd-free ternary QDs to be used as a sensing element in FRET-based assays was demonstrated, emphasizing the advantages relative to the common Cd-based QDs, when seeking the implementation of more environmentally friendly and less toxic analytical methodologies. The influence of several β-blocker drugs on the FRET donor-acceptor assemblies was thoroughly assessed. Atenolol and nadolol caused the aggregation of CA-AuNPs via hydrogen bonding interactions which reduced the spectral overlap between the donor and acceptor, impairing the FRET process and consequently the emission of the QDs was restored. Under the optimized conditions, the obtained results exhibited a linear relationship between the QD PL recovery signal and atenolol concentration of up to 11.22 mg L-1 with a detection limit of 1.05 mg L-1. This FRET sensing platform was successfully applied in the determination of atenolol in pharmaceutical formulations with recovery values ranging from 97.4 to 104.3%.
Collapse
Affiliation(s)
- Rafael C Castro
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal.
| | | | | | | | | |
Collapse
|
19
|
Zhou Y, Mahapatra C, Chen H, Peng X, Ramakrishna S, Nanda HS. Recent developments in fluorescent aptasensors for detection of antibiotics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020; 49:593-641. [DOI: 10.1039/c8cs00118a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent glycoconjugates are discussed for their applications in biology in vitro, in cell assays and in animal models. Advantages and limitations are presented for each design using a fluorescent core conjugated with glycosides, or vice versa.
Collapse
Affiliation(s)
- Baptiste Thomas
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| |
Collapse
|
21
|
Tankasala D, Linnes JC. Noninvasive glucose detection in exhaled breath condensate. Transl Res 2019; 213:1-22. [PMID: 31194942 PMCID: PMC6783357 DOI: 10.1016/j.trsl.2019.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/02/2019] [Accepted: 05/26/2019] [Indexed: 01/04/2023]
Abstract
Two-thirds of patients with diabetes avoid regularly monitoring their blood glucose levels because of the painful and invasive nature of current blood glucose detection. As an alternative to blood sample collection, exhaled breath condensate (EBC) has emerged as a promising noninvasive sample from which to monitor glucose levels. However, this dilute sample matrix requires sensors capable of detecting glucose with high resolution at nanomolar and micromolar concentrations. Recent developments in EBC collection methods and highly sensitive glucose biosensors provide a path toward enabling robust and sensitive glucose detection in EBC. This review addresses current and emerging EBC collection and glucose sensing modalities capable of quantifying glucose in EBC samples. We highlight the opportunities and challenges for development and integration of EBC glucose detection systems that will enable clinically robust and accurate EBC glucose measurements for improved glycemic control.
Collapse
Affiliation(s)
- Divya Tankasala
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
22
|
Jiménez-López J, Rodrigues SSM, Ribeiro DSM, Ortega-Barrales P, Ruiz-Medina A, Santos JLM. Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:246-254. [PMID: 30641365 DOI: 10.1016/j.saa.2019.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
This work focused the implementation of FRET processes between CdTe quantum dots (QDs), acting as donors, and gold nanoparticles (AuNPs), behaving as acceptors, for the determination of several bioactive thiols such as captopril, glutathione, l-cysteine, thiomalic acid and coenzyme M. The surface chemistry of the QDs and AuNPs was adjusted with adequate capping ligands, i.e. mercaptopropionic acid and cysteamine, respectively, to guarantee the establishment of strong electrostatic interaction between them and promoting the formation of stable FRET assemblies. Under these circumstances the fluorescence emission of the QDs was completely suppressed by the AuNPs. The assayed target analytes were capable of disrupting the donor-acceptor assemblies yielding a concentration-related reversion of the FRET process and restoring QDs fluorescence emission. Distinct mechanisms, involving enhancing of the QDs quantum yield (QY), AuNPs agglomeration, nanoparticles detachment, etc., could be proposed to explain the referred FRET reversion. The developed approach assured good analytical working ranges and demonstrate adequate sensitivity for the assayed compounds, anticipating great prospective for implementing rapid, simple and reliable sensing methodologies for the monitoring of pharmaceutical, food and environmental species. However, selectivity could be a hindrance in the detection of these bioactive thiols in more complex matrices such as environmental and food samples. This problem could be circumvented through the employment of multivariate chemometric methods for the analysis and processing of whole fluorometric response. Moreover, the proposed methodology shows a great analytical versatility since it is possible to easily adapt the surface chemistry, of both QDs and AuNPs, to the chemical nature of the target analyte.
Collapse
Affiliation(s)
- J Jiménez-López
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus de las Lagunillas, E-23071 Jaén, Spain
| | - S S M Rodrigues
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of Porto University, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - D S M Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of Porto University, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Ortega-Barrales
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus de las Lagunillas, E-23071 Jaén, Spain
| | - A Ruiz-Medina
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus de las Lagunillas, E-23071 Jaén, Spain
| | - J L M Santos
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of Porto University, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Ahmadpour H, Hosseini SMM. A solid-phase luminescence sensor based on molecularly imprinted polymer-CdSeS/ZnS quantum dots for selective extraction and detection of sulfasalazine in biological samples. Talanta 2019; 194:534-541. [DOI: 10.1016/j.talanta.2018.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 01/31/2023]
|
24
|
Mello GPC, Simões EFC, Crista DMA, Leitão JMM, Pinto da Silva L, Esteves da Silva JCG. Glucose Sensing by Fluorescent Nanomaterials. Crit Rev Anal Chem 2019; 49:542-552. [DOI: 10.1080/10408347.2019.1565984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Guilherme P. C. Mello
- Chemistry Research Unit (CIQ-UP), Faculty of Sciences of University of Porto, Porto, Portugal
| | - Eliana F. C. Simões
- Chemistry Research Unit (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Polo das Ciências da Saúde, Coimbra, Portugal
| | - Diana M. A. Crista
- Chemistry Research Unit (CIQ-UP), Faculty of Sciences of University of Porto, Porto, Portugal
| | - João M. M. Leitão
- Chemistry Research Unit (CIQ-UP), Faculdade de Farmácia da Universidade de Coimbra, Polo das Ciências da Saúde, Coimbra, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQ-UP), Faculty of Sciences of University of Porto, Porto, Portugal
- LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto, Porto, Portugal
| | - Joaquim C. G. Esteves da Silva
- Chemistry Research Unit (CIQ-UP), Faculty of Sciences of University of Porto, Porto, Portugal
- LACOMEPHI, GreenUPorto, Faculty of Sciences of University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Optical Sensors Based on II-VI Quantum Dots. NANOMATERIALS 2019; 9:nano9020192. [PMID: 30717393 PMCID: PMC6410100 DOI: 10.3390/nano9020192] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Fundamentals of quantum dots (QDs) sensing phenomena show the predominance of these fluorophores over standard organic dyes, mainly because of their unique optical properties such as sharp and tunable emission spectra, high emission quantum yield and broad absorption. Moreover, they also indicate no photo bleaching and can be also grown as no blinking emitters. Due to these properties, QDs may be used e.g., for multiplex testing of the analyte by simultaneously detecting multiple or very weak signals. Physico-chemical mechanisms used for analyte detection, like analyte stimulated QDs aggregation, nonradiative Förster resonance energy transfer (FRET) exhibit a number of QDs, which can be applied in sensors. Quantum dots-based sensors find use in the detection of ions, organic compounds (e.g., proteins, sugars, volatile substances) as well as bacteria and viruses.
Collapse
|
26
|
Tang Z, Jiang K, Sun S, Qian S, Wang Y, Lin H. A conjugated carbon-dot–tyrosinase bioprobe for highly selective and sensitive detection of dopamine. Analyst 2019; 144:468-473. [DOI: 10.1039/c8an01659c] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A conjugated carbon-dot–tyrosinase bioprobe was first designed and applied for sensitive and selective dopamine detection in human serum.
Collapse
Affiliation(s)
- Zhongdi Tang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- P. R. China
| | - Kai Jiang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- P. R. China
| | - Shan Sun
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- P. R. China
| | - Sihua Qian
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- P. R. China
| | - Yuhui Wang
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- P. R. China
| | - Hengwei Lin
- Key Laboratory of Graphene Technologies and Applications of Zhejiang Province
- Ningbo Institute of Materials Technology & Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- P. R. China
| |
Collapse
|
27
|
Zhang W, Li X, Xu X, He Y, Qiu F, Pan J, Niu X. Pd nanoparticle-decorated graphitic C3N4 nanosheets with bifunctional peroxidase mimicking and ON–OFF fluorescence enable naked-eye and fluorescent dual-readout sensing of glucose. J Mater Chem B 2019; 7:233-239. [DOI: 10.1039/c8tb02110d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd nanoparticle-decorated graphitic C3N4 nanosheets with peroxidase mimicking and ON–OFF fluorescence for the naked-eye and fluorescent dual-readout detection of glucose.
Collapse
Affiliation(s)
- Wenchi Zhang
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xuechao Xu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yanfang He
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Fengxian Qiu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
28
|
Wang XY, Zhu GB, Cao WD, Liu ZJ, Pan CG, Hu WJ, Zhao WY, Sun JF. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H 2O 2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta 2018; 191:46-53. [PMID: 30262085 DOI: 10.1016/j.talanta.2018.08.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Abstract
In this work, a ratiometric fluorescent probe (RF-probe) for highly sensitive and selective detection of uric acid was reported for the first time toward H2O2 based on inner filter effect (IFE) between bimetallic gold/silver nanoclusters (Au/Ag NCs) and 2,3-diaminophenazine (DAP). For this RF-probe, uric acid was degraded to allantoin and H2O2. Upon the addition of HRP, o-phenylenediamine (OPD) could be catalytically oxidized to DAP in the presence of H2O2, then the fluorescence intensity corresponding to DAP at 580 nm increased dramatically with a fluorescence quenching of BSA-Au/Ag NCs at 690 nm, resulting in a RF-probe toward uric acid. This RF-probe allowed for the sensitive detection of uric acid in range of 5.0 × 10-6 M to 5.0 × 10-5 M with a detection limit (S/N = 3) as low as 5.1 × 10-6 M. At the same time, it has been successfully used for uric acid levels detection in human serum, and the results are consistent with those of the hospital. RF-probe built may provide a ratiometric fluorescence universal platform for detection of various species involving in the production of H2O2 in other biological systems.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gang-Bing Zhu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wu-di Cao
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen-Jiang Liu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chang-Gang Pan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen-Jie Hu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wan-Ying Zhao
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian-Fan Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
29
|
Peveler WJ, Algar WR. More Than a Light Switch: Engineering Unconventional Fluorescent Configurations for Biological Sensing. ACS Chem Biol 2018; 13:1752-1766. [PMID: 29461796 DOI: 10.1021/acschembio.7b01022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence is a powerful and sensitive tool in biological detection, used widely for cellular imaging and in vitro molecular diagnostics. Over time, three prominent conventions have emerged in the design of fluorescent biosensors: a sensor is ideally specific for its target, only one fluorescence signal turns on or off in response to the target, and each target requires its own sensor and signal combination. These are conventions but not requirements, and sensors that break with one or more of these conventions can offer new capabilities and advantages. Here, we review "unconventional" fluorescent sensor configurations based on fluorescent dyes, proteins, and nanomaterials such as quantum dots and metal nanoclusters. These configurations include multifluorophore Förster resonance energy transfer (FRET) networks, temporal multiplexing, photonic logic, and cross-reactive arrays or "noses". The more complex but carefully engineered biorecognition and fluorescence signaling modalities in unconventional designs are richer in information, afford greater multiplexing capacity, and are potentially better suited to the analysis of complex biological samples, interactions, processes, and diseases. We conclude with a short perspective on the future of unconventional fluorescent sensors and encourage researchers to imagine sensing beyond the metaphorical light bulb and light switch combination.
Collapse
Affiliation(s)
- William J. Peveler
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - W. Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
30
|
Chen L, Hwang E, Zhang J. Fluorescent Nanobiosensors for Sensing Glucose. SENSORS 2018; 18:s18051440. [PMID: 29734744 PMCID: PMC5982147 DOI: 10.3390/s18051440] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Glucose sensing in diabetes diagnosis and therapy is of great importance due to the prevalence of diabetes in the world. Furthermore, glucose sensing is also critical in the food and drug industries. Sensing glucose has been accomplished through various strategies, such as electrochemical or optical methods. Novel transducers made with nanomaterials that integrate fluorescent techniques have allowed for the development of advanced glucose sensors with superior sensitivity and convenience. In this review, glucose sensing by fluorescent nanobiosensor systems is discussed. Firstly, typical fluorescence emitting/interacting nanomaterials utilized in various glucose assays are discussed. Secondly, strategies for integrating fluorescent nanomaterials and biological sensing elements are reviewed and discussed. In summary, this review highlights the applicability of fluorescent nanomaterials, which makes them ideal for glucose sensing. Insight on the future direction of fluorescent nanobiosensor systems is also provided.
Collapse
Affiliation(s)
- Longyi Chen
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada.
| | - Eugene Hwang
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada.
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada.
- Biomedical Engineering Graduate Program, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada.
| |
Collapse
|
31
|
Zhang Z, Qi X, Chai J, Wu P, Lv X, Cheng S, Li X. Detection of glycan-binding proteins using glycan-functionalized quantum dots and gold nanoparticles. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1451875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zhenxing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, China
| | - Xiaoxiao Qi
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Jinfeng Chai
- School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road, Changchun, China
| | - Peixing Wu
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Huairou District, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
32
|
Zarzycki PK. Screening of macrocycles retention for microplanar analytical devices involving host-guest interactions and silica or octadecylsilica adsorbents. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1448687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Paweł K. Zarzycki
- Department of Environmental Technologies and Bioanalytics, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Koszalin, Poland
| |
Collapse
|
33
|
Rodzik-Czałka Ł, Lewandowska-Łańcucka J, Gatta V, Venditti I, Fratoddi I, Szuwarzyński M, Romek M, Nowakowska M. Nucleobases functionalized quantum dots and gold nanoparticles bioconjugates as a fluorescence resonance energy transfer (FRET) system – Synthesis, characterization and potential applications. J Colloid Interface Sci 2018; 514:479-490. [DOI: 10.1016/j.jcis.2017.12.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/03/2023]
|
34
|
Zhou JW, Zou XM, Song SH, Chen GH. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1307-1319. [PMID: 29378133 DOI: 10.1021/acs.jafc.7b05119] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The pesticide and veterinary drug residues brought by large-scale agricultural production have become one of the issues in the fields of food safety and environmental ecological security. It is necessary to develop the rapid, sensitive, qualitative and quantitative methodology for the detection of pesticide and veterinary drug residues. As one of the achievements of nanoscience, quantum dots (QDs) have been widely used in the detection of pesticide and veterinary drug residues. In these methodology studies, the used QD-signal styles include fluorescence, chemiluminescence, electrochemical luminescence, photoelectrochemistry, etc. QDs can also be assembled into sensors with different materials, such as QD-enzyme, QD-antibody, QD-aptamer, and QD-molecularly imprinted polymer sensors, etc. Plenty of study achievements in the field of detection of pesticide and veterinary drug residues have been obtained from the different combinations among these signals and sensors. They are summarized in this paper to provide a reference for the QD application in the detection of pesticide and veterinary drug residues.
Collapse
Affiliation(s)
- Jia-Wei Zhou
- College of Food and Bioengineering, Jiangsu University , Zhenjiang 212013, China
| | - Xue-Mei Zou
- College of Food and Bioengineering, Jiangsu University , Zhenjiang 212013, China
| | - Shang-Hong Song
- College of Food and Bioengineering, Jiangsu University , Zhenjiang 212013, China
| | - Guan-Hua Chen
- College of Food and Bioengineering, Jiangsu University , Zhenjiang 212013, China
| |
Collapse
|
35
|
Uehara N, Sonoda N, Haneishi C. Specific turn-on near infrared fluorescence from non-fluorescent gold nanoclusters bearing sulfhydryl oligopeptides. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Amiri S, Ahmadi R, Salimi A, Navaee A, Hamd Qaddare S, Amini MK. Ultrasensitive and highly selective FRET aptasensor for Hg2+ measurement in fish samples using carbon dots/AuNPs as donor/acceptor platform. NEW J CHEM 2018. [DOI: 10.1039/c8nj02781a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy was proposed for the determination of Hg2+ in water, foods, and living organisms based on the quenching and recovery of the fluorescence of CDs-ssDNA through the FRET process induced by AuNPs-cDNA. The results showed a wide response range, pM detection limit, and high selectivity.
Collapse
Affiliation(s)
- Shole Amiri
- Research Center for Nanotechnology
- University of Kurdistan
- Sanandaj
- Iran
| | - Rezgar Ahmadi
- Research Center for Nanotechnology
- University of Kurdistan
- Sanandaj
- Iran
| | - Abdollah Salimi
- Research Center for Nanotechnology
- University of Kurdistan
- Sanandaj
- Iran
- Department of Chemistry
| | - Aso Navaee
- Department of Chemistry
- University of Kurdistan
- Sanandaj 66177-15175
- Iran
| | | | | |
Collapse
|
37
|
Wannapob R, Vagin MY, Liu Y, Thavarungkul P, Kanatharana P, Turner APF, Mak WC. Printable Heterostructured Bioelectronic Interfaces with Enhanced Electrode Reaction Kinetics by Intermicroparticle Network. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33368-33376. [PMID: 28846378 DOI: 10.1021/acsami.7b12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Printable organic bioelectronics provide a fast and cost-effective approach for the fabrication of novel biodevices, while the general challenge is to achieve optimized reaction kinetics at multiphase boundaries between biomolecules and electrodes. Here, we present an entirely new concept based on a modular approach for the construction of heterostructured bioelectronic interfaces by using tailored functional "biological microparticles" combined with "transducer microparticles" as modular building blocks. This approach offers high versatility for the design and fabrication of bioelectrodes with a variety of forms of interparticle spatial organization, from layered-structures to more advance bulk heterostructured architectures. The heterostructured biocatalytic electrodes delivered twice the reaction rate and a six-fold increase in the effective diffusion kinetics in response to a catalytic model using glucose as the substrate, together with the advantage of shortened diffusion paths for reactants between multiple interparticle junctions and large active particle surface. The consequent benefits of this improved performance combined with the simple means of mass production are of major significance for the emerging printed electronics industry.
Collapse
Affiliation(s)
- Rodtichoti Wannapob
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | - Mikhail Yu Vagin
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 602 21 Norrköping, Sweden
| | - Yu Liu
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
- College of Life and Science, Sichuan Agricultural University , Yaan 625014, People's Republic of China
| | | | | | - Anthony P F Turner
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| |
Collapse
|
38
|
Miao Y, Lv J, Yan G. Hybrid detection of target sequence DNA based on phosphorescence resonance energy transfer. Biosens Bioelectron 2017; 94:263-270. [DOI: 10.1016/j.bios.2017.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/26/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022]
|
39
|
Liu H, Li M, Jiang L, Shen F, Hu Y, Ren X. Sensitive arginine sensing based on inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:105-113. [PMID: 27599195 DOI: 10.1016/j.saa.2016.08.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Arginine plays an important role in many biological functions, whose detection is very significant. Herein, a sensitive, simple and cost-effective fluorescent method for the detection of arginine has been developed based on the inner filter effect (IFE) of citrate-stabilized gold nanoparticles (AuNPs) on the fluorescence of thioglycolic acid-capped CdTe quantum dots (QDs). When citrate-stabilized AuNPs were mixed with thioglycolic acid-capped CdTe QDs, the fluorescence of CdTe QDs was significantly quenched by AuNPs via the IFE. With the presence of arginine, arginine could induce the aggregation and corresponding absorption spectra change of AuNPs, which then IFE-decreased fluorescence could gradually recover with increasing amounts of arginine, achieving fluorescence "turn on" sensing for arginine. The detection mechanism is clearly illustrated and various experimental conditions were also optimized. Under the optimum conditions, a decent linear relationship was obtained in the range from 16 to 121μgL-1 and the limit of detection was 5.6μgL-1. And satisfactory results were achieved in arginine analysis using arginine injection, compound amino acid injection, even blood plasma as samples. Therefore, the present assay showed various merits, such as simplicity, low cost, high sensitivity and selectivity, making it promising for sensing arginine in biological samples.
Collapse
Affiliation(s)
- Haijian Liu
- Department of Environmental Science and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ming Li
- Department of Environmental Science and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Linye Jiang
- Department of Environmental Science and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Shen
- Agro-Environmental Protection Institute, the Ministry of Agriculture, Tianjin 300191, China
| | - Yufeng Hu
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China.
| | - Xueqin Ren
- Department of Environmental Science and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Shen X, Xu L, Zhu W, Li B, Hong J, Zhou X. A turn-on fluorescence aptasensor based on carbon dots for sensitive detection of adenosine. NEW J CHEM 2017. [DOI: 10.1039/c7nj02384g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel turn-on fluorescence aptasensor was designed for adenosine detection based on FRET from ssDNA-CDs to aptamer-AuNPs.
Collapse
Affiliation(s)
- Xin Shen
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Lei Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Wanying Zhu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Bingzhi Li
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Junli Hong
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Xuemin Zhou
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| |
Collapse
|
41
|
Huang PH, Hong CP, Zhu JF, Chen TT, Chan CT, Ko YC, Lin TL, Pan ZB, Sun NK, Wang YC, Luo JJ, Lin TC, Kang CC, Shyue JJ, Ho ML. Ag@Au nanoprism-metal organic framework-based paper for extending the glucose sensing range in human serum and urine. Dalton Trans 2017; 46:6985-6993. [DOI: 10.1039/c7dt00875a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ag@Au nanoprism-MOFs-based paper for enhancing the glucose sensing range in human serum and in urine.
Collapse
|
42
|
Gontero D, Lessard-Viger M, Brouard D, Bracamonte AG, Boudreau D, Veglia AV. Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry. Microchem J 2017. [DOI: 10.1016/j.microc.2016.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Ma H, Liu X, Wang X, Li X, Yang C, Iqbal A, Liu W, Li J, Qin W. Sensitive fluorescent light-up probe for enzymatic determination of glucose using carbon dots modified with MnO2 nanosheets. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2004-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
45
|
Zeng HH, Qiu WB, Zhang L, Liang RP, Qiu JD. Lanthanide Coordination Polymer Nanoparticles as an Excellent Artificial Peroxidase for Hydrogen Peroxide Detection. Anal Chem 2016; 88:6342-8. [PMID: 27220993 DOI: 10.1021/acs.analchem.6b00630] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lanthanide coordination polymer nanoparticles (Ln-CPNs) have been recently demonstrated as excellent platforms for biomolecule detection. In this work, we synthesized novel cerium coordination polymer nanoparticles ATP-Ce-Tris CPNs in a simple and quick way using ATP molecules as the biocompatible ligands to Ce(3+) ions in tris(hydroxymethyl)aminomethane hydrochloric (Tris-HCl) solution. In view of the excellent free radical scavenging property of cerium compounds, which is ascribed to the mixed valence state (Ce(3+), Ce(4+)) and the reversible switch from Ce(3+) to Ce(4+), the synthesized ATP-Ce-Tris CPNs was used as artificial peroxidase to selectively and sensitively detect H2O2. The sensing mechanism depends on the oxidation of the fluorescent ATP-Ce(III)-Tris CPNs to nonfluorescent ATP-Ce(IV)-Tris CPNs by H2O2. Compared with those inorganic cerium oxide sensors, this kind of fluoresence ATP-Ce-Tris CPNs sensor needs no additional organic redox dye, such as ABTS (2,20-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), TMB (3,3,5,5-tetramethylbenzidine), or fluorescein as signal molecules. Moreover, such ATP-Ce-Tris CPNs sensor exhibited a more sensitive response to H2O2 with a detection limit down to 0.6 nM, which is 2 orders of magnitude lower than those of cerium oxide sensors. This sensing platform was further extended to the detection of glucose in combination with the specific catalytic effect of glucose oxidase (GOx) for the oxidation of glucose and formation of H2O2.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Department of Chemistry, Nanchang University , Nanchang 330031, China.,Department of Materials and Chemical Engineering, Pingxiang University , Pingxiang 337055, China
| | - Wei-Bin Qiu
- Department of Chemistry, Nanchang University , Nanchang 330031, China
| | - Li Zhang
- Department of Chemistry, Nanchang University , Nanchang 330031, China
| | - Ru-Ping Liang
- Department of Chemistry, Nanchang University , Nanchang 330031, China
| | - Jian-Ding Qiu
- Department of Chemistry, Nanchang University , Nanchang 330031, China.,Department of Materials and Chemical Engineering, Pingxiang University , Pingxiang 337055, China
| |
Collapse
|
46
|
Xie Y, An J, Shi P, Ye N. Determination of Lysozyme by Graphene Oxide–Polyethylene Glycol-Based Fluorescence Resonance Energy Transfer. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1172232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Highly Sensitive Homogeneous Immunoassays Based on Construction of Silver Triangular Nanoplates-Quantum Dots FRET System. Sci Rep 2016; 6:26534. [PMID: 27198713 PMCID: PMC4873782 DOI: 10.1038/srep26534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/03/2016] [Indexed: 01/09/2023] Open
Abstract
With growing concerns about health issues worldwide, elegant sensors with high sensitivity and specificity for virus/antigens (Ag) detection are urgent to be developed. Homogeneous immunoassays (HIA) are an important technique with the advantages of small sample volumes requirement and pretreatment-free process. HIA are becoming more favorable for the medical diagnosis and disease surveillance than heterogeneous immunoassays. An important subset of HIA relies on the effect of fluorescence resonance energy transfer (FRET) via a donor-acceptor (D-A) platform, e.g., quantum dots (QDs) donor based FRET system. Being an excellent plasmonic material, silver triangular nanoplates (STNPs) have unique advantages in displaying surface plasmon resonance in the visible to near infrared spectral region, which make them a better acceptor for pairing with QDs in a FRET-based sensing system. However, the reported STNPs generally exhibited broad size distributions, which would greatly restrict their application as HIA acceptor for high detection sensitivity and specificity purpose. In this work, uniform STNPs and red-emitting QDs are firstly applied to construct FRET nanoplatform in the advanced HIA and further be exploited for analyzing virus Ag. The uniform STNPs/QDs nanoplatform based medical sensor provides a straightforward and highly sensitive method for Ag analysis in homogeneous form.
Collapse
|
48
|
Near-infrared fluorescence nanoprobe for enzyme-substrate system sensing and in vitro imaging. Biosens Bioelectron 2016; 79:922-9. [DOI: 10.1016/j.bios.2016.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/21/2015] [Accepted: 01/02/2016] [Indexed: 11/21/2022]
|
49
|
Rawat KA, Singhal RK, Kailasa SK. Colorimetric and fluorescence “turn-on” methods for the sensitive detection of bromelain using carbon dots functionalized gold nanoparticles as a dual probe. RSC Adv 2016. [DOI: 10.1039/c6ra01575a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbon dots were functionalized on the surfaces of gold nanoparticles for the colorimetric and fluorescence detection of bromelain. The limit of detection for bromelain was 18.9 nM and 0.52 nM using UV-visible and fluorescence spectroscopy, respectively.
Collapse
Affiliation(s)
- Karuna A. Rawat
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat – 395007
- India
| | | | - Suresh Kumar Kailasa
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat – 395007
- India
| |
Collapse
|
50
|
Tripathi KM, Bhati A, Singh A, Gupta NR, Verma S, Sarkar S, Sonkar SK. From the traditional way of pyrolysis to tunable photoluminescent water soluble carbon nano-onions for cell imaging and selective sensing of glucose. RSC Adv 2016. [DOI: 10.1039/c6ra04030f] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Water soluble photoluminescent carbon nano-onions were synthesized from vegetable ghee using traditional pyrolytic approach for imaging cells and selective-immediate detection of glucose via fluorescent “turn-off”/“turn-on” technique.
Collapse
Affiliation(s)
| | - Anshu Bhati
- Department of Chemistry
- Malaviya National Institute of Technology
- Jaipur-302017
- India
| | - Anupriya Singh
- Department of Chemistry
- Malaviya National Institute of Technology
- Jaipur-302017
- India
| | | | - Sankalp Verma
- Department of Materials Science & Engineering
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Sabyasachi Sarkar
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Sumit Kumar Sonkar
- Department of Chemistry
- Malaviya National Institute of Technology
- Jaipur-302017
- India
| |
Collapse
|