1
|
Mitra A, Ghosh S, Paliwal KS, Ghosh S, Tudu G, Chandrasekar A, Mahalingam V. Alumina-Based Bifunctional Catalyst for Efficient CO 2 Fixation into Epoxides at Atmospheric Pressure. Inorg Chem 2022; 61:16356-16369. [PMID: 36194766 DOI: 10.1021/acs.inorgchem.2c02363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quest toward sustainability and decarbonization demands the development of methods for efficient carbon dioxide capture and utilization. The nonreductive CO2 fixation into epoxides to prepare cyclic carbonates has gained attention in recent years. In this work, we report the development of guanidine hydrochloride-functionalized γ alumina (γ-Al2O3), prepared using green solvents, as an efficient bifunctional catalyst for CO2 fixation. The resulting guanidine-grafted γ-Al2O3 (Al-Gh) proved to be an excellent catalyst to prepare cyclic carbonates from epoxides and CO2 with high selectivity. The nitrogen-rich Al-Gh shows increased CO2 adsorption capacity compared to that of γ-Al2O3. The as-prepared catalyst was able to carry out CO2 fixation at 85 °C under atmospheric pressure in the absence of solvents and external additives (e.g., TBAI or KI). The material showed negligible loss of catalytic activity even after five cycles of catalysis. The catalyst successfully converted many epoxides into their respective cyclic carbonates under the optimized conditions. The gram-scale synthesis of commercially important styrene carbonates from styrene oxide and CO2 using Al-Gh was also achieved. Density functional theory (DFT) calculations revealed the role of alumina in activating the epoxide. This activation facilitated the chloride ion to open the ring to react with CO2. The DFT studies also validated the role of alumina in stabilizing the electron-rich intermediates during the course of the reaction.
Collapse
Affiliation(s)
- Antarip Mitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Khushboo S Paliwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Suptish Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Aditi Chandrasekar
- School of Arts and Sciences, Azim Premji University, Bangalore 562125, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
2
|
Chen Y, Chen C, Li X, Feng N, Wang L, Wan H, Guan G. Hydroxyl-ionic liquid functionalized metalloporphyrin as an efficient heterogeneous catalyst for cooperative cycloaddition of CO2 with epoxides. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
3
|
Zhang J, Li P, Yang Y, Ai W, Liu Y, Zhang W. Polyacrylonitrile fiber‐based heterogeneous catalysts for organic transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202201247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Juntao Zhang
- School of Material and Chemical Engineering Centre for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Pengyu Li
- School of Material and Chemical Engineering Centre for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Yu Yang
- School of Material and Chemical Engineering Centre for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Wenying Ai
- School of Material and Chemical Engineering Centre for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Yuanyuan Liu
- School of Computer Science Zhongyuan University of Technology Zhengzhou 450007 PR China
| | - Wenqin Zhang
- School of Sciences Tianjin University Tianjin 300072 PR China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin Tianjin 300072 PR China
| |
Collapse
|
4
|
Razaghi M, Khorasani M. Boosting the quaternary ammonium halides catalyzed CO2 coupling with epoxides on the hollow mesoporous silica sphere. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Yang C, Chen Y, Wang X, Sun J. Polymeric ionic liquid with carboxyl anchored on mesoporous silica for efficient fixation of carbon dioxide. J Colloid Interface Sci 2022; 618:44-55. [PMID: 35325699 DOI: 10.1016/j.jcis.2022.03.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 01/19/2023]
Abstract
The utilization of carbon dioxide (CO2) has drawn much attention because of the increasing serious environmental problems. In order to promote the cycloaddition reaction of CO2 to epoxides, a new synthesis strategy for friendly nonmetal catalyst to combine polymeric ionic liquid (PIL) with mesoporous silica (mSiO2) was proposed. By thorough characterizations, those catalysts (mSiO2-PIL-n, n = 1, 2, 3, 4) were verified that PIL with multiply catalytic active sites such as carboxyl group, imidazole ring and Br-, was mainly anchored in mesoporous SiO2 structures. Therefore, mSiO2-PIL-n exhibited excellent catalytic activity for CO2 cycloaddition reaction to epoxides under solventless and cocatalyst-free conditions. Typically, the appropriate PIL loading and specific surface area guaranteed mSiO2-PIL-2 could efficiently catalyze the cycloaddition reaction with 96% yield and 99% selectivity to the target product of propylene carbonate under the conditions of 120 °C, 2 MPa and 6 h. Additionally, the mSiO2-PIL-2 catalyst showed superior recyclability and there was no catalytic activity decrease for 10 runs of recycling due to the tightly anchored PIL on mesoporous SiO2 by copolymerization. And the catalytic activity to other substituted epoxides over mSiO2-PIL-2 was also expanded. Therefore, PIL anchored on mesoporous SiO2 by copolymerization could be a promising synthetic strategy for the efficient catalyst to combine multiple active components in a single catalyst, meanwhile, mSiO2-PIL-n exhibited an appealing catalyst candidate for the effective fixation and utilization of CO2.
Collapse
Affiliation(s)
- Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
6
|
Perez-Sena WY, Eränen K, Kumar N, Estel L, Leveneur S, Salmi T. New insights into the cocatalyst-free carbonation of vegetable oil derivatives using heterogeneous catalysts. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Nasirov F, Nasirli E, Ibrahimova M. Cyclic carbonates synthesis by cycloaddition reaction of CO2 with epoxides in the presence of zinc-containing and ionic liquid catalysts. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02330-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Milocco F, Chiarioni G, Pescarmona PP. Heterogeneous catalysts for the conversion of CO2 into cyclic and polymeric carbonates. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Khorasani M, Karimi B, Vali H. Coupling of CO2 with Epoxides by Bifunctional Periodic Mesoporous Organosilica with Ionic Liquid Frameworks under Solvent, Additive and Metal-Free Conditions. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite huge catalytic systems which have already been introduced to the direct coupling of CO2 with the epoxide to obtain the corresponding cyclic carbonate, the design of new systems which...
Collapse
|
10
|
Sarkar S, Ghosh S, Islam SM. Zn(II)-Functionalized COF as a Recyclable Catalyst for the Sustainable Synthesis of Cyclic Carbonates and Cyclic Carbamates from Atmospheric CO2. Org Biomol Chem 2022; 20:1707-1722. [DOI: 10.1039/d1ob01938d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple covalent organic framework (COF) bearing β-ketoenamine units as a potential heterogeneous ligand for ZnII-catalyzed fixation and transformation of CO2 into value-added chemicals is reported. Catalytic investigations convincingly demonstrated...
Collapse
|
11
|
Singh G, Nagaraja C. Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using functionalized porous covalent organic frameworks. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Debnath MK, Oyama W, Ono Y, Sugimoto T, Watanabe R, Haraguchi N. Synthesis of polymer microsphere‐supported chiral pyrrolidine catalysts by precipitation polymerization and their application to asymmetric Michael addition reactions. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mithun Kumar Debnath
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Wako Oyama
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Yuya Ono
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Takuya Sugimoto
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Rina Watanabe
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| | - Naoki Haraguchi
- Department of Applied Chemistry and Life Science, Graduate School of Engineering Toyohashi University of Technology Toyohashi Japan
| |
Collapse
|
13
|
Yin K, Hua L, Qu L, Yao Q, Wang Y, Yuan D, You H, Yao Y. Heterobimetallic rare earth metal-zinc catalysts for reactions of epoxides and CO 2 under ambient conditions. Dalton Trans 2021; 50:1453-1464. [PMID: 33439163 DOI: 10.1039/d0dt03772a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four homodinuclear rare earth metal (RE) complexes 1-4 bearing a multidentate diglycolamine-bridged bis(phenolate) ligand were synthesized. In addition, seven heterobimetallic RE-Zn complexes 5-11 were prepared through a one-pot strategy. In these heterobimetallic complexes, two RE centers are bridged by either Zn(OAc)2 or Zn(OBn)2 moieties. All complexes were characterized by single crystal X-ray diffraction, elemental analysis, IR spectroscopy, and multinuclear NMR spectroscopy (in the case of diamagnetic complexes 1, 4, 7 and 11). Moreover, the multi-nuclear structures of complexes 4 and 11 in solution were also studied by 1H DOSY spectroscopy. These complexes were applied in catalyzing the coupling reaction of carbon dioxide (CO2) with epoxides. Zn(OAc)2- and Zn(OBn)2-bridged heterobimetallic complexes showed comparable catalytic activities under ambient conditions and were more active than monometallic RE complexes. Significant synergistic effect in heterobimetallic complexes is observed. Mono-substituted epoxides were converted into cyclic carbonates under 1 atm CO2 at 25 °C in 88-96% yields, whereas di-substituted epoxides reacted under 1 atm CO2 at higher temperatures in 40-80% yields.
Collapse
Affiliation(s)
- Kuan Yin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China.
| | - Linyan Hua
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China.
| | - Liye Qu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China.
| | - Quanyou Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China.
| | - Yaorong Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China.
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China.
| | - Hongpeng You
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China. and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
14
|
Vagnoni M, Samorì C, Galletti P. Choline-based eutectic mixtures as catalysts for effective synthesis of cyclic carbonates from epoxides and CO2. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Rodrigues DM, dos Santos LM, Bernard FL, Pinto IS, Zampiva R, Kaufmann G, Einloft S. Imidazolium-based ionic liquid silica xerogel as catalyst to transform CO2 into cyclic carbonate. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Hao Y, Yuan D, Yao Y. Metal‐Free Cycloaddition of Epoxides and Carbon Dioxide Catalyzed by Triazole‐Bridged Bisphenol. ChemCatChem 2020. [DOI: 10.1002/cctc.202000508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanhong Hao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Dan Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
17
|
Li P, Liu Y, Mi L, Shi XL, Duan P, Cao J, Zhang W. Bifunctionalized polyacrylonitrile fibers as highly efficient and selective heterogeneous catalysts for cycloaddition of CO2 with epichlorohydrin under mild conditions. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Dong T, Zheng YJ, Yang GW, Zhang YY, Li B, Wu GP. Crosslinked Resin-Supported Bifunctional Organocatalyst for Conversion of CO 2 into Cyclic Carbonates. CHEMSUSCHEM 2020; 13:4121-4127. [PMID: 32662576 DOI: 10.1002/cssc.202001117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The development of solvent-free, metal-free, recyclable organic catalysts is required for the current chemical fixation of carbon dioxide converted into cyclic carbonates. With the goal of reducing the cost, time, and energy consumption for the coupling reaction of CO2 and epoxides, a series of highly active heterogeneous catalysts, based on a thiourea and quaternary ammonium salt system, are synthesized by using a thiol-ene click reaction under ultraviolet light. Benefitting from synergistic interactions of the electrophilic center (thiourea) and the nucleophilic site (ammonium bromide), the catalysts exhibit excellent catalytic selectivity (99 %) for the cycloaddition of carbon dioxide with a diverse range of epoxides under mild conditions (1.2 MPa, 100 °C). Moreover, the catalyst can be easily recycled by facile filtration and reused for 5 times without noticeable loss of activity and selectivity. This work provides a potential heterogeneous catalyst for the conversion of carbon dioxide into high value-added chemicals with the combined advantages of low cost, easy recovery, and satisfactory catalytic properties.
Collapse
Affiliation(s)
- Tongfeng Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yu-Jia Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Bo Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
19
|
Kuznetsova SA, Gak AS, Nelyubina YV, Larionov VA, Li H, North M, Zhereb VP, Smol'yakov AF, Dmitrienko AO, Medvedev MG, Gerasimov IS, Saghyan AS, Belokon YN. The charge-assisted hydrogen-bonded organic framework (CAHOF) self-assembled from the conjugated acid of tetrakis(4-aminophenyl)methane and 2,6-naphthalenedisulfonate as a new class of recyclable Brønsted acid catalysts. Beilstein J Org Chem 2020; 16:1124-1134. [PMID: 32550927 PMCID: PMC7277948 DOI: 10.3762/bjoc.16.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022] Open
Abstract
The acid-base neutralization reaction of commercially available disodium 2,6-naphthalenedisulfonate (NDS, 2 equivalents) and the tetrahydrochloride salt of tetrakis(4-aminophenyl)methane (TAPM, 1 equivalent) in water gave a novel three-dimensional charge-assisted hydrogen-bonded framework (CAHOF, F-1). The framework F-1 was characterized by X-ray diffraction, TGA, elemental analysis, and 1H NMR spectroscopy. The framework was supported by hydrogen bonds between the sulfonate anions and the ammonium cations of NDS and protonated TAPM moieties, respectively. The CAHOF material functioned as a new type of catalytically active Brønsted acid in a series of reactions, including the ring opening of epoxides by water and alcohols. A Diels-Alder reaction between cyclopentadiene and methyl vinyl ketone was also catalyzed by F-1 in heptane. Depending on the polarity of the solvent mixture, the CAHOF F-1 could function as a purely heterogeneous catalyst or partly dissociate, providing some dissolved F-1 as the real catalyst. In all cases, the catalyst could easily be recovered and recycled.
Collapse
Affiliation(s)
- Svetlana A Kuznetsova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation
| | - Alexander S Gak
- Moscow State University, Faculty of Material Science, Leninskie Gory 1/73, 119991 Moscow, Russian Federation
| | - Yulia V Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation
| | - Vladimir A Larionov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation.,Department of Inorganic Chemistry, People's Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russian Federation
| | - Han Li
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, YO10 5DD, United Kingdom
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, YO10 5DD, United Kingdom
| | - Vladimir P Zhereb
- Siberian Federal University, School of Non-Ferrous Metals and Material Science, 95 Krasnoyarskiy Rabochiy pr., 660025 Krasnoyarsk, Russian Federation
| | - Alexander F Smol'yakov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation
| | - Artem O Dmitrienko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation
| | - Michael G Medvedev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation.,N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Igor S Gerasimov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation.,N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect, 47, 119991 Moscow, Russian Federation
| | - Ashot S Saghyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str, Yerevan 0025, Armenia
| | - Yuri N Belokon
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation
| |
Collapse
|
20
|
Hu Y, Peglow S, Longwitz L, Frank M, Epping JD, Brüser V, Werner T. Plasma-Assisted Immobilization of a Phosphonium Salt and Its Use as a Catalyst in the Valorization of CO 2. CHEMSUSCHEM 2020; 13:1825-1833. [PMID: 31999074 PMCID: PMC7186948 DOI: 10.1002/cssc.201903384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The first plasma-assisted immobilization of an organocatalyst, namely a bifunctional phosphonium salt in an amorphous hydrogenated carbon coating, is reported. This method makes the requirement for prefunctionalized supports redundant. The immobilized catalyst was characterized by solid-state 13 C and 31 P NMR spectroscopy, SEM, and energy-dispersive X-ray spectroscopy. The immobilized catalyst (1 mol %) was employed in the synthesis of cyclic carbonates from epoxides and CO2 . Notably, the efficiency of the plasma-treated catalyst on SiO2 was higher than those of the SiO2 support impregnated with the catalyst and even the homogeneous counterpart. After optimization of the reaction conditions, 13 terminal and four internal epoxides were converted with CO2 to the respective cyclic carbonates in yields of up to 99 %. Furthermore, the possibility to recycle the immobilized catalyst was evaluated. Even though the catalyst could be reused, the yields gradually decreased from the third run. However, this is the first example of the recycling of a plasma-immobilized catalyst, which opens new possibilities in the recovery and reuse of catalysts.
Collapse
Affiliation(s)
- Yuya Hu
- Leibniz-Institute for Catalysis at the University of RostockAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Sandra Peglow
- Leibniz-Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Strasse 217489GreifswaldGermany
| | - Lars Longwitz
- Leibniz-Institute for Catalysis at the University of RostockAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Marcus Frank
- Medical Biology and Electron Microscopy CenterUniversity Medicine RostockStremelstrasse 1418057RostockGermany
- Department Life, Light & MatterUniversity of RostockAlbert-Einstein-Strasse 2518059RostockGermany
| | - Jan Dirk Epping
- Institute of ChemistryTechnical University of BerlinStrasse des 17 Juni 13510623BerlinGermany
| | - Volker Brüser
- Leibniz-Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Strasse 217489GreifswaldGermany
| | - Thomas Werner
- Leibniz-Institute for Catalysis at the University of RostockAlbert-Einstein-Strasse 29a18059RostockGermany
| |
Collapse
|
21
|
Grollier K, Vu ND, Onida K, Akhdar A, Norsic S, D'Agosto F, Boisson C, Duguet N. A Thermomorphic Polyethylene‐Supported Imidazolium Salt for the Fixation of CO
2
into Cyclic Carbonates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin Grollier
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Nam Duc Vu
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Killian Onida
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Ayman Akhdar
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Sébastien Norsic
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Franck D'Agosto
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Christophe Boisson
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Nicolas Duguet
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| |
Collapse
|
22
|
Navarro M, Sánchez-Barba LF, Garcés A, Fernández-Baeza J, Fernández I, Lara-Sánchez A, Rodríguez AM. Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00593b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The binuclear aluminum complexes [AlR2(κ2-NN′;κ2-NN′)AlR2] with TBAB/PPNCl behave as excellent systems for cyclic carbonate formation from CO2 with challenging epoxides.
Collapse
Affiliation(s)
- Marta Navarro
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Luis F. Sánchez-Barba
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Andrés Garcés
- Departamento de Biología y Geología
- Física y Química Inorgánica
- Universidad Rey Juan Carlos
- Móstoles
- Spain
| | - Juan Fernández-Baeza
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- Madrid
- Spain
| | - Agustín Lara-Sánchez
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| | - Ana M. Rodríguez
- Departamento de Química Inorgánica
- Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Castilla-La Mancha
- Ciudad Real
- Spain
| |
Collapse
|
23
|
Lagarde F, Srour H, Berthet N, Oueslati N, Bousquet B, Nunes A, Martinez A, Dufaud V. Investigating the role of SBA-15 silica on the activity of quaternary ammonium halides in the coupling of epoxides and CO2. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Subramanian S, Oppenheim J, Kim D, Nguyen TS, Silo WM, Kim B, Goddard WA, Yavuz CT. Catalytic Non-redox Carbon Dioxide Fixation in Cyclic Carbonates. Chem 2019. [DOI: 10.1016/j.chempr.2019.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Toda Y, Komiyama Y, Esaki H, Fukushima K, Suga H. Methoxy Groups Increase Reactivity of Bifunctional Tetraarylphosphonium Salt Catalysts for Carbon Dioxide Fixation: A Mechanistic Study. J Org Chem 2019; 84:15578-15589. [DOI: 10.1021/acs.joc.9b02581] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Yutaka Komiyama
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hiroyoshi Esaki
- Department of Chemistry, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuaki Fukushima
- Department of Chemistry, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
26
|
Chen S, Pudukudy M, Yue Z, Zhang H, Zhi Y, Ni Y, Shan S, Jia Q. Nonmetal Schiff-Base Complex-Anchored Cellulose as a Novel and Reusable Catalyst for the Solvent-Free Ring-Opening Addition of CO2 with Epoxides. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03331] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyu Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Manoj Pudukudy
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhongxiao Yue
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Heng Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yonghao Ni
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qingming Jia
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
27
|
Alassmy YA, Pescarmona PP. The Role of Water Revisited and Enhanced: A Sustainable Catalytic System for the Conversion of CO 2 into Cyclic Carbonates under Mild Conditions. CHEMSUSCHEM 2019; 12:3856-3863. [PMID: 31259474 DOI: 10.1002/cssc.201901124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Indexed: 06/09/2023]
Abstract
The role of water as highly effective hydrogen-bond donor (HBD) for promoting the coupling reaction of CO2 with a variety of epoxides was demonstrated under very mild conditions (25-60 °C, 2-10 bar CO2 ). Water led to a dramatic increase in the cyclic carbonate yield when employed in combination with tetrabutylammonium iodide (Bu4 NI) whereas it had a detrimental effect with the corresponding bromide and chloride salts. The efficiency of water in promoting the activity of the organic halide was compared with three state-of-the-art hydrogen bond donors, that is, phenol, gallic acid and ascorbic acid. Although water required higher molar loadings compared to these organic hydrogen-bond donors to achieve a similar degree of conversion of CO2 and styrene oxide into the corresponding cyclic carbonate under the same, mild reaction conditions, its environmental friendliness and much lower cost make it a very attractive alternative as hydrogen-bond donor. The effect of different parameters such as the amount of water, CO2 pressure, reaction temperature, and nature of the organic halide used as catalyst was investigated by using a high-throughput reactor unit. The highest catalytic activity was achieved with either Bu4 NI or bis(triphenylphosphine)iminium iodide (PPNI): with both systems, the cyclic carbonate yield at 45 °C with different epoxide substrates could be increased by a factor of two or more by adding water as a promoter, retaining high selectivity. Water was an effective hydrogen-bond donor even at room temperature, allowing to reach 85 % conversion of propylene oxide with full selectivity towards propylene carbonate in combination with Bu4 NI (3 mol %). For the conversion of epoxides in which PPNI is poorly soluble, the addition of a cyclic carbonate as solvent allowed the formation of a homogeneous solution, leading to enhanced product yield.
Collapse
Affiliation(s)
- Yasser A Alassmy
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Paolo P Pescarmona
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
28
|
Kolle JM, Sayari A. Novel porous organocatalysts for cycloaddition of CO 2 and epoxides. RSC Adv 2019; 9:24527-24538. [PMID: 35527874 PMCID: PMC9069817 DOI: 10.1039/c9ra05466a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022] Open
Abstract
Three classes of organosilicas (DMO, OMOs and PMOs) containing immobilized multi-hydroxyl bis-(quaternary ammonium) iodide salts were prepared and tested in the cycloaddition of CO2 and epoxides. Owing to its higher surface area, pore volume and optimum nucleophilicity of the iodide ion, OMO-2 with two hydroxyl groups was found to be the most active catalyst. For substrates that are easy to activate such as propylene oxide, 1,2-epoxybutane and epichlorohydrin, excellent yields and selectivities were obtained under mild reaction conditions (0.5 MPa CO2, 50 °C and 10-15 h). Moreover, OMO-2 showed very good catalytic properties (yield ≥ 93% and selectivity ≥ 98%), and excellent chemical and textural stability in the synthesis of 1,2-butylene carbonate over 5 cycles.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry, University of Ottawa Ottawa Ontario Canada K1N 6N5
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry, University of Ottawa Ottawa Ontario Canada K1N 6N5
| |
Collapse
|
29
|
Büttner H, Kohrt C, Wulf C, Schäffner B, Groenke K, Hu Y, Kruse D, Werner T. Life Cycle Assessment for the Organocatalytic Synthesis of Glycerol Carbonate Methacrylate. CHEMSUSCHEM 2019; 12:2701-2707. [PMID: 30938473 DOI: 10.1002/cssc.201900678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Bifunctional ammonium and phosphonium salts have been identified as potential organocatalysts for the synthesis of glycerol carbonate methacrylate (GCMA). Three of these catalysts showed high efficiency and allowed the conversion of glycidyl methacrylate with CO2 to the desired product in >99 % conversion and selectivity. Subsequently, immobilized analogues of selected catalysts were prepared and tested. A phenol-substituted phosphonium salt on a silica support proved to be a promising candidate in recycling experiments. The same catalyst was used in 12 consecutive runs, resulting in GCMA yields of up to 88 %. Furthermore, a life cycle assessment was conducted for the synthesis of GCMA starting from epichlorohydrin (EPH) and methacrylic acid (MAA). For the functional unit of 1 kg GCMA, 15 wt % was attributed to the incorporation of CO2 , which led to a reduction of the global warming potential of 3 % for the overall process.
Collapse
Affiliation(s)
- Hendrik Büttner
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| | - Christina Kohrt
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| | - Christoph Wulf
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| | | | - Karsten Groenke
- Evonik Industries AG, Paul-Baumann-Str. 1, 45772, Marl, Germany
| | - Yuya Hu
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| | - Daniela Kruse
- Evonik Industries AG, Paul-Baumann-Str. 1, 45772, Marl, Germany
| | - Thomas Werner
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
30
|
Abstract
The conversion of carbon dioxide into valuable chemicals such as cyclic carbonates is an appealing topic for the scientific community due to the possibility of valorizing waste into an inexpensive, available, nontoxic, and renewable carbon feedstock. In this regard, last-generation heterogeneous catalysts are of great interest owing to their high catalytic activity, robustness, and easy recovery and recycling. In the present review, recent advances on CO2 cycloaddition to epoxide mediated by hybrid catalysts through organometallic or organo-catalytic species supported onto silica-, nanocarbon-, and metal–organic framework (MOF)-based heterogeneous materials, are highlighted and discussed.
Collapse
|
31
|
Progress in the Heterogeneous Catalytic Cyclization of CO2 with Epoxides Using Immobilized Ionic Liquids. Catal Letters 2019. [DOI: 10.1007/s10562-019-02669-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Liu M, Wang X, Jiang Y, Sun J, Arai M. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2018. [DOI: 10.1080/01614940.2018.1550243] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mengshuai Liu
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Yichen Jiang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Masahiko Arai
- Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| |
Collapse
|
33
|
Efficient chemical fixation of CO2into cyclic carbonates using poly(4-vinylpyridine) supported iodine as an eco-friendly and reusable heterogeneous catalyst. HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Salamatmanesh A, Kazemi Miraki M, Yazdani E, Heydari A. Copper(I)–Caffeine Complex Immobilized on Silica-Coated Magnetite Nanoparticles: A Recyclable and Eco-friendly Catalyst for Click Chemistry from Organic Halides and Epoxides. Catal Letters 2018. [DOI: 10.1007/s10562-018-2523-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Substrate dependence on the fixation of CO2 to cyclic carbonates over reusable porous hybrid solids. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
|
37
|
Riemer D, Mandaviya B, Schilling W, Götz AC, Kühl T, Finger M, Das S. CO2-Catalyzed Oxidation of Benzylic and Allylic Alcohols with DMSO. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04390] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel Riemer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Bhavdip Mandaviya
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Waldemar Schilling
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Anne Charlotte Götz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Torben Kühl
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Markus Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shoubhik Das
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
38
|
Wulf C, Doering U, Werner T. Copolymerization of CO 2 and epoxides mediated by zinc organyls. RSC Adv 2018; 8:3673-3679. [PMID: 35542906 PMCID: PMC9077689 DOI: 10.1039/c7ra12535f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/27/2017] [Indexed: 11/21/2022] Open
Abstract
Herein we report the copolymerization of CHO with CO2 in the presence of various zinc compounds R2Zn (R = Et, Bu, iPr, Cy and Ph). Several zinc organyls proved to be efficient catalysts for this reaction in the absence of water and co-catalyst. Notably, readily available Bu2Zn reached a TON up to 269 and an initial TOF up to 91 h-1. The effect of various parameters on the reaction outcome has been investigated. Poly(ether)carbonates with molecular weights up to 79.3 kg mol-1 and a CO2 content of up to 97% were obtained. Under standard reaction conditions (100 °C, 2.0 MPa, 16 h) the influence of commonly employed co-catalysts such as PPNCl and TBAB has been investigated in the presence of Et2Zn (0.5 mol%). The reaction of other epoxides (e.g. propylene and styrene oxide) under these conditions led to no significant conversion or to the formation of the respective cyclic carbonate as the main product.
Collapse
Affiliation(s)
- Christoph Wulf
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Ulrike Doering
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Thomas Werner
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
39
|
Zhao QN, Song QW, Liu P, Zhang QX, Gao JH, Zhang K. Catalytic Conversion of CO2to Cyclic Carbonates through Multifunctional Zinc-Modified ZSM-5 Zeolite. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700573] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qing-Ning Zhao
- Department of Chemistry; Shanghai University; Shanghai 200444 China
| | - Qing-Wen Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan Shanxi 030001 China
| | - Ping Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan Shanxi 030001 China
| | - Qian-Xia Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan Shanxi 030001 China
| | - Jun-Hua Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan Shanxi 030001 China
| | - Kan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry; Chinese Academy of Sciences; Taiyuan Shanxi 030001 China
| |
Collapse
|
40
|
Mirabaud A, Martinez A, Bayard F, Dutasta JP, Dufaud V. A new heterogeneous host–guest catalytic system as an eco-friendly approach for the synthesis of cyclic carbonates from CO2 and epoxides. NEW J CHEM 2018. [DOI: 10.1039/c8nj03065k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New host–guest catalytic systems were immobilized on silica supports and evaluated in the synthesis of cyclic carbonates from CO2 and epoxides.
Collapse
Affiliation(s)
- Anaïs Mirabaud
- Laboratoire de Chimie
- Catalyse, Polymères, Procédés (C2P2)
- CNRS
- Université Claude Bernard Lyon 1
- CPE Lyon
| | - Alexandre Martinez
- Aix Marseille Université
- CNRS
- Centrale Marseille
- iSm2 UMR 7313
- F-13397 Marseille
| | - François Bayard
- Laboratoire de Chimie
- Catalyse, Polymères, Procédés (C2P2)
- CNRS
- Université Claude Bernard Lyon 1
- CPE Lyon
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie
- École Normale Supérieure de Lyon
- CNRS
- Université Claude Bernard Lyon 1
- F-69364 Lyon
| | - Véronique Dufaud
- Laboratoire de Chimie
- Catalyse, Polymères, Procédés (C2P2)
- CNRS
- Université Claude Bernard Lyon 1
- CPE Lyon
| |
Collapse
|
41
|
Taheri M, Ghiaci M, Shchukarev A. Cross-linked chitosan with a dicationic ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of carbon dioxide with epoxides into cyclic carbonates. NEW J CHEM 2018. [DOI: 10.1039/c7nj03665e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A dicationc ionic liquid was synthesized and immobilized on chitosan as a catalyst for cycloaddition of CO2 with epoxides for synthesis of cyclic carbonates.
Collapse
Affiliation(s)
- Masoud Taheri
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
- College of Pardis
| | - Mehran Ghiaci
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| | | |
Collapse
|
42
|
Guo L, Deng L, Jin X, Wang Y, Wang H. Catalytic conversion of CO2 into propylene carbonate in a continuous fixed bed reactor by immobilized ionic liquids. RSC Adv 2018; 8:26554-26562. [PMID: 35541042 PMCID: PMC9083031 DOI: 10.1039/c8ra03952f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/29/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, functionalized composite catalysts, namely, ILs (ILX/(ZnBr2)2), with functional groups immobilized on a molecular sieve (MCM-22) support were synthesized with the help of a silane coupling agent, 3-chloropropyltriethoxysilane (CPTES).
Collapse
Affiliation(s)
- Liying Guo
- School of Petrochemical Engineering
- Shenyang University of Technology
- Liaoyang 111003
- P. R. China
| | - Lili Deng
- School of Petrochemical Engineering
- Shenyang University of Technology
- Liaoyang 111003
- P. R. China
| | - Xianchao Jin
- School of Petrochemical Engineering
- Shenyang University of Technology
- Liaoyang 111003
- P. R. China
| | - Yirong Wang
- School of Petrochemical Engineering
- Shenyang University of Technology
- Liaoyang 111003
- P. R. China
| | - Haozhi Wang
- School of Petrochemical Engineering
- Shenyang University of Technology
- Liaoyang 111003
- P. R. China
| |
Collapse
|
43
|
Liu M, Lu X, Jiang Y, Sun J, Arai M. Zwitterionic Imidazole-Urea Derivative Framework Bridged Mesoporous Hybrid Silica: A Highly Efficient Heterogeneous Nanocatalyst for Carbon Dioxide Conversion. ChemCatChem 2017. [DOI: 10.1002/cctc.201701492] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mengshuai Liu
- State Key Laboratory of Urban Water Resource and Environment; MIIT Key Laboratory of Critical Materials Technology for, New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150080 P.R. China
- College of Chemical Engineering; Qingdao University of Science and Technology; Qingdao 266042 P.R. China
| | - Xingyuan Lu
- School of Science; Northeast Forestry University; Harbin 150040 P.R. China
| | - Yichen Jiang
- State Key Laboratory of Urban Water Resource and Environment; MIIT Key Laboratory of Critical Materials Technology for, New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150080 P.R. China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment; MIIT Key Laboratory of Critical Materials Technology for, New Energy Conversion and Storage; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150080 P.R. China
| | - Masahiko Arai
- Laboratory of Green Chemistry and Process; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| |
Collapse
|
44
|
Longwitz L, Steinbauer J, Spannenberg A, Werner T. Calcium-Based Catalytic System for the Synthesis of Bio-Derived Cyclic Carbonates under Mild Conditions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03367] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lars Longwitz
- Leibniz-Institute for Catalysis e.V. at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Johannes Steinbauer
- Leibniz-Institute for Catalysis e.V. at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institute for Catalysis e.V. at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Thomas Werner
- Leibniz-Institute for Catalysis e.V. at the University of Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
45
|
Mousavi B, Chaemchuen S, Moosavi B, Zhou K, Yusubov M, Verpoort F. CO 2 Cycloaddition to Epoxides by using M-DABCO Metal-Organic Frameworks and the Influence of the Synthetic Method on Catalytic Reactivity. ChemistryOpen 2017; 6:674-680. [PMID: 29046863 PMCID: PMC5641900 DOI: 10.1002/open.201700060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 11/26/2022] Open
Abstract
A series of high‐quality M2(BDC)2(DABCO) metal–organic frameworks (abbreviated as M‐DABCO; M=Zn, Co, Ni, Cu; BDC=1,4‐benzene dicarboxylate; DABCO=1,4‐diazabicyclo[2.2.2]octane), were synthesized by using a solvothermal (SV) method, and their catalytic activity for the cycloaddition of CO2 to epoxides in the absence of a co‐catalyst or solvent was demonstrated. Of these metal–organic frameworks (MOFs), Zn‐DABCO exhibited very high activity and nearly complete selectivity under moderate reaction conditions. The other members of this MOF series (Co‐DABCO, Ni‐DABCO, and Cu‐DABCO) displayed lower activity in the given sequence. Samples of Zn‐DABCO, Co‐DABCO, and Ni‐DABCO were recycled at least three times without a noticeable loss in catalytic activity. The reaction mechanism can be attributed to structural defects along with the acid–base bifunctional characteristics of these MOFs. Moreover, we illustrate that the synthetic method of M‐DABCO influences the yield of the reaction. In addition to the SV method, Zn‐DABCO was synthesized by using spray drying due to its industrial attractiveness. It was found that the synthesis procedure clearly influenced the crystal growth and thus the physicochemical properties, such as surface area, pore volume, and gas adsorption, which in turn affected the catalytic performance. The results clarified that although different synthetic methods can produce isostructural MOFs, the application of MOFs, especially as catalysts, strongly depends on the crystal morphology and textural properties and, therefore, on the synthesis method.
Collapse
Affiliation(s)
- Bibimaryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China.,School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 P.R. China
| | - Somboon Chaemchuen
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China.,School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 P.R. China
| | - Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry Central China Normal University Wuhan 430079 P.R. China
| | - Kui Zhou
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China.,National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Mekhman Yusubov
- National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China.,School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 P.R. China.,National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia.,Ghent University Global Campus 119 Songdomunhwa-Ro Yeonsu-Gu, Songdo 21985 Incheon Korea South
| |
Collapse
|
46
|
|
47
|
Guo Z, Jiang Q, Shi Y, Li J, Yang X, Hou W, Zhou Y, Wang J. Tethering Dual Hydroxyls into Mesoporous Poly(ionic liquid)s for Chemical Fixation of CO2 at Ambient Conditions: A Combined Experimental and Theoretical Study. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02399] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zengjing Guo
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Qiuwei Jiang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Yuming Shi
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Xiaoning Yang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Wei Hou
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
48
|
Chen J, Li H, Zhong M, Yang Q. Tuning the Surface Polarity of Microporous Organic Polymers for CO2
Capture. Chem Asian J 2017. [DOI: 10.1002/asia.201700779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jian Chen
- State Key Laboratory of Catalysis; iChEM; Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian 116 023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - He Li
- State Key Laboratory of Catalysis; iChEM; Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian 116 023 China
| | - Mingmei Zhong
- State Key Laboratory of Catalysis; iChEM; Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian 116 023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qihua Yang
- State Key Laboratory of Catalysis; iChEM; Dalian Institute of Chemical Physics; Chinese Academy of Science; Dalian 116 023 China
| |
Collapse
|
49
|
Composite Ionic Liquids Immobilized on MCM-22 as Efficient Catalysts for the Cycloaddition Reaction with CO2 and Propylene Oxide. Catal Letters 2017. [DOI: 10.1007/s10562-017-2137-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Zhao T, Hu X, Wu D, Li R, Yang G, Wu Y. Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol at Room Temperature Using Imidazolium Hydrogen Carbonate Ionic Liquid as a Recyclable Catalyst and Dehydrant. CHEMSUSCHEM 2017; 10:2046-2052. [PMID: 28244650 DOI: 10.1002/cssc.201700128] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/25/2017] [Indexed: 06/06/2023]
Abstract
The direct synthesis of dimethyl carbonate (DMC) from CO2 and CH3 OH was achieved at room temperature with 74 % CH3 OH conversion in the presence of an imidazolium hydrogen carbonate ionic liquid ([Cn Cm Im][HCO3 ]). Experimental and theoretical results reveal that [Cn Cm Im][HCO3 ] can transform quickly into a CO2 adduct, which serves as an effective catalyst and dehydrant. Its dehydration ability is reversible. The energy barrier of the rate-determining step for the DMC synthesis is only 21.7 kcal mol-1 . The ionic liquid can be reused easily without a significant loss of its catalytic and dehydrating ability.
Collapse
Affiliation(s)
- Tianxiang Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Dongsheng Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guoqiang Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Youting Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|