1
|
Wen Y, Wang H, Tian D, Wang G. TH17 cell: a double-edged sword in the development of inflammatory bowel disease. Therap Adv Gastroenterol 2024; 17:17562848241230896. [PMID: 38390028 PMCID: PMC10883129 DOI: 10.1177/17562848241230896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease of the gastrointestinal tract, and its pathogenesis has not been fully understood. Extensive dysregulation of the intestinal mucosal immune system is critical in the development and progression of IBD. T helper (Th) 17 cells have the characteristics of plasticity. They can transdifferentiate into subpopulations with different functions in response to different factors in the surrounding environment, thus taking on different roles in regulating the intestinal immune responses. In this review, we will focus on the plasticity of Th17 cells as well as the function of Th17 cells and their related cytokines in IBD. We will summarize their pathogenic and protective roles in IBD under different conditions, respectively, hoping to further deepen the understanding of the pathological mechanisms underlying IBD and provide insights for future treatment.
Collapse
Affiliation(s)
- Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ge Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
2
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
3
|
Duddu AS, Majumdar SS, Sahoo S, Jhunjhunwala S, Jolly MK. Emergent dynamics of a three-node regulatory network explain phenotypic switching and heterogeneity: a case study of Th1/Th2/Th17 cell differentiation. Mol Biol Cell 2022; 33:ar46. [PMID: 35353012 PMCID: PMC9265159 DOI: 10.1091/mbc.e21-10-0521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a 'master regulator' - T-bet (Th1), GATA3 (Th2) and RORγT (Th17) - that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotypes - Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17 and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remains unclear. Here, through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any 'master regulator' can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sauma Suvra Majumdar
- epartment of Biotechnology, National Institute of Technology, Durgapur 713216, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Leipe J, Pirronello F, Schulze-Koops H, Skapenko A. Altered T cell plasticity favours Th17 cells in early arthritis. Rheumatology (Oxford) 2021; 59:2754-2763. [PMID: 32030419 DOI: 10.1093/rheumatology/kez660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The predominance of differentiated Th17 cells has been implied as a key driver of autoimmune arthritis, including early RA. Because accumulating evidence suggests that Th cell differentiation is a plastic process, we investigated plasticity and underlying molecular mechanisms to address the shift towards the Th17 phenotype in early RA. METHODS A cohort of 61 patients with early, active, untreated RA and 45 age- and sex-matched healthy controls were studied. Viable in vitro- and in vivo-generated Th1, Th2 and Th17 cells were FACS-sorted and transdifferentiated under Th1-, Th2- or Th17-inducing conditions. The cytokine Th profile of the transdifferentiated cells was assessed by flow cytometry. Th cell-associated cytokine and transcription factor gene loci were analysed by chromatin immunoprecipitation assay and their expression by quantitative real-time PCR. RESULTS In vitro-generated Th cells showed substantial plasticity, which was similar between RA and healthy controls, whereas in vivo-derived Th1 and Th2 cells from RA patients demonstrated an enhanced plasticity towards IL-17-expressing phenotypes compared with healthy controls. Further, in vivo-generated Th17 cells from RA patients showed a resistance to transdifferentiate into Th1 or Th2 cells. The serum/glucocorticoid-regulated kinase 1-forkhead box protein O1-IL-23 receptor (SGK1-FOXO1-IL-23R) axis together with increased RORC expression was associated with the predominant Th17 phenotype in early RA. CONCLUSIONS Our data indicate that in vivo-originated Th subsets are prone to Th17 cell transdifferentiation in early RA, while Th17 cells are resistant to changes in their phenotype. Together, the data imply that an altered plasticity contributes to the Th17 shift in early RA.
Collapse
Affiliation(s)
- Jan Leipe
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany.,Division of Rheumatology, Department of Medicine V, University Hospital Mannheim, Mannheim, Germany ∗Jan Leipe and Fausto Pirronello contributed equally to this work
| | - Fausto Pirronello
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| |
Collapse
|
5
|
Tortola L, Jacobs A, Pohlmeier L, Obermair FJ, Ampenberger F, Bodenmiller B, Kopf M. High-Dimensional T Helper Cell Profiling Reveals a Broad Diversity of Stably Committed Effector States and Uncovers Interlineage Relationships. Immunity 2020; 53:597-613.e6. [PMID: 32735846 DOI: 10.1016/j.immuni.2020.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
CD4+ T helper (Th) cells are fundamental players in immunity. Based on the expression of signature cytokines and transcription factors, several Th subsets have been defined. Th cells are thought to be far more heterogeneous and multifunctional than originally believed, but characterization of the full diversity has been hindered by technical limitations. Here, we employ mass cytometry to analyze the diversity of Th cell responses generated in vitro and in animal disease models, revealing a vast heterogeneity of effector states with distinct cytokine footprints. The diversities of cytokine responses established during primary antigen encounters in Th1- and Th2-cell-polarizing conditions are largely maintained after secondary challenge, regardless of the new inflammatory environment, highlighting many of the identified states as stable Th cell sublineages. We also find that Th17 cells tend to upregulate Th2-cell-associated cytokines upon challenge, indicating a closer developmental connection between Th17 and Th2 cells than previously anticipated.
Collapse
Affiliation(s)
- Luigi Tortola
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrea Jacobs
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Lea Pohlmeier
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
6
|
Harbour SN, DiToro DF, Witte SJ, Zindl CL, Gao M, Schoeb TR, Jones GW, Jones SA, Hatton RD, Weaver CT. T H17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol 2020; 5:5/49/eaaw2262. [PMID: 32680955 DOI: 10.1126/sciimmunol.aaw2262] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/31/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Acting in concert with TGF-β, interleukin-6 (IL-6) signaling induces T helper 17 (TH17) cell development by programming TH17-related genes via signal transducers and activators of transcription 3 (STAT3). A role for IL-6 signaling beyond the inductive phase of TH17 cell development has not been defined because IL-23 signaling downstream of TH17 cell induction also activates STAT3 and is thought responsible for TH17 cell maintenance. Here, we find that IL-6 signaling is required for both induction and maintenance of mouse TH17 cells; IL-6Rα-deficient TH17 cells rapidly lost their TH17 phenotype and did not cause disease in two models of colitis. Cotransfer of wild-type TH17 cells with IL-6Rα-deficient TH17 cells induced colitis but was unable to rescue phenotype loss of the latter. High IL-6 expression in the colon promoted classic, or cis, rather than transreceptor signaling that was required for maintenance of TH17 cells. Thus, ongoing classic IL-6 signaling underpins the TH17 program and is required for TH17 cell maintenance and function.
Collapse
Affiliation(s)
- Stacey N Harbour
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel F DiToro
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven J Witte
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Carlene L Zindl
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Gao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, Wales, UK.,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Simon A Jones
- Systems Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, Wales, UK.,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Robin D Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Ercan N, Olgun E, Kisa Ü, Yalim M. Effect of synbiotics in the treatment of smokers and non-smokers with gingivitis: randomized controlled trial. Aust Dent J 2020; 65:210-219. [PMID: 32147827 DOI: 10.1111/adj.12755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND To evaluate the efficacy of synbiotic tablets on the clinical and biochemical parameters of smokers and non-smokers with gingivitis. METHODS Eighty patients with gingivitis [40 smokers (+), 40 non-smokers (-)] were randomly assigned to test (T) or control (C) groups. Four groups were defined: T(+), T(-), C(+) and C(-). The subjects daily chewed a synbiotic or placebo tablet for 30 days. The gingival crevicular fluid levels of interleukin (IL)-6, IL-8 and IL-10 were determined as the primary outcome variables. RESULTS The clinical and biochemical parameters for all groups significantly reduced compared with the baseline (P < 0.05). While there were no significant differences between the groups for gingival index, the plaque index was significantly higher in both smoker groups than that in the T(-) group during the second month (P < 0.05). IL-8 levels in C(-) and IL-6 levels in both control groups were significantly higher than those in the T(+) group. The IL-10 levels in both control groups were significantly higher than those in the T(-) group during the second month (P < 0.05). CONCLUSIONS Adjunctive synbiotic tablets significantly reduce subclinical therapeutic outcomes for both smokers and non-smokers compared with placebo according to the biochemical parameters.
Collapse
Affiliation(s)
- N Ercan
- Periodontology Department, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - E Olgun
- Periodontology Department, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - Ü Kisa
- Biochemistry Department, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - M Yalim
- Periodontology Department, Faculty of Dentistry, Gazi University, Ankara, Turkey
| |
Collapse
|
8
|
Leipe J, Pirronello F, Klose A, Schulze-Koops H, Skapenko A. Increased plasticity of non-classic Th1 cells toward the Th17 phenotype. Mod Rheumatol 2019; 30:930-936. [PMID: 31512538 DOI: 10.1080/14397595.2019.1667473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objectives: To analyze occurrence and plasticity of two recently described distinct subtypes of Th1 cells named classic (CD161-/CCR6-) and non-classic (CD161+/CCR6+) Th1 cells in early rheumatoid arthritis (RA) patients and healthy controls (HCs).Methods: Frequencies of in vivo-generated Th1 cell populations were assessed after cytokine secretion assay for IFNγ/IL-17 and surface staining for CD161/CCR6. Viable Th1 cells (IFNγ+IL-17-) were sorted into classic Th1 (CD161-CCR6-) and non-classic Th1 (CD161+CCR6+) cells, trans-differentiated under different Th cell-inducing conditions, and assessed for plastic changes by analyzing the Th cell-associated cytokine and transcription factor profiles.Results: Ex vivo frequencies of classic (CD161-CCR6-) and non-classic (CD161+CCR6+) Th1 cells as well as related Th1 cell subpopulations CD161+CCR6- and CD161-/CCR6+ did not differ significantly between RA and HCs. However, trans-differentiation of ex vivo non-classic (CD161+CCR6+) and CD161-/CCR6+ Th1 cells resulted in a substantial shift toward Th17 and Th1/Th17 phenotypes, particularly under Th17-inducing conditions. In contrast, classic (CD161-/CCR6-) and CD161+CCR6- Th1 cells showed higher plasticity towards IL-4-producing cells, most of them shifting to a Th1/Th2 phenotype.Conclusion: Whereas non-classic (CD161+/CCR6+) and CD161-CCR6+ Th1 cells demonstrated an increased plasticity towards IL-17- phenotypes, classic Th1 and CD161+CCR6- Th1 cells showed more plasticity towards IL-4-producing phenotypes.
Collapse
Affiliation(s)
- Jan Leipe
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Fausto Pirronello
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Antonia Klose
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| |
Collapse
|
9
|
Mazzoni A, Maggi L, Liotta F, Cosmi L, Annunziato F. Biological and clinical significance of T helper 17 cell plasticity. Immunology 2019; 158:287-295. [PMID: 31566706 DOI: 10.1111/imm.13124] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Mature T helper (Th) effector cells originate following antigen recognition by naive T precursors. The maturation process is accompanied by the acquisition of specific effector functions that distinguish at least three different T helper subsets: Th1, Th2 and Th17. In general, maturation of somatic cells is accompanied by terminal differentiation. However, accumulating evidence shows that effector T cells retain a certain degree of plasticity. This is especially true for Th17 cells, which have been shown to converge towards other phenotypes in response to specific microenvironmental pressure. In this review we will discuss the experimental evidence that supports the hypothesis of Th17 plasticity, with particular emphasis on the generation of Th17-derived 'non-classic' Th1 cells, and the molecular networks that control it. Moreover, we will consider why Th17 plasticity is important for host protection, but also why it can have pathogenic functions during chronic inflammation. Regarding the last point, we will discuss a possible role for biological drugs in the control of Th17 plasticity and disease course.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Interleukin-10 (IL-10) Produced by Mutant Toxic Shock Syndrome Toxin 1 Vaccine-Induced Memory T Cells Downregulates IL-17 Production and Abrogates the Protective Effect against Staphylococcus aureus Infection. Infect Immun 2019; 87:IAI.00494-19. [PMID: 31358568 DOI: 10.1128/iai.00494-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
Development of long-term memory is crucial for vaccine-induced adaptive immunity against infectious diseases such as Staphylococcus aureus infection. Toxic shock syndrome toxin 1 (TSST-1), one of the superantigens produced by S. aureus, is a possible vaccine candidate against infectious diseases caused by this pathogen. We previously reported that vaccination with less toxic mutant TSST-1 (mTSST-1) induced T helper 17 (Th17) cells and elicited interleukin-17A (IL-17A)-mediated protection against S. aureus infection 1 week after vaccination. In the present study, we investigated the host immune response induced by mTSST-1 vaccination in the memory phase, 12 weeks after the final vaccination. The protective effect and IL-17A production after vaccination with mTSST-1 were eliminated because of IL-10 production. In the presence of IL-10-neutralizing monoclonal antibody (mAb), IL-17A production was restored in culture supernatants of CD4+ T cells and macrophages sorted from the spleens of vaccinated mice. Vaccinated mice treated with anti-IL-10 mAb were protected against systemic S. aureus infection in the memory phase. From these results, it was suggested that IL-10 produced in the memory phase suppresses the IL-17A-dependent vaccine effect through downregulation of IL-17A production.
Collapse
|
11
|
Hradilkova K, Maschmeyer P, Westendorf K, Schliemann H, Husak O, von Stuckrad ASL, Kallinich T, Minden K, Durek P, Grün JR, Chang HD, Radbruch A. Regulation of Fatty Acid Oxidation by Twist 1 in the Metabolic Adaptation of T Helper Lymphocytes to Chronic Inflammation. Arthritis Rheumatol 2019; 71:1756-1765. [PMID: 31131995 PMCID: PMC6790942 DOI: 10.1002/art.40939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
Objective Inflamed tissue is characterized by low availability of oxygen and nutrients. Yet CD4+ T helper lymphocytes persist over time in such tissue and probably contribute to the chronicity of inflammation. This study was undertaken to analyze the metabolic adaptation of these cells to the inflamed environment. Methods Synovial and blood CD4+ T cells isolated ex vivo from patients with juvenile idiopathic arthritis (JIA) and murine CD4+ T cells were either stimulated once or stimulated repeatedly. Their dependency on particular metabolic pathways for survival was then analyzed using pharmacologic inhibitors. The role of the transcription factor Twist 1 was investigated by determining lactate production and oxygen consumption in Twist1‐sufficient and Twist1‐deficient murine T cells. The dependency of these murine cells on particular metabolic pathways was analyzed using pharmacologic inhibitors. Results Programmed death 1 (PD‐1)+ T helper cells in synovial fluid samples from patients with JIA survived via fatty acid oxidation (mean ± SEM survival of 3.4 ± 2.85% in the presence of etomoxir versus 60 ± 7.08% in the absence of etomoxir on day 4 of culture) (P < 0.0002; n = 6) and expressed the E‐box–binding transcription factor TWIST1 (2–14‐fold increased expression) (P = 0.0156 versus PD‐1− T helper cells; n = 6). Repeatedly restimulated murine T helper cells, which expressed Twist1 as well, needed Twist1 to survive via fatty acid oxidation. In addition, Twist1 protected the cells against reactive oxygen species. Conclusion Our findings indicate that TWIST1 is a master regulator of metabolic adaptation of T helper cells to chronic inflammation and a target for their selective therapeutic elimination.
Collapse
Affiliation(s)
| | | | | | | | - Olena Husak
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | | | | | - Kirsten Minden
- Deutsches Rheuma-Forschungszentrum Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Durek
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Joachim R Grün
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | | | | |
Collapse
|
12
|
Bastian D, Wu Y, Betts BC, Yu XZ. The IL-12 Cytokine and Receptor Family in Graft-vs.-Host Disease. Front Immunol 2019; 10:988. [PMID: 31139181 PMCID: PMC6518430 DOI: 10.3389/fimmu.2019.00988] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed with curative intent for high- risk blood cancers and bone marrow failure syndromes; yet the development of acute and chronic graft-vs.-host disease (GVHD) remain preeminent causes of death and morbidity. The IL-12 family of cytokines is comprised of IL-12, IL-23, IL-27, IL-35, and IL-39. This family of cytokines is biologically distinct in that they are composed of functional heterodimers, which bind to cognate heterodimeric receptor chains expressed on T cells. Of these, IL-12 and IL-23 share a common β cytokine subunit, p40, as well as a receptor chain: IL-12Rβ1. IL-12 and IL-23 have been documented as proinflammatory mediators of GVHD, responsible for T helper 1 (Th1) differentiation and T helper 17 (Th17) stabilization, respectively. The role of IL-27 is less defined, seemingly immune suppressive via IL-10 secretion by Type 1 regulatory (Tr1) cells yet promoting inflammation through impairing CD4+ T regulatory (Treg) development and/or enhancing Th1 differentiation. More recently, IL-35 was described as a potent anti-inflammatory agent produced by regulatory B and T cells. The role of the newest member, IL-39, has been implicated in proinflammatory B cell responses but has not been explored in the context of allo-HCT. This review is directed at discussing the current literature relevant to each IL-12-family cytokine and cognate receptor engagement, as well as the consequential downstream signaling implications, during GVHD pathogenesis. Additionally, we will provide an overview of translational strategies targeting the IL-12 family cytokines, their receptors, and subsequent signal transduction to control GVHD.
Collapse
Affiliation(s)
- David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Brian C Betts
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
13
|
Arterial Hypertension and Interleukins: Potential Therapeutic Target or Future Diagnostic Marker? Int J Hypertens 2019; 2019:3159283. [PMID: 31186952 PMCID: PMC6521461 DOI: 10.1155/2019/3159283] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Hypertension as a multifactorial pathology is one of the most important cardiovascular risk factors, affecting up to 30-40% of the general population. Complex immune responses are involved in the inflammatory mechanism of hypertension, with evidence pointing to increased inflammatory mediators even in prehypertensive patients. Increased vascular permeability, thrombogenesis, and fibrosis, effects that are associated with sustained hypertension, could be attributed to chronic inflammation. Chronic inflammation triggers endothelial dysfunction via increased production of ROS through proinflammatory cytokines. Increased serum level of proinflammatory cytokines such as IL-1β, IL-6, IL-8, IL-17, IL-23, TGFβ, and TNFα in hypertensive patients has been associated with either increased blood pressure values and/or end-organ damage. Moreover, some cytokines (i.e., IL-6) seem to determine a hypertensive response to angiotensin II, regardless of blood pressure values. Understanding hypertension as an inflammatory-based pathology gives way to new therapeutic targets. As such, conventional cardiovascular drugs (statins, calcium channels blockers, and ACEIs/ARBs) have shown additional anti-inflammatory effects that could be linked to their blood pressure lowering properties. Moreover, anti-inflammatory drugs (mycophenolate mofetil) have been shown to decrease blood pressure in hypertensive patients or prevent its development in normotensive individuals. Further research is needed to evaluate whether drugs targeting hypertensive-linked proinflammatory cytokines, such as monoclonal antibodies, could become a new therapeutic option in treating arterial hypertension.
Collapse
|
14
|
Nizzoli G, Burrello C, Cribiù FM, Lovati G, Ercoli G, Botti F, Trombetta E, Porretti L, Todoerti K, Neri A, Giuffrè MR, Geginat J, Vecchi M, Rescigno M, Paroni M, Caprioli F, Facciotti F. Pathogenicity of In Vivo Generated Intestinal Th17 Lymphocytes is IFNγ Dependent. J Crohns Colitis 2018; 12:981-992. [PMID: 29697763 DOI: 10.1093/ecco-jcc/jjy051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/19/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS T helper 17 [Th17] cells are crucially involved in the immunopathogenesis of inflammatory bowel diseases in humans. Nevertheless, pharmacological blockade of interleukin 17A [IL17A], the Th17 signature cytokine, yielded negative results in patients with Crohn's disease [CD], and attempts to elucidate the determinants of Th17 cells' pathogenicity in the gut have so far proved unsuccessful. Here, we aimed to identify and functionally validate the pathogenic determinants of intestinal IL-17-producing T cells. METHODS In vivo-generated murine intestinal IL-17-producing T cells were adoptively transferred into immunodeficient Rag1-/- recipients to test their pathogenicity. Human IL-17, IFNγ/IL-17, and IFNγ actively secreting T cell clones were generated from lamina propria lymphocytes of CD patients. The pathogenic activity of intestinal IL-17-producing T cells against the intestinal epithelium was evaluated. RESULTS IL-17-producing cells with variable colitogenic activity can be generated in vivo using different experimental colitis models. The pathogenicity of IL-17-secreting cells was directly dependent on their IFNγ secretion capacity, as demonstrated by the reduced colitogenic activity of IL-17-secreting cells isolated from IFNγ-/- mice. Moreover, IFNγ production is a distinguished attribute of CD-derived lamina propria Th17 cells. IFNγ secretion by CD-derived IL-17-producing intestinal clones is directly implicated in the epithelial barrier disruption through the modulation of tight junction proteins. CONCLUSIONS Intestinal Th17 cell pathogenicity is associated with IFNγ production, which directly affects intestinal permeability through the disruption of epithelial tight junctions.
Collapse
Affiliation(s)
- Giulia Nizzoli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Claudia Burrello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Giulia Ercoli
- Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Policlinico di Milano, Milan, Italy
| | - Fiorenzo Botti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca ' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rita Giuffrè
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jens Geginat
- INGM ? National Institute of Molecular Genetics "Romeo ed Enrico Invernizzi" Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Moira Paroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
15
|
A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun 2017; 87:1-15. [PMID: 29275836 DOI: 10.1016/j.jaut.2017.12.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 02/08/2023]
Abstract
Since the original identification of the T helper 17 (Th17) subset in 2005, it has become evident that these cells do not only contribute to host defence against pathogens, such as bacteria and fungi, but that they are also critically involved in the pathogenesis of many autoimmune diseases. In contrast to the classic Th1 and Th2 cells, which represent rather stably polarized subsets, Th17 cells display remarkable heterogeneity and plasticity. This has been attributed to the characteristics of the key transcription factor that guides Th17 differentiation, retinoic acid receptor-related orphan nuclear receptor gamma (RORγ). Unlike the 'master regulators' T-bet and GATA3 that orchestrate Th1 and Th2 differentiation, respectively, RORγ controls transcription at relatively few loci in Th17 cells. Moreover, its expression is not stabilized by positive feedback loops but rather influenced by environmental cues, allowing for substantial functional plasticity. Importantly, a subset of IL-17/IFNγ double-producing Th17 cells was identified in both human and mouse models. Evidence is accumulating that these IL-17/IFNγ double-producing cells are pathogenic drivers in autoimmune diseases, including rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. In addition, IL-17/IFNγ double-producing cells have been identified in disorders in which the role of autoimmunity remains unclear, such as sarcoidosis. The observed plasticity of Th17 cells towards the Th1 phenotype can be explained by extensive epigenetic priming of the IFNG locus in Th17 cells. In fact, Th17 cells display an IFNG chromatin landscape that is remarkably similar to that of Th1 cells. On the other hand, pathogenic capabilities of Th17 cells can be restrained by stimulating IL-10 production and transdifferentiation into IL-10 producing T regulatory type 1 (Tr1) cells. In this review, we discuss recent advances in our knowledge on the cellular and molecular mechanisms involved in Th17 differentiation, heterogeneity and plasticity. We focus on transcriptional regulation of the Th17 expression program, the epigenetic dynamics involved, and how genetic variants associated with autoimmunity may affect immune responses through distal gene regulatory elements. Finally, the implications of Th17 cell plasticity for the pathogenesis and treatment of human autoimmune diseases will be discussed.
Collapse
|
16
|
Lee YK, Landuyt AE, Lobionda S, Sittipo P, Zhao Q, Maynard CL. TCR-independent functions of Th17 cells mediated by the synergistic actions of cytokines of the IL-12 and IL-1 families. PLoS One 2017; 12:e0186351. [PMID: 29023599 PMCID: PMC5638524 DOI: 10.1371/journal.pone.0186351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/01/2017] [Indexed: 11/18/2022] Open
Abstract
The development of Th17 cells is accompanied by the acquisition of responsiveness to both IL-12 and IL-23, cytokines with established roles in the development and/or function of Th1 and Th17 cells, respectively. IL-12 signaling promotes antigen-dependent Th1 differentiation but, in combination with IL-18, allows the antigen-independent perpetuation of Th1 responses. On the other hand, while IL-23 is dispensable for initial commitment to the Th17 lineage, it promotes the pathogenic function of the Th17 cells. In this study, we have examined the overlap between Th1 and Th17 cells in their responsiveness to common pro-inflammatory cytokines and how this affects the antigen-independent cytokine responses of Th17 cells. We found that in addition to the IL-1 receptor, developing Th17 cells also up-regulate the IL-18 receptor. Consequently, in the presence of IL-1β or IL-18, and in the absence of TCR activation, Th17 cells produce Th17 lineage cytokines in a STAT3-dependent manner when stimulated with IL-23, and IFN© via a STAT4-dependent mechanism when stimulated with IL-12. Thus, building on previous findings of antigen-induced plasticity of Th17 cells, our results indicate that this potential of Th17 cells extends to their cytokine-dependent antigen-independent responses. Collectively, our data suggest a model whereby signaling via either IL-1β or IL-18 allows for bystander responses of Th17 cells to pathogens or pathogen products that differentially activate innate cell production of IL-12 or IL-23.
Collapse
Affiliation(s)
- Yun Kyung Lee
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, Cheonan-si, Korea
| | - Ashley E Landuyt
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stefani Lobionda
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, Cheonan-si, Korea
| | - Panida Sittipo
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, Cheonan-si, Korea
| | - Qing Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
17
|
Contreras-Kallens P, Terraza C, Oyarce K, Gajardo T, Campos-Mora M, Barroilhet MT, Álvarez C, Fuentes R, Figueroa F, Khoury M, Pino-Lagos K. Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance. Ann N Y Acad Sci 2017; 1417:35-56. [PMID: 28700815 DOI: 10.1111/nyas.13364] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Since they were first described, mesenchymal stem cells (MSCs) have been shown to have important effector mechanisms and the potential for use in cell therapy. A great deal of research has been focused on unveiling how MSCs contribute to anti-inflammatory responses, including describing several cell populations involved and identifying soluble and other effector molecules. In this review, we discuss some of the contemporary evidence for use of MSCs in the field of immune tolerance, with a special emphasis on transplantation. Although considerable effort has been devoted to understanding the biological function of MSCs, additional resources are required to clarify the mechanisms of their induction of immune tolerance, which will undoubtedly lead to improved clinical outcomes for MSC-based therapies.
Collapse
Affiliation(s)
- Pamina Contreras-Kallens
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Claudia Terraza
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Oyarce
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Tania Gajardo
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Teresa Barroilhet
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carla Álvarez
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ricardo Fuentes
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Fernando Figueroa
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
18
|
Bhaumik S, Basu R. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response. Front Immunol 2017; 8:254. [PMID: 28408906 PMCID: PMC5374155 DOI: 10.3389/fimmu.2017.00254] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023] Open
Abstract
After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs.
Collapse
Affiliation(s)
- Suniti Bhaumik
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Rajatava Basu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| |
Collapse
|
19
|
Ulrich BJ, Verdan FF, McKenzie ANJ, Kaplan MH, Olson MR. STAT3 Activation Impairs the Stability of Th9 Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:2302-2309. [PMID: 28137893 DOI: 10.4049/jimmunol.1601624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Abstract
Th9 cells regulate multiple immune responses, including immunity to pathogens and tumors, allergic inflammation, and autoimmunity. Despite ongoing research into Th9 development and function, little is known about the stability of the Th9 phenotype. In this study, we demonstrate that IL-9 production is progressively lost in Th9 cultures during several rounds of differentiation. The loss of IL-9 is not due to an outgrowth of cells that do not secrete IL-9, as purified IL-9 secretors demonstrate the same loss of IL-9 in subsequent rounds of differentiation. The loss of IL-9 production correlates with increases in phospho-STAT3 levels within the cell, as well as the production of IL-10. STAT3-deficient Th9 cells have increased IL-9 production that is maintained for longer in culture than IL-9 in control cultures. IL-10 is responsible for STAT3 activation during the first round of differentiation, and it contributes to instability in subsequent rounds of culture. Taken together, our results indicate that environmental cues dictate the instability of the Th9 phenotype, and they suggest approaches to enhance Th9 activity in beneficial immune responses.
Collapse
Affiliation(s)
- Benjamin J Ulrich
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Felipe Fortino Verdan
- Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, 14049-900 São Paulo, Brazil; and
| | - Andrew N J McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Mark H Kaplan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Matthew R Olson
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202;
| |
Collapse
|
20
|
Cai Y, Ma S, Liu Y, Gong H, Cheng Q, Hu B, Wu Y, Yu X, Dong C, Sun K, Wu D, Liu H. Adoptively transferred donor IL-17-producing CD4 + T cells augment, but IL-17 alleviates, acute graft-versus-host disease. Cell Mol Immunol 2016; 15:233-245. [PMID: 27748733 DOI: 10.1038/cmi.2016.37] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 01/04/2023] Open
Abstract
The role of IL-17 and IL-17-producing CD4+ T cells in acute graft-versus-host disease (GVHD) has been controversial in recent mouse and human studies. We carried out studies in a murine acute GVHD model of fully major histocompatibility complex-mismatched myeloablative bone marrow transplantation. We showed that donor wild-type CD4+ T cells exacerbated acute GVHD compared with IL-17-/- CD4+ T cells, while IL-17 reduced the severity of acute GVHD. The augmentation of acute GVHD by transferred donor IL-17-producing CD4+ T cells was associated with increased Th1 responses, while IL-17 decreased the percentages of Th1 cells in the GVHD target organs. Furthermore, IL-17 reduced the infiltration of macrophages into the GVHD tissues. In vitro study showed that IL-17 could downregulate Th1 responses, possibly through inhibiting IL-12 production by donor macrophages. Depletion of macrophages in vivo diminished the protective effect of IL-17. Our results demonstrated the differential roles of adoptively transferred donor IL-17-producing CD4+ T cells and IL-17 in the same acute GVHD model.
Collapse
Affiliation(s)
- Yifeng Cai
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Suzhou 215006, China
| | - Shoubao Ma
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Suzhou 215006, China
| | - Yuejun Liu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Suzhou 215006, China
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Suzhou 215006, China
| | - Qiao Cheng
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Suzhou 215006, China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Suzhou 215006, China
| | - Yan Wu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Suzhou 215006, China
| | - Xiao Yu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Jiangsu Institute of Hematology and Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Suzhou 215006, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University School of Medicine, Beijing 100084, China
| | - Kai Sun
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
21
|
Tahara M, Tsuboi H, Segawa S, Asashima H, Iizuka-Koga M, Hirota T, Takahashi H, Kondo Y, Matsui M, Matsumoto I, Sumida T. RORγt antagonist suppresses M3 muscarinic acetylcholine receptor-induced Sjögren's syndrome-like sialadenitis. Clin Exp Immunol 2016; 187:213-224. [PMID: 27643385 DOI: 10.1111/cei.12868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
We showed recently that M3 muscarinic acetylcholine receptor (M3R)-reactive CD3+ T cells play a pathogenic role in the development of murine autoimmune sialadenitis (MIS), which mimics Sjögren's syndrome (SS). The aim of this study was to determine the effectiveness and mechanism of action of retinoic acid-related orphan receptor-gamma t (RORγt) antagonist (A213) in MIS. Splenocytes from M3R knockout (M3R-/- ) mice immunized with murine M3R peptide mixture were inoculated into recombination-activating gene 1 knockout (Rag-1-/- ) mice (M3R-/- →Rag-1-/- ) with MIS. Immunized M3R-/- mice (pretransfer treatment) and M3R-/- →Rag-1-/- mice (post-transfer treatment) were treated with A213 every 3 days. Salivary volume, severity of sialadenitis and cytokine production from M3R peptide-stimulated splenocytes and lymph node cells were examined. Effects of A213 on cytokine production were analysed by enzyme-linked immunosorbent assay (ELISA) and on T helper type 1 (Th1), Th17 and Th2 differentiation from CD4+ T cells by flow cytometry. Pretransfer A213 treatment maintained salivary volume, improved MIS and reduced interferon (IFN)-γ and interleukin (IL)-17 production significantly compared with phosphate-buffered saline (PBS) (P < 0·05). These suppressive effects involved CD4+ T cells rather than CD11c+ cells. Post-transfer treatment with A213 increased salivary volume (P < 0·05), suppressed MIS (P < 0·005) and reduced IFN-γ and IL-17 production (P < 0·05). In vitro, A213 suppressed IFN-γ and IL-17 production from M3R-stimulated splenocytes and CD4+ T cells of immunized M3R-/- mice (P < 0·05). In contrast with M3R specific responses, A213 suppressed only IL-17 production from Th17 differentiated CD4+ T cells without any effect on Th1 and Th2 differentiation in vitro. Our findings suggested that RORγt antagonism is potentially suitable treatment strategy for SS-like sialadenitis through suppression of IL-17 and IFN-γ production by M3R-specific T cells.
Collapse
Affiliation(s)
- M Tahara
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| | - H Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| | - S Segawa
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| | - H Asashima
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| | - M Iizuka-Koga
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| | - T Hirota
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| | - H Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| | - Y Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| | - M Matsui
- Department of Internal Medicine, Fureai Higashitotsuka Hospital, Yokohama, Kanagawa, Japan
| | - I Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| | - T Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki
| |
Collapse
|
22
|
Busse PJ, Birmingham JM, Calatroni A, Manzi J, Goryachokovsky A, Fontela G, Federman AD, Wisnivesky JP. Effect of aging on sputum inflammation and asthma control. J Allergy Clin Immunol 2016; 139:1808-1818.e6. [PMID: 27725186 DOI: 10.1016/j.jaci.2016.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aged asthmatic patients experience increased morbidity and mortality. Knowledge of the aging effect on airway inflammation and asthma control is limited. OBJECTIVE We sought to compare airway inflammation and its relationship to asthma control in aged versus younger patients and determine whether differences are asthma specific or caused by "inflamm-aging." METHODS We performed a prospective study of aged (>60 years) and younger (21-40 years) inner-city patients with asthma. After a run-in period to control for inhaled corticosteroid use, induced sputum was collected. Age-matched nonasthmatic control subjects were included to measure age-related inflammatory changes. RESULTS Aged (mean age, 67.9 ± 5.1 years; n = 35) compared with younger (mean age, 30.8 ± 5.9 years; n = 37) asthmatic patients had significantly worse asthma control and lower FEV1. Aged asthmatic patients had higher sputum neutrophil (30.5 × 104/mL and 23.1%) and eosinophil (7.0 × 104/mL and 3.8%) numbers and percentages compared with younger patients (neutrophils, 13.0 × 104/mL [P < .01] and 6.9% [P < .01]; eosinophils, 2.0 × 104/mL [P < .01] and 1.2% [P < .01]). Aged asthmatic patients had higher sputum IL-6 (P < .01) and IL-8 (P = .01) levels. No significant inflammatory differences between aged and younger control subjects were observed. In aged asthmatic patients increased sputum IL-6 and macrophage inflammatory protein 3α/CCL20 levels were significantly associated with decreased asthma control and increased sputum neutrophil numbers and IL-1β, IL-6, and macrophage inflammatory protein 3α/CCL20 levels were associated with hospitalization. CONCLUSIONS The inflammatory patterns of aged versus younger asthmatic patients are associated with increased sputum neutrophil and eosinophil values and cytokine levels related to neutrophil recruitment. Differences in airway inflammation can contribute to diminished asthma control in the aged. Further understanding of asthma pathophysiology in aged patients is needed to improve management of this vulnerable population.
Collapse
Affiliation(s)
- Paula J Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Janette M Birmingham
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Joseph Manzi
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anna Goryachokovsky
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Giselle Fontela
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alex D Federman
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Juan P Wisnivesky
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
23
|
Regulatory T-cells and IL17A+ cells infiltrate oral lichen planus lesions. Pathology 2016; 48:564-73. [DOI: 10.1016/j.pathol.2016.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/11/2016] [Accepted: 06/09/2016] [Indexed: 12/29/2022]
|
24
|
Wang J, Zhao C, Kong P, Sun H, Sun Z, Bian G, Sun Y, Guo L. Treatment with NAD(+) inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice. Int Immunopharmacol 2016; 39:287-294. [PMID: 27500459 DOI: 10.1016/j.intimp.2016.07.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 10/21/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored.
Collapse
Affiliation(s)
- Jueqiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Congying Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Peng Kong
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Heping West Road 215, Shijiazhuang, Hebei 050000, China
| | - Zhe Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Guanyun Bian
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
25
|
Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016; 34:1504-1514. [PMID: 26878294 DOI: 10.1016/j.vaccine.2016.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/14/2023]
Abstract
Th17 cells are characterized as preferential producer of interleukins including IL-17A, IL-17F, IL-21 and IL-22. Corresponding receptors of these cytokines are expressed on number of cell types found in the mucosa, including epithelial cells and fibroblasts which constitute the prime targets of the Th17-associated cytokines. Binding of IL-17 family members to their corresponding receptors lead to modulation of antimicrobial functions of target cells including alveolar epithelial cells. Stimulated alveolar epithelial cells produce antimicrobial peptides and are involved in granulepoesis, neutrophil recruitment and tissue repair. Mucosal immunity mediated by Th17 cells is protective against numerous pulmonary pathogens including extracellular bacterial and fungal pathogens. This review focuses on the protective role of Th17 cells during pulmonary infection, highlighting subset differentiation, effector cytokines production, followed by study of the binding of these cytokines to their corresponding receptors, the subsequent signaling pathway they engender and their effector role in host defense.
Collapse
Affiliation(s)
- Jitendra Singh Rathore
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA; Gautam Buddha University, School of Biotechnology, Greater Noida, Yamuna Expressway, Uttar Pradesh, India.
| | - Yan Wang
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
26
|
Malard F, Gaugler B, Lamarthee B, Mohty M. Translational opportunities for targeting the Th17 axis in acute graft-vs.-host disease. Mucosal Immunol 2016; 9:299-308. [PMID: 26813345 DOI: 10.1038/mi.2015.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/02/2015] [Indexed: 02/04/2023]
Abstract
Allogeneic stem cell transplantation (allo-SCT) is a curative therapy for different life-threatening malignant and non-malignant hematologic disorders. Acute graft-vs.-host disease (aGVHD) and particularly gastrointestinal aGVHD remains a major source of morbidity and mortality following allo-SCT, which limits the use of this treatment in a broader spectrum of patients. Better understanding of aGVHD pathophysiology is indispensable to identify new therapeutic targets for aGVHD prevention and therapy. Growing amount of data suggest a role for T helper (Th)17 cells in aGVHD pathophysiology. In this review, we will discuss the current knowledge in this area in animal models and in humans. We will then describe new potential treatments for aGVHD along the Th17 axis.
Collapse
Affiliation(s)
- F Malard
- Université Pierre et Marie Curie, Paris, France.,Centre de recherche Saint-Antoine, INSERM, UMRs 938, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, APHP, Paris, France.,INSERM, UMR 1064-Center for Research in Transplantation and Immunology, Nantes, F44093 France
| | - B Gaugler
- Université Pierre et Marie Curie, Paris, France.,Centre de recherche Saint-Antoine, INSERM, UMRs 938, Paris, France
| | - B Lamarthee
- Université Pierre et Marie Curie, Paris, France.,Centre de recherche Saint-Antoine, INSERM, UMRs 938, Paris, France
| | - M Mohty
- Université Pierre et Marie Curie, Paris, France.,Centre de recherche Saint-Antoine, INSERM, UMRs 938, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, APHP, Paris, France
| |
Collapse
|
27
|
Shen W, Hixon JA, McLean MH, Li WQ, Durum SK. IL-22-Expressing Murine Lymphocytes Display Plasticity and Pathogenicity in Reporter Mice. Front Immunol 2016; 6:662. [PMID: 26834739 PMCID: PMC4717188 DOI: 10.3389/fimmu.2015.00662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/26/2015] [Indexed: 12/31/2022] Open
Abstract
IL-22 has multiple activities ranging from tissue repair to inflammation. To characterize the pathogenicity and plasticity of cells that produce IL-22, a novel reporter mouse strain was generated. Homeostatic IL-22 reporter expression was observed in intestinal lymphoid cells identified as CD4 T cells and ILC3 cells. In a model of inflammatory bowel disease, CD4 T cells strongly expressed the IL-22 reporter in mesenteric lymph node. To examine plasticity of IL-22(+) T cells, they were purified after generation in vitro or in vivo from inflamed colon, and then cultured under Th1, Th2, or Th17 conditions. In vitro-generated IL-22(+) CD4 T cells showed relatively durable IL-22 expression under Th1 or Th2 conditions, whereas in vivo-generated cells rapidly lost IL-22 expression under these conditions. In vitro-generated cells could not be diverted to express Th1 or Th2 cytokines despite the expression of "master regulators." In vivo-generated cells could be diverted, at very low frequency, to express Th1 or Th2 cytokines. Both in vitro- and in vivo-generated cells could be induced in vitro to express high levels of IL-17A and IL-17F, assigning them to a "Th17 biased" class. However, IL-27 potently downregulated IL-22 expression. To examine IL-22(+) T cell pathogenicity, in vitro-generated cells were transferred into Rag1(-/-) mice, retaining the modest reporter expression and inducing moderate colitis. In contrast, IL-22 expressers from colitic mice, transferred into secondary hosts, lost reporter expression, acquired high T-bet and modest IFNγ and IL-17 expression, and induced severe colitis. These findings are consistent with a model of strong polarization under optimal in vitro conditions, but a plastic state of T cells in vivo.
Collapse
Affiliation(s)
- Wei Shen
- Cancer and Inflammation Program, Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Julie A. Hixon
- Cancer and Inflammation Program, Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Mairi H. McLean
- Cancer and Inflammation Program, Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Wen Qing Li
- Cancer and Inflammation Program, Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Scott K. Durum
- Cancer and Inflammation Program, Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
28
|
Liu Y, Zeng M, Liu Z. Th17 response and its regulation in inflammatory upper airway diseases. Clin Exp Allergy 2015; 45:602-12. [PMID: 25048954 DOI: 10.1111/cea.12378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two widely prevalent inflammatory diseases in the upper airways. T cell immunity has been suggested to play an important pathogenic role in many chronic inflammatory diseases including inflammatory upper airway diseases. Inappropriate CD4(+) T cell responses, especially the dysregulation of the Th1/Th2 balance leading to excessive Th1 or Th2 cell activation, have been associated with allergic rhinitis and chronic rhinosinusitis. Nevertheless, recent studies suggest that IL-17A and IL-17A-producing Th17 cell subset, a distinct pro-inflammatory CD4(+) T cell lineage, may also play an important role in the pathophysiology of inflammatory upper airway diseases. Th17 cells may promote both eosinophilic and neutrophilic inflammation in AR and CRS. In addition, a few, but accumulating evidence shows that the Th17 responses can be tightly regulated by endogenous and exogenous substances in the context of AR and CRS. This review discusses recent advances in our understanding of the expression and function of the Th17 response and its regulation in inflammatory upper airway diseases, and the perspective for future investigation and clinical utility.
Collapse
Affiliation(s)
- Y Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
29
|
Arbelaez CA, Glatigny S, Duhen R, Eberl G, Oukka M, Bettelli E. IL-7/IL-7 Receptor Signaling Differentially Affects Effector CD4+ T Cell Subsets Involved in Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26223651 DOI: 10.4049/jimmunol.1403135] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-17-producing CD4(+) T (Th17) cells, along with IFN-γ-expressing Th1 cells, represent two major pathogenic T cell subsets in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). The cytokines and transcription factors involved in the development and effector functions of Th1 and Th17 cells have been largely characterized. Among them, IL-23 is essential for the generation of stable and encephalitogenic Th17 cells and for the development of EAE. The IL-7/IL-7R signaling axis participates in cell survival, and perturbation of this pathway has been associated with enhanced susceptibility to MS. A link between IL-23-driven pathogenic T cells and IL-7/IL-7R signaling has previously been proposed, but has not been formally addressed. In the current study, we showed that Th17 cells from mice with EAE express high levels of IL-7Rα compared with Th1 cells. Using mice that constitutively express IL-7Rα on T cells, we determined that sustained IL-7R expression in IL-23R-deficient mice could not drive pathogenic T cells and the development of EAE. IL-7 inhibited the differentiation of Th17 cells, but promoted IFN-γ and GM-CSF secretion in vitro. In vivo IL-7/anti-IL-7 mAb complexes selectively expanded and enhanced the proliferation of CXCR3-expressing Th1 cells, but did not impact Th17 cells and EAE development in wild-type and IL-23R-deficient mice. Importantly, high IL-7 expression was detected in the CNS during EAE and could drive the plasticity of Th17 cells to IFN-γ-producing T cells. Together, these data address the contribution of IL-23/IL-23R and IL-7/IL-7R signaling in Th17 and Th1 cell dynamics during CNS autoimmunity.
Collapse
Affiliation(s)
- Carlos A Arbelaez
- Department of Immunology, University of Washington, Seattle, WA 98101; Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Simon Glatigny
- Department of Immunology, University of Washington, Seattle, WA 98101; Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Rebekka Duhen
- Department of Immunology, University of Washington, Seattle, WA 98101; Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - Gerard Eberl
- Lymphoid Tissue Development Unit, Pasteur Institute, Paris 75724, France; and
| | - Mohamed Oukka
- Department of Immunology, University of Washington, Seattle, WA 98101; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Estelle Bettelli
- Department of Immunology, University of Washington, Seattle, WA 98101; Immunology Program, Benaroya Research Institute, Seattle, WA 98101;
| |
Collapse
|
30
|
Basdeo SA, Moran B, Cluxton D, Canavan M, McCormick J, Connolly M, Orr C, Mills KHG, Veale DJ, Fearon U, Fletcher JM. Polyfunctional, Pathogenic CD161+ Th17 Lineage Cells Are Resistant to Regulatory T Cell-Mediated Suppression in the Context of Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:528-40. [PMID: 26062995 DOI: 10.4049/jimmunol.1402990] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/13/2015] [Indexed: 01/15/2023]
Abstract
In autoimmune diseases such as rheumatoid arthritis (RA), regulatory T cells (Tregs) fail to constrain autoimmune inflammation; however, the reasons for this are unclear. We investigated T cell regulation in the RA joint. Tregs from RA synovial fluid suppressed autologous responder T cells; however, when compared with Tregs from healthy control peripheral blood, they were significantly less suppressive. Despite their reduced suppressive activity, Tregs in the RA joint were highly proliferative and expressed FOXP3, CD39, and CTLA-4, which are markers of functional Tregs. This suggested that the reduced suppression is due to resistance of RA synovial fluid responder T cells to Treg inhibition. CD161(+) Th17 lineage cells were significantly enriched in the RA joint; we therefore investigated their relative susceptibility to Treg-mediated suppression. Peripheral blood CD161(+) Th cells from healthy controls were significantly more resistant to Treg-mediated suppression, when compared with CD161(-) Th cells, and this was mediated through a STAT3-dependant mechanism. Furthermore, depletion of CD161(+) Th cells from the responder T cell population in RA synovial fluid restored Treg-mediated suppression. In addition, CD161(+) Th cells exhibited pathogenic features, including polyfunctional proinflammatory cytokine production, an ability to activate synovial fibroblasts, and to survive and persist in the inflamed and hypoxic joint. Because CD161(+) Th cells are known to be enriched at sites of autoinflammation, our finding that they are highly proinflammatory and resistant to Treg-mediated suppression suggests an important pathogenic role in RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Sharee A Basdeo
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Deborah Cluxton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Mary Canavan
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Jennifer McCormick
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Mary Connolly
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Carl Orr
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Douglas J Veale
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Ursula Fearon
- Department of Rheumatology, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin 4, Ireland; and
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
31
|
Abstract
The discovery that the IL-23-IL-17 immune pathway is involved in many models of autoimmune disease has changed the concept of the role of T-helper cell subsets in the development of autoimmunity. In addition to TH17 cells, IL-17 is also produced by other T cell subsets and innate immune cells; which of these IL-17-producing cells have a role in tissue inflammation, and the timing, location and nature of their role(s), is incompletely understood. The current view is that innate and adaptive immune cells expressing the IL-23 receptor become pathogenic after exposure to IL-23, but further investigation into the role of IL-23 and IL-17 at different stages in the development and progression of chronic (destructive) inflammatory diseases is needed. Rheumatoid arthritis (RA) and spondyloarthritis (SpA) are the two most common forms of chronic immune-mediated inflammatory arthritis, and the IL-23-IL-17 axis is thought to have a critical role in both. This Review discusses the basic mechanisms of these cytokines in RA and SpA on the basis of findings from disease-specific animal models as well as human ex vivo studies. Promising therapeutic applications to modulate this immune pathway are in development or have already been approved. Blockade of IL-17 and/or TH17-cell activity in combination with anti-TNF therapy might be a successful approach to achieving stable remission or even prevention of chronic immune-mediated inflammatory diseases.
Collapse
|
32
|
Stimulation with Concanavalin-A Induces IL-17 Production by Canine Peripheral T Cells. Vet Sci 2015; 2:43-51. [PMID: 29061930 PMCID: PMC5644620 DOI: 10.3390/vetsci2020043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/14/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
The characteristics of canine IL-17-producing cells are incompletely understood. Expression of mRNA encoding orthologs of IL-17 and the IL-17 receptor has been documented in tissues from dogs with arthritis, inflammatory bowel disease, and lymphoma; however, no associations have been found between IL-17 gene expression and disease phenotype in these conditions. Robust assessment of the role of IL-17-producing cells in dogs will require measuring the frequency of these cells in health and disease in balance with other lymphocyte subsets. The aim of this study was to confirm that the T-cell IL-17 response in dogs is evolutionarily conserved. Canine peripheral blood mononuclear cells were stimulated with Concanavalin A with or without polarizing cytokines. We used a canine specific IL-17 ELISA and flow cytometry to identify IL-17-producing T cells. Accumulation of intracellular IL-17 was observed in stimulated CD4 and CD8 T cells. The addition of pro-inflammatory cytokines appeared to enhance polarization of canine CD4 T cells to the Th17 phenotype. Conversely, the addition of IL-2 in the presence of TGF-β resulted in expansion of Treg cells. We conclude that canine IL-17-producing cells behave similarly to those from humans and mice when stimulated with mitogens and polarized with pro-inflammatory or immune regulatory cytokines.
Collapse
|
33
|
Ravichandran J, Jackson RJ, Trivedi S, Ranasinghe C. IL-17A expression in HIV-specific CD8 T cells is regulated by IL-4/IL-13 following HIV-1 prime-boost immunization. J Interferon Cytokine Res 2015; 35:176-85. [PMID: 25493691 PMCID: PMC4350450 DOI: 10.1089/jir.2014.0078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/22/2014] [Indexed: 01/25/2023] Open
Abstract
Although Th1 and Th2 cytokines can inhibit interleukin (IL)-17-secreting T cells, how these cells are regulated under different infectious conditions is still debated. Our previous studies have shown that vaccination of IL-4 and IL-13 gene knockout (KO) mice can induce high-avidity HIV K(d)Gag197-205-specific CD8 T cells with better protective efficacy. In this study, when IL-13, IL-4, STAT6 KO, and wild-type BALB/c mice were prime-boost immunized with an HIV poxviral modality, elevated numbers of IL-17A(+) splenic K(d)Gag197-205-specific CD8 T cells were observed in all the KO mice compared with the wt BALB/c control. Similarly, when wt BALB/c mice were immunized with IL-13Rα2-adjuvanted HIV vaccines (that transiently inhibited IL-13 activity and induced high-avidity CD8 T cells with enhanced protective efficacy), elevated IL-17A(+) K(d)Gag197-205-specific CD8 T cells were detected both in the lung and the spleen. However, at the transcriptional level, elevated TGF-β, IL-6, ROR-γt, and IL-17A mRNA copy numbers were mainly detected in IL-4 KO, but not the IL-13 KO mice. These data suggested that TGF-β, IL-6, ROR-γt, but not IL-23a, played a role in IL-17A regulation in K(d)Gag197-205-specific CD8 T cells. Collectively, our findings suggest that IL-4 and IL-13 differentially regulate the expression of IL-17A in K(d)Gag197-205-specific CD8 T cells at the transcriptional and translational level, respectively, implicating IL-17A as an indirect modulator of CD8 T cell avidity and protective immunity.
Collapse
Affiliation(s)
- Jayashree Ravichandran
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University , Canberra, Australia
| | | | | | | |
Collapse
|
34
|
Th17 differentiation and their pro-inflammation function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 841:99-151. [PMID: 25261206 DOI: 10.1007/978-94-017-9487-9_5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD4(+) T helper cells are classical but constantly reinterpreted T-cell subset, playing critical roles in a diverse range of inflammatory responses or diseases. Depending on the cytokines they release and the immune responses they mediate, CD4(+) T cells are classically divided into two major cell populations: Th1 and Th2 cells. However, recent studies challenged this Th1/Th2 paradigm by discovering several T-helper cell subsets with specific differentiation program and functions, including Th17 cells, Treg cells, and Tfh cells. In this chapter, we summarize the current understanding and recent progresses on the Th17 lineage differentiation and its effector impacts on variety of inflammatory responses or disease pathogenesis.
Collapse
|
35
|
Jia L, Wu C. Differentiation, regulation and function of Th9 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 841:181-207. [PMID: 25261208 DOI: 10.1007/978-94-017-9487-9_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naïve CD4(+) T cells are activated and differentiate to distinct lineages of T helper (Th) cells, which are involved in physiological and pathological processes by obtaining the potential to produce different lineage-specific cytokines that mediate adaptive immunity. In the past decade, our knowledge of Th cells has been significantly expanded with the findings of new lineages. Interleukin (IL)-9 producing T cells are recently identified. In consideration of the ability to preferentially secret IL-9, these cells are termed Th9 cells. Given the multiple function of IL-9, Th9 cells participate in the lesion of many diseases, such as allergic inflammation, tumor, and parasitosis. In this chapter, we will focus on the cytokines, co-stimulatory factors, and transcriptional signaling pathways, which regulate Th9 cells development as well as stability, plasticity, and the multiple roles of Th9 cells in vivo.
Collapse
Affiliation(s)
- Lei Jia
- Key Laboratory of Tropical Disease Control Research of Ministry of Education, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-Sen University, 74th, Zhongshan 2nd Road, Guangzhou, 510080, China
| | | |
Collapse
|
36
|
Yang BH, Floess S, Hagemann S, Deyneko IV, Groebe L, Pezoldt J, Sparwasser T, Lochner M, Huehn J. Development of a unique epigenetic signature during in vivo Th17 differentiation. Nucleic Acids Res 2015; 43:1537-48. [PMID: 25593324 PMCID: PMC4330377 DOI: 10.1093/nar/gkv014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activated naive CD4+ T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4+ T cells, Th1 and Th17 cells. We could demonstrate that naive CD4+ T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells.
Collapse
Affiliation(s)
- Bi-Huei Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Hagemann
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Igor V Deyneko
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Groebe
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joern Pezoldt
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Sparwasser
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Matthias Lochner
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
37
|
de Pablo R, Monserrat J, Prieto A, Alvarez-Mon M. Role of circulating lymphocytes in patients with sepsis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:671087. [PMID: 25302303 PMCID: PMC4163419 DOI: 10.1155/2014/671087] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 01/11/2023]
Abstract
Sepsis is a systemic inflammatory response syndrome due to infection. The incidence rate is estimated to be up to 19 million cases worldwide per year and the number of cases is rising. Infection triggers a complex and prolonged host response, in which both the innate and adaptive immune response are involved. The disturbance of immune system cells plays a key role in the induction of abnormal levels of immunoregulatory molecules. Furthermore, the involvement of effector immune system cells also impairs the host response to the infective agents and tissue damage. Recently, postmortem studies of patients who died of sepsis have provided important insights into why septic patients die and showed an extensive depletion of CD4 and CD8 lymphocytes and they found that circulating blood cells showed similar findings. Thus, the knowledge of the characterization of circulating lymphocyte abnormalities is relevant for the understanding of the sepsis pathophysiology. In addition, monitoring the immune response in sepsis, including circulating lymphocyte subsets count, appears to be potential biomarker for predicting the clinical outcome of the patient. This paper analyzes the lymphocyte involvement and dysfunction found in patients with sepsis and new opportunities to prevent sepsis and guide therapeutic intervention have been revealed.
Collapse
Affiliation(s)
- Raul de Pablo
- Intensive Care Unit, University Hospital “Príncipe de Asturias”, University of Alcala, Alcala de Henares, 28805 Madrid, Spain
- Laboratory of Immune System Diseases and Oncology, National Biotechnology Center (CNB-CSIC) Associated Unit, Department of Medicine and Medical Specialties, University of Alcala, 28871 Madrid, Spain
| | - Jorge Monserrat
- Laboratory of Immune System Diseases and Oncology, National Biotechnology Center (CNB-CSIC) Associated Unit, Department of Medicine and Medical Specialties, University of Alcala, 28871 Madrid, Spain
| | - Alfredo Prieto
- Laboratory of Immune System Diseases and Oncology, National Biotechnology Center (CNB-CSIC) Associated Unit, Department of Medicine and Medical Specialties, University of Alcala, 28871 Madrid, Spain
| | - Melchor Alvarez-Mon
- Laboratory of Immune System Diseases and Oncology, National Biotechnology Center (CNB-CSIC) Associated Unit, Department of Medicine and Medical Specialties, University of Alcala, 28871 Madrid, Spain
- Immune System Diseases and Oncology Service, University Hospital “Príncipe de Asturias”, University of Alcala, Alcala de Henares, 28805 Madrid, Spain
| |
Collapse
|
38
|
Glosson-Byers NL, Sehra S, Stritesky GL, Yu Q, Awe O, Pham D, Bruns HA, Kaplan MH. Th17 cells demonstrate stable cytokine production in a proallergic environment. THE JOURNAL OF IMMUNOLOGY 2014; 193:2631-40. [PMID: 25086171 DOI: 10.4049/jimmunol.1401202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Th17 cells are critical for the clearance of extracellular bacteria and fungi, but also contribute to the pathology of autoimmune diseases and allergic inflammation. After exposure to an appropriate cytokine environment, Th17 cells can acquire a Th1-like phenotype, but less is known about their ability to adopt Th2 and Th9 effector programs. To explore this in more detail, we used an IL-17F lineage tracer mouse strain that allows tracking of cells that formerly expressed IL-17F. In vitro-derived Th17 cells adopted signature cytokine and transcription factor expression when cultured under Th1-, Th2-, or Th9-polarizing conditions. In contrast, using two models of allergic airway disease, Th17 cells from the lungs of diseased mice did not adopt Th1, Th2, or Th9 effector programs, but remained stable IL-17 secretors. Although in vitro-derived Th17 cells expressed IL-4Rα, those induced in vivo during allergic airway disease did not, possibly rendering them unresponsive to IL-4-induced signals. However, in vitro-derived, Ag-specific Th17 cells transferred in vivo to OVA and aluminum hydroxide-sensitized mice also maintained IL-17 secretion and did not produce alternative cytokines upon subsequent OVA challenge. Thus, although Th17 cells can adopt new phenotypes in response to some inflammatory environments, our data suggest that in allergic inflammation, Th17 cells are comparatively stable and retain the potential to produce IL-17. This might reflect a cytokine environment that promotes Th17 stability, and allow a broader immune response at tissue barriers that are susceptible to allergic inflammation.
Collapse
Affiliation(s)
- Nicole L Glosson-Byers
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Sarita Sehra
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202
| | - Gretta L Stritesky
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Qing Yu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202
| | - Olufolakemi Awe
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Duy Pham
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Heather A Bruns
- Department of Biology, Ball State University, Muncie, IN 47306
| | - Mark H Kaplan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN 46202; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| |
Collapse
|
39
|
Tian Y, Wu Y, Ni B. Signaling Pathways and Epigenetic Regulations in the Control ofRORγtExpression in T Helper 17 Cells. Int Rev Immunol 2014; 34:305-17. [DOI: 10.3109/08830185.2014.911858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Chognard G, Bellemare L, Pelletier AN, Dominguez-Punaro MC, Beauchamp C, Guyon MJ, Charron G, Morin N, Sivanesan D, Kuchroo V, Xavier R, Michnick SW, Chemtob S, Rioux JD, Lesage S. The dichotomous pattern of IL-12r and IL-23R expression elucidates the role of IL-12 and IL-23 in inflammation. PLoS One 2014; 9:e89092. [PMID: 24586521 PMCID: PMC3931659 DOI: 10.1371/journal.pone.0089092] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
IL-12 and IL-23 cytokines respectively drive Th1 and Th17 type responses. Yet, little is known regarding the biology of these receptors. As the IL-12 and IL-23 receptors share a common subunit, it has been assumed that these receptors are co-expressed. Surprisingly, we find that the expression of each of these receptors is restricted to specific cell types, in both mouse and human. Indeed, although IL-12Rβ2 is expressed by NK cells and a subset of γδ T cells, the expression of IL-23R is restricted to specific T cell subsets, a small number of B cells and innate lymphoid cells. By exploiting an IL-12- and IL-23-dependent mouse model of innate inflammation, we demonstrate an intricate interplay between IL-12Rβ2 NK cells and IL-23R innate lymphoid cells with respectively dominant roles in the regulation of systemic versus local inflammatory responses. Together, these findings support an unforeseen lineage-specific dichotomy in the in vivo role of both the IL-12 and IL-23 pathways in pathological inflammatory states, which may allow more accurate dissection of the roles of these receptors in chronic inflammatory diseases in humans.
Collapse
MESH Headings
- Animals
- Cytokines/blood
- DNA Primers/genetics
- DNA, Complementary/genetics
- Flow Cytometry
- Histological Techniques
- Humans
- Inflammation/immunology
- Inflammation/metabolism
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Killer Cells, Natural/metabolism
- Mice
- Models, Immunological
- Receptors, Interleukin/immunology
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-12/immunology
- Receptors, Interleukin-12/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Statistics, Nonparametric
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Gaëlle Chognard
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lisa Bellemare
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Adam-Nicolas Pelletier
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | - Marie-Josée Guyon
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada
| | - Guy Charron
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
| | - Nicolas Morin
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
| | - Durga Sivanesan
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Vijay Kuchroo
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ramnik Xavier
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, United States of America
| | | | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Ste-Justine Research Center, Montréal, Québec, Canada
| | - John D. Rioux
- Research Center, Montreal Heart Institute, Montréal, Québec, Canada
- Département de Médicine, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Research Center, Maisonneuve-Rosemont Hospital, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
41
|
Kuiper JJW, Rothova A, Schellekens PAW, Ossewaarde-van Norel A, Bloem AC, Mutis T. Detection of choroid- and retina-antigen reactive CD8(+) and CD4(+) T lymphocytes in the vitreous fluid of patients with birdshot chorioretinopathy. Hum Immunol 2014; 75:570-7. [PMID: 24530754 DOI: 10.1016/j.humimm.2014.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/03/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
Abstract
Birdshot chorioretinopathy (BSCR), a progressive form of non-infectious uveitis, is the strongest HLA-associated disease described to date, with >95% of the patients displaying HLA-A29. Since indirect evidence indicates the involvement of T cells in the etiopathology of the disease, we now isolated, cultured and analyzed the vitreous fluid-infiltrating T cells from two BSCR patients with respect to their phenotype, cytokine profile, clonal distribution and antigen specificity. Phenotypic analyses revealed the predominant presence of both CD4(+) and CD8(+) T cells in vitreous fluid. Further analyses on short term expanded and cloned T cells suggested that eye-infiltrating T cells generally displayed a Th1 like cytokine profile with secretion of high levels of IFN-γ and TNF-α. In one patient an oligoclonal CD4(+) and CD8(+) T cell infiltration, with a moderate to strongly skewed TCR Vβ usage was suggestive for an antigen driven infiltration/expansion. Indeed, a number of intraocular CD4(+) and CD8(+) T cells responded to crude retinal and choroidal lysates. These results, which demonstrate for the first time the existence of eye-antigen-specific T cells in the vitreous fluid of BSCR patients, substantiate the current view on the role of eye-antigen specific T cells in the etiopathology of BSCR.
Collapse
Affiliation(s)
- Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Aniki Rothova
- Department of Ophthalmology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Ophthalmology, Erasmus Medical Center Rotterdam, Doctor Molewaterplein 50-60, 3015 GJ Rotterdam, The Netherlands
| | - Peter A W Schellekens
- Department of Ophthalmology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Annette Ossewaarde-van Norel
- Department of Ophthalmology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Andries C Bloem
- Department of Medical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Tuna Mutis
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
42
|
Parachuru VPB, Coates DE, Milne TJ, Hussaini HM, Rich AM, Seymour GJ. Forkhead box P3-positive regulatory T-cells and interleukin 17-positive T-helper 17 cells in chronic inflammatory periodontal disease. J Periodontal Res 2014; 49:817-26. [DOI: 10.1111/jre.12169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2013] [Indexed: 11/30/2022]
Affiliation(s)
- V. P. B. Parachuru
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - D. E. Coates
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - T. J. Milne
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - H. M. Hussaini
- Department of Oral Pathology and Oral Medicine; Faculty of Dentistry; Universiti Kebangsaan Malaysia (UKM); Kuala Lumpur Malaysia
| | - A. M. Rich
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - G. J. Seymour
- School of Dentistry; Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| |
Collapse
|
43
|
Burkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM, Huang RP. Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta Rev Cancer 2014; 1845:182-201. [PMID: 24440852 DOI: 10.1016/j.bbcan.2014.01.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/14/2022]
Abstract
Until recently, the intrinsically high level of cross-talk between immune cells, the complexity of immune cell development, and the pleiotropic nature of cytokine signaling have hampered progress in understanding the mechanisms of immunosuppression by which tumor cells circumvent native and adaptive immune responses. One technology that has helped to shed light on this complex signaling network is the cytokine antibody array, which facilitates simultaneous screening of dozens to hundreds of secreted signal proteins in complex biological samples. The combined applications of traditional methods of molecular and cell biology with the high-content, high-throughput screening capabilities of cytokine antibody arrays and other multiplexed immunoassays have revealed a complex mechanism that involves multiple cytokine signals contributed not just by tumor cells but by stromal cells and a wide spectrum of immune cell types. This review will summarize the interactions among cancerous and immune cell types, as well as the key cytokine signals that are required for tumors to survive immunoediting in a dormant state or to grow and spread by escaping it. Additionally, it will present examples of how probing secreted cell-cell signal networks in the tumor microenvironment (TME) with cytokine screens have contributed to our current understanding of these processes and discuss the implications of this understanding to antitumor therapies.
Collapse
Affiliation(s)
- Brett Burkholder
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA
| | | | - Rob Burgess
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA
| | - Shuhong Luo
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA; RayBiotech, Inc., Guangzhou 510600, China
| | | | | | | | | | | | | | - Ruo-Pan Huang
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA; RayBiotech, Inc., Guangzhou 510600, China; South China Biochip Research Center, Guangzhou 510630, China.
| |
Collapse
|
44
|
Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, Ge XL, Zhang J, Song XJ, Wang Y, Guo L. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol 2013; 250:239-49. [DOI: 10.1016/j.expneurol.2013.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022]
|
45
|
Th17-cell plasticity in Helicobacter hepaticus-induced intestinal inflammation. Mucosal Immunol 2013; 6:1143-56. [PMID: 23462910 DOI: 10.1038/mi.2013.11] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/30/2013] [Indexed: 02/04/2023]
Abstract
Bacterial-induced intestinal inflammation is crucially dependent on interleukin (IL)-23 and is associated with CD4(+) T helper type 1 (Th1) and Th17 responses. However, the relative contributions of these subsets during the induction and resolution of colitis in T-cell-sufficient hosts remain unknown. We report that Helicobacter hepaticus-induced typhlocolitis in specific pathogen-free IL-10(-/-) mice is associated with elevated frequencies and numbers of large intestinal interferon (IFN)-γ(+) and IFN-γ(+)IL-17A(+) CD4(+) T cells. By assessing histone modifications and transcript levels in IFN-γ(+), IFN-γ(+)IL-17A(+), and IL-17A(+) CD4(+) T cells isolated from the inflamed intestine, we show that Th17 cells are predisposed to upregulate the Th1 program and that they express IL-23R but not IL-12R. Using IL-17A fate-reporter mice, we further demonstrate that H. hepaticus infection gives rise to Th17 cells that extinguish IL-17A secretion and turn on IFN-γ within 10 days post bacterial inoculation. Together, our results suggest that bacterial-induced Th17 cells arising in disease-susceptible hosts contribute to intestinal pathology by switching phenotype, transitioning via an IFN-γ(+)IL-17A(+) stage, to become IFN-γ(+) ex-Th17 cells.
Collapse
|
46
|
Grifka-Walk HM, Lalor SJ, Segal BM. Highly polarized Th17 cells induce EAE via a T-bet independent mechanism. Eur J Immunol 2013; 43:2824-31. [PMID: 23878008 DOI: 10.1002/eji.201343723] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/02/2013] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
In the MOG35-55 induced EAE model, autoreactive Th17 cells that accumulate in the central nervous system acquire Th1 characteristics via a T-bet dependent mechanism. It remains to be determined whether Th17 plasticity and encephalitogenicity are causally related to each other. Here, we show that IL-23 polarized T-bet(-/-) Th17 cells are unimpaired in either activation or proliferation, and induce higher quantities of the chemokines RANTES and CXCL2 than WT Th17 cells. Unlike their WT counterparts, T-bet(-/-) Th17 cells retain an IL-17(hi) IFN-γ(neg-lo) cytokine profile following adoptive transfer into syngeneic hosts. This population of highly polarized Th17 effectors is capable of mediating EAE, albeit with a milder clinical course. It has previously been reported that the signature Th1 and Th17 effector cytokines, IFN-γ and IL-17, are dispensable for the development of autoimmune demyelinating disease. The current study demonstrates that the "master regulator" transcription factor, T-bet, is also not universally required for encephalitogenicity. Our results contribute to a growing body of data showing heterogeneity of myelin-reactive T cells and the independent mechanisms they employ to inflict damage to central nervous system tissues, complicating the search for therapeutic targets relevant across the spectrum of individuals with multiple sclerosis.
Collapse
Affiliation(s)
- Heather M Grifka-Walk
- Holtom-Garrett Program in Neuroimmunology and Multiple Sclerosis Center, Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
47
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
48
|
Cheng H, Tian J, Zeng L, Pan B, Li Z, Song G, Chen W, Xu K. Halofugine prevents cutaneous graft versus host disease by suppression of Th17 differentiation. Hematology 2013; 17:261-7. [PMID: 22971531 DOI: 10.1179/1607845412y.0000000016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hai Cheng
- Department of HematologyThe Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Jing Tian
- Xuzhou Children's Hospital, Xuzhou, China
| | - Lingyu Zeng
- Department of HematologyThe Affiliated Hospital of Xuzhou Medical College, Xuzhou, China; and Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Bin Pan
- Laboratory of Transplantation and ImmunologyXuzhou Medical College, Xuzhou, China
| | - Zhenyu Li
- Department of HematologyThe Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Guoliang Song
- Laboratory of Transplantation and ImmunologyXuzhou Medical College, Xuzhou, China
| | - Wei Chen
- Department of HematologyThe Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Kailin Xu
- Department of HematologyThe Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
49
|
Abstract
CD4(+) T-helper cells regulate immunity and inflammation through the acquisition of potential to secrete specific cytokines. The acquisition of cytokine-secreting potential, in a process termed T-helper cell differentiation, is a response to multiple environmental signals including the cytokine milieu. The most recently defined subset of T-helper cells are termed Th9 and are identified by the potent production of interleukin-9 (IL-9). Given the pleiotropic functions of IL-9, Th9 cells might be involved in pathogen immunity and immune-mediated disease. In this review, I focus on recent developments in understanding the signals that promote Th9 differentiation, the transcription factors that regulate IL-9 expression, and finally the potential roles for Th9 cells in immunity in vivo.
Collapse
Affiliation(s)
- Mark H Kaplan
- Department of Pediatrics, Indiana University School of Medicine, HB Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.
| |
Collapse
|
50
|
Abstract
Discovery of the T-helper 17 (Th17) subset heralded a major shift in T-cell biology and immune regulation. In addition to defining a new arm of the adaptive immune response, studies of the Th17 pathway have led to a greater appreciation of the developmental flexibility, or plasticity, that is a feature of T-cell developmental programs. Since the initial finding that differentiation of Th17 cells is promoted by transforming growth factor-β (TGFβ), it became clear that Th17 cell development overlapped that of induced regulatory T (iTreg) cells. Subsequent findings established that Th17 cells are also unusually flexible in their late developmental programming, demonstrating substantial overlap with conventional Th1 cells through mechanisms that are just beginning to be understood but would appear to have important implications for immunoregulation at homeostasis and in immune-mediated diseases. Herein we examine the developmental and functional features of Th17 cells in relation to iTreg cells, Th1 cells, and Th22 cells, as a basis for understanding the contributions of this pathway to host defense, immune homeostasis, and immune-mediated disease.
Collapse
Affiliation(s)
- Rajatava Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|