1
|
McClure FA, Wemyss K, Cox JR, Bridgeman HM, Prise IE, King JI, Jaigirdar S, Whelan A, Jones GW, Grainger JR, Hepworth MR, Konkel JE. Th17-to-Tfh plasticity during periodontitis limits disease pathology. J Exp Med 2024; 221:e20232015. [PMID: 38819409 PMCID: PMC11143381 DOI: 10.1084/jem.20232015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.
Collapse
Affiliation(s)
- Flora A. McClure
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joshua R. Cox
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Hayley M. Bridgeman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ian E. Prise
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - James I. King
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Shafqat Jaigirdar
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Annie Whelan
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Gareth W. Jones
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John R. Grainger
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew R. Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joanne E. Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Milne SM, Lahiri A, Sanchez CL, Marshall MJ, Jahan I, Meares GP. Myelin oligodendrocyte glycoprotein reactive Th17 cells drive Janus Kinase 1 dependent transcriptional reprogramming in astrocytes and alter cell surface cytokine receptor profiles during experimental autoimmune encephalomyelitis. Sci Rep 2024; 14:13146. [PMID: 38849434 PMCID: PMC11161502 DOI: 10.1038/s41598-024-63877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease affecting the central nervous system (CNS). T helper (Th) 17 cells are involved in the pathogenesis of MS and its animal model of experimental autoimmune encephalomyelitis (EAE) by infiltrating the CNS and producing effector molecules that engage resident glial cells. Among these glial cells, astrocytes have a central role in coordinating inflammatory processes by responding to cytokines and chemokines released by Th17 cells. In this study, we examined the impact of pathogenic Th17 cells on astrocytes in vitro and in vivo. We identified that Th17 cells reprogram astrocytes by driving transcriptomic changes partly through a Janus Kinase (JAK)1-dependent mechanism, which included increased chemokines, interferon-inducible genes, and cytokine receptors. In vivo, we observed a region-specific heterogeneity in the expression of cell surface cytokine receptors on astrocytes, including those for IFN-γ, IL-1, TNF-α, IL-17, TGFβ, and IL-10. Additionally, these receptors were dynamically regulated during EAE induced by adoptive transfer of myelin-reactive Th17 cells. This study overall provides evidence of Th17 cell reprogramming of astrocytes, which may drive changes in the astrocytic responsiveness to cytokines during autoimmune neuroinflammation.
Collapse
MESH Headings
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Animals
- Astrocytes/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
- Myelin-Oligodendrocyte Glycoprotein
- Receptors, Cytokine/metabolism
- Receptors, Cytokine/genetics
- Janus Kinase 1/metabolism
- Mice, Inbred C57BL
- Cytokines/metabolism
- Cellular Reprogramming
- Female
- Cells, Cultured
Collapse
Affiliation(s)
- Sarah M Milne
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Anirudhya Lahiri
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Cristina L Sanchez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Micah J Marshall
- Department of Neurology, The Ohio State University College of Medicine, IBMR 415D, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Ishrat Jahan
- Department of Neurology, The Ohio State University College of Medicine, IBMR 415D, 460 Medical Center Drive, Columbus, OH, 43210, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neurology, The Ohio State University College of Medicine, IBMR 415D, 460 Medical Center Drive, Columbus, OH, 43210, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
- Rockefeller Neuroscience Institute, Morgantown, WV, 26506, USA.
| |
Collapse
|
3
|
Cognate microglia-T cell interactions shape the functional regulatory T cell pool in experimental autoimmune encephalomyelitis pathology. Nat Immunol 2022; 23:1749-1762. [PMID: 36456736 DOI: 10.1038/s41590-022-01360-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
Microglia, the parenchymal brain macrophages of the central nervous system, have emerged as critical players in brain development and homeostasis. The immune functions of these cells, however, remain less well defined. We investigated contributions of microglia in a relapsing-remitting multiple sclerosis paradigm, experimental autoimmune encephalitis in C57BL/6 x SJL F1 mice. Fate mapping-assisted translatome profiling during the relapsing-remitting disease course revealed the potential of microglia to interact with T cells through antigen presentation, costimulation and coinhibition. Abundant microglia-T cell aggregates, as observed by histology and flow cytometry, supported the idea of functional interactions of microglia and T cells during remission, with a bias towards regulatory T cells. Finally, microglia-restricted interferon-γ receptor and major histocompatibility complex mutagenesis significantly affected the functionality of the regulatory T cell compartment in the diseased central nervous system and remission. Collectively, our data establish critical non-redundant cognate and cytokine-mediated interactions of microglia with CD4+ T cells during autoimmune neuroinflammation.
Collapse
|
4
|
Smith KJ, Minns D, McHugh BJ, Holloway RK, O’Connor R, Williams A, Melrose L, McPherson R, Miron VE, Davidson DJ, Gwyer Findlay E. The antimicrobial peptide cathelicidin drives development of experimental autoimmune encephalomyelitis in mice by affecting Th17 differentiation. PLoS Biol 2022; 20:e3001554. [PMID: 36026478 PMCID: PMC9455863 DOI: 10.1371/journal.pbio.3001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/08/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) is a highly prevalent demyelinating autoimmune condition; the mechanisms regulating its severity and progression are unclear. The IL-17-producing Th17 subset of T cells has been widely implicated in MS and in the mouse model, experimental autoimmune encephalomyelitis (EAE). However, the differentiation and regulation of Th17 cells during EAE remain incompletely understood. Although evidence is mounting that the antimicrobial peptide cathelicidin profoundly affects early T cell differentiation, no studies have looked at its role in longer-term T cell responses. Now, we report that cathelicidin drives severe EAE disease. It is released from neutrophils, microglia, and endothelial cells throughout disease; its interaction with T cells potentiates Th17 differentiation in lymph nodes and Th17 to exTh17 plasticity and IFN-γ production in the spinal cord. As a consequence, mice lacking cathelicidin are protected from severe EAE. In addition, we show that cathelicidin is produced by the same cell types in the active brain lesions in human MS disease. We propose that cathelicidin exposure results in highly activated, cytokine-producing T cells, which drive autoimmunity; this is a mechanism through which neutrophils amplify inflammation in the central nervous system.
Collapse
Affiliation(s)
- Katie J. Smith
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Danielle Minns
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian J. McHugh
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca K. Holloway
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- United Kingdom Dementia Research Institute at The University of Edinburgh, Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Richard O’Connor
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Lauren Melrose
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Rhoanne McPherson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E. Miron
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald J. Davidson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 Lymphocytes, and Breast Cancer. Cancers (Basel) 2022; 14:cancers14153649. [PMID: 35954312 PMCID: PMC9367508 DOI: 10.3390/cancers14153649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The effect of vitamin D3 on the development of breast cancer (favorable, ineffective, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression. The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was to summarize the data available and to find indications of vitamin D treatment failure or success. Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in breast cancer. Abstract Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role in various cellular processes. It regulates the proliferation and differentiation of several normal cells, including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3 in breast cancer development has been observed in numerous clinical studies. However, not all studies support the protective effect of vitamin D3 against the development of this condition. Furthermore, animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th) 17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein we present a literature review on the existing data according to the interplay between vitamin D, Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development depends on many factors, such as age, menopausal status, or obesity. According to that, more extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer, especially when no correlations seem to be obvious.
Collapse
|
6
|
Jiang Z, Zhu H, Wang P, Que W, Zhong L, Li X, Du F. Different subpopulations of regulatory T cells in human autoimmune disease, transplantation, and tumor immunity. MedComm (Beijing) 2022; 3:e137. [PMID: 35474948 PMCID: PMC9023873 DOI: 10.1002/mco2.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL‐2, IL‐10, and TGF‐β, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guizhou P. R. China
| | - Pusen Wang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Weitao Que
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Lin Zhong
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Xiao‐Kang Li
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Futian Du
- Department of Hepatobiliary Surgery Weifang People's Hospital Shandong P. R. China
| |
Collapse
|
7
|
CD4 + T-cell-derived IL-10 promotes CNS inflammation in mice by sustaining effector T cell survival. Cell Rep 2022; 38:110565. [PMID: 35354043 DOI: 10.1016/j.celrep.2022.110565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, significantly contributing to the maintenance and reestablishment of immune homeostasis. Accordingly, it has been shown in the intestine that IL-10 produced by Tregs can act on effector T cells, thereby limiting inflammation. Herein, we investigate whether this role also applies to IL-10 produced by T cells during central nervous system (CNS) inflammation. During neuroinflammation, both CNS-resident and -infiltrating cells produce IL-10; yet, as IL-10 has a pleotropic function, the exact contribution of the different cellular sources is not fully understood. We find that T-cell-derived IL-10, but not other relevant IL-10 sources, can promote inflammation in experimental autoimmune encephalomyelitis. Furthermore, in the CNS, T-cell-derived IL-10 acts on effector T cells, promoting their survival and thereby enhancing inflammation and CNS autoimmunity. Our data indicate a pro-inflammatory role of T-cell-derived IL-10 in the CNS.
Collapse
|
8
|
Patel V, Jayaraman A, Jayaraman S. Epigenetic drug ameliorated type 1 diabetes via decreased generation of Th1 and Th17 subsets and restoration of self-tolerance in CD4 + T cells. Int Immunopharmacol 2021; 103:108490. [PMID: 34954557 DOI: 10.1016/j.intimp.2021.108490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/05/2022]
Abstract
Female NOD mice develop autoimmune diabetes spontaneously without extrinsic manipulation. Previously, we have shown that weekly administration of the prediabetic female NOD mice with the histone modifier Trichostatin A (TSA) prevented diabetes onset. Herein we show that T lymphocytes from diabetic mice transferred diabetes into immunodeficient NOD.scid recipients while those isolated from drug-treated mice displayed reduced disease-causing ability. Drug treatment also repressed T cell receptor-mediated IFN-γ transcription. Splenic CD4+ T-cells purified from prediabetic mice could be polarized into IFN-γ -producing Th1 and IL-17A-expressing Th17 subsets ex vivo. Adoptive transfer of these cells into immunocompromised NOD.scid mice caused diabetes comparably. Polarized Th1 cells were devoid of IL-17A-producing cells and did not transdifferentiate into Th17 cells in the spleen of immunodeficient recipients. However, polarized Th17 cell preparation had a few contaminant Th1 cells. Adoptive transfer of polarized Th17 cells into NOD.scid recipients led to IFN-γ transcription in recipient splenocytes. Notably, TSA treatment of prediabetic mice abolished the ability of CD4+ T-cells to differentiate into diabetogenic Th1 and Th17 cells ex vivo. This was accompanied by the absence of Ifng and Il17a transcription in the spleen of NOD.scid recipients receiving cells, respectively cultured under Th1 and Th17 polarizing conditions. Significantly, the histone modifier restored the ability of CD4+ but not CD8+ T-cells to undergo CD3-mediated apoptosis ex vivo in a caspase-dependent manner. These results indicate that the histone modifier bestowed protection against type 1 diabetes via negative regulation of signature lymphokines and restitution of self-tolerance in CD4+ T cells.
Collapse
Affiliation(s)
- Vasu Patel
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Arathi Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sundararajan Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612, USA; Current address: Dept. of Surgery, the University of Illinois, College of Medicine at Peoria, Peoria, IL 60613, USA.
| |
Collapse
|
9
|
Yan J, Yu J, Liu K, Liu Y, Mao C, Gao W. The Pathogenic Roles of IL-22 in Colitis: Its Transcription Regulation by Musculin in T Helper Subsets and Innate Lymphoid Cells. Front Immunol 2021; 12:758730. [PMID: 34992594 PMCID: PMC8724035 DOI: 10.3389/fimmu.2021.758730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
IL-22 plays a crucial role in promoting inflammation, antimicrobial immunity and tissue repair at barrier surfaces. The role of IL-22 in colitis is still controversial: while IL-22 has a protective effect on gut epithelium in acute injuries, it also enhances colitis in a context-dependent manner. Here, we summarize the Yin and Yang of IL-22 in colitis. Particularly, we emphasize the role of innate lymphoid cells (ILCs) in IL-22 production and regulation. A previously underappreciated transcription factor, Musculin (MSC), has been recently identified to be expressed in not only Th17 cells, but also RORγt+/Id2+ IL-22-producing group 3 ILCs in the gut of naïve mice. We hypothesize that the co-expression and interaction of MSC with the key transcription repressor Id2 in developing lymphoid cells (e.g., in LTi cells) and ILC precursors might fine tune the developmental programs or regulate the plasticity of adaptive Th subset and innate ILCs. The much-elevated expression of IL-22 in MSC-/- ILC3s suggests that MSC may function as: 1) a transcription suppressor for cytokines, particularly for IL-22, and/or 2) a gatekeeper for specific lineages of Th cells and innate ILCs as well. Amelioration of colitis symptoms in MSC-/- mice by IL-22-blocking agent IL-22BP-Fc suggests a counterintuitive pathogenic role of IL-22 in the absence of MSC as a checkpoint. The theory that exuberant production of IL-22 under pathological conditions (e.g., in human inflammatory bowel disease, IBD) may cause epithelial inflammation due to endoplasmic reticulum (ER) stress response is worth further investigation. Rheostatic regulation of IL-22 may be of therapeutic value to restore homeostatic balance and promote intestinal health in human colitis.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ke Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yijia Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | | | - Wenda Gao
- Antagen Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
10
|
A critical role for Th17 cell-derived TGF-β1 in regulating the stability and pathogenicity of autoimmune Th17 cells. Exp Mol Med 2021; 53:993-1004. [PMID: 34050263 PMCID: PMC8178381 DOI: 10.1038/s12276-021-00632-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 11/08/2022] Open
Abstract
Pathogenic conversion of Th17 cells into multifunctional helper T cells or Th1 cells contributes to the pathogenesis of autoimmune diseases; however, the mechanism regulating the plasticity of Th17 cells remains unclear. Here, we found that Th17 cells expressed latent TGF-β1 in a manner dependent on autocrine TGF-β1. By employing IL-17-producing cell-specific Tgfb1 conditional knockout and fate-mapping systems, we demonstrated that TGF-β1-deficient Th17 cells are relatively susceptible to becoming IFN-γ producers through IL-12Rβ2 and IL-27Rα upregulation. TGF-β1-deficient Th17 cells exacerbated tissue inflammation compared to TGF-β1-sufficient Th17 cells in adoptive transfer models of experimental autoimmune encephalomyelitis and colitis. Thus, TGF-β1 production by Th17 cells provides an essential autocrine signal for maintaining the stability and regulating the pathogenicity of Th17 cells in vivo.
Collapse
|
11
|
Abstract
Multiple sclerosis (MS) is a complex inflammatory disease of the central nervous system (CNS) with an unknown etiology. Thereby, MS is not a uniform disease but rather represents a spectrum of disorders, where each aspect needs to be modeled with specific requirements-for a systematic overview see our previous issue of this review (Kurschus, Wortge, & Waisman, 2011). However, there is broad consensus about the critical involvement of the immune system in the disease pathogenesis. To better understand how the immune system contributes to CNS autoimmunity, the model of experimental autoimmune encephalomyelitis (EAE) was developed. EAE can be induced in susceptible animals in many different ways, with the most popular protocol involving the activation of self-reactive T cells by a peptide based on the myelin oligodendrocyte glycoprotein sequence. In the last 10 years this model has led to major advances in our understanding of the immune system, especially the nature of IL-17-producing T cells (Th17 cells), host-microbiome interactions, the gut-brain axis and how the immune system can cause damage in different regions of the brain and the spinal cord. This update summarizes some of the main achievements in the field in the last 10 years.
Collapse
Affiliation(s)
- Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Damasceno LEA, Prado DS, Veras FP, Fonseca MM, Toller-Kawahisa JE, Rosa MH, Públio GA, Martins TV, Ramalho FS, Waisman A, Cunha FQ, Cunha TM, Alves-Filho JC. PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med 2021; 217:151965. [PMID: 32697823 PMCID: PMC7537396 DOI: 10.1084/jem.20190613] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/28/2019] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Th17 cell differentiation and pathogenicity depend on metabolic reprogramming inducing shifts toward glycolysis. Here, we show that the pyruvate kinase M2 (PKM2), a glycolytic enzyme required for cancer cell proliferation and tumor progression, is a key factor mediating Th17 cell differentiation and autoimmune inflammation. We found that PKM2 is highly expressed throughout the differentiation of Th17 cells in vitro and during experimental autoimmune encephalomyelitis (EAE) development. Strikingly, PKM2 is not required for the metabolic reprogramming and proliferative capacity of Th17 cells. However, T cell-specific PKM2 deletion impairs Th17 cell differentiation and ameliorates symptoms of EAE by decreasing Th17 cell-mediated inflammation and demyelination. Mechanistically, PKM2 translocates into the nucleus and interacts with STAT3, enhancing its activation and thereby increasing Th17 cell differentiation. Thus, PKM2 acts as a critical nonmetabolic regulator that fine-tunes Th17 cell differentiation and function in autoimmune-mediated inflammation.
Collapse
Affiliation(s)
- Luis Eduardo Alves Damasceno
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Douglas Silva Prado
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Flavio Protasio Veras
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Miriam M Fonseca
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana E Toller-Kawahisa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcos Henrique Rosa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gabriel Azevedo Públio
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Timna Varela Martins
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fernando S Ramalho
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
13
|
Doss PMIA, Umair M, Baillargeon J, Fazazi R, Fudge N, Akbar I, Yeola AP, Williams JB, Leclercq M, Joly-Beauparlant C, Beauchemin P, Ruda GF, Alpaugh M, Anderson AC, Brennan PE, Droit A, Lassmann H, Moore CS, Rangachari M. Male sex chromosomal complement exacerbates the pathogenicity of Th17 cells in a chronic model of central nervous system autoimmunity. Cell Rep 2021; 34:108833. [PMID: 33691111 DOI: 10.1016/j.celrep.2021.108833] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in multiple sclerosis (MS) incidence and severity have long been recognized. However, the underlying cellular and molecular mechanisms for why male sex is associated with more aggressive disease remain poorly defined. Using a T cell adoptive transfer model of chronic experimental autoimmune encephalomyelitis (EAE), we find that male Th17 cells induce disease of increased severity relative to female Th17 cells, irrespective of whether transferred to male or female recipients. Throughout the disease course, a greater frequency of male Th17 cells produce IFNγ, a hallmark of pathogenic Th17 responses. Intriguingly, XY chromosomal complement increases the pathogenicity of male Th17 cells. An X-linked immune regulator, Jarid1c, is downregulated in pathogenic male murine Th17 cells, and functional experiments reveal that it represses the severity of Th17-mediated EAE. Furthermore, Jarid1c expression is downregulated in CD4+ T cells from MS-affected individuals. Our data indicate that male sex chromosomal complement critically regulates Th17 cell pathogenicity.
Collapse
Affiliation(s)
- Prenitha Mercy Ignatius Arokia Doss
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Muhammad Umair
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Reda Fazazi
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Neva Fudge
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Asmita Pradeep Yeola
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - John B Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Mickael Leclercq
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Charles Joly-Beauparlant
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Philippe Beauchemin
- Department of Neurology, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada
| | - Gian Filipo Ruda
- Target Discovery Institute and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Melanie Alpaugh
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham & Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Paul E Brennan
- Target Discovery Institute and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Alzheimer's Research UK, Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Arnaud Droit
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada
| | - Hans Lassmann
- Division of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada; Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Manu Rangachari
- axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; Faculty of Medicine, Université Laval, 1050 ave de la Médecine, Quebec City, QC, Canada.
| |
Collapse
|
14
|
Loos J, Schmaul S, Noll TM, Paterka M, Schillner M, Löffel JT, Zipp F, Bittner S. Functional characteristics of Th1, Th17, and ex-Th17 cells in EAE revealed by intravital two-photon microscopy. J Neuroinflammation 2020; 17:357. [PMID: 33243290 PMCID: PMC7694901 DOI: 10.1186/s12974-020-02021-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background T helper (Th) 17 cells are a highly plastic subset of T cells, which in the context of neuroinflammation, are able to acquire pathogenic features originally attributed to Th1 cells (resulting in so called ex-Th17 cells). Thus, a strict separation between the two T cell subsets in the context of experimental autoimmune encephalomyelitis (EAE) is difficult. High variability in culture and EAE induction protocols contributed to previous conflicting results concerning the differential contribution of Th1 and Th17 cells in EAE. Here, we systematically evaluate the role of different T cell differentiation and transfer protocols for EAE disease development and investigate the functional dynamics of encephalitogenic T cells directly within the inflamed central nervous system (CNS) tissue. Methods We compiled the currently used EAE induction protocols reported in literature and investigated the influence of the different Th1 and Th17 differentiation protocols as well as EAE induction protocols on the EAE disease course. Moreover, we assessed the cytokine profile and functional dynamics of both encephalitogenic Th1 and Th17 cells in the inflamed CNS using flow cytometry and intravital two-photon laser scanning microscopy. Lastly, we used astrocyte culture and adoptive transfer EAE to evaluate the impact of Th1 and Th17 cells on astrocyte adhesion molecule expression in vitro and in vivo. Results We show that EAE courses are highly dependent on in vitro differentiation and transfer protocols. Moreover, using genetically encoded reporter mice (B6.IL17A-EGFP.acRFP x 2d2/2d2.RFP), we show that the motility of interferon (IFN)γ-producing ex-Th17 cells more closely resembles Th1 cells than Th17 cells in transfer EAE. Mechanistically, IFNγ-producing Th1 cells selectively induce the expression of cellular adhesion molecules I-CAM1 while Th1 as well as ex-Th17 induce V-CAM1 on astrocytes. Conclusions The behavior of ex-Th17 cells in EAE lesions in vivo resembles Th1 rather than Th17 cells, underlining that their change in cytokine production is associated with functional phenotype alterations of these cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02021-x.
Collapse
Affiliation(s)
- Julia Loos
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Theresa Marie Noll
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Magdalena Paterka
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Miriam Schillner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Julian T Löffel
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Le CT, Khuat LT, Caryotakis SE, Wang M, Dunai C, Nguyen AV, Vick LV, Stoffel KM, Blazar BR, Monjazeb AM, Murphy WJ, Soulika AM. PD-1 Blockade Reverses Obesity-Mediated T Cell Priming Impairment. Front Immunol 2020; 11:590568. [PMID: 33193426 PMCID: PMC7658608 DOI: 10.3389/fimmu.2020.590568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023] Open
Abstract
Despite obesity reaching pandemic proportions, its impact on antigen-specific T cell responses is still unclear. We have recently demonstrated that obesity results in increased expression of PD-1 on T cells, and checkpoint blockade targeting PD-1/PD-L1 surprisingly resulted in greater clinical efficacy in cancer therapy. Adverse events associated with this therapy center around autoimmune reactions. In this study, we examined the impact of obesity on T cell priming and on autoimmune pathogenesis using the mouse model experimental autoimmune encephalomyelitis (EAE), which is mediated by autoreactive myelin-specific T cells generated after immunization. We observed that diet-induced obese (DIO) mice had a markedly delayed EAE onset and developed milder clinical symptoms compared to mice on control diet (CD). This delay was associated with impaired generation of myelin-specific T cell numbers and concurrently correlated with increased PD-L1 upregulation on antigen-presenting cells in secondary lymphoid organs. PD-1 blockade during the priming stage of EAE restored disease onset and severity and increased numbers of pathogenic CD4+ T cells in the central nervous system (CNS) of DIO mice to similar levels to those of CD mice. Administration of anti-PD-1 after onset of clinical symptoms did not increase EAE pathogenesis demonstrating that initial priming is the critical juncture affected by obesity. These findings demonstrate that obesity impairs antigen-specific T cell priming, but this can be reversed with PD-1 blockade. Our results further suggest that PD-1 blockade may increase the risk of autoimmune toxicities, particularly in obesity.
Collapse
Affiliation(s)
- Catherine T Le
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Lam T Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Sofia E Caryotakis
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| | - Marilyn Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Alan V Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| | - Logan V Vick
- Department of Radiation-Oncology, School of Medicine, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
| | - Kevin M Stoffel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Bruce R Blazar
- Masonic Cancer Center, and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Arta M Monjazeb
- Department of Radiation-Oncology, School of Medicine, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Department of Internal Medicine, Division of Hematology and Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA, United States
| |
Collapse
|
16
|
Time to activin on pathogenic T cells. Proc Natl Acad Sci U S A 2020; 117:12513-12514. [PMID: 32444489 DOI: 10.1073/pnas.2008491117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21093379. [PMID: 32403220 PMCID: PMC7247009 DOI: 10.3390/ijms21093379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn’s disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.
Collapse
|
18
|
Nitsch L, Zimmermann J, Krauthausen M, Hofer MJ, Saggu R, Petzold GC, Heneka MT, Getts DR, Becker A, Campbell IL, Müller M. CNS-Specific Synthesis of Interleukin 23 Induces a Progressive Cerebellar Ataxia and the Accumulation of Both T and B Cells in the Brain: Characterization of a Novel Transgenic Mouse Model. Mol Neurobiol 2019; 56:7977-7993. [PMID: 31154574 DOI: 10.1007/s12035-019-1640-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Interleukin 23 (IL-23) is a key mediator in neuroinflammation in numerous autoimmune diseases including multiple sclerosis (MS). However, the pathophysiology of IL-23 and how it contributes to neuroinflammation is poorly defined. To further clarify the role of IL-23 in CNS inflammation, we generated a transgenic mouse model (GF-IL23) with astrocyte-targeted expression of both IL-23 subunits, IL-23p19, and IL-23p40. These GF-IL23 mice spontaneously develop a progressive ataxic phenotype, which corresponds to cerebellar tissue destruction, and inflammatory infiltrates most prominent in the subarachnoidal and perivascular space. The CNS-cytokine milieu was characterized by numerous inflammatory mediators such as IL-17a and IFNγ. However, the leukocytic infiltrates were surprisingly predominated by B cells. To further examine the impact of the CNS-specific IL-23 synthesis on an additional systemic inflammatory stimulus, we applied the LPS-induced endotoxemia model. Administration of LPS in GF-IL23 mice resulted in early and pronounced microglial activation, enhanced cytokine production and, in sharp contrast to control animals, in the formation of lymphocytic infiltrates. Our model confirms a critical role for IL-23 in the induction of inflammation in the CNS, in particular facilitating the accumulation of lymphocytes in and around the brain. Thereby, CNS-specific synthesis of IL-23 is able to induce a cascade of inflammatory cytokines leading to microglia activation, astrocytosis, and ultimately tissue damage. The presented transgenic model will be a useful tool to further dissect the role of IL-23 in neuroinflammation.
Collapse
Affiliation(s)
- Louisa Nitsch
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Julian Zimmermann
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Marius Krauthausen
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Markus J Hofer
- School of Life and Environmental Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Raman Saggu
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, D-53127, Bonn, Germany
| | - Gabor C Petzold
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, D-53127, Bonn, Germany
| | - Michael T Heneka
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
- Clinical Neuroscience Unit, Universitaetsklinikum Bonn, Bonn, Germany
| | - Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Albert Becker
- Department of Neuropathology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Iain L Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Marcus Müller
- Department of Neurology, Universitaetsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany.
- School of Molecular Bioscience, University of Sydney, Sydney, Australia.
| |
Collapse
|
19
|
Hu Y, Xu F, Zhang R, Legarda D, Dai J, Wang D, Li H, Zhang Y, Xue Q, Dong G, Zhang H, Lu C, Mortha A, Liu J, Cravedi P, Ting A, Li L, Qi CF, Pierce S, Merad M, Heeger P, Xiong H. Interleukin-1β-induced IRAK1 ubiquitination is required for T H-GM-CSF cell differentiation in T cell-mediated inflammation. J Autoimmun 2019; 102:50-64. [PMID: 31080014 DOI: 10.1016/j.jaut.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/29/2022]
Abstract
Accumulating evidence suggests granulocyte macrophage-colony stimulating factor (GM-CSF) can function as an inflammatory mediator, but whether GM-CSF-producing CD4+ T cells (TH-GM-CSF) are a distinct T helper cell subset is lacking. Herein we demonstrate that interleukin (IL)-1β exclusively drives differentiation of naïve CD4+ T cells into TH-GM-CSF cells via inducing ubiquitination of IL-1 receptor-associated kinase 1 (IRAK1) and subsequent activation of the transcription factor NF-kappaB (NF-κB), independent of RAR-related orphan receptor gamma (RORγt) required for TH17 differentiation. In vivo, TH-GM-CSF cells are present in murine Citrobacter Rodentium infections and mediate colitis following adoptive transfer of CD4+ T cells into Rag1-/- mice via GM-CSF-induced macrophage activation. The TH-GM-CSF cell phenotype is stable and distinct from the TH17 genetic program, but IL-1β can convert pre-formed TH17 cells into TH-GM-CSF cells, thereby accounting for previously reported associations between IL-17 and GM-CSF. Together, our results newly identify IL-1β/NF-κB-dependent TH-GM-CSF cells as a unique T helper cell subset and highlight the importance of CD4+ T cell-derived GM-CSF induced macrophage activation as a previously undescribed T cell effector mechanism.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, 272067, China
| | - Feihong Xu
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruihua Zhang
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diana Legarda
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Dai
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, 272067, China
| | - Di Wang
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Heyu Li
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Qingjie Xue
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, 272067, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, 272067, China
| | - Hui Zhang
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, 272067, China
| | - Chang Lu
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Arthur Mortha
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianguo Liu
- Departments of Internal Medicine & Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adrian Ting
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miriam Merad
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peter Heeger
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Huabao Xiong
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, 272067, China.
| |
Collapse
|
20
|
Lyadova I, Nikitina I. Cell Differentiation Degree as a Factor Determining the Role for Different T-Helper Populations in Tuberculosis Protection. Front Immunol 2019; 10:972. [PMID: 31134070 PMCID: PMC6517507 DOI: 10.3389/fimmu.2019.00972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Efficient tuberculosis (TB) control depends on early TB prediction and prevention. Solution to these tasks requires knowledge of TB protection correlates (TB CoPs), i.e., laboratory markers that are mechanistically involved in the protection and which allow to determine how well an individual is protected against TB or how efficient the candidate TB vaccine is. The search for TB CoPs has been largely focused on different T-helper populations, however, the data are controversial, and no reliable CoPs are still known. Here we discuss the role of different T-helper populations in TB protection focusing predominantly on Th17, “non-classical” Th1 (Th1*) and “classical” Th1 (cTh1) populations. We analyze how these populations differ besides their effector activity and suggest the hypothesis that: (i) links the protective potential of Th17, Th1*, and cTh1 to their differentiation degree and plasticity; (ii) implies different roles of these populations in response to vaccination, latent TB infection (LTBI), and active TB. One of the clinically relevant outcomes of this hypothesis is that over-stimulating T cells during vaccination and biasing T cell response toward the preferential generation of Th1 are not beneficial. The review sheds new light on the problem of TB CoPs and will help develop better strategies for TB control.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Irina Nikitina
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
21
|
Abstract
T cell transdifferentiation to functionally distinct subsets can play a key role in balancing the protective and pathogenic features of the T cell response. In a new study, Karmaus et al. (2019) showed that mTORC1 activity influences metabolic heterogeneity within a T cell population to modulate transdifferentiation and disease pathogenesis in a setting of chronic inflammation-driven autoimmunity.
Collapse
Affiliation(s)
- Jiawei Yan
- School of Life Sciences and Technology, ShanghaiTech University
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Ohio State University.
| | - Tiffany Horng
- School of Life Sciences and Technology, ShanghaiTech University.
| |
Collapse
|
22
|
Mazzoni A, Maggi L, Siracusa F, Ramazzotti M, Rossi MC, Santarlasci V, Montaini G, Capone M, Rossettini B, Palma R, Kruglov A, Chang H, Cimaz R, Maggi E, Romagnani S, Liotta F, Cosmi L, Annunziato F. Eomes
controls the development of Th17‐derived (non‐classic) Th1 cells during chronic inflammation. Eur J Immunol 2018; 49:79-95. [DOI: 10.1002/eji.201847677] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/20/2018] [Accepted: 08/20/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | | | - Matteo Ramazzotti
- Department of Biomedical Experimental and Clinical Sciences “Mario Serio” University of Florence Firenze Italy
| | - Maria Caterina Rossi
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Veronica Santarlasci
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Gianni Montaini
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Beatrice Rossettini
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Raffaele Palma
- Diparimento di Medicina di Precisione Università della Campania Napoli Italy
- Institute of Protein Biochemistry CNR Napoli
| | | | | | - Rolando Cimaz
- Anna Meyer Children's Hospital and University of Florence Italy
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center University of Florence Firenze Italy
- Flow cytometry and Immunotherapy Diagnostic Center Azienda Ospedaliera Careggi Florence Italy
| |
Collapse
|
23
|
Lacher SM, Thurm C, Distler U, Mohebiany AN, Israel N, Kitic M, Ebering A, Tang Y, Klein M, Wabnitz GH, Wanke F, Samstag Y, Bopp T, Kurschus FC, Simeoni L, Tenzer S, Waisman A. NF-κB inducing kinase (NIK) is an essential post-transcriptional regulator of T-cell activation affecting F-actin dynamics and TCR signaling. J Autoimmun 2018; 94:110-121. [PMID: 30061013 DOI: 10.1016/j.jaut.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
Abstract
NF-κB inducing kinase (NIK) is the key protein of the non-canonical NF-κB pathway and is important for the development of lymph nodes and other secondary immune organs. We elucidated the specific role of NIK in T cells using T-cell specific NIK-deficient (NIKΔT) mice. Despite showing normal development of lymphoid organs, NIKΔT mice were resistant to induction of CNS autoimmunity. T cells from NIKΔT mice were deficient in late priming, failed to up-regulate T-bet and to transmigrate into the CNS. Proteomic analysis of activated NIK-/- T cells showed de-regulated expression of proteins involved in the formation of the immunological synapse: in particular, proteins involved in cytoskeleton dynamics. In line with this we found that NIK-deficient T cells were hampered in phosphorylation of Zap70, LAT, AKT, ERK1/2 and PLCγ upon TCR engagement. Hence, our data disclose a hitherto unknown function of NIK in T-cell priming and differentiation.
Collapse
MESH Headings
- Actins/genetics
- Actins/immunology
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Animals
- Central Nervous System/immunology
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Profiling
- Gene Expression Regulation
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymphocyte Activation
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/immunology
- Myelin-Oligodendrocyte Glycoprotein/administration & dosage
- Peptide Fragments/administration & dosage
- Phospholipase C gamma/genetics
- Phospholipase C gamma/immunology
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Primary Cell Culture
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- Spleen/immunology
- Spleen/pathology
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- ZAP-70 Protein-Tyrosine Kinase/genetics
- ZAP-70 Protein-Tyrosine Kinase/immunology
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Sonja M Lacher
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christoph Thurm
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Alma N Mohebiany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nicole Israel
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Maja Kitic
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Ebering
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yilang Tang
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Klein
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Guido H Wabnitz
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto von Guericke University, Magdeburg, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
24
|
Wanke F, Tang Y, Gronke K, Klebow S, Moos S, Hauptmann J, Shanmugavadivu A, Regen T, Mufazalov IA, Gabriel LA, Reißig S, Diefenbach A, Kurschus FC, Waisman A. Expression of IL-17F is associated with non-pathogenic Th17 cells. J Mol Med (Berl) 2018; 96:819-829. [PMID: 29959474 DOI: 10.1007/s00109-018-1662-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/09/2023]
Abstract
IL-17A and IL-17F share the highest sequence homology of the IL-17 family and signal via the same IL-17RA/RC receptor heterodimer. To better explore the expression of these two cytokines, we used a double reporter mouse strain (IL-17DR mice), where IL-17A expressing cells are marked by enhanced green fluorescent protein (eGFP) while red fluorescence protein (RFP) reports the expression of IL-17F. In steady state, we found that Th17 and γδ T cells only expressed IL-17A, while IL-17F expression was restricted to CD8 T cells (Tc17) and innate lymphoid cells (ILC type 3) of the gut. In experimental autoimmune encephalomyelitis, the vast majority of CNS-infiltrating Th17 cells expressed IL-17A but not IL-17F. In contrast, anti-CD3-induced, TGF-β-driven Th17 cells in the gut expressed both of these IL-17 cytokines. In line with this, in vitro differentiation of Th17 cells in the presence of IL-1β led primarily to IL-17A expressing T cells, while TGF-β induced IL-17F co-expressing Th17 cells. Our results suggest that expression of IL-17F is associated with non-pathogenic T cells, pointing to a differential function of IL-17A versus IL-17F. KEY MESSAGES Naïve mice: CD4+ T cells and γδ T cells express IL-17A, and Tc17 cells express IL-17F. Gut ILC3 show differential expression of IL17A and F. Th17 differentiation with TGF-β1 induces IL-17A and F, whereas IL-1β induced cells expressing IL-17A. Th17 cells in EAE in CNS express IL-17A only. Gut Th17 cells induced by anti-CD3 express IL-17A and F together as skin γδ T cells of IMQ-treated mice.
Collapse
Affiliation(s)
- Florian Wanke
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany.,Immunology, Inflammation & Infectious Diseases (I3), Discovery and Translational Area, Roche Pharma Research & Early Development (pRED), 4070, Basel, Switzerland
| | - Yilang Tang
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany
| | - Konrad Gronke
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,Institute of Microbiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 27, 12203, Berlin, Germany
| | - Sabrina Klebow
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany
| | - Sonja Moos
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany
| | - Judith Hauptmann
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany
| | - Arthi Shanmugavadivu
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany
| | - Tommy Regen
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany
| | - Ilgiz A Mufazalov
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany
| | - Lauren A Gabriel
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany
| | - Sonja Reißig
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany
| | - Andreas Diefenbach
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.,Institute of Microbiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 27, 12203, Berlin, Germany
| | - Florian C Kurschus
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany. .,Department of Dermatology, Heidelberg University Hospital, 69120, Heidelberg, Germany.
| | - Ari Waisman
- University Medical Center of the Johannes Gutenberg University Mainz, Institute for Molecular Medicine, 55131, Mainz, Germany.
| |
Collapse
|
25
|
Nikitina IY, Panteleev AV, Kosmiadi GA, Serdyuk YV, Nenasheva TA, Nikolaev AA, Gorelova LA, Radaeva TV, Kiseleva YY, Bozhenko VK, Lyadova IV. Th1, Th17, and Th1Th17 Lymphocytes during Tuberculosis: Th1 Lymphocytes Predominate and Appear as Low-Differentiated CXCR3 +CCR6 + Cells in the Blood and Highly Differentiated CXCR3 +/-CCR6 - Cells in the Lungs. THE JOURNAL OF IMMUNOLOGY 2018; 200:2090-2103. [PMID: 29440351 DOI: 10.4049/jimmunol.1701424] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Th1 lymphocytes are considered the main mediators of protection against tuberculosis (TB); however, their phenotypic characteristics and relationship with Th17 and Th1Th17 populations during TB are poorly understood. We have analyzed Th1, Th17, and Th1Th17 lymphocytes in the blood and pulmonary lesions of TB patients. The populations were identified based on the production of IFN-γ and/or IL-17 and the coexpression of CXCR3 (X3) and CCR6 (R6). In the blood, IL-17+ and IFN-γ+IL-17+ lymphocytes were barely detectable (median, <0.01% of CD4+ lymphocytes), whereas IFN-γ+ lymphocytes predominated (median, 0.45%). Most IFN-γ+ lymphocytes (52%) were X3+R6+, suggesting their "nonclassical" (ex-Th17) nature. In the lungs, IL-17+ and IFN-γ+IL-17+ lymphocytes were more frequent (0.3%, p < 0.005), yet IFN-γ+ cells predominated (11%). Phenotypically, lung CD4+ cells were X3+/loR6- The degree of differentiation of blood effector CD4+ lymphocytes (evaluated based on CD62L/CD27/CD28 coexpression) increased as follows: X3+R6+ < X3+R6- < X3-R6-, with X3-R6- cells being largely terminally differentiated CD62L-CD27-CD28- cells. Lung CD4+ lymphocytes were highly differentiated, recalling blood X3+/-R6- populations. Following in vitro stimulation with anti-CD3/anti-CD28 Abs, X3+R6+CD4+ lymphocytes converted into X3+R6- and X3-R6- cells. The results demonstrate that, during active TB, Th1 lymphocytes predominate in blood and lungs, document differences in X3/R6 expression by blood and lung CD4+ cells, and link the pattern of X3/R6 expression with the degree of cell differentiation. These findings add to the understanding of immune mechanisms operating during TB and are relevant for the development of better strategies to control it.
Collapse
Affiliation(s)
- Irina Yu Nikitina
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Alexander V Panteleev
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - George A Kosmiadi
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Yana V Serdyuk
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Tatiana A Nenasheva
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Alexander A Nikolaev
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Lubov A Gorelova
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Tatiana V Radaeva
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Yana Yu Kiseleva
- Department of Molecular Biology and Experimental Therapy of Tumors, Federal State Budgetary Institution Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Vladimir K Bozhenko
- Department of Molecular Biology and Experimental Therapy of Tumors, Federal State Budgetary Institution Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Irina V Lyadova
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| |
Collapse
|
26
|
Hiltensperger M, Korn T. The Interleukin (IL)-23/T helper (Th)17 Axis in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029637. [PMID: 29101111 DOI: 10.1101/cshperspect.a029637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T helper (Th)17 cells are responsible for host defense against fungi and certain extracellular bacteria but have also been reported to play a role in a variety of autoimmune diseases. Th17 cells respond to environmental cues, are very plastic, and might also be involved in tissue homeostasis and regeneration. The imprinting of pathogenic properties in Th17 cells in autoimmunity seems highly dependent on interleukin (IL)-23. Since Th17 cells were first described in experimental autoimmune encephalomyelitis, they have been suggested to also promote tissue damage in multiple sclerosis (MS). Indeed, some studies linked Th17 cells to disease severity in MS, and the efficacy of anti-IL-17A therapy in MS supported this idea. In this review, we will summarize molecular features of Th17 cells and discuss the evidence for their function in experimental models of autoimmune diseases and MS.
Collapse
Affiliation(s)
- Michael Hiltensperger
- Klinikum rechts der Isar, Department of Neurology, Technische Universität München, 81675 Munich, Germany
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
27
|
EBI2 Is Highly Expressed in Multiple Sclerosis Lesions and Promotes Early CNS Migration of Encephalitogenic CD4 T Cells. Cell Rep 2017; 18:1270-1284. [PMID: 28147280 DOI: 10.1016/j.celrep.2017.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 01/05/2023] Open
Abstract
Arrival of encephalitogenic T cells at inflammatory foci represents a critical step in development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. EBI2 and its ligand, 7α,25-OHC, direct immune cell localization in secondary lymphoid organs. CH25H and CYP7B1 hydroxylate cholesterol to 7α,25-OHC. During EAE, we found increased expression of CH25H by microglia and CYP7B1 by CNS-infiltrating immune cells elevating the ligand concentration in the CNS. Two critical pro-inflammatory cytokines, interleukin-23 (IL-23) and interleukin-1 beta (IL-1β), maintained expression of EBI2 in differentiating Th17 cells. In line with this, EBI2 enhanced early migration of encephalitogenic T cells into the CNS in a transfer EAE model. Nonetheless, EBI2 was dispensable in active EAE. Human Th17 cells do also express EBI2, and EBI2 expressing cells are abundant within multiple sclerosis (MS) white matter lesions. These findings implicate EBI2 as a mediator of CNS autoimmunity and describe mechanistically its contribution to the migration of autoreactive T cells into inflamed organs.
Collapse
|
28
|
Becher B, Tugues S, Greter M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity 2017; 45:963-973. [PMID: 27851925 DOI: 10.1016/j.immuni.2016.10.026] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF) was initially classified as a hematopoietic growth factor. However, unlike its close relatives macrophage CSF (M-CSF) and granulocyte CSF (G-CSF), the majority of myeloid cells do not require GM-CSF for steady-state myelopoiesis. Instead, in inflammation, GM-CSF serves as a communication conduit between tissue-invading lymphocytes and myeloid cells. Even though lymphocytes are in all likelihood the instigators of chronic inflammatory disease, GM-CSF-activated phagocytes are well equipped to cause tissue damage. The pivotal role of GM-CSF at the T cell:myeloid cell interface might shift our attention toward studying the function of the myeloid compartment in immunopathology. Targeting specifically the crosstalk between T cells and myeloid cells through GM-CSF holds promise for the development of therapeutics to combat chronic tissue inflammation. Here, we will review some of the major discoveries of the recent past, which indicate that GM-CSF is so much more than its name suggests.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of Experimental Immunology, University of Zurich Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Das A, Rouault-Pierre K, Kamdar S, Gomez-Tourino I, Wood K, Donaldson I, Mein CA, Bonnet D, Hayday AC, Gibbons DL. Adaptive from Innate: Human IFN-γ +CD4 + T Cells Can Arise Directly from CXCL8-Producing Recent Thymic Emigrants in Babies and Adults. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1696-1705. [PMID: 28754679 PMCID: PMC5563168 DOI: 10.4049/jimmunol.1700551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022]
Abstract
We recently demonstrated that the major effector function of neonatal CD4+ T cells is to produce CXCL8, a prototypic cytokine of innate immune cells. In this article, we show that CXCL8 expression, prior to proliferation, is common in newly arising T cells (so-called "recent thymic emigrants") in adults, as well as in babies. This effector potential is acquired in the human thymus, prior to TCR signaling, but rather than describing end-stage differentiation, such cells, whether isolated from neonates or adults, can further differentiate into IFN-γ-producing CD4+ T cells. Thus, the temporal transition of host defense from innate to adaptive immunity is unexpectedly mirrored at the cellular level by the capacity of human innate-like CXCL8-producing CD4+ T cells to transition directly into Th1 cells.
Collapse
Affiliation(s)
- Abhishek Das
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
| | | | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
| | - Iria Gomez-Tourino
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
| | - Kristie Wood
- National Institute for Health Research Biomedical Research Centre Genomics Research Platform, Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Ian Donaldson
- Genome Centre, Barts and the London School of Medicine and Dentistry, John Vane Science Centre, London EC1M 6BQ, United Kingdom
| | - Charles A Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, John Vane Science Centre, London EC1M 6BQ, United Kingdom
| | | | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Deena L Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom;
| |
Collapse
|
30
|
Barik S, Ellis JS, Cascio JA, Miller MM, Ukah TK, Cattin-Roy AN, Zaghouani H. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 199:2236-2248. [PMID: 28801358 DOI: 10.4049/jimmunol.1700372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 01/04/2023]
Abstract
IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R-/-) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R+/+) and develop early onset and more severe disease. Moreover, Th17 cells from 13R-/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R+/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Jason S Ellis
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Jason A Cascio
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Mindy M Miller
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Tobechukwu K Ukah
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Alexis N Cattin-Roy
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212; .,Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212; and.,Department of Neurology, University of Missouri School of Medicine, Columbia, MO 65212
| |
Collapse
|
31
|
Tischner D, Grimm M, Kaur H, Staudenraus D, Carvalho J, Looso M, Günther S, Wanke F, Moos S, Siller N, Breuer J, Schwab N, Zipp F, Waisman A, Kurschus FC, Offermanns S, Wettschureck N. Single-cell profiling reveals GPCR heterogeneity and functional patterning during neuroinflammation. JCI Insight 2017; 2:95063. [PMID: 28768912 DOI: 10.1172/jci.insight.95063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
GPCR expression was intensively studied in bulk cDNA of leukocyte populations, but limited data are available with respect to expression in individual cells. Here, we show a microfluidic-based single-cell GPCR expression analysis in primary T cells, myeloid cells, and endothelial cells under naive conditions and during experimental autoimmune encephalomyelitis, the mouse model of multiple sclerosis. We found that neuroinflammation induces characteristic changes in GPCR heterogeneity and patterning, and we identify various functionally relevant subgroups with specific GPCR profiles among spinal cord-infiltrating CD4 T cells, macrophages, microglia, or endothelial cells. Using GPCRs CXCR4, S1P1, and LPHN2 as examples, we show how this information can be used to develop new strategies for the functional modulation of Th17 cells and activated endothelial cells. Taken together, single-cell GPCR expression analysis identifies functionally relevant subpopulations with specific GPCR repertoires and provides a basis for the development of new therapeutic strategies in immune disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefan Günther
- ECCPS Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Nelly Siller
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | - Stefan Offermanns
- Department of Pharmacology.,Medical Faculty, J.W. Goethe University Frankfurt, Frankfurt, Germany
| | - Nina Wettschureck
- Department of Pharmacology.,Medical Faculty, J.W. Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Zayoud M, Marcu-Malina V, Vax E, Jacob-Hirsch J, Elad-Sfadia G, Barshack I, Kloog Y, Goldstein I. Ras Signaling Inhibitors Attenuate Disease in Adjuvant-Induced Arthritis via Targeting Pathogenic Antigen-Specific Th17-Type Cells. Front Immunol 2017; 8:799. [PMID: 28736556 PMCID: PMC5500629 DOI: 10.3389/fimmu.2017.00799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022] Open
Abstract
The Ras family of GTPases plays an important role in signaling nodes downstream to T cell receptor and CD28 activation, potentially lowering the threshold for T-cell receptor activation by autoantigens. Somatic mutation in NRAS or KRAS may cause a rare autoimmune disorder coupled with abnormal expansion of lymphocytes. T cells from rheumatoid arthritis (RA) patients show excessive activation of Ras/MEK/ERK pathway. The small molecule farnesylthiosalicylic acid (FTS) interferes with the interaction between Ras GTPases and their prenyl-binding chaperones to inhibit proper plasma membrane localization. In the present study, we tested the therapeutic and immunomodulatory effects of FTS and its derivative 5-fluoro-FTS (F-FTS) in the rat adjuvant-induced arthritis model (AIA). We show that AIA severity was significantly reduced by oral FTS and F-FTS treatment compared to vehicle control treatment. FTS was as effective as the mainstay anti-rheumatic drug methotrexate, and combining the two drugs significantly increased efficacy compared to each drug alone. We also discovered that FTS therapy inhibited both the CFA-driven in vivo induction of Th17 and IL-17/IFN-γ producing “double positive” as well as the upregulation of serum levels of the Th17-associated cytokines IL-17A and IL-22. By gene microarray analysis of effector CD4+ T cells from CFA-immunized rats, re-stimulated in vitro with the mycobacterium tuberculosis heat-shock protein 65 (Bhsp65), we determined that FTS abrogated the Bhsp65-induced transcription of a large list of genes (e.g., Il17a/f, Il22, Ifng, Csf2, Lta, and Il1a). The functional enrichment bioinformatics analysis showed significant overlap with predefined gene sets related to inflammation, immune system processes and autoimmunity. In conclusion, FTS and F-FTS display broad immunomodulatory effects in AIA with inhibition of the Th17-type response to a dominant arthritogenic antigen. Hence, targeting Ras signal-transduction cascade is a potential novel therapeutic approach for RA.
Collapse
Affiliation(s)
- Morad Zayoud
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Victoria Marcu-Malina
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einav Vax
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | - Galit Elad-Sfadia
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Barshack
- Institute of Pathology, Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | - Yoel Kloog
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Itamar Goldstein
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
33
|
Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, Bartlett DL, Obermajer N. Suppressive IL-17A +Foxp3 + and ex-Th17 IL-17A negFoxp3 + T reg cells are a source of tumour-associated T reg cells. Nat Commun 2017; 8:14649. [PMID: 28290453 PMCID: PMC5355894 DOI: 10.1038/ncomms14649] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/20/2017] [Indexed: 01/05/2023] Open
Abstract
Th17 and regulatory T (Treg) cells are integral in maintaining immune homeostasis and Th17–Treg imbalance is associated with inflammatory immunosuppression in cancer. Here we show that Th17 cells are a source of tumour-induced Foxp3+ cells. In addition to natural (n)Treg and induced (i)Treg cells that develop from naive precursors, suppressive IL-17A+Foxp3+ and ex-Th17 Foxp3+ cells are converted from IL-17A+Foxp3neg cells in tumour-bearing mice. Metabolic phenotyping of Foxp3-expressing IL-17A+, ex-Th17 and iTreg cells demonstrates the dissociation between the metabolic fitness and the suppressive function of Foxp3-expressing Treg cell subsets. Although all Foxp3-expressing subsets are immunosuppressive, glycolysis is a prominent metabolic pathway exerted only by IL-17A+Foxp3+ cells. Transcriptome analysis and flow cytometry of IL-17A+Foxp3+ cells indicate that Folr4, GARP, Itgb8, Pglyrp1, Il1rl1, Itgae, TIGIT and ICOS are Th17-to-Treg cell transdifferentiation-associated markers. Tumour-associated Th17-to-Treg cell conversion identified here provides insights for targeting the dynamism of Th17–Treg cells in cancer immunotherapy. Th17 cells can transdifferentiate into regulatory T (Treg) cells. Here the authors characterize tumour-driven Th17-to-Treg cell transdifferentiation and identify potential cancer therapy targets.
Collapse
Affiliation(s)
- Stephanie Downs-Canner
- Department of Surgical Oncology, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Sara Berkey
- Department of Surgical Oncology, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Greg M Delgoffe
- University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA.,Tumour Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, 5115 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA.,Magee-Womens Research Institute Ovarian Cancer Center of Excellence, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Robert P Edwards
- University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA.,Magee-Womens Research Institute Ovarian Cancer Center of Excellence, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA.,Peritoneal/Ovarian Cancer Specialty Care Center, Pittsburgh, Pennsylvania 15213, USA
| | - Tyler Curiel
- UT Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Kunle Odunsi
- Departments of Gynecologic Oncology and Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263, USA
| | - David L Bartlett
- Department of Surgical Oncology, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Nataša Obermajer
- Department of Surgical Oncology, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
34
|
Abstract
T cells are required for immune surveillance of the central nervous system (CNS); however, they can also induce severe immunopathology in the context of both viral infections and autoimmunity. The mechanisms that are involved in the priming and recruitment of T cells to the CNS are only partially understood, but there has been renewed interest in this topic since the 'rediscovery' of lymphatic drainage from the CNS. Moreover, tissue-resident memory T cells have been detected in the CNS and are increasingly recognized as an autonomous line of host defence. In this Review, we highlight the main mechanisms that are involved in the priming and CNS recruitment of CD4+ T cells, CD8+ T cells and regulatory T cells. We also consider the plasticity of T cell responses in the CNS, with a focus on viral infection and autoimmunity.
Collapse
|
35
|
Th1 cells downregulate connexin 43 gap junctions in astrocytes via microglial activation. Sci Rep 2016; 6:38387. [PMID: 27929069 PMCID: PMC5143974 DOI: 10.1038/srep38387] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022] Open
Abstract
We previously reported early and extensive loss of astrocytic connexin 43 (Cx43) in acute demyelinating lesions of multiple sclerosis (MS) patients. Because it is widely accepted that autoimmune T cells initiate MS lesions, we hypothesized that infiltrating T cells affect Cx43 expression in astrocytes, which contributes to MS lesion formation. Primary mixed glial cell cultures were prepared from newborn mouse brains, and microglia were isolated by anti-CD11b antibody-conjugated magnetic beads. Next, we prepared astrocyte-rich cultures and astrocyte/microglia-mixed cultures. Treatment of primary mixed glial cell cultures with interferon (IFN) γ, interleukin (IL)-4, or IL-17 showed that only IFNγ or IL-17 at high concentrations reduced Cx43 protein levels. Upon treatment of astrocyte-rich cultures and astrocyte/microglia-mixed cultures with IFNγ, Cx43 mRNA/protein levels and the function of gap junctions were reduced only in astrocyte/microglia-mixed cultures. IFNγ-treated microglia-conditioned media and IL-1β, which was markedly increased in IFNγ-treated microglia-conditioned media, reduced Cx43 protein levels in astrocyte-rich cultures. Finally, we confirmed that Th1 cell-conditioned medium decreased Cx43 protein levels in mixed glial cell cultures. These findings suggest that Th1 cell-derived IFNγ activates microglia to release IL-1β that reduces Cx43 gap junctions in astrocytes. Thus, Th1-dominant inflammatory states disrupt astrocytic intercellular communication and may exacerbate MS.
Collapse
|
36
|
Stojić-Vukanić Z, Pilipović I, Vujnović I, Nacka-Aleksić M, Petrović R, Arsenović-Ranin N, Dimitrijević M, Leposavić G. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis. PLoS One 2016; 11:e0166498. [PMID: 27832210 PMCID: PMC5104330 DOI: 10.1371/journal.pone.0166498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms controlling (auto)reactive CD4+ lymphocyte expansion/differentiation into the cells with pathogenic phenotype and migration of the latter to the SC contribute to AO rat resistance to EAE.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Center “Branislav Janković”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Center “Branislav Janković”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Center “Branislav Janković”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Gordana Leposavić
- Immunology Research Center “Branislav Janković”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
- Department of Physiology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
37
|
Capone M, Maggi L, Santarlasci V, Rossi MC, Mazzoni A, Montaini G, Cimaz R, Ramazzotti M, Piccinni MP, Barra G, De Palma R, Liotta F, Maggi E, Romagnani S, Annunziato F, Cosmi L. Chitinase 3-like-1 is produced by human Th17 cells and correlates with the level of inflammation in juvenile idiopathic arthritis patients. Clin Mol Allergy 2016; 14:16. [PMID: 27826220 PMCID: PMC5100333 DOI: 10.1186/s12948-016-0053-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND CHI3L1 is a chitinase-like protein without enzymatic activity, produced by activated macrophages, chondrocytes, neutrophils. Recent studies on arthritis, asthma, and inflammatory bowel diseases suggest that chitinases are important in inflammatory processes and tissue remodeling, but their production by human T cells, has never been reported. METHODS A microarray analysis of gene expression profile was performed on Th17 and classic Th1 cell clones and CHI3L1 was found among the up-regulated genes on Th17 cells. Different types of helper T cell clones (TCCs) were then evaluated by Real Time PCR (RT-PCR) for CHI3L1 mRNA expression; protein expression was investigated in cell lysates by western blotting and in cultures supernatants by ELISA. ELISA was also used to measure CHI3L1 in the serum and in the synovial fluid (SF) of juvenile idiopathic arthritis (JIA) patients. RESULTS At mRNA level CHI3L1 was highly expressed by Th17, Th17/Th1, non classic Th1 and even in Th17/Th2 cell clones, whereas it was virtually absent in CD161- classic Th1 and Th2 TCCs. CHI3L1 was also detected in cell culture supernatants of Th17 and Th17-derived cells but not of classic Th1. Moreover CHI3L1 was higher in the SF than in serum of JIA patients, and it positively correlated with the frequency of Th17 and non-classic Th1 cells in SF. CHI3L1 in SF also positively correlated with the C reactive protein (CRP) serum levels, and with the levels of some proinflammatory cytokines, such as IL-6 and p40, which is the common subunit of IL12 and IL23. CONCLUSIONS Here we describe for the first time CHI3L1 production by T cells owing the Th17 family. Moreover the positive correlation found between the frequency of Th17 and Th17-derived cell subsets and CHI3L1 levels in SF of JIA patients, in agreement with the suggested role of these cells in inflammatory process, candidates CHI3L1 as a possible biological target in JIA treatment.
Collapse
Affiliation(s)
- Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Veronica Santarlasci
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Maria Caterina Rossi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Gianni Montaini
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Rolando Cimaz
- Anna Meyer Children's Hospital and University of Florence, 50134, Florence, Italy
| | - Matteo Ramazzotti
- Dept. of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Marie Pierre Piccinni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Giusi Barra
- Dept. of Clinical & Experimental Medicine, Second University of Naples, 80131 Naples, Italy
| | - Raffaele De Palma
- Dept. of Clinical & Experimental Medicine, Second University of Naples, 80131 Naples, Italy ; Institute of Protein Biochemistry, CNR, 80131, Naples, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy ; Department of Internal Medicine, University of Florence, Viale Pieraccini 6, 50134 Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, 50134 Florence, Italy
| |
Collapse
|
38
|
Mufazalov IA, Schelmbauer C, Regen T, Kuschmann J, Wanke F, Gabriel LA, Hauptmann J, Müller W, Pinteaux E, Kurschus FC, Waisman A. IL-1 signaling is critical for expansion but not generation of autoreactive GM-CSF+ Th17 cells. EMBO J 2016; 36:102-115. [PMID: 27827809 DOI: 10.15252/embj.201694615] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/05/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022] Open
Abstract
Interleukin-1 (IL-1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL-1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL-1 receptor type 1 (IL-1R1)-dependent IL-1β expression by myeloid cells in the draining lymph nodes. This myeloid-derived IL-1β did not vitally contribute to the generation and plasticity of Th17 cells, but rather promoted the expansion of a GM-CSF+ Th17 cell subset, thereby enhancing its encephalitogenic potential. Lack of expansion of GM-CSF-producing Th17 cells led to ameliorated disease in mice deficient for IL-1R1 specifically in T cells. Importantly, pathogenicity of IL-1R1-deficient T cells was fully restored by IL-23 polarization and expansion in vitro Therefore, our data demonstrate that IL-1 functions as a mitogenic mediator of encephalitogenic Th17 cells rather than qualitative inducer of their generation.
Collapse
Affiliation(s)
- Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Janina Kuschmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Laureen A Gabriel
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Judith Hauptmann
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
39
|
Type II Activation of Macrophages and Microglia by Immune Complexes Enhances Th17 Biasing in an IL-6-Independent Manner. PLoS One 2016; 11:e0164454. [PMID: 27732670 PMCID: PMC5061352 DOI: 10.1371/journal.pone.0164454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Macrophages can be activated into several distinct activation states. One of these states, type II activation, has a regulatory phenotype characterized by decreased IL-12 and increased IL-10, and has been shown to bias naïve CD4+ T cells to a Th2 response. Microglia, the resident macrophage-like cells in the central nervous system (CNS), are important contributors to neuroinflammation and, thus, we investigated if type II activated microglia could bias CD4+ T cell responses in a similar manner as type II activated macrophages. Using immune complex ligation in the presence of LPS to induce type II activation, we found that both type II macrophages and type II microglia biased CD4+ T cell responses in vitro to express increased levels of IL-17A and CD124. The enhanced IL-17A production occurred independently of IL-6, and IL-10 and IL-12, which were key regulators of IFN-γ production, but were not involved in the increased IL-17A. Finally, we found that another type II-activating compound, glatiramer acetate, did not bias CD4+ T cells to produce enhanced IL-17A. Taken together, this study demonstrates that microglia can be type II activated and, similarly to type II macrophages, can bias CD4+ T cell responses; however, depending on the type II stimulus, the effect on CD4+ T cell subset differentiation may vary.
Collapse
|
40
|
A novel human truncated IL12rβ1-Fc fusion protein ameliorates experimental autoimmune encephalomyelitis via specific binding of p40 to inhibit Th1 and Th17 cell differentiation. Oncotarget 2016; 6:28539-55. [PMID: 26384304 PMCID: PMC4745676 DOI: 10.18632/oncotarget.5164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/22/2015] [Indexed: 12/26/2022] Open
Abstract
Interleukin (IL)-12 and IL-23 respectively driving polarization of T helper (Th) 1 and Th17 cells has been strongly implicated in the pathogenesis of both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we first constructed, expressed and purified a novel human truncated IL12rβ1-Fc fusion protein (tIL12rβ1/Fc) binding multiple forms of the p40 subunit of human IL-12 and IL-23. tIL12rβ1/Fc was found to effectively ameliorate MOG35–55-induced EAE through reducing the production of Th1- and Th17-polarized pro-inflammatory cytokines and suppressing inflammation and demyelination in the focused parts. Moreover, tIL12rβ1/Fc suppressed Th1 (IFN-γ+ alone) and IFN-γ+ IL-17+ as well as the population of classic Th17 (IL-17+ alone) cells in vivo. Furthermore, tIL12rβ1/Fc ameliorated EAE at the peak of disease via the inhibition of STAT pathway, thereby causing a prominent reduction of RORγt (Th17) and T-bet (Th1) expression. Notably, tIL12rβ1/Fc could increase the relative number of CD4+ Foxp3+ regulatory T cells. These findings indicates that tIL12rβ1/Fc is a novel fusion protein for specific binding multiple forms of p40 subunit to exert potent anti-inflammatory effects and provides a valuable approach for the treatment of MS and other autoimmune diseases.
Collapse
|
41
|
Grifka-Walk HM, Segal BM. T-bet promotes the accumulation of encephalitogenic Th17 cells in the CNS. J Neuroimmunol 2016; 304:35-39. [PMID: 27242075 DOI: 10.1016/j.jneuroim.2016.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
Abstract
T-bet enhances the encephalitogenicity of myelin-reactive CD4+ T cells, however its mechanism of action is unknown. In this study we show that T-bet confers a competitive advantage for the accumulation of IL-23 conditioned Th17 effector cells in the central nervous system (CNS). Impaired migration of T-bet deficient Th17 cells to the CNS is associated with altered expression of adhesion molecules and chemokine receptors on their cell surface. Our data suggest that therapeutic targeting of T-bet in individuals with Th17-mediated autoimmune demyelinating disease may inhibit inflammatory infiltration of the CNS and, hence, clinical exacerbations.
Collapse
Affiliation(s)
- Heather M Grifka-Walk
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, 4014-B BSRB, 109 Zina Pitcher Drive, Ann Arbor, MI 48109-2200, USA; Graduate Program in Immunology, University of Michigan, 100 Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Benjamin M Segal
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan, 4014-B BSRB, 109 Zina Pitcher Drive, Ann Arbor, MI 48109-2200, USA; Graduate Program in Immunology, University of Michigan, 100 Medical Center Drive, Ann Arbor, MI 48109, USA; Neurology Service, VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| |
Collapse
|
42
|
Becher B. The Good, the Bad, or the Pretty: IL-17 Builds Lymphoid Tissues in the Brain. Immunity 2016; 43:1033-4. [PMID: 26682978 DOI: 10.1016/j.immuni.2015.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Lymph node development depends on well-orchestrated interactions between lymphoid tissue inducer cells and stromal cells. In this issue of Immunity, Pikor and colleagues (2015) find that signals from IL-17-producing T helper cells can alter the stromal microenvironment of the inflamed brain to generate a neo-lymphoid organ that drives further inflammation.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
43
|
Deczkowska A, Baruch K, Schwartz M. Type I/II Interferon Balance in the Regulation of Brain Physiology and Pathology. Trends Immunol 2016; 37:181-192. [PMID: 26877243 DOI: 10.1016/j.it.2016.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
Abstract
Recent findings have revealed distinct roles for type I and II interferons (IFN-I and IFN-γ) in the recruitment of immune cells to the central nervous system (CNS) and highlighted the importance of this process for brain maintenance and protection/repair. Furthermore, manipulation of IFN-I and IFN-γ pathways in pathological contexts has yielded conflicting results. We discuss these findings, focusing on two distinct conditions; relapsing remitting multiple sclerosis (RRMS) and brain aging. Using these examples, we propose that regulation of immune cell entry to the CNS is a mechanism through which interaction between IFN-I and -II can affect brain function from its anatomical borders. Deviation from homeostatic IFN-I/-II balance may contribute to distinct brain pathologies, resulting from either insufficient immune surveillance of the CNS and loss of immune-dependent protection, or overwhelming leukocyte entry and immune-mediated destruction.
Collapse
Affiliation(s)
| | - Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
44
|
Therapeutic depletion of monocyte-derived cells protects from long-term axonal loss in experimental autoimmune encephalomyelitis. J Neuroimmunol 2016; 290:36-46. [DOI: 10.1016/j.jneuroim.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 02/02/2023]
|
45
|
Kulig P, Burkhard S, Mikita-Geoffroy J, Croxford AL, Hövelmeyer N, Gyülvészi G, Gorzelanny C, Waisman A, Borsig L, Becher B. IL17A-Mediated Endothelial Breach Promotes Metastasis Formation. Cancer Immunol Res 2015; 4:26-32. [PMID: 26586773 DOI: 10.1158/2326-6066.cir-15-0154] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/16/2015] [Indexed: 11/16/2022]
Abstract
The role of the IL23/IL17A axis in tumor-immune interactions is a matter of controversy. Although some suggest that IL17A-producing T cells (TH17) can suppress tumor growth, others report that IL17A and IL23 accelerate tumor growth. Here, we systematically assessed the impact of IL17A-secreting lymphocytes in several murine models of tumor lung metastasis. Genetic fate mapping revealed that IL17A was secreted within lung metastases predominantly by γδ T cells, whereas TH17 cells were virtually absent. Using different tumor models, we found Il17a(-/-) mice to consistently develop fewer pulmonary tumor colonies. IL17A specifically increased blood vessel permeability and the expression of E-selectin and VCAM-1 by lung endothelial cells in vivo. In transgenic mice, specific targeting of IL17A to the endothelium increased the number of tumor foci. Moreover, the direct impact of IL17A on lung endothelial cells resulted in impaired endothelial barrier integrity, showing that IL17A promotes the formation of lung metastases through tumor-endothelial transmigration.
Collapse
Affiliation(s)
- Paulina Kulig
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sara Burkhard
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Andrew L Croxford
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Gabor Gyülvészi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christian Gorzelanny
- Department of Dermatology, Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
46
|
O’Connor RA, Anderton SM. Inflammation-associated genes: risks and benefits to Foxp3+ regulatory T-cell function. Immunology 2015; 146:194-205. [PMID: 26190495 PMCID: PMC4582961 DOI: 10.1111/imm.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023] Open
Abstract
Foxp3(+) regulatory T (Treg) cells prevent the development of autoimmunity and immunopathology, as well as maintaining homeostasis and tolerance to commensal microorganisms. The suppressive activity of Treg cells is their defining characteristic, generating great interest in their therapeutic potential. However, suppressive and effector functions are not entirely exclusive. Considerable evidence points to the ability of supposedly anti-inflammatory Foxp3-expressing Treg cells to also express transcription factors that have been characterized as cardinal drivers of T effector cell function. We will consider the mounting evidence that Treg cells can function in non-suppressive capacities and review the impetus for this functional change, its relevance to developing immune and autoimmune responses and its significance to the development of Treg-based therapies.
Collapse
Affiliation(s)
- Richard A O’Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| |
Collapse
|
47
|
Croxford AL, Spath S, Becher B. GM-CSF in Neuroinflammation: Licensing Myeloid Cells for Tissue Damage. Trends Immunol 2015; 36:651-662. [DOI: 10.1016/j.it.2015.08.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/23/2022]
|
48
|
Arellano G, Ottum PA, Reyes LI, Burgos PI, Naves R. Stage-Specific Role of Interferon-Gamma in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Immunol 2015; 6:492. [PMID: 26483787 PMCID: PMC4586507 DOI: 10.3389/fimmu.2015.00492] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
The role of interferon (IFN)-γ in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), has remained as an enigmatic paradox for more than 30 years. Several studies attribute this cytokine a prominent proinflammatory and pathogenic function in these pathologies. However, accumulating evidence shows that IFN-γ also plays a protective role inducing regulatory cell activity and modulating the effector T cell response. Several innate and adaptive immune cells also develop opposite functions strongly associated with the production of IFN-γ in EAE. Even the suppressive activity of different types of regulatory cells is dependent on IFN-γ. Interestingly, recent data supports a stage-specific participation of IFN-γ in EAE providing a plausible explanation for previous conflicting results. In this review, we will summarize and discuss such literature, emphasizing the protective role of IFN-γ on immune cells. These findings are fundamental to understand the complex role of IFN-γ in the pathogenesis of these diseases and can provide basis for potential stage-specific therapy for MS targeting IFN-γ-signaling or IFN-γ-producing immune cells.
Collapse
Affiliation(s)
- Gabriel Arellano
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Payton A Ottum
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| | - Lilian I Reyes
- Faculty of Science, Universidad San Sebastián , Santiago , Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Rodrigo Naves
- Immunology Program, Biomedical Sciences Institute, School of Medicine, Universidad de Chile , Santiago , Chile
| |
Collapse
|
49
|
Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG, Ehmke H. Immune Mechanisms in Arterial Hypertension. J Am Soc Nephrol 2015; 27:677-86. [PMID: 26319245 DOI: 10.1681/asn.2015050562] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditionally, arterial hypertension and subsequent end-organ damage have been attributed to hemodynamic factors, but increasing evidence indicates that inflammation also contributes to the deleterious consequences of this disease. The immune system has evolved to prevent invasion of foreign organisms and to promote tissue healing after injury. However, this beneficial activity comes at a cost of collateral damage when the immune system overreacts to internal injury, such as prehypertension. Renal inflammation results in injury and impaired urinary sodium excretion, and vascular inflammation leads to endothelial dysfunction, increased vascular resistance, and arterial remodeling and stiffening. Notably, modulation of the immune response can reduce the severity of BP elevation and hypertensive end-organ damage in several animal models. Indeed, recent studies have improved our understanding of how the immune response affects the pathogenesis of arterial hypertension, but the remarkable advances in basic immunology made during the last few years still await translation to the field of hypertension. This review briefly summarizes recent advances in immunity and hypertension as well as hypertensive end-organ damage.
Collapse
Affiliation(s)
| | | | | | - Christian Kurts
- Institutes of Molecular Medicine and Experimental Immunology, Rheinische Friedrich-Wilhelms University, Bonn, Germany; and
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Nashville, Tennessee
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Transfer of myelin-reactive th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice. J Neurosci 2015; 35:8626-39. [PMID: 26041928 DOI: 10.1523/jneurosci.3817-14.2015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the CNS characterized by inflammation and neurodegeneration. Animal models that enable the study of remyelination in the context of ongoing inflammation are greatly needed for the development of novel therapies that target the pathological inhibitory cues inherent to the MS plaque microenvironment. We report the development of an innovative animal model combining cuprizone-mediated demyelination with transfer of myelin-reactive CD4(+) T cells. Characterization of this model reveals both Th1 and Th17 CD4(+) T cells infiltrate the CNS of cuprizone-fed mice, with infiltration of Th17 cells being more efficient. Infiltration correlates with impaired spontaneous remyelination as evidenced by myelin protein expression, immunostaining, and ultrastructural analysis. Electron microscopic analysis further reveals that demyelinated axons are preserved but reduced in caliber. Examination of the immune response contributing to impaired remyelination highlights a role for peripheral monocytes with an M1 phenotype. This study demonstrates the development of a novel animal model that recapitulates elements of the microenvironment of the MS plaque and reveals an important role for T cells and peripheral monocytes in impairing endogenous remyelination in vivo. This model could be useful for testing putative MS therapies designed to enhance remyelination in the setting of active inflammation, and may also facilitate modeling the pathophysiology of denuded axons, which has been a challenge in rodents because they typically remyelinate very quickly.
Collapse
|