1
|
Guo YJ, Ma MX, Tian T, Zhang JN, Guo XN, Qiao S. Myeloid/lymphoid neoplasms with eosinophilia and FGFR1 rearrangement t(8;13)(p11;q12): A case report and literature review. Oncol Lett 2024; 28:468. [PMID: 39119236 PMCID: PMC11306990 DOI: 10.3892/ol.2024.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
8p11 myeloproliferative syndrome (EMS) is a rare and aggressive hematological malignancy, characterized by myeloproliferative neoplasms, and associated with eosinophilia and T- or B-cell lineage lymphoblastic lymphoma. The pathogenesis is defined by the presence of chromosomal translocations associated with the fibroblast growth factor-1 (FGFR1) gene, located in the 8p11-12.1 chromosomal locus. At present, only ~100 cases have been reported globally. At least 15 partner genes have been identified, including the most common, the zinc finger MYM-type containing 2 (ZNF198)-FGFR1 fusion gene formed by t(8;13)(p11;q12). Different fusion genes determine the clinical manifestations and prognosis of the disease. Patients with EMS with t(8;13)(p11;q12) commonly present with lymphadenopathy and T-lymphoblastic lymphoma, which usually converts to acute myeloid leukemia (AML) with the progression of the disease. The present study describes the case of an elderly female patient with EMS with t(8;13)(p11;q12), presenting with myeloid/lymphoid syndrome (myeloproliferative neoplasms and T lymphoblastic lymphoma). The patient received the CHOPE regimen combined with tyrosine kinase inhibitor (dasatin) treatment and obtained short-term complete remission. However, 6 months later, the disease progressed from EMS to AML and the patient died due to ineffective induction therapy. The present study also reviews the relevant literature about this unusual entity to enhance the understanding of EMS.
Collapse
Affiliation(s)
- Yu-Jie Guo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meng-Xue Ma
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Tian Tian
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing-Nan Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiao-Nan Guo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shukai Qiao
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
2
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Li T, Zhang G, Zhang X, Lin H, Liu Q. The 8p11 myeloproliferative syndrome: Genotypic and phenotypic classification and targeted therapy. Front Oncol 2022; 12:1015792. [PMID: 36408177 PMCID: PMC9669583 DOI: 10.3389/fonc.2022.1015792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 10/05/2023] Open
Abstract
EMS(8p11 myeloproliferative syndrome, EMS) is an aggressive hematological neoplasm with/without eosinophilia caused by a rearrangement of the FGFR1 gene at 8p11-12. It was found that all cases carry chromosome abnormalities at the molecular level, not only the previously reported chromosome translocation and insertion but also a chromosome inversion. These abnormalities produced 17 FGFR1 fusion genes, of which the most common partner genes are ZNF198 on 13q11-12 and BCR of 22q11.2. The clinical manifestations can develop into AML (acute myeloid leukemia), T-LBL (T-cell lymphoblastic lymphoma), CML (chronic myeloid leukemia), CMML (chronic monomyelocytic leukemia), or mixed phenotype acute leukemia (MPAL). Most patients are resistant to traditional chemotherapy, and a minority of patients achieve long-term clinical remission after stem cell transplantation. Recently, the therapeutic effect of targeted tyrosine kinase inhibitors (such as pemigatinib and infigratinib) in 8p11 has been confirmed in vitro and clinical trials. The TKIs may become an 8p11 treatment option as an alternative to hematopoietic stem cell transplantation, which is worthy of further study.
Collapse
Affiliation(s)
- Taotao Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Gaoling Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Qiuju Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Zhang X, Wang F, Yan F, Huang D, Wang H, Gao B, Gao Y, Hou Z, Lou J, Li W, Yan J. Identification of a novel HOOK3-FGFR1 fusion gene involved in activation of the NF-kappaB pathway. Cancer Cell Int 2022; 22:40. [PMID: 35081975 PMCID: PMC8793161 DOI: 10.1186/s12935-022-02451-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Rearrangements involving the fibroblast growth factor receptor 1 (FGFR1) gene result in 8p11 myeloproliferative syndrome (EMS), which is a rare and aggressive hematological malignancy that is often initially diagnosed as myelodysplastic syndrome (MDS). Clinical outcomes are typically poor due to relative resistance to tyrosine kinase inhibitors (TKIs) and rapid transformation to acute leukemia. Deciphering the transcriptomic signature of FGFR1 fusions may open new treatment strategies for FGFR1 rearrangement patients. Methods DNA sequencing (DNA-seq) was performed for 20 MDS patients and whole exome sequencing (WES) was performed for one HOOK3-FGFR1 fusion positive patient. RNA sequencing (RNA-seq) was performed for 20 MDS patients and 8 healthy donors. Fusion genes were detected using the STAR-Fusion tool. Fluorescence in situ hybridization (FISH), quantitative real-time PCR (qRT-PCR), and Sanger sequencing were used to confirm the HOOK3-FGFR1 fusion gene. The phosphorylation antibody array was performed to validate the activation of nuclear factor-kappaB (NF-kappaB) signaling. Results We identified frequently recurrent mutations of ASXL1 and U2AF1 in the MDS cohort, which is consistent with previous reports. We also identified a novel in-frame HOOK3-FGFR1 fusion gene in one MDS case with abnormal monoclonal B-cell lymphocytosis and ring chromosome 8. FISH analysis detected the FGFR1 break-apart signal in myeloid blasts only. qRT-PCR and Sanger sequencing confirmed the HOOK3-FGFR1 fusion transcript with breakpoints located at the 11th exon of HOOK3 and 10th exon of FGFR1, and Western blot detected the chimeric HOOK3-FGFR1 fusion protein that is presumed to retain the entire tyrosine kinase domain of FGFR1. The transcriptional feature of HOOK3-FGFR1 fusion was characterized by the significant enrichment of the NF-kappaB pathway by comparing the expression profiling of FGFR1 fusion positive MDS with 8 healthy donors and FGFR1 fusion negative MDS patients. Further validation by phosphorylation antibody array also showed NF-kappaB activation, as evidenced by increased phosphorylation of p65 (Ser 536) and of IKBalpha (Ser 32). Conclusions The HOOK3-FGFR1 fusion gene may contribute to the pathogenesis of MDS and activate the NF-kappaB pathway. These findings highlight a potential novel approach for combination therapy for FGFR1 rearrangement patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02451-y.
Collapse
Affiliation(s)
- Xuehong Zhang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Furong Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Fanzhi Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Haina Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Beibei Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Yuan Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, 116044, Dalian, China
| | - Weiling Li
- Department of Biotechnology College of Basic Medical Science, Dalian Medical University, 116044, Dalian, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem-Cell Transplantation, Liaoning Key Laboratory of Hematopoietic Stem-Cell Transplantation and Translational Medicine, Dalian Key Laboratory of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China. .,Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, 116027, Dalian, China.
| |
Collapse
|
5
|
Cowell JK, Hu T. Mechanisms of resistance to FGFR1 inhibitors in FGFR1-driven leukemias and lymphomas: implications for optimized treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:607-619. [PMID: 34734169 PMCID: PMC8562765 DOI: 10.20517/cdr.2021.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myeloid and lymphoid neoplasms with eosinophilia and FGFR1 rearrangements (MLN-eo FGFR1) disease is derived from a pluripotent hematopoietic stem cell and has a complex presentation with a myeloproliferative disorder with or without eosinophilia and frequently presents with mixed lineage T- or B-lymphomas. The myeloproliferative disease frequently progresses to AML and lymphoid neoplasms can develop into acute lymphomas. No matter the cell type involved, or clinical presentation, chromosome translocations involving the FGFR1 kinase and various partner genes, which leads to constitutive activation of downstream oncogenic signaling cascades. These patients are not responsive to treatment regimens developed for other acute leukemias and survival is poor. Recent development of specific FGFR1 inhibitors has suggested an alternative therapeutic approach but resistance is likely to evolve over time. Mouse models of this disease syndrome have been developed and are being used for preclinical evaluation of FGFR1 inhibitors. Cell lines from these models have now been developed and have been used to investigate the mechanisms of resistance that might be expected in clinical cases. So far, a V561M mutation in the kinases domain and deletion of PTEN have been recognized as leading to resistance and both operate through the PI3K/AKT signaling axis. One of the important consequences is the suppression of PUMA, a potent enforcer of apoptosis, which operates through BCL2. Targeting BCL2 in the resistant cells leads to suppression of leukemia development in mouse models, which potentially provides an opportunity to treat patients that become resistant to FGFR1 inhibitors. In addition, elucidation of molecular mechanisms underlying FGFR1-driven leukemias and lymphomas also provides new targets for combined treatment as another option to bypass the FGFR1 inhibitor resistance and improve patient outcome.
Collapse
Affiliation(s)
- John K Cowell
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Tianxiang Hu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
6
|
A rare case of atypical chronic myeloid leukemia associated with t(8;22)(p11.2;q11.2)/ BCR-FGFR1 rearrangement: A case report and literature review. Cancer Genet 2021; 258-259:69-73. [PMID: 34551378 DOI: 10.1016/j.cancergen.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022]
Abstract
Myeloid/lymphoid neoplasm with t(8;22)(p11.2;q11.2)/BCR-FGFR1 is an extremely rare diagnosis, with few reported cases to date. In contrast to other FGFR1-partner rearrangements that are associated with chronic eosinophilic leukemia, acute myeloid leukemia, and/or lymphoblastic lymphoma, patients with BCR-FGFR1 have a myeloproliferative disorder that closely resembles chronic myeloid leukemia (CML). The current report describes a rare case of a 61 year old man with an atypical CML phenotype associated with t(8;22)(p11.2;q11.2)/BCR-FGFR1. A literature review is presented to enhance the awareness of this rare diagnostic entity.
Collapse
|
7
|
Chen X, Huang L, Zheng C, Wang Z. A case of a patient characterized by t(8;22)(p11;q11) and BCR/FGFR1 fusion gene, who was successfully treated with haploidentical hematopoietic stem cell transplantation. ACTA ACUST UNITED AC 2021; 26:691-696. [PMID: 34493159 DOI: 10.1080/16078454.2021.1971889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: The 8p11 myeloproliferative syndrome [EMS] is a rare myeloproliferative disorder which usually develops rapidly with chromosomal translocation of the fibroblast growth factor receptor 1 gene. The gene has 15 fusion partners, including the breakpoint cluster region (BCR) gene on chromosome 22. Of all the tests available, chromosome karyotype determination is the most important for the diagnosis of EMS. Here, we describe one case of a patient characterized by marked increase of white blood cells and thrombocytopenia and diagnosed as EMS with t(8;22)(p11;q11) by chromosome karyotype.Methods: 28-year-old man was referred to our hospital. He had a onemonth history of intermittent coughing and a small amount of expectoration after catching a cold. As an outpatient, his complete blood count showed: WBC was 130.04 × 109/L with 80.20% granulocytes.Hematologic investigations, bone marrow analysis and genomic DNA sequencing studies were performed.Results: Despite additional chromosomal abnormalities,the patient progressed rapidly with a B blast cell clone in one month. After diagnosis inthree months, the patient underwent the haplo-identical BMT of his brother, followed up for three years, and had a high rate of survival.Conclusions: Our report provides a definite conceptual framework for a better understanding of the characteristics of The 8p11 myeloproliferative syndrome [EMS].
Collapse
Affiliation(s)
- Xin Chen
- People's Hospital of Shenzhen Baoan District, Shenzhen, People's Republic of China
| | - Lifang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Caifeng Zheng
- People's Hospital of Shenzhen Baoan District, Shenzhen, People's Republic of China
| | - Zhiqiong Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Kapatia G, Remani ASN, Naseem S, Parihar M, Sreedharanunni S. Myeloid Neoplasm with t(8;22)(p11;q11): A Mimicker of Chronic Myeloid Leukaemia in Blast Crisis. Indian J Hematol Blood Transfus 2021; 37:334-336. [PMID: 33867745 DOI: 10.1007/s12288-020-01343-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gargi Kapatia
- Department of Hematopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Shano Naseem
- Department of Hematopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mayur Parihar
- Department of Cytogenetics and Lab Haematology, Tata Medical Center, Kolkata, India
| | - Sreejesh Sreedharanunni
- Department of Hematopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
9
|
Barnes EJ, Leonard J, Medeiros BC, Druker BJ, Tognon CE. Functional characterization of two rare BCR-FGFR1 + leukemias. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004838. [PMID: 31980503 PMCID: PMC7133745 DOI: 10.1101/mcs.a004838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
8p11 myeloproliferative syndrome (EMS) represents a unique World Health Organization (WHO)-classified hematologic malignancy defined by translocations of the FGFR1 receptor. The syndrome is a myeloproliferative neoplasm characterized by eosinophilia and lymphadenopathy, with risk of progression to either acute myeloid leukemia (AML) or T- or B-lymphoblastic lymphoma/leukemia. Within the EMS subtype, translocations between breakpoint cluster region (BCR) and fibroblast growth factor receptor 1 (FGFR1) have been shown to produce a dominant fusion protein that is notoriously resistant to tyrosine kinase inhibitors (TKIs). Here, we report two cases of BCR–FGFR1+ EMS identified via RNA sequencing (RNA-seq) and confirmed by fluorescence in situ hybridization (FISH). Sanger sequencing revealed that both cases harbored the exact same breakpoint. In the first case, the patient presented with AML-like disease, and in the second, the patient progressed to B-cell acute lymphoblastic leukemia (B-ALL). Additionally, we observed that that primary leukemia cells from Case 1 demonstrated sensitivity to the tyrosine kinase inhibitors ponatinib and dovitinib that can target FGFR1 kinase activity, whereas primary cells from Case 2 were resistant to both drugs. Taken together, these results suggest that some but not all BCR–FGFR1 fusion positive leukemias may respond to TKIs that target FGFR1 kinase activity.
Collapse
Affiliation(s)
- Evan J Barnes
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Jessica Leonard
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Bruno C Medeiros
- Department of Medicine-Hematology, Stanford University, Stanford, California 94305, USA
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.,Howard Hughes Medical Institute, Portland, Oregon 97239, USA
| | - Cristina E Tognon
- Department of Medicine-Hematology, Stanford University, Stanford, California 94305, USA.,Howard Hughes Medical Institute, Portland, Oregon 97239, USA
| |
Collapse
|
10
|
Liu YT, Zhao JW, Feng J, Li QH, Chen YM, Qiu LG, Xiao ZJ, Li Y, Gong BF, Gong XY, Mi YC, Wang JX. [Myeloid/lymphoid neoplasms with eosinophilia and FGFR1 rearrangement: 5 cases report and literatures review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:848-852. [PMID: 31775485 PMCID: PMC7364987 DOI: 10.3760/cma.j.issn.0253-2727.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
目的 分析罕见疾病伴嗜酸性粒细胞增多和FGFR1重排的髓系/淋系肿瘤(即8p11骨髓增殖综合征,EMS)的临床特征、诊断及治疗。 方法 总结中国医学科学院血液病医院2014年1月至2018年5月收治的5例确诊EMS患者的临床表现、实验室特征、诊治经过及转归。 结果 5例EMS患者外周血白细胞计数均明显升高,伴有嗜酸性粒细胞绝对值增高(均值18.89×109/L);骨髓髓系极度增生,原始细胞均<5%,嗜酸性粒细胞比例增高(均值17.24%)。5例患者染色体核型各不相同,但FISH检查均存在FGFR1基因重排。发病至确诊平均时间为4.8个月,中位生存期仅14个月。 结论 EMS是一种罕见病,恶性程度高,对常规化疗反应差,生存期短,且易发生误诊漏诊,细胞遗传学及分子生物学检查有助于早期诊断。
Collapse
Affiliation(s)
- Y T Liu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Blood Diseases, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Silva J, Chang CS, Hu T, Qin H, Kitamura E, Hawthorn L, Ren M, Cowell JK. Distinct signaling programs associated with progression of FGFR1 driven leukemia in a mouse model of stem cell leukemia lymphoma syndrome. Genomics 2019; 111:1566-1573. [DOI: 10.1016/j.ygeno.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022]
|
12
|
Aypar U, Smoley SA, Pitel BA, Pearce KE, Zenka RM, Vasmatzis G, Johnson SH, Smadbeck JB, Peterson JF, Geiersbach KB, Van Dyke DL, Thorland EC, Jenkins RB, Ketterling RP, Greipp PT, Kearney HM, Hoppman NL, Baughn LB. Mate pair sequencing improves detection of genomic abnormalities in acute myeloid leukemia. Eur J Haematol 2018; 102:87-96. [PMID: 30270457 PMCID: PMC7379948 DOI: 10.1111/ejh.13179] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Acute myeloid leukemia (AML) can be subtyped based on recurrent cytogenetic and molecular genetic abnormalities with diagnostic and prognostic significance. Although cytogenetic characterization classically involves conventional chromosome and/or fluorescence in situ hybridization (FISH) assays, limitations of these techniques include poor resolution and the inability to precisely identify breakpoints. METHOD We evaluated whether an NGS-based methodology that detects structural abnormalities and copy number changes using mate pair sequencing (MPseq) can enhance the diagnostic yield for patients with AML. RESULTS Using 68 known abnormal and 20 karyotypically normal AML samples, each recurrent primary AML-specific abnormality previously identified in the abnormal samples was confirmed using MPseq. Importantly, in eight cases with abnormalities that could not be resolved by conventional cytogenetic studies, MPseq was utilized to molecularly define eight recurrent AML-fusion events. In addition, MPseq uncovered two cryptic abnormalities that were missed by conventional cytogenetic studies. Thus, MPseq improved the diagnostic yield in the detection of AML-specific structural rearrangements in 10/88 (11%) of cases analyzed. CONCLUSION Utilization of MPseq represents a precise, molecular-based technique that can be used as an alternative to conventional cytogenetic studies for newly diagnosed AML patients with the potential to revolutionize the diagnosis of hematologic malignancies.
Collapse
Affiliation(s)
- Umut Aypar
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Stephanie A Smoley
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Kathryn E Pearce
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Roman M Zenka
- Bioinformatics Systems, Mayo Clinic, Rochester, Minnesota
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota
| | - Sarah H Johnson
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota
| | - Jess F Peterson
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Katherine B Geiersbach
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Daniel L Van Dyke
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Erik C Thorland
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Hutton M Kearney
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Nicole L Hoppman
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Linda B Baughn
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Liu JJ, Meng L. 8p11 Myeloproliferative syndrome with t(8;22)(p11;q11): A case report. Exp Ther Med 2018; 16:1449-1453. [PMID: 30116393 DOI: 10.3892/etm.2018.6328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/20/2018] [Indexed: 01/21/2023] Open
Abstract
The 8p11 myeloproliferative syndrome (EMS), a rare myeloproliferative disease, generally progresses rapidly and is characterized by chromosomal translocations of the fibroblast growth factor receptor 1 (FGFR1) gene. The FGFR1 gene is located at chromosome 8p11 and may fuse with distinct partner genes. The breakpoint cluster region gene located at chromosome 22 is one of these partner genes. The patients' clinical phenotype is primarily dependant on the partner gene that translocates with FGFR1. Of all the available examinations, determination of the chromosome karyotype is most essential for the diagnosis of EMS. In addition, regarding treatment, allogeneic hematopoietic stem cell transplantation is currently the optimal method. The present study presented a case of 8p11 myeloproliferative syndrome with t(8;22)(p11;q11). This represents a total of 8 and 11 chromosomal translocations, which form a BCR/FGFR1 fusion gene in the patient to produce the abnormal karyotype: 46,XY,t(8;22)(p11;q11). The difference between the current case and other EMS incidences is that the patient progressed slowly and the clinical manifestation was similar to chronic myeloid leukemia (CML).
Collapse
Affiliation(s)
- Jing Jing Liu
- Department of Hematology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Li Meng
- Department of Hematology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
14
|
Landberg N, Dreimane A, Rissler M, Billström R, Ågerstam H. Primary cells inBCR/FGFR1-positive 8p11 myeloproliferative syndrome are sensitive to dovitinib, ponatinib, and dasatinib. Eur J Haematol 2017; 99:442-448. [DOI: 10.1111/ejh.12957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas Landberg
- Department of Clinical Genetics; Lund University; Lund Sweden
| | - Arta Dreimane
- Department of Haematology; Linköping University Hospital; Linköping Sweden
| | | | - Rolf Billström
- Department of Medicine; Central Hospital Skövde; Skövde Sweden
| | - Helena Ågerstam
- Department of Clinical Genetics; Lund University; Lund Sweden
| |
Collapse
|
15
|
Myeloproliferative neoplasms with t(8;22)(p11.2;q11.2)/ BCR-FGFR1 : a meta-analysis of 20 cases shows cytogenetic progression with B-lymphoid blast phase. Hum Pathol 2017; 65:147-156. [DOI: 10.1016/j.humpath.2017.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/07/2017] [Accepted: 05/10/2017] [Indexed: 11/24/2022]
|
16
|
Qin YW, Yang YN, Bai P, Wang C. Chronic myelogenous leukemia-like hematological malignancy with t(8;22) in a 26-year-old pregnant woman: A case report. Oncol Lett 2016; 11:4131-4133. [PMID: 27313753 DOI: 10.3892/ol.2016.4505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/18/2015] [Indexed: 12/23/2022] Open
Abstract
t(8;22)(p11;q11) is a rare but recurrent genetic alteration in various hematological disorders. Patients with t(8;22)(p11;q11) may be misdiagnosed with chronic myelogenous leukemia (CML), due to the similar clinical features. Thus, the current study presents a patient with t(8;22)(p11;q11) who was previously misdiagnosed with CML in the chronic phase. The current patient was a 26-year-old woman who was 4-weeks pregnant and in whom an increased white blood cell count (4.0×1010/l) was found upon physical examination. The patient had no history of hematological disease. Although cytogenetics showed a normal karyotype and no breakpoint cluster region/Abelson murine leukemia viral oncogene homolog 1 (BCR/ABL) fusion gene was detected by reverse transcription-polymerase chain reaction, a diagnosis of chronic myelogenous leukemia (CML) was initially made according to the clinical and morphological features. Another 6 weeks later, t(8;22)(p11;q11) rearrangement was present in 9 out of 10 analyzed metaphases. Fluorescence in situ hybridization and reverse transcription-polymerase chain reaction indicated a negative result for the BCR/ABL fusion, but gave a positive result for the BCR-fibroblast growth factor receptor 1 fusion. A hematological diagnosis of atypical CML was again formed.
Collapse
Affiliation(s)
- You-Wen Qin
- Department of Hematology, Shanghai First People's Hospital, Medical College, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Yi-Ning Yang
- Department of Hematology, Shanghai First People's Hospital, Medical College, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Ping Bai
- Clinical Laboratory, Shanghai First People's Hospital, Medical College, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Chun Wang
- Department of Hematology, Shanghai First People's Hospital, Medical College, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| |
Collapse
|
17
|
Malli T, Buxhofer-Ausch V, Rammer M, Erdel M, Kranewitter W, Rumpold H, Marschon R, Deutschbauer S, Simonitsch-Klupp I, Valent P, Muellner-Ammer K, Sebesta C, Birkner T, Webersinke G. Functional characterization, localization, and inhibitor sensitivity of the TPR-FGFR1 fusion in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2015; 55:60-8. [DOI: 10.1002/gcc.22311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/26/2015] [Indexed: 01/27/2023] Open
Affiliation(s)
- Theodora Malli
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | | | - Melanie Rammer
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Martin Erdel
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Wolfgang Kranewitter
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Holger Rumpold
- Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Renate Marschon
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | - Sabine Deutschbauer
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| | | | - Peter Valent
- Clinical Departments of Hematology and Hemostaseology; Medical University of Vienna; Vienna Austria
| | | | - Christian Sebesta
- Department of Internal Medicine 2; Donauspital - SMZO; Vienna Austria
| | - Thomas Birkner
- Institute for Pathology and Bacteriology; Donauspital - SMZO; Vienna Austria
| | - Gerald Webersinke
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I; Hospital Barmherzige Schwestern; Linz Austria
| |
Collapse
|
18
|
Clinical activity of ponatinib in a patient with FGFR1-rearranged mixed-phenotype acute leukemia. Leukemia 2015; 30:947-50. [PMID: 26055304 DOI: 10.1038/leu.2015.136] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Kumar KR, Chen W, Koduru PR, Luu HS. Myeloid and lymphoid neoplasm with abnormalities of FGFR1 presenting with trilineage blasts and RUNX1 rearrangement: a case report and review of literature. Am J Clin Pathol 2015; 143:738-48. [PMID: 25873510 DOI: 10.1309/ajcpud6w1jlqqmna] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Myeloid and lymphoid neoplasms with abnormalities of fibroblast growth factor receptor 1 gene (FGFR1) are a rare and aggressive disease group that harbors translocations of FGFR1 with at least 14 recognized partner genes. We report a case of a patient with a novel t(17;21)(p13;q22) with RUNX1 rearrangement and trilineage blasts. METHODS A 29-year-old man with relapsed T-lymphoblastic lymphoma in the cervical nodes showed a myeloproliferative neoplasm in his bone marrow with three separate populations of immunophenotypically aberrant myeloid, T-lymphoid, and B-lymphoid blasts by flow cytometry. Cytogenetic and fluorescent in situ hybridization studies showed unique dual translocations of t(8;13)(p11.2;q12) and t(17;21)(p13;q22) with RUNX1 rearrangement. RESULTS The patient was initiated on a mitoxantrone, etoposide, and cytarabine chemotherapy regimen and died of complications of disease 1 month later. CONCLUSIONS To our knowledge, this is the first reported case of a myeloid and lymphoid neoplasm with abnormalities of FGFR1 with t(17;21)(p13;q22) and trilineage blasts.
Collapse
Affiliation(s)
- Kirthi R. Kumar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Prasad R. Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Hung S. Luu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
20
|
Abstract
The occurrence of a myeloproliferative disorder in association with an aggressive lymphoproliferative disorder is a distinctly unusual phenomenon. We report a case of concurrent leukaemia-lymphoma syndrome characterized by a BCR/ABL-negative myeloproliferative disease, eosinophilia and a lymphoma. The bone marrow chromosome analysis showed the karyotype 46, XY, t(8;9) (q12; p33), which indicated presence of FGFR1 gene translocations. 8p12 myeloproliferative syndrome (EMS) / stem cell leukaemia-lymphoma syndrome (SCLL) belongs to the tyrosine kinase fusion genes chronic myeloproliferative diseases. The patient was managed conservatively with hydroxyurea, allopurinol and blood component therapy. The patient eventually died of intracerebral haemorrhage due to severe thrombocytopaenia. Based on our experience the overlap in the clinical presentation of this disease with lymphomas, can lead to a delay in diagnosis of EMS/SCLL. Given the aggressive nature of this disease, an accurate clinical and molecular diagnosis of this entity has become increasingly important.
Collapse
Affiliation(s)
- O John-Olabode Sarahx
- Department of Haematology, Ben Carson School of Medicine, Babcock University Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
| | - A Oyekunle Anthony
- Department of Haematolgy and Immunology, Faculty of Health Sciences, Obafemi Awolowo University and Teaching Hospital, Ile-Ife, Osun State, Nigeria
| | - A Adeyemo Titilope
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos, Idi-Araba, Lagos, Nigeria
| | - S Akanmu Alani
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
21
|
Sarahx OJO, Anthony AO, Titilope AA, Alani SA. The 8p12 myeloproliferative syndrome. Niger Med J 2014. [PMID: 24791056 DOI: 10.4103/0300-1652.129669.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The occurrence of a myeloproliferative disorder in association with an aggressive lymphoproliferative disorder is a distinctly unusual phenomenon. We report a case of concurrent leukaemia-lymphoma syndrome characterized by a BCR/ABL-negative myeloproliferative disease, eosinophilia and a lymphoma. The bone marrow chromosome analysis showed the karyotype 46, XY, t(8;9) (q12; p33), which indicated presence of FGFR1 gene translocations. 8p12 myeloproliferative syndrome (EMS) / stem cell leukaemia-lymphoma syndrome (SCLL) belongs to the tyrosine kinase fusion genes chronic myeloproliferative diseases. The patient was managed conservatively with hydroxyurea, allopurinol and blood component therapy. The patient eventually died of intracerebral haemorrhage due to severe thrombocytopaenia. Based on our experience the overlap in the clinical presentation of this disease with lymphomas, can lead to a delay in diagnosis of EMS/SCLL. Given the aggressive nature of this disease, an accurate clinical and molecular diagnosis of this entity has become increasingly important.
Collapse
Affiliation(s)
- O John-Olabode Sarahx
- Department of Haematology, Ben Carson School of Medicine, Babcock University Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria
| | - A Oyekunle Anthony
- Department of Haematolgy and Immunology, Faculty of Health Sciences, Obafemi Awolowo University and Teaching Hospital, Ile-Ife, Osun State, Nigeria
| | - A Adeyemo Titilope
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos, Idi-Araba, Lagos, Nigeria
| | - S Akanmu Alani
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
22
|
Patnaik MM, Tefferi A. Molecular diagnosis of myeloproliferative neoplasms. Expert Rev Mol Diagn 2014; 9:481-92. [DOI: 10.1586/erm.09.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
EMS: the 8p11 myeloproliferative syndrome. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
Johnson RC, George TI. The Differential Diagnosis of Eosinophilia in Neoplastic Hematopathology. Surg Pathol Clin 2013; 6:767-794. [PMID: 26839197 DOI: 10.1016/j.path.2013.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eosinophilia in the peripheral blood is classified as primary (clonal) hematologic neoplasms or secondary (nonclonal) disorders, associated with hematologic or nonhematologic disorders. This review focuses on the categories of hematolymphoid neoplasms recognized by the 2008 World Health Organization Classification of Tumours and Haematopoietic and Lymphoid Tissues that are characteristically associated with eosinophilia. We provide a systematic approach to the diagnosis of these neoplastic proliferations via morphologic, immunophenotypic, and molecular-based methodologies, and provide the clinical settings in which these hematolymphoid neoplasms occur. We discuss recommendations that eosinophilia working groups have published addressing some of the limitations of the current classification scheme.
Collapse
Affiliation(s)
- Ryan C Johnson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235 MC 5324, Stanford, CA 94305, USA.
| | - Tracy I George
- Department of Pathology, University of New Mexico School of Medicine, 1 University of New Mexico, MSC08 4640, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
25
|
Abstract
The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
Collapse
Affiliation(s)
- Kai Hung Tiong
- School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Li Yen Mah
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Bellesso M, Santucci R, Dias DF, Centrone R, Elias RC. Atypical chronic myeloid leukemia with t(9;22)(p24,11.2), a BCR-JAK2 fusion gene. Rev Bras Hematol Hemoter 2013; 35:218-9. [PMID: 23904814 PMCID: PMC3728137 DOI: 10.5581/1516-8484.20130044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/21/2013] [Indexed: 11/27/2022] Open
Abstract
We report here on a rare case of BCR-ABL1-negative atypical chronic myeloid leukemia with a t(9;22)(p24;q11.2)translocation and a BCR-JAK2 fusion gene, with resistance to the tyrosine kinase inhibitors imatinib and dasatinib.At two years of follow-up, the patient showed no hematologic response and was submitted to an allogeneic bonemarrow transplantation. Fifty-three days after the procedure, he died due to acute graft-versus-host disease. This BCR-JAK2 fusion gene has so far been found in only five patients in the whole world, with three clinical presentations: myeloproliferative neoplasm, acute lymphoblastic leukemia and acute myeloid leukemia.
Collapse
|
27
|
Shimanuki M, Sonoki T, Hosoi H, Watanuki J, Murata S, Mushino T, Kuriyama K, Tamura S, Hatanaka K, Hanaoka N, Nakakuma H. Acute leukemia showing t(8;22)(p11;q11), myelodysplasia, CD13/CD33/CD19 expression and immunoglobulin heavy chain gene rearrangement. Acta Haematol 2013; 129:238-42. [PMID: 23328683 DOI: 10.1159/000345727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/29/2012] [Indexed: 02/06/2023]
Abstract
t(8;22)(p11;q11) is a rare but recurrent chromosome translocation that has been reported in 11 cases of myeloproliferative neoplasm or B-acute lymphoblastic leukemia. This translocation results in an in-frame fusion of FGFR1 on 8p11 and BCR on 22q11, and causes constitutive activation of the tyrosine kinase of the BCR/FGFR1 chimera protein. Here, we report the twelfth case of hematological tumor bearing t(8;22)(p11;q11). The bone marrow showed hypoplastic and tri-lineage dysplasia with 24.4% abnormal cells. The abnormal cells were not defined as myeloid or lymphoid morphologically, lacking a myeloperoxidase reaction. Flow cytometric analysis of the bone marrow cells revealed that the abnormal cells expressed CD13, CD33, CD34, and CD19, and that a fraction of the abnormal cells was positive for CD10. Southern blot analysis of the bone marrow cells showed rearrangement of the immunoglobulin heavy chain gene, a genetic hallmark of B-cell differentiation. Previously reported cases with t(8;22)(p11;q11) suggested an association between myeloid and B-lymphoid tumors, whereas other chromosome translocations involving FGFR1 on 8p11 showed a link between myeloid and T-lymphoid tumors. Our observation supports that t(8;22)(p11;q11) might define a dual myeloid and B-lymphoid disorder.
Collapse
Affiliation(s)
- Masaya Shimanuki
- Hematology/Oncology, Wakayama Medical University, Wakayama 641-8509, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Morishige S, Oku E, Takata Y, Kimura Y, Arakawa F, Seki R, Imamura R, Osaki K, Hashiguchi M, Yakushiji K, Mizuno S, Yoshimoto K, Nagafuji K, Ohshima K, Okamura T. A case of 8p11 myeloproliferative syndrome with BCR-FGFR1 gene fusion presenting with trilineage acute leukemia/lymphoma, successfully treated by cord blood transplantation. Acta Haematol 2013; 129:83-9. [PMID: 23171834 DOI: 10.1159/000341289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/25/2012] [Indexed: 01/25/2023]
Abstract
The 8p11 myeloproliferative syndrome is a rare neoplasm associated with chromosomal translocations involving the fibroblast growth factor receptor 1 (FGFR1) gene located at chromosome 8p11-12. FGFR1 encodes a transmembrane receptor tyrosine kinase. The resultant fusion proteins are constitutively active tyrosine kinases that drive the proliferation of hematopoietic cells, whose uncontrolled growth can present as a myeloproliferative neoplasm. We report here the case of a 50-year-old man harboring the t(8;22)(p12;q11) chromosomal translocation in cells from both bone marrow and lymph nodes. He presented with acute leukemia and lymphoma with trilineage features. A novel mRNA in-frame fusion between exon 4 of the breakpoint cluster region (BCR) gene at chromosome 22q11 and exon 9 of FGFR1 gene on chromosome 8p11-12 was identified by reverse transcription polymerase chain reaction analysis and was confirmed by DNA sequencing. Because the patient was refractory to chemotherapy, cord blood transplantation was performed in progressive disease. It resulted in a successful outcome in which cytogenetic complete remission has been maintained for 2 years till date.
Collapse
Affiliation(s)
- Satoshi Morishige
- Division of Hematology and Oncology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Allogeneic Hematopoietic Stem Cell Transplantation for a BCR-FGFR1 Myeloproliferative Neoplasm Presenting as Acute Lymphoblastic Leukemia. Case Rep Hematol 2012; 2012:620967. [PMID: 23082258 PMCID: PMC3467796 DOI: 10.1155/2012/620967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/02/2012] [Indexed: 01/15/2023] Open
Abstract
Hematopoietic myeloproliferative neoplasms (MPNS) with rearrangements of the receptor tyrosine kinase FGFR1 gene, located on chromosome 8p11, are uncommon and associated with diverse presentations such as atypical chronic myeloid leukemia, acute myeloid leukemia, or an acute T- or B-lymphoblastic leukemia, reflecting the hematopoietic stem cell origin of the disease. A review of MPN patients with the t(8;22) translocation that results in a chimeric BCR-FGFR1 fusion gene reveals that this disease either presents or rapidly transforms into an acute leukemia that is generally unresponsive to currently available chemotherapeutic regimens including tyrosine kinase inhibitors (TKIS). The first case of a rare BCR-FGFR1 MPN presenting in a B-acute lymphoblastic phase who underwent allogeneic hematopoietic stem cell transplantation (HSCT) with a subsequent sustained complete molecular remission is described. Allogeneic HSCT is currently the only available therapy capable of achieving long-term remission in BCR-FGFR1 MPN patients.
Collapse
|
30
|
Ren M, Tidwell JA, Sharma S, Cowell JK. Acute progression of BCR-FGFR1 induced murine B-lympho/myeloproliferative disorder suggests involvement of lineages at the pro-B cell stage. PLoS One 2012; 7:e38265. [PMID: 22701616 PMCID: PMC3368885 DOI: 10.1371/journal.pone.0038265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 05/05/2012] [Indexed: 01/25/2023] Open
Abstract
Constitutive activation of FGFR1, through rearrangement with various dimerization domains, leads to atypical myeloproliferative disorders where, although T cell lymphoma are common, the BCR-FGFR1 chimeric kinase results in CML-like leukemia. As with the human disease, mouse bone marrow transduction/transplantation with BCR-FGFR1 leads to CML-like myeloproliferation as well as B-cell leukemia/lymphoma. The murine disease described in this report is virtually identical to the human disease in that both showed bi-lineage involvement of myeloid and B-cells, splenomegaly, leukocytosis and bone marrow hypercellularity. A CD19+ IgM− CD43+ immunophenotype was seen both in primary tumors and two cell lines derived from these tumors. In all primary tumors, subpopulations of these CD19+ IgM− CD43+ were also either B220+ or B220−, suggesting a block in differentiation at the pro-B cell stage. The B220− phenotype was retained in one of the cell lines while the other was B220+. When the two cell lines were transplanted into syngeneic mice, all animals developed the same B-lymphoblastic leukemia within 2-weeks. Thus, the murine model described here closely mimics the human disease with bilineage myeloid and B-cell leukemia/lymphoma which provides a representative model to investigate therapeutic intervention and a better understanding of the etiology of the disease.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Blotting, Western
- Bone Marrow Transplantation
- Cell Line, Tumor
- Cell Lineage/immunology
- Cell Lineage/physiology
- Comparative Genomic Hybridization
- DNA Primers/genetics
- Flow Cytometry
- Histological Techniques
- Immunoglobulin M/immunology
- Immunophenotyping
- Karyotyping
- Leukemia, B-Cell/etiology
- Leukemia, B-Cell/physiopathology
- Leukocyte Common Antigens/immunology
- Leukosialin/immunology
- Mice
- Mice, Inbred BALB C
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/physiopathology
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/physiology
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- MingQiang Ren
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University School of Medicine, Augusta, Georgia, United States of America
| | - Josephine A. Tidwell
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University School of Medicine, Augusta, Georgia, United States of America
| | - Suash Sharma
- Department of Pathology, Georgia Health Sciences University School of Medicine, Augusta, Georgia, United States of America
| | - John K. Cowell
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University School of Medicine, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
31
|
Gavrilescu LC, Van Etten RA. Murine retroviral bone marrow transplantation models for the study of human myeloproliferative disorders. ACTA ACUST UNITED AC 2012; Chapter 14:Unit14.10. [PMID: 22294220 DOI: 10.1002/0471141755.ph1410s43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human myeloproliferative diseases are common hematologic disorders characterized by clonal overproduction of maturing myeloid or erythroid cells, often caused by expression of a mutant, dysregulated tyrosine kinase (TK). These diseases can be accurately modeled in laboratory mice by the retroviral transfer of a mutant TK gene into murine hematopoietic stem and progenitor cells, followed by transplantation of these cells into irradiated recipient mice. This yields a model system for analyzing the molecular pathophysiology of these conditions and provides a platform for testing therapies, particularly molecularly targeted new chemical entities (NCEs). The Basic Protocol in this unit describes the preparation of mouse bone marrow cells to express the relevant human oncogene before transplanting them into irradiated recipient mice. An alternate protocol describes a similar technique that allows specific induction of lymphoproliferative disease by some TKs. Support protocols for generating and titering retroviral stocks are also included.
Collapse
Affiliation(s)
- L Cristina Gavrilescu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
32
|
Ren M, Qin H, Ren R, Tidwell J, Cowell JK. Src activation plays an important key role in lymphomagenesis induced by FGFR1 fusion kinases. Cancer Res 2011; 71:7312-22. [PMID: 21937681 DOI: 10.1158/0008-5472.can-11-1109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chromosomal translocations and activation of the fibroblast growth factor (FGF) receptor 1 (FGFR1) are a feature of stem cell leukemia-lymphoma syndrome (SCLL), an aggressive malignancy characterized by rapid transformation to acute myeloid leukemia and lymphoblastic lymphoma. It has been suggested that FGFR1 proteins lose their ability to recruit Src kinase, an important mediator of FGFR1 signaling, as a result of the translocations that delete the extended FGFR substrate-2 (FRS2) interacting domain that Src binds. In this study, we report evidence that refutes this hypothesis and reinforces the notion that Src is a critical mediator of signaling from the FGFR1 chimeric fusion genes generated by translocation in SCLL. Src was constitutively active in BaF3 cells expressing exogenous FGFR1 chimeric kinases cultured in vitro as well as in T-cell or B-cell lymphomas they induced in vivo. Residual components of the FRS2-binding site retained in chimeric kinases that were generated by translocation were sufficient to interact with FRS2 and activate Src. The Src kinase inhibitor dasatinib killed transformed BaF3 cells and other established murine leukemia cell lines expressing chimeric FGFR1 kinases, significantly extending the survival of mice with SCLL syndrome. Our results indicated that Src kinase is pathogenically activated in lymphomagenesis induced by FGFR1 fusion genes, implying that Src kinase inhibitors may offer a useful option to treatment of FGFR1-associated myeloproliferative/lymphoma disorders.
Collapse
Affiliation(s)
- Mingqiang Ren
- Georgia Health Sciences University School of Medicine, Augusta, Georgia, USA.
| | | | | | | | | |
Collapse
|
33
|
Kim SY, Oh B, She CJ, Kim HK, Jeon YK, Shin MG, Yoon SS, Lee DS. 8p11 Myeloproliferative syndrome with BCR-FGFR1 rearrangement presenting with T-lymphoblastic lymphoma and bone marrow stromal cell proliferation: a case report and review of the literature. Leuk Res 2011; 35:e30-4. [PMID: 21239058 DOI: 10.1016/j.leukres.2010.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/29/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|
34
|
Abstract
The 8p11 myeloproliferative syndrome (EMS), also referred to as stem cell leukemia/lymphoma, is a chronic myeloproliferative disorder that rapidly progresses into acute leukemia. Molecularly, EMS is characterized by fusion of various partner genes to the FGFR1 gene, resulting in constitutive activation of the tyrosine kinases in FGFR1. To date, no previous study has addressed the functional consequences of ectopic FGFR1 expression in the potentially most relevant cellular context, that of normal primary human hematopoietic cells. Herein, we report that expression of ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) or BCR/FGFR1 in normal human CD34(+) cells from umbilical-cord blood leads to increased cellular proliferation and differentiation toward the erythroid lineage in vitro. In immunodeficient mice, expression of ZMYM2/FGFR1 or BCR/FGFR1 in human cells induces several features of human EMS, including expansion of several myeloid cell lineages and accumulation of blasts in bone marrow. Moreover, bone marrow fibrosis together with increased extramedullary hematopoiesis is observed. This study suggests that FGFR1 fusion oncogenes, by themselves, are capable of initiating an EMS-like disorder, and provides the first humanized model of a myeloproliferative disorder transforming into acute leukemia in mice. The established in vivo EMS model should provide a valuable tool for future studies of this disorder.
Collapse
|
35
|
Baldazzi C, Iacobucci I, Luatti S, Ottaviani E, Marzocchi G, Paolini S, Stacchini M, Papayannidis C, Gamberini C, Martinelli G, Baccarani M, Testoni N. B-cell acute lymphoblastic leukemia as evolution of a 8p11 myeloproliferative syndrome with t(8;22)(p11;q11) and BCR-FGFR1 fusion gene. Leuk Res 2010; 34:e282-5. [PMID: 20594995 DOI: 10.1016/j.leukres.2010.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 04/25/2010] [Accepted: 05/09/2010] [Indexed: 11/30/2022]
|
36
|
Patnaik MM, Gangat N, Knudson RA, Keefe JG, Hanson CA, Pardanani A, Ketterling RP, Tefferi A. Chromosome 8p11.2 translocations: prevalence, FISH analysis for FGFR1 and MYST3, and clinicopathologic correlates in a consecutive cohort of 13 cases from a single institution. Am J Hematol 2010; 85:238-42. [PMID: 20143402 DOI: 10.1002/ajh.21631] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromosome 8p11.2 translocations result in diverse oncogenic fusion genes involving FGFR1 or MYST3. Among 24,262 unique patient cytogenetic studies performed at the Mayo Clinic, 8p11.2 translocations were identified in 14 cases ( approximately 0.06%). FISH analysis was performed in 13 patients (12 had myeloid neoplasms) and revealed abnormalities of MYST3 (n = 4) or FGFR1 (n = 4) in eight patients. MYST3 abnormalities were associated with acute myeloid leukemia (AML), M4 in three and M6 in one. Three of the four FGFR1-rearranged cases were associated with myeloproliferative neoplasms but none, including the two with sole 8p11.2, displayed the typical phenotype for stem cell leukemia/lymphoma (SCLL) and only one had eosinophilia; the fourth case had AML-M4. FISH did not reveal FGFR1 involvement in the one patient with SCLL. We conclude that neither the SCLL phenotype nor blood eosinophilia is a consistent feature of FGFR1-associated 8p11.2 translocations; conversely, FISH might not always reveal FGFR1 involvement in typical SCLL.
Collapse
|
37
|
Abstract
The 8p11 myeloproliferative syndrome is an aggressive neoplasm associated with chromosomal translocations involving the fibroblast growth factor receptor 1 tyrosine kinase gene on chromosome 8p11-12. By our count, 65 cases are currently reported in the literature. This neoplasm affects patients of all ages, with a slight male predominance. Patients often present with peripheral blood eosinophilia without basophilia. Bone marrow examination commonly is hypercellular, with or without eosinophilia, which usually leads to the initial diagnosis of a myeloproliferative neoplasm. Many patients also present with or develop lymphadenopathy. Lymph node biopsy in these patients has commonly shown lymphoblastic leukemia/lymphoma, most often reported as being of T-cell lineage, but bilineal myeloid/T-cell lymphomas and less often a myeloid sarcoma are also reported. The natural history of this neoplasm is to evolve into acute leukemia, usually of myeloid or mixed lineage, and less frequently of T- or B-lymphoid lineage. The prognosis is poor despite aggressive chemotherapy, with a few patients achieving long clinical remission after stem cell transplantation. At the molecular level, all cases carry a chromosomal abnormality involving the fibroblast growth factor receptor 1 (FGFR1) gene at chromosome 8p11, where 10 translocations and 1 insertion have been identified. These abnormalities disrupt the FGFR1 and various partner genes, and result in the creation of novel fusion genes and chimeric proteins. The latter include the N-terminal portion of the partner genes and the C-terminal portion of FGFR1. The most common partner is ZNF198 on chromosome 13q12. In the current World Health Organization classification, the 8p11 myeloproliferative syndrome is designated as "myeloid and lymphoid neoplasms with FGFR1 abnormalities."
Collapse
|
38
|
Abstract
The 8p11 myeloproliferative syndrome is a rare hematologic malignancy derived from a pluripotent hematopoietic stem cell associated with rearrangements involving the fibroblast growth factor receptor 1 (FGFR1) gene located on chromosome 8p11. The most common translocation, t(8;13) (p11;q13), results in a ZNF198-FGFR1 fusion gene and constitutively active FGFR1 tyrosine kinase activity. Typical pathologic findings include myeloid hyperplasia, lymphadenopathy, precursor T-lymphoblastic lymphoma, and eosinophilia. The disease is usually associated with an aggressive course and progression to acute myeloid leukemia is frequent. We report here the first case of 8p11 myeloproliferative syndrome in an infant and demonstrate the value of molecular testing in the diagnosis and minimal disease monitoring of this rare disease.
Collapse
|
39
|
Tefferi A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J Cell Mol Med 2008; 13:215-37. [PMID: 19175693 PMCID: PMC3823350 DOI: 10.1111/j.1582-4934.2008.00559.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Therapeutically validated oncoproteins in myeloproliferative neoplasms (MPN) include BCR-ABL1 and rearranged PDGFR proteins. The latter are products of intra- (e.g. FIP1L1-PDGFRA) or inter-chromosomal (e.g.ETV6-PDGFRB) gene fusions. BCR-ABL1 is associated with chronic myelogenous leukaemia (CML) and mutant PDGFR with an MPN phenotype characterized by eosinophilia and in addition, in case of FIP1L1-PDGFRA, bone marrow mastocytosis. These genotype-phenotype associations have been effectively exploited in the development of highly accurate diagnostic assays and molecular targeted therapy. It is hoped that the same will happen in other MPN with specific genetic alterations: polycythemia vera (JAK2V617F and other JAK2 mutations), essential thrombocythemia (JAK2V617F and MPL515 mutations), primary myelofibrosis (JAK2V617F and MPL515 mutations), systemic mastocytosis (KITD816V and other KIT mutations) and stem cell leukaemia/lymphoma (ZNF198-FGFR1 and other FGFR1 fusion genes). The current review discusses the above-listed mutant molecules in the context of their value as drug targets.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Richebourg S, Theisen O, Plantier I, Parry A, Soenen-Cornu V, Lepelley P, Preudhomme C, Renneville A, Laï JL, Roche-Lestienne C. Chronic myeloproliferative disorder with t(8;22)(p11;q11) can mime clonal cytogenetic evolution of authentic chronic myelogeneous leukemia. Genes Chromosomes Cancer 2008; 47:915-8. [DOI: 10.1002/gcc.20588] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
41
|
Lee SG, Park TS, Lee ST, Lee KA, Song J, Kim J, Suh B, Choi JR, Park R. Rare translocations involving chromosome band 8p11 in myeloid neoplasms. ACTA ACUST UNITED AC 2008; 186:127-9. [DOI: 10.1016/j.cancergencyto.2008.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 06/27/2008] [Accepted: 07/10/2008] [Indexed: 02/05/2023]
|
42
|
Bain BJ, Fletcher SH. Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol Allergy Clin North Am 2007; 27:377-88. [PMID: 17868855 DOI: 10.1016/j.iac.2007.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Among patients with hypereosinophilia, a myeloproliferative variant is recognized. In many of these patients a diagnosis of eosinophilic leukemia can be made. The molecular mechanism is often a fusion gene, incorporating part of PDGFRA or PDGFRB, encoding anaberrant tyrosine kinase. Prompt diagnosis of such cases is important since specific tyrosine kinase inhibitor therapy is indicated.
Collapse
Affiliation(s)
- Barbara J Bain
- Department of Haematology, St Mary's Hospital Campus of Imperial College Faculty of Medicine, St Mary's Hospital, Praed Street, London, W2 1NY, UK.
| | | |
Collapse
|
43
|
Vecchione A, Cooper HJ, Trim KJ, Akbarzadeh S, Heath JK, Wheldon LM. Protein partners in the life history of activated fibroblast growth factor receptors. Proteomics 2007; 7:4565-78. [DOI: 10.1002/pmic.200700615] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Putnik J, Zhang CD, Archangelo LF, Tizazu B, Bartels S, Kickstein M, Greif PA, Bohlander SK. The interaction of ETV6 (TEL) and TIP60 requires a functional histone acetyltransferase domain in TIP60. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:1211-24. [PMID: 17980166 DOI: 10.1016/j.bbadis.2007.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 12/19/2022]
Abstract
The ets-family transcription factor ETV6 (TEL) has been shown to be the target of a large number of balanced chromosomal translocations in various hematological malignancies and in some soft tissue tumors. Furthermore, ETV6 is essential for hematopoietic stem cell function. We identified ETV6 interacting proteins using the yeast two hybrid system. One of these proteins is the HIV Tat interacting protein (TIP60), a histone acetyltransferase (HAT) containing the highly conserved MYST domain. TIP60 functions as a corepressor of ETV6 in reporter gene assays. Fluorescently tagged ETV6 and TIP60 colocalize in the nucleus and an increase in nuclear localization of ETV6 was seen when TIP60 was cotransfected. ETV6 interacts with TIP60 through a 63 amino acids region located in the central domain of ETV6 between the pointed and the ets domain. The ETV6 interacting region of TIP60 mapped to the C2HC zinc finger of the TIP60 MYST domain. The interaction of TIP60 with full length ETV6 required an intact acetyltransferase domain of TIP60. Interestingly, the MYST domains of MOZ and MORF were also able to interact with portions of ETV6. These observations suggest that MYST domain HATs regulate ETV6 transcriptional activity and may therefore play critical roles in leukemogenesis and possibly in normal hematopoietic development.
Collapse
Affiliation(s)
- Jasmina Putnik
- Institute of Human Genetics, Heinrich-Düker-Weg 12, 37037 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Agerstam H, Lilljebjörn H, Lassen C, Swedin A, Richter J, Vandenberghe P, Johansson B, Fioretos T. Fusion gene-mediated truncation ofRUNX1 as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2007; 46:635-43. [PMID: 17394134 DOI: 10.1002/gcc.20442] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The 8p11 myeloproliferative syndrome (EMS) is a chronic myeloproliferative disorder molecularly characterized by fusion of various 5' partner genes to the 3' part of the fibroblast growth factor receptor 1 (FGFR1) gene at 8p, resulting in constitutive activation of the tyrosine kinase activity contained within FGFR1. EMS is associated with a high risk of transformation to acute myeloid leukemia (AML), but the mechanisms underlying the disease progression are unknown. In the present study, we have investigated a case of EMS harboring a t(8;22)(p11;q11)/BCR-FGFR1 rearrangement as well as a t(9;21)(q34;q22) at the time of AML transformation. FISH and RT-PCR analyses revealed that the t(9;21) leads to a fusion gene consisting of the 5' part of RUNX1 (exons 1-4) fused to repetitive sequences of a gene with unknown function on chromosome 9, adding 70 amino acids to RUNX1 exon 4. The t(9;21) hence results in a truncation of RUNX1. No point mutations were found in the other RUNX1 allele. The most likely functional outcome of the rearrangement was haploinsufficiency of RUNX1, which thus may be one mechanism by which EMS transforms to AML.
Collapse
Affiliation(s)
- Helena Agerstam
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Gotlib J, Cross NCP, Gilliland DG. Eosinophilic disorders: molecular pathogenesis, new classification, and modern therapy. Best Pract Res Clin Haematol 2006; 19:535-69. [PMID: 16781488 DOI: 10.1016/j.beha.2005.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Before the 1990s, lack of evidence for a reactive cause of hypereosinophilia or chronic eosinophilic leukemia (e.g. presence of a clonal cytogenetic abnormality or increased blood or bone marrow blasts) resulted in diagnosticians characterizing such nebulous cases as 'idiopathic hypereosinophilic syndrome (HES)'. However, over the last decade, significant advances in our understanding of the molecular pathophysiology of eosinophilic disorders have shifted an increasing proportion of cases from this idiopathic HES 'pool' to genetically defined eosinophilic diseases with recurrent molecular abnormalities. The majority of these genetic lesions result in constitutively activated fusion tyrosine kinases, the phenotypic consequence of which is an eosinophilia-associated myeloid disorder. Most notable among these is the recent discovery of the cryptic FIP1L1-PDGFRA gene fusion in karyotypically normal patients with systemic mast cell disease with eosinophilia or idiopathic HES, redefining these diseases as clonal eosinophilias. Rearrangements involving PDGFRA and PDGFRB in eosinophilic chronic myeloproliferative disorders, and of fibroblast growth factor receptor 1 (FGFR1) in the 8p11 stem cell myeloproliferative syndrome constitute additional examples of specific genetic alterations linked to clonal eosinophilia. The identification of populations of aberrant T-lymphocytes secreting eosinophilopoietic cytokines such as interleukin-5 establish a pathophysiologic basis for cases of lymphocyte-mediated hypereosinophilia. This recent revival in understanding the biologic basis of eosinophilic disorders has permitted more genetic specificity in the classification of these diseases, and has translated into successful therapeutic approaches with targeted agents such as imatinib mesylate and recombinant anti-IL-5 antibody.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Center, 875 Blake Wilbur Drive, Room 2327B, Stanford, CA 94305-5821, USA.
| | | | | |
Collapse
|
47
|
Chase A, Cross NCP. Signal transduction therapy in haematological malignancies: identification and targeting of tyrosine kinases. Clin Sci (Lond) 2006; 111:233-49. [PMID: 16961463 DOI: 10.1042/cs20060035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tyrosine kinases play key roles in cell proliferation, survival and differentiation. Their aberrant activation, caused either by the formation of fusion genes by chromosome translocation or by intragenic changes, such as point mutations or internal duplications, is of major importance in the development of many haematological malignancies. An understanding of the mechanisms by which BCR-ABL contributes to the pathogenesis of chronic myeloid leukaemia led to the development of imatinib, the first of several tyrosine kinase inhibitors to enter clinical trials. Although the development of resistance has been problematic, particularly in aggressive disease, the development of novel inhibitors and combination with other forms of therapy shows promise.
Collapse
Affiliation(s)
- Andrew Chase
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton, Salisbury District Hospital, Salisbury SP2 8BJ, U.K
| | | |
Collapse
|
48
|
Tefferi A, Gilliland G. Classification of chronic myeloid disorders: From Dameshek towards a semi-molecular system. Best Pract Res Clin Haematol 2006; 19:365-85. [PMID: 16781478 DOI: 10.1016/j.beha.2005.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hematological malignancies are phenotypically organized into lymphoid and myeloid disorders, although such a distinction might not be precise from the standpoint of lineage clonality. In turn, myeloid malignancies are broadly categorized into either acute myeloid leukemia (AML) or chronic myeloid disorder (CMD), depending on the presence or absence, respectively, of AML-defining cytomorphologic and cytogenetic features. The CMD are traditionally classified by their morphologic appearances into discrete clinicopathologic entities based primarily on subjective technologies. It has now become evident that most CMD represent clonal stem cell processes where the primary oncogenic event has been characterized in certain instances; Bcr/Abl in chronic myeloid leukemia, FIP1L1-PDGFRA or c-kit(D816V) in systemic mastocytosis, rearrangements of PDGFRB in chronic eosinophilic leukemia, and rearrangements of FGFR1 in stem cell leukemia/lymphoma syndrome. In addition, Bcr/Abl-negative classic myeloproliferative disorders are characterized by recurrent JAK2(V617F) mutations, whereas other mutations affecting the RAS signaling pathway molecules have been associated with juvenile myelomonocytic leukemia. Such progress is paving the way for a transition from a histologic to a semi-molecular classification system that preserves conventional terminology, while incorporating new information on molecular pathogenesis.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Mayo Clinic College of Medicine, Rochester 55905, USA.
| | | |
Collapse
|
49
|
Kunapuli P, Kasyapa CS, Chin SF, Caldas C, Cowell JK. ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML. Exp Cell Res 2006; 312:3739-51. [PMID: 17027752 DOI: 10.1016/j.yexcr.2006.06.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 11/23/2022]
Abstract
The ZNF198/FGFR1 fusion gene in atypical myeloproliferative disease produces a constitutively active cytoplasmic tyrosine kinase, unlike ZNF198 which is normally a nuclear protein. We have now shown that the ZNF198/FGFR1 fusion kinase interacts with the endogenous ZNF198 protein suggesting that the function of ZNF198 may be compromised in cells expressing it. Little is currently known about the endogenous function of ZNF198 and to investigate this further we performed a yeast two-hybrid analysis and identified SUMO-1 as a binding partner of ZNF198. These observations were confirmed using co-immunoprecipitation which demonstrated that ZNF198 is covalently modified by SUMO-1. Since many of the SUMO-1-modified proteins are targeted to the PML nuclear bodies we used confocal microscopy to show that SUMO-1, PML and ZNF198 colocalize to punctate structures, shown by immunocytochemistry to be PML bodies. Using co-immunoprecipitation we now show that PML and sumoylated ZNF198 can be found in a protein complex in the cell. Mutation of the SUMO-1 binding site in wild-type ZNF198 resulted in loss of distinct PML bodies, reduced PML levels and a more dispersed nuclear localization of the PML protein. In cells expressing ZNF198/FGFR1, which also lack the SUMO-1 binding site, SUMO-1 is preferentially localized in the cytoplasm, which is associated with loss of distinct PML bodies. Recently, arsenic trioxide (ATO) was proposed as an alternative therapy for APL that was resistant to traditional therapy. Treatment of cells expressing ZNF198/FGFR1 with ATO demonstrated reduced autophosphorylation of the ZNF198/FGFR1 protein and induced apoptosis, which is not seen in cells expressing wild-type ZNF198. Overall our results suggest that the sumoylation of ZNF198 is important for PML body formation and that the abrogation of sumoylation of ZNF198 in ZNF198/FGFR1 expressing cells may be an important mechanism in cellular transformation.
Collapse
Affiliation(s)
- Padmaja Kunapuli
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
50
|
Hatch NE, Hudson M, Seto ML, Cunningham ML, Bothwell M. Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem 2006; 281:27292-305. [PMID: 16844695 DOI: 10.1074/jbc.m600448200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are known to play a critical role in a variety of fundamental processes, including wound healing, angiogenesis, and development of multiple organ systems. Mutations in the FGFR gene family have been linked to a series of syndromes (the craniosynostosis syndromes) whose primary phenotype involves aberrant development of the craniofacial skeleton. Craniosynostosis syndrome-linked FGFR mutations have been shown to be gain of function in terms of receptor activation and have been presumed to result in increased levels of FGF/FGFR signaling. Unfortunately, studies attempting to link expression of mutant FGFRs with changes in cellular phenotype have yielded conflicting results. In an effort to better understand the biochemical consequences of these mutations on receptor function, here we have investigated the effect of the FGFR2C278F mutation of Crouzon craniosynostosis syndrome on receptor trafficking, ubiquitination, degradation, and signaling. We find that FGFR2C278F exhibits diminished glycosylation, increased degradation, and limited cellular sublocalization in the osteoblastic cell line, MC3T3E1(C4). Additionally, we show that trafficking and autoactivation of wild type FGFR2 is glycosylation-dependent. Both FGFR2C278F and unglycosylated wild type FGFR2 signal through phospholipase Cgamma in a ligand-independent manner as well as exhibit dramatically increased binding to the adaptor protein, Frs2. These findings suggest that autoactive FGFR2 can signal from intracellular compartments. Based upon our results, we propose that the functional signaling of craniosynostosis mutant, autoactive receptors is limited in some cell types by protective cellular responses, such as increased trafficking to lysosomes and proteasomes for degradation.
Collapse
Affiliation(s)
- Nan E Hatch
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|