1
|
Dittmar T, Hass R. Extracellular Events Involved in Cancer Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms232416071. [PMID: 36555709 PMCID: PMC9784959 DOI: 10.3390/ijms232416071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
- Correspondence: (T.D.); (R.H.); Tel.: +49-2302-926165 (T.D.); +49-5115-326070 (R.H.)
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (T.D.); (R.H.); Tel.: +49-2302-926165 (T.D.); +49-5115-326070 (R.H.)
| |
Collapse
|
2
|
Extraembryonic Mesenchymal Stromal/Stem Cells in Liver Diseases: A Critical Revision of Promising Advanced Therapy Medicinal Products. Cells 2022; 11:cells11071074. [PMID: 35406638 PMCID: PMC8997603 DOI: 10.3390/cells11071074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Liver disorders have been increasing globally in recent years. These diseases are associated with high morbidity and mortality rates and impose high care costs on the health system. Acute liver failure, chronic and congenital liver diseases, as well as hepatocellular carcinoma have been limitedly treated by whole organ transplantation so far. But novel treatments for liver disorders using cell-based approaches have emerged in recent years. Extra-embryonic tissues, including umbilical cord, amnion membrane, and chorion plate, contain multipotent stem cells. The pre-sent manuscript discusses potential application of extraembryonic mesenchymal stromal/stem cells, focusing on the management of liver diseases. Extra-embryonic MSC are characterized by robust and constitutive anti-inflammatory and anti-fibrotic properties, indicating as therapeutic agents for inflammatory conditions such as liver fibrosis or advanced cirrhosis, as well as chronic inflammatory settings or deranged immune responses.
Collapse
|
3
|
Zhang L, Ma XJN, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther 2021; 232:108004. [PMID: 34597754 DOI: 10.1016/j.pharmthera.2021.108004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
The liver has the ability to repair itself after injury; however, a variety of pathological changes in the liver can affect its ability to regenerate, and this could lead to liver failure. Mesenchymal stem cells (MSCs) are considered a good source of cells for regenerative medicine, as they regulate liver regeneration through different mechanisms, and their efficacy has been demonstrated by many animal experiments and clinical studies. Induced pluripotent stem cells, another good source of MSCs, have also made great progress in the establishment of organoids, such as liver disease models, and in drug screening. Owing to the recent developments in MSCs and induced pluripotent stem cells, combined with emerging technologies including graphene, nano-biomaterials, and gene editing, precision medicine and individualized clinical treatment may be realized in the near future.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Jing-Nan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan-Yuan Fei
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Jun Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Lu Cheng
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Cholangiogenic potential of human deciduous pulp stem cell-converted hepatocyte-like cells. Stem Cell Res Ther 2021; 12:57. [PMID: 33436050 PMCID: PMC7805240 DOI: 10.1186/s13287-020-02113-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Stem cells from human exfoliated deciduous teeth (SHED) have been reported to show the in vivo and in vitro hepatic differentiation, SHED-Heps; however, the cholangiogenic potency of SHED-Heps remains unclear. Here, we hypothesized that SHED-Heps contribute to the regeneration of intrahepatic bile duct system in chronic fibrotic liver. Methods SHED were induced into SHED-Heps under cytokine stimulation. SHED-Heps were intrasplenically transplanted into chronically CCl4-treated liver fibrosis model mice, followed by the analysis of donor integration and hepatobiliary metabolism in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile duct system in the recipient liver. Furthermore, SHED-Heps were induced under the stimulation of tumor necrosis factor alpha (TNFA). Results The intrasplenic transplantation of SHED-Heps into CCl4-treated mice showed that donor SHED-Heps behaved as human hepatocyte paraffin 1- and human albumin-expressing hepatocyte-like cells in situ and ameliorated CCl4-induced liver fibrosis. Of interest, the integrated SHED-Heps not only expressed biliary canaliculi ATP-binding cassette transporters including ABCB1, ABCB11, and ABCC2, but also recruited human keratin 19- (KRT19-) and KRT17-positive cells, which are considered donor-derived cholangiocytes, regenerating the intrahepatic bile duct system in the recipient liver. Furthermore, the stimulation of TNFA induced SHED-Heps into KRT7- and SRY-box 9-positive cells. Conclusions Collectively, our findings demonstrate that infused SHED-Heps showed cholangiogenic ability under the stimulation of TNFA in CCl4-damaged livers, resulting in the regeneration of biliary canaliculi and interlobular bile ducts in chronic fibrotic liver. Thus, the present findings suggest that SHED-Heps may be a novel source for the treatment of cholangiopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02113-8.
Collapse
|
5
|
Advantages of adipose tissue stem cells over CD34 + mobilization to decrease hepatic fibrosis in Wistar rats. Ann Hepatol 2020; 18:620-626. [PMID: 31147180 DOI: 10.1016/j.aohep.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/04/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Chronic liver inflammation may lead to hepatic cirrhosis, limiting its regenerative capacity. The clinical standard of care is transplantation, although stem cell therapy may be an alternative option. The study aim was to induce endogenous hematopoietic stem cells (HSCs) with granulocyte colony stimulating factor (G-CSF) and/or intravenous administration of adipose tissue-derived mesenchymal stem cells (MSCs) to decrease hepatic fibrosis in an experimental model. MATERIAL AND METHODS A liver fibrosis model was developed with female Wistar rats via multiple intraperitoneal doses of carbon tetrachloride. Three rats were selected to confirm cirrhosis, and the rest were set into experimental groups to evaluate single and combined therapies of G-CSF-stimulated HSC mobilization and intravenous MSC administration. RESULTS Treatment with MSCs and G-CSF significantly improved alanine amino transferase levels, while treatment with G-CSF, MSCs, and G-CSF+MSCs decreased aspartate amino transferase levels. Hepatocyte growth factor (HGF) and interleukin 10 levels increased with MSC treatment. Transforming growth factor β levels were lower with MSC treatment. Interleukin 1β and tumor necrosis factor alpha levels decreased in all treated groups. Histopathology showed that MSCs and G-CSF reduced liver fibrosis from F4 to F2. CONCLUSIONS MSC treatment improves liver function, decreases hepatic fibrosis, and plays an anti-inflammatory role; it promotes HGF levels and increased proliferating cell nuclear antigen when followed by MSC treatment mobilization using G-CSF. When these therapies were combined, however, fibrosis improvement was less evident.
Collapse
|
6
|
Dörnen J, Sieler M, Weiler J, Keil S, Dittmar T. Cell Fusion-Mediated Tissue Regeneration as an Inducer of Polyploidy and Aneuploidy. Int J Mol Sci 2020; 21:E1811. [PMID: 32155721 PMCID: PMC7084716 DOI: 10.3390/ijms21051811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
The biological phenomenon of cell fusion plays a crucial role in several physiological processes, including wound healing and tissue regeneration. Here, it is assumed that bone marrow-derived stem cells (BMSCs) could adopt the specific properties of a different organ by cell fusion, thereby restoring organ function. Cell fusion first results in the production of bi- or multinucleated hybrid cells, which either remain as heterokaryons or undergo ploidy reduction/heterokaryon-to-synkaryon transition (HST), thereby giving rise to mononucleated daughter cells. This process is characterized by a merging of the chromosomes from the previously discrete nuclei and their subsequent random segregation into daughter cells. Due to extra centrosomes concomitant with multipolar spindles, the ploidy reduction/HST could also be associated with chromosome missegregation and, hence, induction of aneuploidy, genomic instability, and even putative chromothripsis. However, while the majority of such hybrids die or become senescent, aneuploidy and genomic instability appear to be tolerated in hepatocytes, possibly for stress-related adaption processes. Likewise, cell fusion-induced aneuploidy and genomic instability could also lead to a malignant conversion of hybrid cells. This can occur during tissue regeneration mediated by BMSC fusion in chronically inflamed tissue, which is a cell fusion-friendly environment, but is also enriched for mutagenic reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany; (J.D.); (M.S.); (J.W.); (S.K.)
| |
Collapse
|
7
|
Weiler J, Dittmar T. Cell Fusion in Human Cancer: The Dark Matter Hypothesis. Cells 2019; 8:E132. [PMID: 30736482 PMCID: PMC6407028 DOI: 10.3390/cells8020132] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Current strategies to determine tumor × normal (TN)-hybrid cells among human cancer cells include the detection of hematopoietic markers and other mesodermal markers on tumor cells or the presence of donor DNA in cancer samples from patients who had previously received an allogenic bone marrow transplant. By doing so, several studies have demonstrated that TN-hybrid cells could be found in human cancers. However, a prerequisite of this cell fusion search strategy is that such markers are stably expressed by TN-hybrid cells over time. However, cell fusion is a potent inducer of genomic instability, and TN-hybrid cells may lose these cell fusion markers, thereby becoming indistinguishable from nonfused tumor cells. In addition, hybrid cells can evolve from homotypic fusion events between tumor cells or from heterotypic fusion events between tumor cells and normal cells possessing similar markers, which would also be indistinguishable from nonfused tumor cells. Such indistinguishable or invisible hybrid cells will be referred to as dark matter hybrids, which cannot as yet be detected and quantified, but which contribute to tumor growth and progression.
Collapse
Affiliation(s)
- Julian Weiler
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| | - Thomas Dittmar
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| |
Collapse
|
8
|
Lizier M, Castelli A, Montagna C, Lucchini F, Vezzoni P, Faggioli F. Cell fusion in the liver, revisited. World J Hepatol 2018; 10:213-221. [PMID: 29527257 PMCID: PMC5838440 DOI: 10.4254/wjh.v10.i2.213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/28/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
There is wide agreement that cell fusion is a physiological process in cells in mammalian bone, muscle and placenta. In other organs, such as the cerebellum, cell fusion is controversial. The liver contains a considerable number of polyploid cells: They are commonly believed to originate by genome endoreplication, although the contribution of cell fusion to polyploidization has not been excluded. Here, we address the topic of cell fusion in the liver from a historical point of view. We discuss experimental evidence clearly supporting the hypothesis that cell fusion occurs in the liver, specifically when bone marrow cells were injected into mice and shown to rescue genetic hepatic degenerative defects. Those experiments-carried out in the latter half of the last century-were initially interpreted to show “transdifferentiation”, but are now believed to demonstrate fusion between donor macrophages and host hepatocytes, raising the possibility that physiologically polyploid cells, such as hepatocytes, could originate, at least partially, through homotypic cell fusion. In support of the homotypic cell fusion hypothesis, we present new data generated using a chimera-based model, a much simpler model than those previously used. Cell fusion as a road to polyploidization in the liver has not been extensively investigated, and its contribution to a variety of conditions, such as viral infections, carcinogenesis and aging, remains unclear.
Collapse
Affiliation(s)
- Michela Lizier
- Istituto di Ricerca Genetica e Biomedica, CNR, Milan 20138, Italy
- Human Genome Laboratory, Humanitas Clinical and Research Center, IRCCS, Milan 20089, Italy
| | - Alessandra Castelli
- Istituto di Ricerca Genetica e Biomedica, CNR, Milan 20138, Italy
- Human Genome Laboratory, Humanitas Clinical and Research Center, IRCCS, Milan 20089, Italy
| | - Cristina Montagna
- Department of Genetics and Pathology Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Franco Lucchini
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona 26100, Italy
| | - Paolo Vezzoni
- Istituto di Ricerca Genetica e Biomedica, CNR, Milan 20138, Italy
- Human Genome Laboratory, Humanitas Clinical and Research Center, IRCCS, Milan 20089, Italy
| | - Francesca Faggioli
- Istituto di Ricerca Genetica e Biomedica, CNR, Milan 20138, Italy
- Human Genome Laboratory, Humanitas Clinical and Research Center, IRCCS, Milan 20089, Italy
| |
Collapse
|
9
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
10
|
Hany E, Sobh MA, ElKhier MTA, ElSabaa HM, Zaher AR. The Effect of Different Routes of Injection of Bone Marrow Mesenchymal Stem Cells on Parotid Glands of Rats Receiving Cisplatin: A Comparative Study. Int J Stem Cells 2017; 10:169-178. [PMID: 28844126 PMCID: PMC5741198 DOI: 10.15283/ijsc17022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
Background and Objectives Cisplatin is a powerful antitumor chemotherapeutic agent that is widely used in the treatment of many cancers but it has many side effects on many organs including salivary glands. Bone marrow is considered to be a rich environment that comprises many types of stem cells of which BMSCs (Bone marrow mesenchymal stem cells) are the most studied with potentiality to differentiate into many cell types. This study was conducted to evaluate the effect of different routes of injection of BMSCs on parotid glands of rats receiving cisplatin. Methods and Results Sprague-Dawley rats were divided into 3 groups: a negative control group receiving phosphate buffered saline, a positive control group receiving cisplatin, and an experimental group where rats received cisplatin and then received iron oxide-labeled BMSCs by either intravenous or intraparotid routes or both. Animals were sacrificed at periods of 3,6,10 and 15 days after cisplatin injection, then histological, ultrastructural and immunohistochemical studies were done. The experimental stem cell treated group showed better histological features and increased PCNA proliferation index when compared to the control. The systemic and combination groups showed better results than the local group. Iron oxide-labeled cells were detected with Prussian blue stain. Conclusions This study proved that BMSCs can improve cisplatin induced cytotoxicity in parotid glands. Systemic administration showed to have a better effect than local intraparotid administration and comparable effect to combined administration.
Collapse
Affiliation(s)
- Eman Hany
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Mohammed A Sobh
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mazen T Abou ElKhier
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Heba M ElSabaa
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.,Department of Oral Biology, School of Dentistry, Badr University, Cairo, Egypt
| | - Ahmed R Zaher
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Lin YC, Harn HJ, Lin PC, Chuang MH, Chen CH, Lin SZ, Chiou TW. Commercial Production of Autologous Stem Cells and Their Therapeutic Potential for Liver Cirrhosis. Cell Transplant 2016; 26:449-460. [PMID: 27718343 DOI: 10.3727/096368916x693310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) are a promising source of autologous stem cells for personalized cell-based therapies. Culture expansion of ADSCs provides an attractive opportunity for liver cirrhosis patients. However, safety and stability issues can pose big challenges for personalized autologous stem cell products. In the present study, we addressed whether the commercial production program could provide a consistent product for liver cirrhosis therapy. We collected adipose tissue from three human donors by lipoaspirate and isolated ADSCs, which were expanded in culture to reach 1 × 108 cells (an approximately 1,000-fold expansion) within four passages. We then examined their morphology, chromosome stability, surface markers, and differentiation ability after culture. Next, we explored their therapeutic potential using a rat model of thioacetamide-induced liver cirrhosis. Culture-expanded ADSCs were injected intrahepatically, and their biodistribution was tracked by immunohistochemistry using an antibody against human mitochondria. Finally, we tested for tumor development by subcutaneously injecting a 100-fold dose range of cultured ADSCs into immunocompromised mice. Taken together, we find that culture expansion of autologous ADSCs is a potentially suitable stem cell product for personalized cell-based therapy for patients with liver cirrhosis.
Collapse
|
12
|
Cañete A, Comaills V, Prados I, Castro AM, Hammad S, Ybot-Gonzalez P, Bockamp E, Hengstler JG, Gottgens B, Sánchez MJ. Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential. Stem Cells 2016; 35:507-521. [PMID: 27615355 PMCID: PMC5298023 DOI: 10.1002/stem.2494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022]
Abstract
Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL‐PLAP+ cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL‐PLAP+ hematopoietic or endothelial cell subset responsible for the long‐term reconstituting endothelial cell (LTR‐EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan‐treated newborn transplantation model, we show that LTR‐EC activity is restricted to the SCL‐PLAP+VE‐cadherin+CD45− cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1+ endothelial‐committed cells. SCL‐PLAP+ Ve‐cadherin+CD45− cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR‐EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor‐derived vascular grafts colocalize with proliferating hepatocyte‐like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR‐EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells2017;35:507–521
Collapse
Affiliation(s)
- Ana Cañete
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Valentine Comaills
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Isabel Prados
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Ana María Castro
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Seddik Hammad
- Faculty of Veterinary Medicine, Department of Forensic Medicine and Veterinary Toxicology, South Valley University, Qena, Egypt.,Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Patricia Ybot-Gonzalez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Ernesto Bockamp
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jan G Hengstler
- Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Bertie Gottgens
- Cambridge Institute for Medical Research & Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge University, United Kingdom
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| |
Collapse
|
13
|
Tissue Regeneration in the Chronically Inflamed Tumor Environment: Implications for Cell Fusion Driven Tumor Progression and Therapy Resistant Tumor Hybrid Cells. Int J Mol Sci 2015; 16:30362-81. [PMID: 26703575 PMCID: PMC4691180 DOI: 10.3390/ijms161226240] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
The biological phenomenon of cell fusion in a cancer context is still a matter of controversial debates. Even though a plethora of in vitro and in vivo data have been published in the past decades the ultimate proof that tumor hybrid cells could originate in (human) cancers and could contribute to the progression of the disease is still missing, suggesting that the cell fusion hypothesis is rather fiction than fact. However, is the lack of this ultimate proof a valid argument against this hypothesis, particularly if one has to consider that appropriate markers do not (yet) exist, thus making it virtually impossible to identify a human tumor cell clearly as a tumor hybrid cell. In the present review, we will summarize the evidence supporting the cell fusion in cancer concept. Moreover, we will refine the cell fusion hypothesis by providing evidence that cell fusion is a potent inducer of aneuploidy, genomic instability and, most likely, even chromothripsis, suggesting that cell fusion, like mutations and aneuploidy, might be an inducer of a mutator phenotype. Finally, we will show that "accidental" tissue repair processes during cancer therapy could lead to the origin of therapy resistant cancer hybrid stem cells.
Collapse
|
14
|
Chen Y, Gou X, Kong DK, Wang X, Wang J, Chen Z, Huang C, Zhou J. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF. Oncotarget 2015; 6:32575-85. [PMID: 26416452 PMCID: PMC4741713 DOI: 10.18632/oncotarget.5331] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/11/2015] [Indexed: 12/23/2022] Open
Abstract
EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF.
Collapse
Affiliation(s)
- Yanke Chen
- Experiment Center of Biomedical Research School of Medicine, Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Xingchun Gou
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
- Laboratory of Cell Biology and Translational Medicine, Xi'an Medical University, Xi'an 710021, P. R. China
| | - Derek Kai Kong
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Xiaofei Wang
- Experiment Center of Biomedical Research School of Medicine, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jianhui Wang
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
| | - Chen Huang
- Experiment Center of Biomedical Research School of Medicine, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Wang L, Li ZS, Zhang HR. Bone marrow mesenchymal stem cells for treatment of liver cirrhosis. Shijie Huaren Xiaohua Zazhi 2015; 23:4522-4528. [DOI: 10.11569/wcjd.v23.i28.4522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver disease is a frequently occurring disease worldwide. In China, the incidence of hepatitis and liver cirrhosis is high, and has increased year by year. The progression of chronic liver disease can lead to upper gastrointestinal bleeding, liver cancer and other malignant diseases, posing a serious threat to the health and quality of life of patients. Before progression to liver cirrhosis, choosing an effective treatment method can reverse the disease, improve the prognosis and reduce mortality. Bone marrow mesenchymal stem cells (BMSCs) are the most popular seed cells in the development of new methods for treating cirrhosis. They can not only differentiate into hepatocytes in vivo, but also reduce the inflammatory response, inhibit cell apoptosis, improve liver function and so on. BMSCs are expected to be a new strategy for the treatment of liver cirrhosis and liver failure.
Collapse
|
16
|
Eom YW, Kim G, Baik SK. Mesenchymal stem cell therapy for cirrhosis: Present and future perspectives. World J Gastroenterol 2015; 21:10253-10261. [PMID: 26420953 PMCID: PMC4579873 DOI: 10.3748/wjg.v21.i36.10253] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis occurs as a result of various chronic liver injuries, which may be caused by viral infections, alcohol abuse and the administration of drugs and chemicals. Recently, bone marrow cells (BMCs), hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) have been used for developing treatments for cirrhosis. Clinical trials have investigated the therapeutic potential of BMCs, HSCs and MSCs for the treatment of cirrhosis based on their potential to differentiate into hepatocytes. Although the therapeutic mechanisms of BMC, HSC and MSC treatments are still not fully characterized, the evidence thus far has indicated that the potential therapeutic mechanisms of MSCs are clearer than those of BMCs or HSCs with respect to liver regenerative medicine. MSCs suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, reverse liver fibrosis and enhance liver functionality. This paper summarizes the clinical studies that have used BMCs, HSCs and MSCs in patients with liver failure or cirrhosis. We also present the potential therapeutic mechanisms of BMCs, HSCs and MSCs for the improvement of liver function.
Collapse
|
17
|
Li L, Zeng Z, Qi Z, Wang X, Gao X, Wei H, Sun R, Tian Z. Natural Killer Cells-Produced IFN-γ Improves Bone Marrow-Derived Hepatocytes Regeneration in Murine Liver Failure Model. Sci Rep 2015; 5:13687. [PMID: 26345133 PMCID: PMC4561890 DOI: 10.1038/srep13687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023] Open
Abstract
Bone-marrow transplantation (BMT) can repopulate the liver through BM-derived hepatocyte (BMDH) generation, although the underlying mechanism remains unclear. Using fumarylacetoacetate hydrolase-deficient (Fah(-/-)) mice as a liver-failure model, we confirmed that BMDHs were generated by fusion of BM-derived CD11b(+)F4/80(+)myelomonocytes with resident Fah(-/-) hepatocytes. Hepatic NK cells became activated during BMDH generation and were the major IFN-γ producers. Indeed, both NK cells and IFN-γ were required for BMDH generation since WT, but not NK-, IFN-γ-, or IFN-γR1-deficient BM transplantation successfully generated BMDHs and rescued survival in Fah(-/-) hosts. BM-derived myelomonocytes were determined to be the IFN-γ-responding cells. The IFN-γ-IFN-γR interaction contributed to the myelomonocyte-hepatocyte fusion process, as most of the CD11b(+) BMDHs in mixed BM chimeric Fah(-/-) hosts transplanted with a 1:1 ratio of CD45.1(+) WT and CD45.2(+) Ifngr1(-/-) BM cells were of CD45.1(+) WT origin. Confirming these findings in vitro, IFN-γ dose-dependently promoted the fusion of GFP(+) myelomonocytes with Fah(-/-) hepatocytes due to a direct effect on myelomonocytes; similar results were observed using activated NK cells. In conclusion, BMDH generation requires NK cells to facilitate myelomonocyte-hepatocyte fusion in an IFN-γ-dependent manner, providing new insights for treating severe liver failure.
Collapse
Affiliation(s)
- Lu Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhutian Zeng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ziping Qi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xin Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010070, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
18
|
Porada CD, Atala AJ, Almeida-Porada G. The hematopoietic system in the context of regenerative medicine. Methods 2015; 99:44-61. [PMID: 26319943 DOI: 10.1016/j.ymeth.2015.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 08/23/2015] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Anthony J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| |
Collapse
|
19
|
Sun C, Zhao D, Dai X, Chen J, Rong X, Wang H, Wang A, Li M, Dong J, Huang Q, Lan Q. Fusion of cancer stem cells and mesenchymal stem cells contributes to glioma neovascularization. Oncol Rep 2015; 34:2022-30. [PMID: 26238144 DOI: 10.3892/or.2015.4135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
The ability of tumor cells to autonomously generate tumor vessels has received considerable attention in recent years. However, the degree of autonomy is relative. Meanwhile, the effect of bone marrow-derived mesenchymal stem cells (BMSCs) on tumor neovascularization has not been fully elucidated. The present study aimed to illuminate whether cell fusion between glioma stem cells and BMSC is involved in glioma neovascularization. BMSCs were isolated from transgenic nude mice, of which all nucleated cells express green fluorescent protein (GFP). The immunophenotype and multilineage differentiation potential of BMSC were confirmed. SU3 glioma stem/progenitor cells were transfected with red fluorescent protein (SU3-RFP cells). In a co-culture system of BMSC-GFP and SU3-RFP, RFP+/GFP+ cells were detected and isolated by dual colors using FACS. The angiogenic effect of RFP+/GFP+ cells was determined in vivo and in vitro. Flow cytometry analysis showed that BMSC expressed high levels of CD105, C44, and very low levels of CD45 and CD11b. When co-cultured with SU3-RFP, 73.8% of cells co-expressing RFP and GFP were identified as fused cells in the 5th generation. The fused cells exhibited tube formation ability in vitro and could give rise to a solid tumor and form tumor blood vessels in vivo. In the dual-color orthotopic model of transplantable xenograft glioma, yellow vessel-like structures that expressed CD105, RFP and GFP were identified as de novo-formed vessels derived from the fused cells. The yellow vessels observed in the tumor-bearing mice directly arose from the fusion of BMSCs and SU3-RFP cells. Thus, cell fusion is one of the driving factors for tumor neovascularization.
Collapse
Affiliation(s)
- Chao Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Dongliang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Xingliang Dai
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jinsheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Xiaoci Rong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Haiyang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Aidong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Ming Li
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Qiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
20
|
Freeman BT, Kouris NA, Ogle BM. Tracking fusion of human mesenchymal stem cells after transplantation to the heart. Stem Cells Transl Med 2015; 4:685-94. [PMID: 25848121 DOI: 10.5966/sctm.2014-0198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/16/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. SIGNIFICANCE Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i.e., the heart) and in distal organs. This study shows, for the first time, evidence of fusion products at sites distal from the target organ and data to suggest that migration occurs via the vasculature. These results will inform and improve future, MSC-based therapeutics.
Collapse
Affiliation(s)
- Brian T Freeman
- Department of Biomedical Engineering, Laboratory for Optical and Computational Instrumentation, and Material Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas A Kouris
- Department of Biomedical Engineering, Laboratory for Optical and Computational Instrumentation, and Material Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, Laboratory for Optical and Computational Instrumentation, and Material Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
El-Akabawy G, El-Mehi A. Mobilization of endogenous bone marrow-derived stem cells in a thioacetamide-induced mouse model of liver fibrosis. Tissue Cell 2015; 47:257-65. [PMID: 25857836 DOI: 10.1016/j.tice.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
Abstract
The clinical significance of enhancing endogenous circulating haematopoietic stem cells is becoming increasingly recognized, and the augmentation of circulating stem cells using granulocyte-colony stimulating factor (G-CSF) has led to promising preclinical and clinical results for several liver fibrotic conditions. However, this approach is largely limited by cost and the infeasibility of maintaining long-term administration. Preclinical studies have reported that StemEnhance, a mild haematopoietic stem cell mobilizer, promotes cardiac muscle regeneration and remedies the manifestation of diabetes. However, the effectiveness of StemEnhance in ameliorating liver cirrhosis has not been studied. This study is the first to evaluate the beneficial effect of StemEnhance administration in a thioacetamide-induced mouse model of liver fibrosis. StemEnhance augmented the number of peripheral CD34-positive cells, reduced hepatic fibrosis, improved histopathological changes, and induced endogenous liver proliferation. In addition, VEGF expression was up-regulated, while TNF-α expression was down-regulated in thioacetamide-induced fibrotic livers after StemEnhance intake. These data suggest that StemEnhance may be useful as a potential therapeutic candidate for liver fibrosis by inducing reparative effects via mobilization of haematopoietic stem cells.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Menoufia University, Department of Anatomy and Embryology, Faculty of Medicine, Egypt.
| | - Abeer El-Mehi
- Menoufia University, Department of Anatomy and Embryology, Faculty of Medicine, Egypt
| |
Collapse
|
22
|
Qi Z, Li L, Wang X, Gao X, Wang X, Wei H, Zhang J, Sun R, Tian Z. Bone marrow transplantation concurrently reconstitutes donor liver and immune system across host species barrier in mice. PLoS One 2014; 9:e106791. [PMID: 25191899 PMCID: PMC4156390 DOI: 10.1371/journal.pone.0106791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/08/2014] [Indexed: 01/12/2023] Open
Abstract
Liver immunopathologic mechanisms during hepatotropic infection, malignant transformation, and autoimmunity are still unclear. Establishing a chimeric mouse with a reconstituted liver and immune system derived from a single donor across species is critical to study regional donor immune responses in recipient liver. Using a strain of mice deficient in tyrosine catabolic enzyme fumarylacetoacetate hydrolase (fah-/-) and bone marrow transplantation (BMT), we reconstituted the donor's hepatocytes and immune cells across host species barrier. Syngeneic, allogeneic or even xenogeneic rat BMT rescued most recipient fah-/- mice against liver failure by donor BM-derived FAH+ hepatocytes. Importantly, immune system developed normally in chimeras, and the immune cells together with organ architecture were intact and functional. Thus, donor BM can across host species barrier and concurrently reconstitutes MHC-identical response between immune cells and hepatocytes, giving rise to a new simple and convenient small animal model to study donor's liver immune response in mice.
Collapse
Affiliation(s)
- Ziping Qi
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lu Li
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Xuefu Wang
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xin Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiming Wei
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Rui Sun
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Zhigang Tian
- Department of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
23
|
Vainshtein JM, Kabarriti R, Mehta KJ, Roy-Chowdhury J, Guha C. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2014; 89:786-803. [PMID: 24969793 DOI: 10.1016/j.ijrobp.2014.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
Abstract
Current treatment options for hepatocellular carcinoma (HCC) are often limited by the presence of underlying liver disease. In patients with liver cirrhosis, surgery, chemotherapy, and radiation therapy all carry a high risk of hepatic complications, ranging from ascites to fulminant liver failure. For patients receiving radiation therapy, cirrhosis dramatically reduces the already limited radiation tolerance of the liver and represents the most important clinical risk factor for the development of radiation-induced liver disease. Although improvements in conformal radiation delivery techniques have improved our ability to safely irradiate confined areas of the liver to increasingly higher doses with excellent local disease control, patients with moderate-to-severe liver cirrhosis continue to face a shortage of treatment options for HCC. In recent years, evidence has emerged supporting the use of bone marrow-derived stromal cells (BMSCs) as a promising treatment for liver cirrhosis, with several clinical studies demonstrating sustained improvement in clinical parameters of liver function after autologous BMSC infusion. Three predominant populations of BMSCs, namely hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells, seem to have therapeutic potential in liver injury and cirrhosis. Preclinical studies of BMSC transplantation have identified a range of mechanisms through which these cells mediate their therapeutic effects, including hepatocyte transdifferentiation and fusion, paracrine stimulation of hepatocyte proliferation, inhibition of activated hepatic stellate cells, enhancement of fibrolytic matrix metalloproteinase activity, and neovascularization of regenerating liver. By bolstering liver function in patients with underlying Child's B or C cirrhosis, autologous BMSC infusion holds great promise as a therapy to improve the safety, efficacy, and utility of surgery, chemotherapy, and hepatic radiation therapy in the treatment of HCC.
Collapse
Affiliation(s)
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Keyur J Mehta
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
24
|
Tsolaki E, Athanasiou E, Gounari E, Zogas N, Siotou E, Yiangou M, Anagnostopoulos A, Yannaki E. Hematopoietic stem cells and liver regeneration: differentially acting hematopoietic stem cell mobilization agents reverse induced chronic liver injury. Blood Cells Mol Dis 2014; 53:124-32. [PMID: 24923531 DOI: 10.1016/j.bcmd.2014.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
Abstract
Bone marrow (BM) could serve as a source of cells facilitating liver repopulation in case of hepatic damage. Currently available hematopoietic stem cell (HSC) mobilizing agents, were comparatively tested for healing potential in liver fibrosis. Carbon tetrachloride (CCl4)-injured mice previously reconstituted with Green Fluorescent Protein BM were mobilized with Granulocyte-Colony Stimulating Factor (G-CSF), Plerixafor or G-CSF+Plerixafor. Hepatic fibrosis, stellate cell activation and oval stem cell frequency were measured by Gomori and by immunohistochemistry for a-Smooth Muscle Actin and Cytokeratin-19, respectively. Angiogenesis was evaluated by ELISA and immunohistochemistry. Quantitative real-time PCR was used to determine the mRNA levels of liver Peroxisome Proliferator-Activated Receptor gamma (PPAR-γ), Interleukin-6 (IL-6) and Tumor Necrosis-alpha (TNFα). BM-derived cells were tracked by double immunofluorescence. The spontaneous migration of mobilized HSCs towards injured liver and its cytokine secretion profile was determined in transwell culture systems. Either single-agent mobilization or the combination of agents significantly ameliorated hepatic damage by decreasing fibrosis and restoring the abnormal vascular network in the liver of mobilized mice compared to CCl4-only mice. The degree of fibrosis reduction was similar among all mobilized mice despite that G-CSF+Plerixafor yielded significantly higher numbers of circulating HSCs over other agents. The liver homing potential of variously mobilized HSCs differed among the agents. An extended G-CSF treatment provided the highest anti-fibrotic effect over all tested modalities, induced by the proliferation of hepatic stem cells and decreased hepatic inflammation. Plerixafor-mobilized HSCs, despite their reduced liver homing potential, reversed fibrosis mainly by increasing hepatic PPAR-γ and VEGF expression. In all groups, BM-derived mature hepatocytes as well as liver-committed BM stem cells were detected only at low frequencies, further supporting the concept that alternative mechanisms rather than direct HSC effects regulate liver recovery. Overall, our data suggest that G-CSF, Plerixafor and G-CSF+Plerixafor act differentially during the wound healing process, ultimately providing a potent anti-fibrotic effect.
Collapse
Affiliation(s)
- Eleftheria Tsolaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Athanasiou
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Eleni Gounari
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Zogas
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Siotou
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece.
| |
Collapse
|
25
|
Abstract
Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.
Collapse
|
26
|
Marongiu F, Serra MP, Sini M, Marongiu M, Contini A, Laconi E. Cell turnover in the repopulated rat liver: distinct lineages for hepatocytes and the biliary epithelium. Cell Tissue Res 2014; 356:333-40. [PMID: 24687306 PMCID: PMC4015059 DOI: 10.1007/s00441-014-1800-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/09/2014] [Indexed: 12/22/2022]
Abstract
The dynamics of cell renewal in the normal adult liver remains an unresolved issue. We investigate the possible contribution of a common biliary precursor cell pool to hepatocyte turnover in the chimeric long-term repopulated rat liver. The retrorsine (RS)-based model of massive liver repopulation was used. Animals not expressing the CD26 marker (CD26-) were injected with RS, followed by transplantation of 2 million syngeneic hepatocytes isolated from a normal CD26-expressing donor. Extensive (80-90 %) replacement of resident parenchymal cells was observed at 1 year post-transplantation and persisted at 2 years, as expected. A panel of specific markers, including cytokeratin 7, OV6, EpCAM, claudin 7 and α-fetoprotein, was employed to locate the in situ putative progenitor and/or biliary epithelial cells in the stably repopulated liver. No overlap was observed between any of these markers and the CD26 tag identifying transplanted cells. Exposure to RS was not inhibitory to the putative progenitor and/or biliary epithelial cells, nor did we observe any evidence of cell fusion between these cells and the transplanted cell population. Given the long-term (>2 years) stability of the donor cell phenotype in this model of liver repopulation, the present findings suggest that hepatocyte turnover in the repopulated liver is fuelled by a cell lineage distinct from that of the biliary epithelium and relies largely on the differentiated parenchymal cell population. These results support the solid biological foundation of liver repopulation strategies based on the transplantation of isolated hepatocytes.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, Unit of Experimental Medicine, University of Cagliari School of Medicine, Via Porcell 4, 3rd Floor, Cagliari, 09124, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Moore JK, Stutchfield BM, Forbes SJ. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment Pharmacol Ther 2014; 39:673-85. [PMID: 24528093 DOI: 10.1111/apt.12645] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/24/2013] [Accepted: 01/12/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND As morbidity and mortality from liver disease continues to rise, new strategies are necessary. Liver transplantation is not only an expensive resource committing the patient to lifelong immunosuppression but also suitable donor organs are in short supply. Against this background, autologous stem cell therapy has emerged as a potential treatment option. AIM To evaluate if it is possible to make a judgement on the safety, feasibility and effect of autologous stem cell therapy for patients with liver disease. METHODS MEDLINE and EMBASE were searched up until July 2013 to identify studies where autologous stem cell therapy was administered to patients with liver disease. RESULTS Of 1668 studies identified, 33 were eligible for inclusion evaluating a median sample size of 10 patients for a median follow-up of 6 months. Although there was marked heterogeneity between studies with regards to type, dose and route of delivery of stem cell, the treatment was shown to be safe and feasible largely when a peripheral route of administration was used. Of the studies which also looked at biochemical outcome, statistically significant improvement in liver function tests was seen in 16 studies post-treatment. CONCLUSION Although autologous stem cell therapy is a much needed possibility in the treatment of liver disease, further robust clinical trials and collaborative protocols are required.
Collapse
Affiliation(s)
- J K Moore
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
28
|
Esrefoglu M. Role of stem cells in repair of liver injury: Experimental and clinical benefit of transferred stem cells on liver failure. World J Gastroenterol 2013; 19:6757-6773. [PMID: 24187451 PMCID: PMC3812475 DOI: 10.3748/wjg.v19.i40.6757] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Although the liver has a high regenerative capacity, as a result of massive hepatocyte death, liver failure occurs. In addition to liver failure, for acute, chronic and hereditary diseases of the liver, cell transplantation therapies can stimulate regeneration or at least ensure sufficient function until liver transplantation can be performed. The lack of donor organs and the risks of rejection have prompted extensive experimental and clinical research in the field of cellular transplantation. Transplantation of cell lineages involved in liver regeneration, including mature hepatocytes, fetal hepatocytes, fetal liver progenitor cells, fetal stem cells, hepatic progenitor cells, hepatic stem cells, mesenchymal stem cells, hematopoietic stem cells, and peripheral blood and umbilical cord blood stem cells, have been found to be beneficial in the treatment of liver failure. In this article, the results of experimental and clinical cell transplantation trials for liver failure are reviewed, with an emphasis on regeneration.
Collapse
|
29
|
Sharma AD, Iacob R, Cantz T, Manns MP, Ott M. Liver. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
30
|
Li J, Zhang L, Xin J, Jiang L, Li J, Zhang T, Jin L, Li J, Zhou P, Hao S, Cao H, Li L. Immediate intraportal transplantation of human bone marrow mesenchymal stem cells prevents death from fulminant hepatic failure in pigs. Hepatology 2012; 56:1044-52. [PMID: 22422600 DOI: 10.1002/hep.25722] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/29/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED The effectiveness of human bone marrow mesenchymal stem cell (hBMSC) transplantation to treat acute and chronic liver injury has been demonstrated in animal models and in a few nonrandomized clinical trials. However, no studies have investigated hBMSC transplantation in the treatment of fulminant hepatic failure (FHF), especially in large animal (pig) models. The aim of this study was to demonstrate the safety, effectiveness, and underlying mechanism of hBMSC transplantation for treating FHF in pigs through the intraportal route. Human BMSCs (3 × 10(7) ) were transplanted into pigs with FHF via the intraportal route or peripheral vein immediately after D-galactosamine injection, and a sham group underwent intraportal transplantation (IPT) without cells (IPT, peripheral vein transplantation [PVT], and control groups, respectively, n = 15 per group). All of the animals in the PVT and control groups died of FHF within 96 hours. In contrast, 13 of 15 animals in the IPT group achieved long-term survival (>6 months). Immunohistochemistry demonstrated that transplanted hBMSC-derived hepatocytes in surviving animals were widely distributed in the hepatic lobules and the liver parenchyma from weeks 2 to 10. Thirty percent of the hepatocytes were hBMSC-derived. However, the number of transplanted cells decreased significantly at week 15. Only a few single cells were scattered in the regenerated liver lobules at week 20, and the liver tissues exhibited a nearly normal structure. CONCLUSION Immediate IPT of hBMSCs is a safe and effective treatment for FHF. The transplanted hBMSCs may quickly participate in liver regeneration via proliferation and transdifferentiation into hepatocytes during the initial stage of FHF. This method can possibly be used in future clinical therapy.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schwerfeld-Bohr J, Chi H, Worm K, Dahmen U. Influence of Hematopoietic Stem Cell-Derived Hepatocytes on Liver Regeneration after Sex-Mismatched Liver Transplantation in Humans. J INVEST SURG 2012; 25:220-6. [DOI: 10.3109/08941939.2011.627088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Cell fusion reprogramming leads to a specific hepatic expression pattern during mouse bone marrow derived hepatocyte formation in vivo. PLoS One 2012; 7:e33945. [PMID: 22457803 PMCID: PMC3311566 DOI: 10.1371/journal.pone.0033945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 02/21/2012] [Indexed: 01/08/2023] Open
Abstract
The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β(1)) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation.
Collapse
|
33
|
Mikhailov V, Sokolova A, Serikov V, Kaminskaya E, Churilov L, Trunin E, Sizova E, Kayukov A, Bud’ko M, Zaichik A. Bone marrow stem cells repopulate thyroid in X-ray regeneration in mice. PATHOPHYSIOLOGY 2012; 19:5-11. [DOI: 10.1016/j.pathophys.2011.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 12/17/2022] Open
|
34
|
Odörfer KI, Egerbacher M, Unger NJ, Weber K, Jamnig A, Lepperdinger G, Kleiter M, Sandgren EP, Erben RG. Hematopoietic bone marrow cells participate in endothelial, but not epithelial or mesenchymal cell renewal in adult rats. J Cell Mol Med 2011; 15:2232-44. [PMID: 21091631 PMCID: PMC3229707 DOI: 10.1111/j.1582-4934.2010.01216.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The extent to which bone marrow (BM) contributes to physiological cell renewal is still controversial. Using the marker human placental alkaline phosphatase (ALPP) which can readily be detected in paraffin and plastic sections by histochemistry or immunohistochemistry, and in ultrathin sections by electron microscopy after pre-embedding staining, we examined the role of endogenous BM in physiological cell renewal by analysing tissues from lethally irradiated wild-type inbred Fischer 344 (F344) rats transplanted (BMT) with unfractionated BM from ALPP-transgenic F344 rats ubiquitously expressing the marker. Histochemical, immunohistochemical and immunoelectron microscopic analysis showed that the proportion of ALPP+ capillary endothelial cells (EC) profoundly increased from 1 until 6 months after BMT in all organs except brain and adrenal medulla. In contrast, pericytes and EC in large blood vessels were ALPP–. Epithelial cells in kidney, liver, pancreas, intestine and brain were recipient-derived at all time-points. Similarly, osteoblasts, chondrocytes, striated muscle and smooth muscle cells were exclusively of recipient origin. The lack of mesenchymal BM-derived cells in peripheral tissues prompted us to examine whether BMT resulted in engraftment of mesenchymal precursors. Four weeks after BMT, all haematopoietic BM cells were of donor origin by flow cytometric analysis, whereas isolation of BM mesenchymal stem cells (MSC) failed to show engraftment of donor MSC. In conclusion, our data show that BM is an important source of physiological renewal of EC in adult rats, but raise doubt whether reconstituted irradiated rats are an apt model for BM-derived regeneration of mesenchymal cells in peripheral tissues.
Collapse
Affiliation(s)
- Kathrin I Odörfer
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xie W, Shi G, Zhang H, Zhao G, Yu Z, Lang Z, Zhao H, Yan J, Cheng J. A randomized, multi-central, controlled study of patients with hepatitis B e antigen-positive chronic hepatitis B treated by adefovir dipivoxil or adefovir dipivoxil plus bicyclol. Hepatol Int 2011; 6:441-448. [PMID: 21773778 PMCID: PMC3314819 DOI: 10.1007/s12072-011-9294-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/20/2011] [Indexed: 12/13/2022]
Abstract
Objective To evaluate the efficacy and safety profiles of patients with hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) treated with adefovir dipivoxil (ADV) or ADV plus bicyclol, and to optimize the treatment strategy for CHB patients. Patients and methods A total of 250 patients with HBeAg-positive CHB were randomized to ADV plus bicyclol combination group and ADV monotherapy group. The patients in the ADV plus bicyclol combination therapy group (n = 125) received ADV 10 mg orally q.d. and bicyclol 25 mg orally t.i.d. for 48 weeks, and those in the ADV monotherapy group (n = 125) were administered ADV 10 mg orally q.d. alone for 48 weeks. The serum aminotransferases (ALT/AST), HBV DNA, HBeAg/HBeAb, and liver biopsy were conducted before and after therapy. Results The serum aminotransferase levels were decreased significantly in both groups. The serum aminotransferase level in ADV plus bicyclol combination therapy group decreased greater than that in ADV monotherapy group (P < 0.01). The virological response rate in ADV plus bicyclol combination therapy group was not significantly different from that in ADV monotherapy group (P > 0.05). After treatment for 48 weeks, the Knodell necroinflammatory score of the two groups were all alleviated significantly, and the Knodell score in the combination group was significantly lower than that in the ADV monotherapy group (P < 0.05). There were no remarkable adverse events probably related to the drug in this study. Conclusion Adefovir dipivoxil plus bicyclol combination therapy is a safe and superior treatment regimen for patients with HBeAg-positive CHB when compared with ADV monotherapy.
Collapse
Affiliation(s)
- Wen Xie
- Liver Center, Beijing Ditan Hospital, Capital Medical University, 100015 Beijing, China
| | - Guangfeng Shi
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongfei Zhang
- Department of Pediatric Hepatology, The 302 Hospital of PLA, Beijing, China
| | - Guiming Zhao
- Department of Hepatology, Tianjin Municipal Hospital of Infectious Diseases, Tianjin, China
| | - Zujiang Yu
- Department of Infectious Diseases, First Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhenwei Lang
- Liver Center, Beijing Ditan Hospital, Capital Medical University, 100015 Beijing, China
| | - Hong Zhao
- Liver Center, Beijing Ditan Hospital, Capital Medical University, 100015 Beijing, China
| | - Jie Yan
- Liver Center, Beijing Ditan Hospital, Capital Medical University, 100015 Beijing, China
| | - Jun Cheng
- Liver Center, Beijing Ditan Hospital, Capital Medical University, 100015 Beijing, China
| |
Collapse
|
36
|
Yang DW, Yao P. Cell transplantation for hepatic disease: current research status. Shijie Huaren Xiaohua Zazhi 2011; 19:1720-1725. [DOI: 10.11569/wcjd.v19.i16.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell transplantation is a promising way to restore liver function. Treatment of end-stage liver disease with stem cells, especially bone marrow stem cells, has attracted wild attention. There is ongoing research to use mature hepatocytes, liver progenitor cells, bone marrow stem cells and embryonic stem cells to restore liver function in patient with hepatic disease. Here we review the current research status of cell transplantation for hepatic disease in terms of cell biology, animal models and clinical trials.
Collapse
|
37
|
Yadav N, Kanjirakkuzhiyil S, Ramakrishnan M, Das TK, Mukhopadhyay A. Factor VIII can be synthesized in hemophilia A mice liver by bone marrow progenitor cell-derived hepatocytes and sinusoidal endothelial cells. Stem Cells Dev 2011; 21:110-20. [PMID: 21480781 DOI: 10.1089/scd.2010.0569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hemophilia A (HA) is caused by mutation in factor VIII (FVIII) gene in humans; it leads to inadequate synthesis of active protein. Liver is the primary site of FVIII synthesis; however, the specific cell types responsible for its synthesis remain controversial. We propose that the severity of the bleeding disorder could be ameliorated by partial replacement of mutated liver cells by healthy cells in HA mice. The aim of this investigation was to study the cellular origin of FVIII by examining bone marrow cell therapy for treatment of HA in mice. Recipient liver was perturbed with either acetaminophen or monocrotaline to facilitate the engraftment and differentiation of lineage-depleted (Lin(-)) enhanced green fluorescent protein-expressing bone marrow cells. Immunohistochemical analysis of liver tissue was conducted to identify the donor-derived cells that expressed FVIII. This identification was confirmed by transmission electron microscopy and quantitative gene expression analysis. The phenotypic correction in HA mice was determined by tail-clip challenge and FVIII level in plasma by Chromogenix and activated partial thromboplastin time assays. Immunohistochemical analysis showed that von Willebrand factor and cytokeratin-18-expressing endothelial cells and hepatocytes, respectively, were obtained from BM-derived cells. Both cell types expressed FVIII light chain mRNA and protein, which was further confirmed by transmission electron microscopy. The transplanted HA mice showed FVIII activity in plasma (P<0.01) and survived tail-clip challenge (P<0.001). Thus, we conclude that BM-derived hepatocytes and endothelial cells can synthesize FVIII in liver and correct bleeding phenotype in HA mice.
Collapse
Affiliation(s)
- Neelam Yadav
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|
38
|
Granulocyte colony-stimulating factor treatment ameliorates liver injury and improves survival in rats with D-galactosamine-induced acute liver failure. Toxicol Lett 2011; 204:92-9. [PMID: 21550386 DOI: 10.1016/j.toxlet.2011.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
Only liver transplantation is currently available therapy for the patients with acute liver failure (ALF). This study was designed to determine whether administration of granulocyte colony-stimulating factor (G-CSF) has therapeutic efficacy in animals with ALF. Female Sprague-Dawley (SD) rats were intraperitoneally injected with a single dose of d-galactosamine (d-GalN, 1.4g/kg) to induce ALF. After 2h, the rats were randomized to receive G-CSF (50μg/kg/day), or saline vehicle injection for 5 days. Rats were observed for survival and assessed for liver injury by serum alanine transaminase (ALT) measurement and histological analysis. CD34+ cells in bone marrow were assessed by flow cytometry. CD34+ cells and Ki-67+ hepatocytes in liver tissue were evaluated by immunohistochemistry. In the ALF model, 5-day survival after d-GalN injection was 33.3% (10/30), while G-CSF administration following d-GalN resulted in 53.3% (16/30) survival (p=0.027). G-CSF treated rats had lower ALT level and less hepatic injury compared with saline vehicle rats. The increases of CD34+ cells in bone marrow and liver tissue and Ki-67+ cells in liver tissue in G-CSF treated rats were higher than those in saline rats. No correlation was observed between CD34+ cells and Ki-67+ hepatocytes in liver tissue in both G-CSF and vehicle rats. It is suggested that G-CSF increases survival rate, decreases liver injury and enhances hepatocyte proliferation in rats with d-GalN-induced ALF possibly through actions including but not limiting to CD34+ cell mobilization, and that G-CSF may be of potential value in treating ALF.
Collapse
|
39
|
Li J, Wu W, Xin J, Guo J, Jiang L, Tao R, Cao H, Hong X, Li L. Acute hepatic failure-derived bone marrow mesenchymal stem cells express hepatic progenitor cell genes. Cells Tissues Organs 2011; 194:371-81. [PMID: 21293100 DOI: 10.1159/000322604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 12/26/2022] Open
Abstract
Hepatic progenitor cell (HPC) transplantation is a promising alternative to liver transplantation for patients with end-stage liver disease. However, the precise origin of HPCs is unclear. This study aimed to determine whether bone marrow mesenchymal stem cells (BMSCs) isolated from rats in acute hepatic failure (AHF) possess hepatic potential and/or characteristics. BMSCs were isolated from normal rats as well as rats in which AHF was induced by D-galactosamine. HPCs and primary hepatocytes were isolated from normal rats for comparison. The Affymetrix GeneChip Rat Genome 230 2.0 Array was used to perform transcriptome profiling of the AHF-derived BMSCs and HPCs. The results showed that AHF-derived BMSCs had a gene expression profile significantly different from that of control BMSCs. More than 87.7% of the genes/probe sets that were upregulated more than 2-fold in AHF-derived BMSCs were expressed by HPCs, including 12 genes involved in liver development, early hepatocyte differentiation and hepatocyte metabolism. Confirmatory quantitative RT-PCR analysis yielded similar results. In addition, 940 probe sets/genes were expressed in both AHF-derived BMSCs and HPCs but were absent in control cells. Compared to the control cells, AHF-derived BMSCs shared more commonly expressed genes with HPCs. AHF-derived BMSCs have a hepatic transcriptional profile and express many of the same genes expressed by HPCs, strongly suggesting that BMSCs may be a resource for hepatocyte regeneration, and further confirming their potential as a strong source of hepatocyte regeneration during severe hepatic damage.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dalakas E, Newsome PN, Boyle S, Brown R, Pryde A, McCall S, Hayes PC, Bickmore WA, Harrison DJ, Plevris JN. Bone marrow stem cells contribute to alcohol liver fibrosis in humans. Stem Cells Dev 2011; 19:1417-25. [PMID: 20025456 DOI: 10.1089/scd.2009.0387] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bone marrow-derived stem cell (BMSC) contribution to liver repair varies considerably and recent evidence suggests these cells may contribute to liver fibrosis. We investigated the mobilization and hepatic recruitment of bone marrow (BM) stem cells in patients with alcohol liver injury and their contribution to parenchymal/non-parenchymal liver cell lineages. Liver biopsies from alcoholic hepatitis (AH) patients and male patients, who received a female liver transplant and developed AH, were analyzed for BM stem cell content by fluorescence in situ hybridization and immunostaining. Y chromosome analysis was performed, along with co-staining for hepatocyte, biliary, myofibroblast, and Ki-67 markers. Blood CD34(+) levels were quantified in AH patients by flow cytometry. AH patients had increased CD34(+) cell counts in liver tissue (1.834% +/- 0.605%; P < 0.05) and in blood (0.195% +/- 0.063%; P < 0.05) as compared with matched controls (0.299% + 0.208% and 0.067% +/- 0.01%). A proportion of hepatic myofibroblasts were BM-derived (7.9%-26.8%) as deemed by the co-localization of Y chromosome/alpha-smooth muscle actin (alpha-SMA) staining. In the cross-sex liver grafts with AH, 5.025% of the myofibroblasts were co-staining for CD34, suggesting that a population of CD34(+) cells were contributing to the hepatic myofibroblast population. There was no evidence of BM contribution to hepatocyte or biliary cell differentiation, nor evidence of increased hepatocyte regeneration. Alcohol liver injury mobilizes CD34(+) stem cells into the circulation and recruits them into the liver. These BMSCs contribute to the hepatic myofibroblast population but not to parenchymal lineages and do not promote hepatocyte repair.
Collapse
|
41
|
Sharma AD, Iacob R, Bock M, Cantz T, Manns MP, Ott M. Liver. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
42
|
Li L, Hashiyada M, Kume M, Fukumoto M, Yamamoto Y, Funayama M, Yamamoto Y, Fukumoto M. A case of hepatocellular carcinoma developed after allogeneic bone marrow transplantation. Pathol Int 2010; 60:795-7. [PMID: 21091839 DOI: 10.1111/j.1440-1827.2010.02601.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Shupe T, Petersen BE. Potential applications for cell regulatory factors in liver progenitor cell therapy. Int J Biochem Cell Biol 2010; 43:214-21. [PMID: 20851776 DOI: 10.1016/j.biocel.2010.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 08/24/2010] [Accepted: 09/06/2010] [Indexed: 12/18/2022]
Abstract
Orthotopic liver transplant represent the state of the art treatment for terminal liver pathologies such as cirrhosis in adults and hemochromatosis in neonates. A limited supply of transplantable organs in relationship to the demand means that many patients will succumb to disease before an organ becomes available. One promising alternative to liver transplant is therapy based on the transplant of liver progenitor cells. These cells may be derived from the patient, expanded in vitro, and transplanted back to the diseased liver. Inborn metabolic disorders represent the most attractive target for liver progenitor cell therapy, as many of these disorders may be corrected by repopulation of only a portion of the liver by healthy cells. Another potential application for liver progenitor cell therapy is the seeding of bio-artificial liver matrix. These ex vivo bioreactors may someday be used to bridge critically ill patients to other treatments. Conferring a selective growth advantage to the progenitor cell population remains an obstacle to therapy development. Understanding the molecular signaling mechanisms and micro-environmental cues that govern liver progenitor cell phenotype may someday lead to strategies for providing this selective growth advantage. The discovery of a population of cells within the bone marrow possessing the ability to differentiate into hepatocytes may provide an easily accessible source of cells for liver therapies.
Collapse
Affiliation(s)
- Thomas Shupe
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610-0275, USA.
| | | |
Collapse
|
44
|
Almeida-Porada G, Zanjani ED, Porada CD. Bone marrow stem cells and liver regeneration. Exp Hematol 2010; 38:574-80. [PMID: 20417684 PMCID: PMC2882990 DOI: 10.1016/j.exphem.2010.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/07/2010] [Accepted: 04/13/2010] [Indexed: 12/11/2022]
Abstract
Development of new approaches to treat patients with hepatic diseases that can eliminate the need for liver transplantation is imperative. Use of cell therapy as a means of repopulating the liver has several advantages over whole-organ transplantation because it would be less invasive, less immunogenic, and would allow the use, in some instances, of autologous-derived cells. Stem/progenitor cells that would be ideal for liver repopulation would need to have characteristics such as availability and ease of isolation, the ability to be expanded in vitro, ensuring adequate numbers of cells, susceptibility to modification by viral vector transduction/genetic recombination, to correct any underlying genetic defects, and the ability of restoring liver function following transplantation. Bone marrow-derived stem cells, such as hematopoietic, mesenchymal and endothelial progenitor cells possess some or most of these characteristics, making them ideal candidates for liver regenerative therapies. Here, we will summarize the ability of each of these stem cell populations to give rise to functional hepatic elements that could mediate repair in patients with liver damage/disease.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Department of Animal Biotechnology, University of Nevada, Reno, Reno, NV 89557-0104, USA.
| | | | | |
Collapse
|
45
|
Salama H, Zekri AR, Zern M, Bahnassy A, Loutfy S, Shalaby S, Vigen C, Burke W, Mostafa M, Medhat E, Alfi O, Huttinger E. Autologous hematopoietic stem cell transplantation in 48 patients with end-stage chronic liver diseases. Cell Transplant 2010; 19:1475-86. [PMID: 20587151 DOI: 10.3727/096368910x514314] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The only presently viable treatment for end-stage liver disease is whole organ transplantation. However, there are insufficient livers available. The aim of the present study is to provide autologous bone marrow-derived stem cells as a potential therapeutic for patients with end-stage cirrhosis. This is a retrospective chart review of autologous stem cell treatment in 48 patients, 36 with chronic end-stage hepatitis C-induced liver disease and 12 with end-stage autoimmune liver disease. For all patients, granulocyte colony-stimulating factor was administered to mobilize their hematopoietic stem cells. Following leukapheresis, CD34(+) stem cells were isolated, amplified, and partially differentiated in culture, then reinjected into each subject via their hepatic artery or portal vein. Treatment was generally well tolerated with the expected moderate but transient bone pain from G-CSF in less than half of the patients. Three patients had serious treatment-related complications, and only 20.8% of these end-stage liver disease patients died during 12 months of follow up. For all patients there was a statistically significant decrease in ascites. There was clinical and biochemical improvement in a large percentage of patients who received the transplantation. In the viral group, there were marked changes in albumin (p = 0.0003), bilirubin (p = 0.04), INR (p = 0.0003), and ALT levels (p = 0.02). In the autoimmune group, values also improved significantly for albumin (p = 0.001), bilirubin (p = 0.002), INR (p = .0005), and ALT levels (p = 0.003). These results suggest that autologous CD34(+) stem cell transplantation may be safely administered and appears to offer some therapeutic benefit to patients with both viral and autoimmune-induced end-stage liver disease.
Collapse
Affiliation(s)
- Hosny Salama
- Hepatology Department, Cairo University Hospital, Cairo, Egypt
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hybrid cells differentiate to hepatic lineage cells and repair oxidative damage. Cell Mol Biol Lett 2010; 15:451-72. [PMID: 20563703 PMCID: PMC6275737 DOI: 10.2478/s11658-010-0018-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/26/2010] [Indexed: 02/07/2023] Open
Abstract
Hybrid cells derived from stem cells play an important role in organogenesis, tissue regeneration and cancer formation. However, the fate of hybrid cells and their range of function are poorly understood. Fusing stem cells and somatic cells induces somatic cell reprogramming, and the resulting hybrid cells are embryonic stem cell-like cells. Therefore, we hypothesize that fusion-induced hybrid cells may behave like ES cells in certain microenvironments. In this study, human hepatic cells were induced to apoptosis with H(2)O(2), and then co-cultured with hybrid cells that had been derived from mouse ES cells and human hepatic cells using a transwell. After co-culturing, the degree of apoptosis was evaluated using Annexin-V/PI double-staining analysis, flow cytometry and Western-blot. We observed that H(2)O(2)-induced cell apoptosis was inhibited by co-culture. In addition, the activity of injury-related enzymes (GSH-Px, LDH and SOD) and the level of albumin release in the co-culture system trended toward the level of normal undamaged hepatic cells. The stably increased levels of secretion of ALB in the co-culture system also confirmed that co-culture with hybrid cells helped in recovery from injury. The fate of the hybrid cells was studied by analyzing their gene expression and protein expression profiles. The results of RT-PCR indicated that during co-culturing, like ES cells, hybrid cells differentiated into hepatic lineage cells. Hybrid cells transcripted genes from both parental cell genomes. Via immunocytochemical analysis, hepatic directional differentiation of the hybrid cells was also confirmed. After injecting the hybrid cells into the mouse liver, the GFP-labeled transplanted cells were distributed in the hepatic lobules and engrafted into the liver structure. This research expands the knowledge of fusion-related events and the possible function of hybrid cells. Moreover, it could indicate a new route of differentiation from pluripotent cells to tissue-specific cells via conditional co-culture.
Collapse
|
47
|
Stem cell plasticity: recapping the decade, mapping the future. Exp Hematol 2010; 38:529-39. [PMID: 20438800 DOI: 10.1016/j.exphem.2010.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 12/20/2022]
Abstract
In slightly more than a decade of stem cell plasticity research, 24 peer-reviewed articles have demonstrated plasticity across organ and/or embryonic lineage boundaries at the single-cell level, with only 1 article showing negative results. These data, taken together with data about reversibility of gene restrictions that have also accumulated during the same period, indicate that postnatal cells, even "terminally differentiated" ones, have a degree of plasticity not appreciated previously. This review looks back at the four known pathways of cell plasticity and at previously described "plasticity principles" of Genomic Completeness, Cellular Uncertainty, Stochasticity of Cell Origin and Fate, relating these to issues of experimental design and discourse that are key to understanding and evaluating plasticity data. Although the physiologic roles played by such plasticity may still be debated, the manipulations of these phenomena for therapeutic or industrial purposes should finally be considered ripe for exploration. For the future, plasticity, indeed all stem cell biology, must be considered as part of a larger web of cell-to-cell and cell-to-matrix interactions that function fully only at the tissue level; thus, the success of stem cell biology necessarily must involve assembling data from cell and molecular biology research into systems of interactions that might be reasonably called "tissue biology." Interdisciplinary collaborations with complexity and chaos theorists, using mathematical/computer modeling of cell behaviors, will be vital to fully exploring stem cell behaviors in the coming decades.
Collapse
|
48
|
Gilchrist ES, Plevris JN. Bone marrow-derived stem cells in liver repair: 10 years down the line. Liver Transpl 2010; 16:118-29. [PMID: 20104479 DOI: 10.1002/lt.21965] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells have potential in the field of regenerative medicine because of their capacity to form cells of different lineages. Bone marrow stem cells have been shown to contribute to parenchymal liver cell populations, and although this may not be functionally significant, it has sparked interest in the field of autologous stem cell infusion as a possible treatment for cirrhosis. In this review, we will examine the evidence for the contribution of bone marrow-derived cells to populations of liver cells and for the functional contribution of bone marrow-derived cells to both liver fibrosis and repair. The mechanisms by which cells are trafficked from the bone marrow to the liver are complex; the stromal derived factor-1/CXC receptor 4 axis is central to this process. There are limited data in liver injury, but we will examine findings from the bone marrow transplantation literature and discuss their relevance to liver disease. Stromal derived factor-1 also has a role in endogenous liver stem cell accumulation. Some groups have already started infusing autologous bone marrow cells into patients with cirrhosis. We will review these trials in the context of the basic science that we have discussed, and we will consider targets for investigation in the future.
Collapse
Affiliation(s)
- Eleanor S Gilchrist
- Department of Hepatology, University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| | | |
Collapse
|
49
|
Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N. Hepatic stem cells and liver development. Methods Mol Biol 2010; 640:181-236. [PMID: 20645053 DOI: 10.1007/978-1-60761-688-7_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver consists of many cell types with specialized functions. Hepatocytes are one of the main players in the organ and therefore are the most vulnerable cells to damage. Since they are not everlasting cells, they need to be replenished throughout life. Although the capacity of hepatocytes to contribute to their own maintenance has long been recognized, recent studies have indicated the presence of both intrahepatic and extrahepatic stem/progenitor cell populations that serve to maintain the normal organ and to regenerate damaged parenchyma in response to a variety of insults.The intrahepatic compartment most likely derives primarily from the biliary tree, particularly the most proximal branches, i.e. the canals of Hering and smallest ductules. The extrahepatic compartment is at least in part derived from diverse populations of cells from the bone marrow. Embryonic stem cells (ES's) are considered as a part of the extrahepatic compartment. Due to their pluripotent capabilities, ES cell-derived cells form a potential future source of hepatocytes, to replace or restore hepatic tissues that have been damaged by disease or injury. Progressing knowledge about stem cells in the liver would allow a better understanding of the mechanisms of hepatic homeostasis and regeneration. Although a human stem cell-derived cell type equivalent to primary hepatocytes does not yet exist, the promising results obtained with extrahepatic stem cells would open the way to cell-based therapy for liver diseases.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | |
Collapse
|
50
|
Bone Marrow-Derived Cells Promote Liver Regeneration in Mice With Erythropoietic Protoporphyria. Transplantation 2009; 88:1332-40. [DOI: 10.1097/tp.0b013e3181bce00e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|