1
|
Li W, Chen G, Peng H, Zhang Q, Nie D, Guo T, Zhu Y, Zhang Y, Lin M. Research Progress on Dendritic Cells in Hepatocellular Carcinoma Immune Microenvironments. Biomolecules 2024; 14:1161. [PMID: 39334927 PMCID: PMC11430656 DOI: 10.3390/biom14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells that play a crucial role in initiating immune responses by cross-presenting relevant antigens to initial T cells. The activation of DCs is a crucial step in inducing anti-tumor immunity. Upon recognition and uptake of tumor antigens, activated DCs present these antigens to naive T cells, thereby stimulating T cell-mediated immune responses and enhancing their ability to attack tumors. It is particularly noted that DCs are able to cross-present foreign antigens to major histocompatibility complex class I (MHC-I) molecules, prompting CD8+ T cells to proliferate and differentiate into cytotoxic T cells. In the malignant progression of hepatocellular carcinoma (HCC), the inactivation of DCs plays an important role, and the activation of DCs is particularly important in anti-HCC immunotherapy. In this review, we summarize the mechanisms of DCs activation in HCC, the involved regulatory factors and strategies to activate DCs in HCC immunotherapy. It provides a basis for the study of HCC immunotherapy through DCs activation.
Collapse
Affiliation(s)
- Wenya Li
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guojie Chen
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Medical School, Nantong University, Nantong 226019, China
| | - Hailin Peng
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Qingfang Zhang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Dengyun Nie
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting Guo
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinxing Zhu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Yuhan Zhang
- The First School of Clinical Medicine Southern Medical University, Guangzhou 510515, China
| | - Mei Lin
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
2
|
Zhan Z, Cheng J, Liu F, Tao S, Wang L, Lin X, Ye Y. Combination of microparticles vaccine with MSI-1436 exerts a strong immune response for hepatocellular carcinoma. J Leukoc Biol 2024; 116:565-578. [PMID: 39012079 DOI: 10.1093/jleuko/qiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
Although tumor cell-derived microparticles (MPs) vaccines have reportedly induced antitumor immune reactions for various cancers, the mechanism by which MPs derived from Hepa1-6 cells are taken up by dendritic cells (DCs) and provide the MPs antigens message to CD8+ T cells to exert their anti-hepatocellular carcinoma (HCC) effects remain unclear. Furthermore, the role of MPs in combination with the small-molecule drug MSI-1436, an inhibitor of protein tyrosine phosphatase 1B (PTP1B), in HCC has not yet been reported. In this study, protein mass spectrometry combined with cytology revealed that MPs are mainly taken up by DCs via the clathrin-mediated endocytosis and phagocytosis pathway and localized mainly in lysosomes. High concentration of tumor necrosis factor-α and interferon-γ was detected in CD8+ T cells stimulated with MPs-loaded DCs. Moreover, MPs combined with MSI-1436 further suppressed the proliferation of HCC cells in C57BL/6 tumor-bearing mice, which was closely correlated with CD4+/CD8+ T cells counts in peripheral blood, spleen, and the tumor microenvironment. Mechanistically, the combination of MPs and MSI-1436 exerts a more powerful anti-HCC effect, which may be related to the further inhibition of the expression of PTP1B. Overall, MPs combined with MSI-1436 exerted stronger antitumor effects than MPs or MSI-1436 alone. Therefore, the combination of MPs and MSI-1436 may be a promising means of treating HCC.
Collapse
Affiliation(s)
- Zhao Zhan
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Jiaqing Cheng
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Fang Liu
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Shili Tao
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Ling Wang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Xiandong Lin
- The School of Basic Medical Sciences, Fujian Medical University, No. 1, Xue Yuan Road, University Town, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Translational Cancer Medicine, No. 420, Fuma Road, Jinan District, Fuzhou, Fujian 350014, China
| |
Collapse
|
3
|
Yuan L, Ji H, Cao Y, Yi H, Leng Q, Zhou J, Mei X. Exosomes in esophageal cancer: Promising nanocarriers in cancer progression, diagnosis, prognosis, and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1989. [PMID: 39217461 DOI: 10.1002/wnan.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Esophageal cancer (EC) is one of the most fatal cancers all over the world. Sensitive detection modalities for early-stage EC and efficient treatment methods are urgently needed for the improvement of the prognosis of EC. Exosomes are small vesicles for intercellular communication, mediating many biological responses including cancer progression, which are not only promising biomarkers for diagnosis and prognosis but also therapeutic tools for EC. This review provides an overview of the relationships between exosomes and EC progression, as well as the application of exosomes in the diagnosis, prognosis, and treatment of EC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ligong Yuan
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Cao
- Peking University Health Science Center, Peking University, Beijing, China
| | - Hang Yi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Xinyu Mei
- Department of Thoracic Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
González Á, López-Borrego S, Sandúa A, Vales-Gomez M, Alegre E. Extracellular vesicles in cancer: challenges and opportunities for clinical laboratories. Crit Rev Clin Lab Sci 2024; 61:435-457. [PMID: 38361287 DOI: 10.1080/10408363.2024.2309935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized particles secreted by most cells. They transport different types of biomolecules (nucleic acids, proteins, and lipids) characteristic of their tissue or cellular origin that can mediate long-distance intercellular communication. In the case of cancer, EVs participate in tumor progression by modifying the tumor microenvironment, favoring immune tolerance and metastasis development. Consequently, EVs have great potential in liquid biopsy for cancer diagnosis, prognosis and follow-up. In addition, EVs could have a role in cancer treatment as a targeted drug delivery system. The intense research in the EV field has resulted in hundreds of patents and the creation of biomedical companies. However, methodological issues and heterogeneity in EV composition have hampered the advancement of EV validation trials and the development of EV-based diagnostic and therapeutic products. Consequently, only a few EV biomarkers have moved from research to clinical laboratories, such as the ExoDx Prostate IntelliScore (EPI) test, a CLIA/FDA-approved EV prostate cancer diagnostic test. In addition, the number of large-scale multicenter studies that would clearly define biomarker performance is limited. In this review, we will critically describe the different types of EVs, the methods for their enrichment and characterization, and their biological role in cancer. Then, we will specially focus on the parameters to be considered for the translation of EV biology to the clinic laboratory, the advances already made in the field of EVs related to cancer diagnosis and treatment, and the issues still pending to be solved before EVs could be used as a routine tool in oncology.
Collapse
Affiliation(s)
- Álvaro González
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Silvia López-Borrego
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Amaia Sandúa
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Estibaliz Alegre
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
5
|
Hong Y, Yang J, Liu X, Huang S, Liang T, Bai X. Deciphering extracellular vesicles protein cargo in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189142. [PMID: 38914240 DOI: 10.1016/j.bbcan.2024.189142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a significant therapeutic challenge as it is frequently diagnosed at advanced inoperable stages. Therefore, the development of a reliable screening tool for PDAC is crucial for effective prevention and treatment. Extracellular vesicles (EVs), characterized by their cup-shaped lipid bilayer structure and ubiquitous release from various cell types, offer notable advantages as an emerging liquid biopsy technique that is rapid, minimally invasive, easily sampled, and cost-effective. While EVs play a substantial role in cancer progression, EV proteins serve as direct mediators of diverse cellular behaviors and have immense potential as biomarkers for PDAC diagnosis and prognostication. This review provides an overview of EV proteins regarding PDAC diagnosis and prognostic implications as well as disease progression.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Sicong Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Sun D, Altalbawy FMA, Yumashev A, Hjazi A, Menon SV, Kaur M, Deorari M, Abdulwahid AS, Shakir MN, Gabal BC. Shedding Light on the Role of Exosomal PD-L1 (ExoPD-L1) in Cancer Progression: an Update. Cell Biochem Biophys 2024; 82:1709-1720. [PMID: 38907940 DOI: 10.1007/s12013-024-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
Exosomes are the primary category of extracellular vesicles (EVs), which are lipid-bilayer vesicles with biological activity spontaneously secreted from either normal or tansformed cells. They serve a crucial role for intercellular communication and affect extracellular environment and the immune system. Tumor-derived exosomes (TEXs) enclose high levels of immunosuppressive proteins, including programmed death-ligand 1 (PD-L1). PD-L1 and its receptor PD-1 act as crucial immune checkpoint molecules, thus facilitating tumor advancement by inhibiting immune responses. PDL-1 is abundantly present on tumor cells and interacts with PD-1 on activated T cells, resulting in T cell suppression and allowing immune evasion of cancer cells. Various FDA-approved monoclonal antibodies inhibiting the PD-1/PD-L1 interaction are commonly used to treat a diverse range of tumors. Although the achieved results are significant, some individuals have a poor reaction to PD-1/PD-L1 blocking. PD-L1-enriched TEXs may mimic the impact of cell-surface PD-L1, consequently potentiating tumor resistance to PD1/PD-L1 based therapy. In light of this, a strong correlation between circulating exosomal PD-L1 levels and response rate to anti-PD-1/PD-L1 antibody treatment has been evinced. This article inspects the function of exosomal PDL-1 in developing resistance to anti-PD-1/PD-L1 therapy for opening new avenues for overcoming tumor resistance to such modalities and development of more favored combination therapy.
Collapse
Affiliation(s)
- Dongmei Sun
- Siping City Central People's Hospital, Siping, Jilin, 136000, P. R. China
| | - Farag M A Altalbawy
- Department of Biochemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Alzahraa S Abdulwahid
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Baneen Chasib Gabal
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
7
|
Zhao G, Wang Y, Xing S, Jiang Y, Ding J, Cai Y, Ma P, Miao H, Fang Y, Jiang N, Cui D, Yu Y, Tang Q, Wang S, Li N. Exosome-based anticancer vaccines: From Bench to bedside. Cancer Lett 2024; 595:216989. [PMID: 38825162 DOI: 10.1016/j.canlet.2024.216989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development. Meanwhile, accumulating evidence suggests that exosomes originating from tumor cells and immune cells possess distinct composition profiles that play a direct role in anticancer immunotherapy. Of note, exosomes can transport their contents to specific cells, thereby exerting an impact on the phenotype and immune-regulatory functions of targeted cells. Therapeutic cancer vaccines, an emerging therapeutics of immunotherapy, could enhance antitumor immune responses by delivering a large number of tumor antigens, thereby augmenting the immune response against tumor cells. Therefore, the therapeutic rationale of cancer vaccines and exosome-based immunotherapy are almost similar to some extent, but some challenges have hindered their application in the clinical setting. Here, in this review, we first summarized the biogenesis, structure, compositions, and biological functions of exosomes. Then we described the roles of exosomes in cancer biology, particularly in tumor immunity. We also comprehensively reviewed current exosome-based anticancer vaccine development and we divided them into three types. Finally, we give some insights into clinical translation and clinical trial progress of exosome-based anticancer vaccines for future direction.
Collapse
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuning Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Xing
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiatong Ding
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanting Cai
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huilei Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dandan Cui
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Yu
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Bao H, Chen Y, Zhang Y, Lan H, Jin K. Exosomes-based immunotherapy for cancer: Effective components in the naïve and engineered forms. Int Immunopharmacol 2024; 139:112656. [PMID: 39043104 DOI: 10.1016/j.intimp.2024.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024]
Abstract
Today, cancer treatment is one of the main challenges for researchers. The main cause of tumor cell formation is mutations that lead to uncontrolled proliferation and inhibition of apoptosis in malignant cells. Tumor cells also create a microenvironment that can suppress the immune system cells' responses through various methods, including producing soluble factors and cell-to-cell communication. After being produced from tumor cells, exosomes can also affect the functions of other cells in this microenvironment. Various studies have shown that exosomes from different sources, including tumor cells and immune cells, can be used to treat cancers due to their characteristics. Since tumor cells are rich sources of various types of tumor peptides, they can induce anti-tumor responses. Immune cells also produce exosomes that mimic the functions of their cells of origin, such that exosomes derived from NK cells and CTLs can directly lead to their apoptosis after merging with tumor cells. However, many researchers have pointed out that naïve exosomes have a limited therapeutic function, and their therapeutic potential can be increased by manipulating and engineering them. There are various methods to modify exosomes and improve their therapeutic potential. In general, these methods are divided into two parts, which include changing the cell of origin of the exosome and encapsulating the exosome to carry different drugs. In this review, we will discuss the studies on the therapeutic use of naive and engineered exosomes and provide an update on new studies in this field.
Collapse
Affiliation(s)
- Huan Bao
- Department of Neurosurgery, Jiashan First People's Hospital, Jiashan First People's Hospital Luoxing Branch, Jiashan, Zhejiang 314100, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China
| | - Youni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital, Taizhou, Zhejiang 317200, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China.
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
9
|
Lin X, Shao H, Tang Y, Wang Q, Yang Z, Wu H, Xing T. High expression of circulating exosomal PD-L1 contributes to immune escape of hepatocellular carcinoma and immune clearance of chronic hepatitis B. Aging (Albany NY) 2024; 16:11373-11384. [PMID: 39028365 PMCID: PMC11315384 DOI: 10.18632/aging.206020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To investigate the expression of programmed death ligand-1 (PD-L1) in circulating exosomes, and to define the role of exosomal PD-L1 in promoting immune escape mechanism during chronic hepatitis B infection (CHB) and related liver diseases. METHODS The levels of PD-L1 expressed in exosomes were detected by ELISA. CD8+T cells were sorted and cytotoxicity test was assessed by flow cytometry. PD-L1 protein expression in hepatocellular carcinoma (HCC) and normal adjacent tissues were detected by immunohistochemistry. RESULTS Circulating exosomal PD-L1 levels were significantly higher in patients with CHB and HCC than in healthy controls (F =7.46, P=0.001). Levels of CD107a on CD8+T cells in patients with CHB receiving PD-L1 blocking antibody were significantly lower than in patients receiving isotype blocking antibody (t = 4.96, P < 0.01). Levels of TNF-α in cell culture supernatants of the PD-L1 blocking antibody group were significantly higher than in the isotype blocking antibody group (t =5.92, P < 0.01). Compared with patients receiving isotype blocking antibody, levels of CD107a on CD8+T cells significantly increased in patients with HCC receiving anti-PD-L1 antibody (t = 3.51, P<0.05). Compared with adjacent tissues, the levels of PD-L1 protein expression in HCC tissues were slightly higher; however, no significant difference between the two groups was observed. CONCLUSIONS PD-L1 blockade in exosomes might promote the cytotoxic function of CD8+T cells and inhibit immune evasion during progression of HCC. Blocking PD-L1 in exosomes reduced the cytotoxic function of CD8+T cells in patients with CHB while enhancing the production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Xiaoqing Lin
- Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, Wenzhou Sixth People’s Hospital, Wenzhou, Zhejiang, China
| | - Hui Shao
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yongzhi Tang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Qiupeng Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Zhenyu Yang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Hongwei Wu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Tongjing Xing
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
10
|
Aghakhani A, Pezeshki PS, Rezaei N. The role of extracellular vesicles in immune cell exhaustion and resistance to immunotherapy. Expert Opin Investig Drugs 2024; 33:721-740. [PMID: 38795060 DOI: 10.1080/13543784.2024.2360209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 05/27/2024]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors. AREAS COVERED This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments. EXPERT OPINION By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Liu Y, Pierre CJ, Joshi S, Sun L, Li Y, Guan J, Favor JDL, Holmes C. Cell-Specific Impacts of Surface Coating Composition on Extracellular Vesicle Secretion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29737-29759. [PMID: 38805212 DOI: 10.1021/acsami.4c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Biomaterial properties have recently been shown to modulate extracellular vesicle (EV) secretion and cargo; however, the effects of substrate composition on EV production remain underexplored. This study investigates the impacts of surface coatings composed of collagen I (COLI), fibronectin (FN), and poly l-lysine (PLL) on EV secretion for applications in therapeutic EV production and to further understanding of how changes in the extracellular matrix microenvironment affect EVs. EV secretion from primary bone marrow-derived mesenchymal stromal cells (BMSCs), primary adipose-derived stem cells (ASCs), HEK293 cells, NIH3T3 cells, and RAW264.7 cells was characterized on the different coatings. Expression of EV biogenesis genes and cellular adhesion genes was also analyzed. COLI coatings significantly decreased EV secretion in RAW264.7 cells, with associated decreases in cell viability and changes in EV biogenesis-related and cell adhesion genes at day 4. FN coatings increased EV secretion in NIH3T3 cells, while PLL coatings increased EV secretion in ASCs. Surface coatings had significant effects on the capacity of EVs derived from RAW264.7 and NIH3T3 cells to impact in vitro macrophage proliferation. Overall, surface coatings had different cell-specific effects on EV secretion and in vitro functional capacity, thus highlighting the potential of substrate coatings to further the development of clinical EV production systems.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Clifford J Pierre
- Department of Health, Nutrition, and Food Science, College of Education, Health and Human Sciences, Florida State University, 1114 West Call Street, Tallahasee, Florida 32306, United States
| | - Sailesti Joshi
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Li Sun
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahasee, Florida 32306-4300, United States
| | - Yan Li
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Jingjiao Guan
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| | - Justin D La Favor
- Department of Health, Nutrition, and Food Science, College of Education, Health and Human Sciences, Florida State University, 1114 West Call Street, Tallahasee, Florida 32306, United States
| | - Christina Holmes
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahasee, Florida 32310-6046, United States
| |
Collapse
|
12
|
Zhang M, Ono M, Kawaguchi S, Iida M, Chattrairat K, Zhu Z, Nagashima K, Yanagida T, Yamaguchi J, Nishikawa H, Natsume A, Baba Y, Yasui T. On-Site Stimulation of Dendritic Cells by Cancer-Derived Extracellular Vesicles on a Core-Shell Nanowire Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29570-29580. [PMID: 38804616 PMCID: PMC11181270 DOI: 10.1021/acsami.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Extracellular vesicles (EVs) contain a subset of proteins, lipids, and nucleic acids that maintain the characteristics of the parent cell. Immunotherapy using EVs has become a focus of research due to their unique features and bioinspired applications in cancer treatment. Unlike conventional immunotherapy using tumor fragments, EVs can be easily obtained from bodily fluids without invasive actions. We previously fabricated nanowire devices that were specialized for EV collection, but they were not suitable for cell culturing. In this study, we fabricated a ZnO/Al2O3 core-shell nanowire platform that could collect more than 60% of the EVs from the cell supernatant. Additionally, we could continue to culture dendritic cells (DCs) on the platform as an artificial lymph node to investigate cell maturation into antigen-presenting cells. Finally, using this platform, we reproduced a series of on-site immune processes that are among the pivotal immune functions of DCs and include such processes as antigen uptake, antigen presentation, and endocytosis of cancer-derived EVs. This platform provides a new ex vivo tool for EV-DC-mediated immunotherapies.
Collapse
Affiliation(s)
- Min Zhang
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Miki Ono
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shota Kawaguchi
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kunanon Chattrairat
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Zetao Zhu
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuki Nagashima
- Research
Institute for Electronic Science (RIES), Hokkaido University, Kita, Sapporo, Hokkaido 001-0020, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Yamaguchi
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyoshi Nishikawa
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
- Division
of Cancer Immunology, Exploratory Oncology
Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
| | - Atsushi Natsume
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Kawamura
Medical Society, Gifu 501-3144, Japan
| | - Yoshinobu Baba
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
13
|
Wang Y, Ma Q, Wang T, Xing J, Li Q, Wang D, Wang G. The involvement and application potential of exosomes in breast cancer immunotherapy. Front Immunol 2024; 15:1384946. [PMID: 38835784 PMCID: PMC11148227 DOI: 10.3389/fimmu.2024.1384946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Breast cancer has a high incidence and a heightened propensity for metastasis. The absence of precise targets for effective intervention makes it imperative to devise enhanced treatment strategies. Exosomes, characterized by a lipid bilayer and ranging in size from 30 to 150 nm, can be actively released by various cells, including those in tumors. Exosomes derived from distinct subsets of immune cells have been shown to modulate the immune microenvironment within tumors and influence breast cancer progression. In addition, tumor-derived exosomes have been shown to contribute to breast cancer development and progression and may become a new target for breast cancer immunotherapy. Tumor immunotherapy has become an option for managing tumors, and exosomes have become therapeutic vectors that can be used for various pathological conditions. Edited exosomes can be used as nanoscale drug delivery systems for breast cancer therapy, contributing to the remodeling of immunosuppressive tumor microenvironments and influencing the efficacy of immunotherapy. This review discusses the regulatory role of exosomes from different cells in breast cancer and the latest applications of exosomes as nanoscale drug delivery systems and immunotherapeutic agents in breast cancer, showing the development prospects of exosomes in the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Yun Wang
- Department of Thoracic Surgery, The Affliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Qiji Ma
- Department of Breast and Thyroid Surgery, The Affliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Tielin Wang
- College of Acupuncture-Moxibustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jie Xing
- Department of Breast and Thyroid Surgery, The Affliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Gang Wang
- Department of Breast and Thyroid Surgery, The Affliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Jiang S, Tian S, Wang P, Liu J, Sun K, Zhou X, Han Y, Shang Y. Native and engineered extracellular vesicles: novel tools for treating liver disease. J Mater Chem B 2024; 12:3840-3856. [PMID: 38532706 DOI: 10.1039/d3tb01921g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Liver diseases are classified as acute liver damage and chronic liver disease, with recurring liver damage causing liver fibrosis and progression to cirrhosis and hepatoma. Liver transplantation is the only effective treatment for end-stage liver diseases; therefore, novel therapies are required. Extracellular vesicles (EVs) are endogenous nanocarriers involved in cell-to-cell communication that play important roles in immune regulation, tissue repair and regeneration. Native EVs can potentially be used for various liver diseases owing to their high biocompatibility, low immunogenicity and tissue permeability and engineered EVs with surface modification or cargo loading could further optimize therapeutic effects. In this review, we firstly introduced the mechanisms and effects of native EVs derived from different cells and tissues to treat liver diseases of different etiologies. Additionally, we summarized the possible methods to facilitate liver targeting and improve cargo-loading efficiency. In the treatment of liver disease, the detailed engineered methods and the latest delivery strategies were also discussed. Finally, we pointed out the limitations and challenges of EVs for future development and applications. We hope that this review could provide a useful reference for the development of EVs and promote the clinical translation.
Collapse
Affiliation(s)
- Shuangshuang Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Siyuan Tian
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Punan Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Keshuai Sun
- Department of Gastroenterology, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, Jiangsu, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
15
|
Huang Q, Zhong X, Li J, Hu R, Yi J, Sun J, Xu Y, Zhou X. Exosomal ncRNAs: Multifunctional contributors to the immunosuppressive tumor microenvironment of hepatocellular carcinoma. Biomed Pharmacother 2024; 173:116409. [PMID: 38460375 DOI: 10.1016/j.biopha.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant liver cancer characterized by aggressive progression, unfavorable prognosis, and an increasing global health burden. Therapies that precisely target immunological checkpoints and immune cells have gained significant attention as possible therapeutics in recent years. In truth, the efficacy of immunotherapy is heavily contingent upon the tumor microenvironment (TME). Recent studies have indicated that exosomes serve as a sophisticated means of communication among biomolecules, executing an essential part in the TME of immune suppression. Exosomal non-coding RNAs (ncRNAs) can induce the activation of tumor cells and immunosuppressive immune cells that suppress the immune system, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), CD+8 T cells, regulatory T cells (Tregs), and regulatory B cells (Bregs). This cell-cell crosstalk triggered by exosomal ncRNAs promotes tumor proliferation and metastasis, angiogenesis, malignant phenotype transformation, and drug resistance. Hence, it is imperative to comprehend how exosomal ncRNAs regulate tumor cells or immune cells within the TME to devise more comprehensive and productive immunotherapy programs. This study discusses the features of exosomal ncRNAs in HCC and how the activation of the exosomes redefines the tumor's immunosuppressive microenvironment, hence facilitating the advancement of HCC. Furthermore, we also explored the potential of exosomal ncRNAs as a viable biological target or natural vehicle for HCC therapy.
Collapse
Affiliation(s)
- Qi Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jing Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Rui Hu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jinyu Yi
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China; Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao PR China.
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, PR China; Department of Liver Disease, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| |
Collapse
|
16
|
Rezaei F, Bolhassani A, Sadat SM, Arashkia A, Fotouhi F, Milani A, Pordanjani PM. Development of novel HPV therapeutic vaccine constructs based on engineered exosomes and tumor cell lysates. Life Sci 2024; 340:122456. [PMID: 38266814 DOI: 10.1016/j.lfs.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
AIMS Human papillomavirus (HPV) infections are highly prevalent globally. While preventive HPV vaccines exist, therapeutic vaccines are needed to treat existing HPV lesions and malignancies. This study evaluated the immunostimulatory and anti-tumor effects of three therapeutic vaccine candidates based on the recombinant protein, tumor cell lysate (TCL), and engineered exosome (Exo) harboring the heat shock protein 27 (Hsp27)-E7 fusion construct in mouse model. MAIN METHODS At first, the recombinant Hsp27-E7 protein was generated in E. coli expression system. Then, tumor cell lysates-based and engineered exosomes-based vaccine constructs harboring green fluorescent protein (GFP) and Hsp27-E7 were produced using lentiviral system. Finally, their immunological and antitumor effects were investigated in both prophylactic and therapeutic experiments. KEY FINDINGS Our data showed that the recombinant Hsp27-E7 protein, TCL-Hsp27-E7 and Exo-Hsp27-E7 regimens can induce the highest level of IFN-γ, TNF-α and Granzyme B, respectively. The percentage of tumor-free mice was identical for three vaccine strategies (survival rate: 75 %) in both prophylactic and therapeutic experiments. Generally, the TCL-Hsp27-E7, Exo-Hsp27-E7 and recombinant Hsp27-E7 protein regimens induced effective immune responses toward Th1 and CTL activity, and subsequently antitumor effects in mouse model. SIGNIFICANCE Regarding to higher Granzyme B secretion, lower tumor growth and more safety, the Exo-Hsp27-E7 regimen can be considered as the most promising HPV vaccination strategy.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran; Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | |
Collapse
|
17
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
18
|
Essola JM, Zhang M, Yang H, Li F, Xia B, Mavoungou JF, Hussain A, Huang Y. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater 2024; 32:124-146. [PMID: 37927901 PMCID: PMC10622742 DOI: 10.1016/j.bioactmat.2023.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its multiple features, including the ability to orchestrate remote communication between different tissues, the exosomes are the extracellular vesicles arousing the highest interest in the scientific community. Their size, established as an average of 30-150 nm, allows them to be easily uptaken by most cells. According to the type of cells-derived exosomes, they may carry specific biomolecular cargoes used to reprogram the cells they are interacting with. In certain circumstances, exosomes stimulate the immune response by facilitating or amplifying the release of foreign antigens-killing cells, inflammatory factors, or antibodies (immune activation). Meanwhile, in other cases, they are efficiently used by malignant elements such as cancer cells to mislead the immune recognition mechanism, carrying and transferring their cancerous cargoes to distant healthy cells, thus contributing to antigenic invasion (immune suppression). Exosome dichotomic patterns upon immune system regulation present broad advantages in immunotherapy. Its perfect comprehension, from its early biogenesis to its specific interaction with recipient cells, will promote a significant enhancement of immunotherapy employing molecular biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Julien Milon Essola
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Jacques François Mavoungou
- Université Internationale de Libreville, Libreville, 20411, Gabon
- Central and West African Virus Epidemiology, Libreville, 2263, Gabon
- Département de phytotechnologies, Institut National Supérieur d’Agronomie et de Biotechnologie, Université des Sciences et Techniques de Masuku, Franceville, 901, Gabon
- Institut de Recherches Agronomiques et Forestiers, Centre National de la Recherche Scientifique et du développement Technologique, Libreville, 16182, Gabon
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Rigerna Therapeutics Co. Ltd., China
| |
Collapse
|
19
|
Zhang N, Shu L, Liu Z, Shi A, Zhao L, Huang S, Sheng G, Yan Z, Song Y, Huang F, Tang Y, Zhang Z. The role of extracellular vesicles in cholangiocarcinoma tumor microenvironment. Front Pharmacol 2024; 14:1336685. [PMID: 38269274 PMCID: PMC10805838 DOI: 10.3389/fphar.2023.1336685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- Nuoqi Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital, Shandong University, Qingdao, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guoli Sheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhangdi Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Fan Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Gurunathan S, Thangaraj P, Wang L, Cao Q, Kim JH. Nanovaccines: An effective therapeutic approach for cancer therapy. Biomed Pharmacother 2024; 170:115992. [PMID: 38070247 DOI: 10.1016/j.biopha.2023.115992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer vaccines hold considerable promise for the immunotherapy of solid tumors. Nanomedicine offers several strategies for enhancing vaccine effectiveness. In particular, molecular or (sub) cellular vaccines can be delivered to the target lymphoid tissues and cells by nanocarriers and nanoplatforms to increase the potency and durability of antitumor immunity and minimize negative side effects. Nanovaccines use nanoparticles (NPs) as carriers and/or adjuvants, offering the advantages of optimal nanoscale size, high stability, ample antigen loading, high immunogenicity, tunable antigen presentation, increased retention in lymph nodes, and immunity promotion. To induce antitumor immunity, cancer vaccines rely on tumor antigens, which are administered in the form of entire cells, peptides, nucleic acids, extracellular vesicles (EVs), or cell membrane-encapsulated NPs. Ideal cancer vaccines stimulate both humoral and cellular immunity while overcoming tumor-induced immune suppression. Herein, we review the key properties of nanovaccines for cancer immunotherapy and highlight the recent advances in their development based on the structure and composition of various (including synthetic and semi (biogenic) nanocarriers. Moreover, we discuss tumor cell-derived vaccines (including those based on whole-tumor-cell components, EVs, cell membrane-encapsulated NPs, and hybrid membrane-coated NPs), nanovaccine action mechanisms, and the challenges of immunocancer therapy and their translation to clinical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India.
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India
| | - Lin Wang
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Qilong Cao
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
21
|
Tang M, Wang C, Zhao B. Exosome at the crossroads of mechanosensing and liver tumorigenesis. Sci Bull (Beijing) 2023; 68:3087-3090. [PMID: 37977917 DOI: 10.1016/j.scib.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Mei Tang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chenliang Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing 321000, China.
| |
Collapse
|
22
|
Zhang Y, Zuo B, Yu Z, Zhao K, Zhang Y, He K, Seow Y, Yin H. Complete remission of tumors in mice with neoantigen-painted exosomes and anti-PD-1 therapy. Mol Ther 2023; 31:3579-3593. [PMID: 37919900 PMCID: PMC10727972 DOI: 10.1016/j.ymthe.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Neoantigen-based cancer vaccines are emerging as promising tumor therapies, but enhancement of immunogenicity can further improve therapeutic outcomes. Here, we demonstrate that anchoring different peptide neoantigens on subcutaneously administered serum exosomes promote lymph node homing and dendritic cell uptake, resulting in significantly enhanced antigenicity in vitro and in vivo. Exosomes anchoring of melanoma peptide neoantigens augmented the magnitude and breadth of T cell response in vitro and in vivo, to a greater extent with CD8+ T cell responses. Simultaneous decoration of different peptide neoantigens on serum exosomes induced potent tumor suppression and neoantigen-specific immune responses in mice with melanoma and colon cancer. Complete tumor eradication and sustainable immunological memory were achieved with neoantigen-painted serum exosome vaccines in combination with programmed cell death protein 1 (PD-1) antibodies in mice with colon cancer. Importantly, human serum exosomes loaded with peptide neoantigens elicited significant tumor growth retardation and immune responses in human colon cancer 3-dimensional (3D) multicellular spheroids. Our study demonstrates that serum exosomes direct in vivo localization, increase dendritic cell uptake, and enhance the immunogenicity of antigenic peptides and thus provides a general delivery tool for peptide antigen-based personalized immunotherapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Bingfeng Zuo
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Zezhen Yu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Kangjie Zhao
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yali Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yiqi Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - HaiFang Yin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics & Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) & School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China; Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
23
|
Shen L, Huang H, Wei Z, Chen W, Li J, Yao Y, Zhou J, Liu J, Sun S, Xia W, Zhang T, Yu X, Shen J, Wang W, Jiang J, Huang J, Jiang M, Ni C. Integrated transcriptomics, proteomics, and functional analysis to characterize the tissue-specific small extracellular vesicle network of breast cancer. MedComm (Beijing) 2023; 4:e433. [PMID: 38053815 PMCID: PMC10694390 DOI: 10.1002/mco2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Small extracellular vesicles (sEVs) are essential mediators of intercellular communication within the tumor microenvironment (TME). Although the biological features of sEVs have been characterized based on in vitro culture models, recent evidence indicates significant differences between sEVs derived from tissue and those derived from in vitro models in terms of both content and biological function. However, comprehensive comparisons and functional analyses are still limited. Here, we collected sEVs from breast cancer tissues (T-sEVs), paired normal tissues (N-sEVs), corresponding plasma (B-sEVs), and tumor organoids (O-sEVs) to characterize their transcriptomic and proteomic profiles. We identified the actual cancer-specific sEV signatures characterized by enriched cell adhesion and immunomodulatory molecules. Furthermore, we revealed the significant contribution of cancer-associated fibroblasts in the sEV network within the TME. In vitro model-derived sEVs did not entirely inherit the extracellular matrix- and immunity regulation-related features of T-sEVs. Also, we demonstrated the greater immunostimulatory ability of T-sEVs on macrophages and CD8+ T cells compared to O-sEVs. Moreover, certain sEV biomarkers derived from noncancer cells in the circulation exhibited promising diagnostic potential. This study provides valuable insights into the functional characteristics of tumor tissue-derived sEVs, highlighting their potential as diagnostic markers and therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Lesang Shen
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Huanhuan Huang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Zichen Wei
- Center for Genetic MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Department of AnesthesiologyTaihe HospitalHubei University of MedicineShiyanChina
| | - Wuzhen Chen
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jiaxin Li
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Yao Yao
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jun Zhou
- Department of Breast SurgeryAffiliated Hangzhou First People's HospitalZhejiang UniversityHangzhouChina
| | - Jian Liu
- Department of Breast SurgeryAffiliated Hangzhou First People's HospitalZhejiang UniversityHangzhouChina
| | - Shanshan Sun
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Wenjie Xia
- Department of Breast SurgeryZhejiang Provincial People's HospitalHangzhouChina
| | - Ting Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
- Department of Radiation OncologySecond Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Xiuyan Yu
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jun Shen
- Department of Surgical OncologySir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
| | - Weilan Wang
- Department of Breast SurgeryChangxing People's HospitalHuzhouChina
| | - Jingxin Jiang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Jian Huang
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Ming Jiang
- Center for Genetic MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Genetic and Developmental DisordersHangzhouChina
| | - Chao Ni
- Department of Breast SurgerySecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang ProvinceSecond Affiliated Hospital, Zhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
24
|
de Carvalho TG, Lara P, Jorquera-Cordero C, Aragão CFS, de Santana Oliveira A, Garcia VB, de Paiva Souza SV, Schomann T, Soares LAL, da Matta Guedes PM, de Araújo Júnior RF. Inhibition of murine colorectal cancer metastasis by targeting M2-TAM through STAT3/NF-kB/AKT signaling using macrophage 1-derived extracellular vesicles loaded with oxaliplatin, retinoic acid, and Libidibia ferrea. Biomed Pharmacother 2023; 168:115663. [PMID: 37832408 DOI: 10.1016/j.biopha.2023.115663] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Colorectal cancer is still unmanageable despite advances in target therapy. However, extracellular vesicles (EVs) have shown potential in nanomedicine as drug delivery systems, especially for modulating the immune cells in the tumor microenvironment (TME). In this study, M1 Macrophage EVs (M1EVs) were used as nanocarriers of oxaliplatin (M1EV1) associated with retinoic acid (M1EV2) and Libidibia ferrea (M1EV3), alone or in combination (M1EV4) to evaluate their antiproliferative and immunomodulatory potential on CT-26 and MC-38 colorectal cancer cell lines and prevent metastasis in mice of allograft and peritoneal colorectal cancer models. Tumors were evaluated by qRT-PCR and immunohistochemistry. The cell death profile and epithelial-mesenchymal transition process (EMT) were analyzed in vitro in colorectal cancer cell lines. Polarization of murine macrophages (RAW264.7 cells) was also carried out. M1EV2 and M1EV3 used alone or particularly M1EV4 downregulated the tumor progression by TME immunomodulation, leading to a decrease in primary tumor size and metastasis in the peritoneum, liver, and lungs. STAT3, NF-kB, and AKT were the major genes downregulated by of M1EV systems. Tumor-associated macrophages (TAMs) shifted from an M2 phenotype (CD163) to an M1 phenotype (CD68) reducing levels of IL-10, TGF-β and CCL22. Furthermore, malignant cells showed overexpression of FADD, APAF-1, caspase-3, and E-cadherin, and decreased expression of MDR1, survivin, vimentin, and PD-L1 after treatment with systems of M1EVs. The study shows that EVs from M1 antitumor macrophages can transport drugs and enhance their immunomodulatory and antitumor activity by modulating pathways associated with cell proliferation, migration, survival, and drug resistance.
Collapse
Affiliation(s)
- Thaís Gomes de Carvalho
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Inflammation and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Pablo Lara
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Carla Jorquera-Cordero
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Cícero Flávio Soares Aragão
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Medicines Quality Control Laboratory (LCQMed), Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Artur de Santana Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Medicines Quality Control Laboratory (LCQMed), Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Vinicius Barreto Garcia
- Inflammation and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Shirley Vitória de Paiva Souza
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Inflammation and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Timo Schomann
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Luiz Alberto Lira Soares
- Post Graduation Program in Therapeutic Innovation, Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Paulo Marcos da Matta Guedes
- Department of Parasitology and Microbiology and Post-Graduation Program in Parasite Biology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo Fernandes de Araújo Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Inflammation and Cancer Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
25
|
Chang C, Pei Y, Zhang C, Zhang W, Qin Y, Shi S. Combination therapy with dendritic cell loaded-exosomes supplemented with PD-1 inhibition at different time points have superior antitumor effect in hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:3727-3738. [PMID: 37665374 PMCID: PMC10991982 DOI: 10.1007/s00262-023-03525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Hepatocellular carcinoma (HCC), a prevalent cause of cancer-related deaths, is insensitive to traditional treatments. At different time intervals, the combined antitumor effects of DC-TEX and the programmed death protein 1 (PD-1) antibody (Ab) have not been investigated. In this study, HCC models were established and treated at different time intervals with DC-TEX alone or in combination with PD-1 Ab. In addition, we developed an orthotopic HCC model in BALB/c nude mice and restored T cells. Results demonstrated that the PD-1 + CD8 + T-cell population also increased significantly after DC-TEX treatment, in addition to the increased number of CD8 + T cells. The number of CD8 + T cells increased 72 h after DC-TEX administration. Similar observations were made for PD-1 + CD8 + T cells. Subsequently, PD-1 Ab was administered in combination with DC-TEX at different time points (0, 24, 72, 96, 120, or 168 h). Surprisingly, the combination treatment demonstrated a strong antitumor effect, which was very prominent when PD-1 Ab was administered at 72 h. PD-1 Ab significantly reversed the proliferative ability of PD-1 + CD8 + T cells at 72 h in vitro. The combined antitumor effects of PD-1 Ab and DC-TEX occurred mainly by stimulating CD8 + T cell proliferation and inhibiting T cell exhaustion. In conclusion, our results indicate that the combination of DC-TEX and PD-1 Ab significantly inhibits tumor growth in a murine HCC model and that the timing of PD-1 Ab administration impacts the antitumor effect.
Collapse
Affiliation(s)
- Chunxiao Chang
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, #440 Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Yanqing Pei
- Department of Infection Management, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Chuangnian Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin, 300192, China
| | - Wenyu Zhang
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, #440 Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China
| | - Yibo Qin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin, 300192, China
| | - Shengbin Shi
- Department of Gastrointestinal Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, #440 Jiyan Road, Huaiyin District, Jinan, 250117, Shandong, China.
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin, 300192, China.
| |
Collapse
|
26
|
Liu M, Lai Z, Yuan X, Jin Q, Shen H, Rao D, Huang D. Role of exosomes in the development, diagnosis, prognosis and treatment of hepatocellular carcinoma. Mol Med 2023; 29:136. [PMID: 37848835 PMCID: PMC10580543 DOI: 10.1186/s10020-023-00731-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is characterized by occult onset resulting in most patients being diagnosed at advanced stages and with poor prognosis. Exosomes are nanoscale vesicles with a lipid bilayer envelope released by various cells under physiological and pathological conditions, which play an important role in the biological information transfer between cells. There is growing evidence that HCC cell-derived exosomes may contribute to the establishment of a favorable microenvironment that supports cancer cell proliferation, invasion, and metastasis. These exosomes not only provide a versatile platform for diagnosis but also serve as a vehicle for drug delivery. In this paper, we review the role of exosomes involved in the proliferation, migration, and metastasis of HCC and describe their application in HCC diagnosis and treatment. We also discuss the prospects of exosome application in HCC and the research challenges.
Collapse
Affiliation(s)
- Meijin Liu
- Ganzhou Jingkai District People's Hospital, Ganzhou, China
| | - Zhonghong Lai
- Department of Traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoying Yuan
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
27
|
Li L, Wang C, Li Q, Guan Y, Zhang X, Kong F, Feng Z, Lu Y, Wang D, Wang N. Exosomes as a modulator of immune resistance in human cancers. Cytokine Growth Factor Rev 2023; 73:135-149. [PMID: 37543438 DOI: 10.1016/j.cytogfr.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
In the tumor microenvironment (TME), exosomes secreted by cells form interactive networks between the tumor cells and immune cells, thereby regulating immune signaling cascades in the TME. As key messengers of cell-to-cell communication in the TME, exosomes not only take charge of tumor cell antigen presentation to the immune cells, but also regulate the activities of immune cells, inhibit immune function, and, especially, promote immune resistance, all of which affects the therapeutic outcomes of tumors. Exosomes, which are small-sized vesicles, possess some remarkable advantages, including strong biological activity, a lack of immunogenicity and toxicity, and a strong targeting ability. Based on these characteristics, research on exosomes as biomarkers or carriers of tumor therapeutic drugs has become a research hotspot in related fields. This review describes the role of exosomes in cell communications in the TME, summarizes the effectiveness of exosome-based immunotherapy in overcoming immune resistance in cancer treatment, and systematically summarizes and discusses the characteristics of exosomes from different cell sources. Furthermore, the prospects and challenges of exosome-related therapies are discussed.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Qiucheng Li
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Xin Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
28
|
Wang R, Zhu T, Hou B, Huang X. An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma. Mol Ther 2023; 31:2376-2390. [PMID: 37312452 PMCID: PMC10422017 DOI: 10.1016/j.ymthe.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) express a broad spectrum of tumor-associated antigens and exert prophylactic effects on various tumors. However, some problems remain, such as potential tumorigenicity, challenges in transport to the lymph nodes and spleen, and limited antitumor effects. Thus, designing a safe and effective iPSC-based tumor vaccine is necessary. We prepared iPSC-derived exosomes and incubated them with DCs (dendritic cells) for pulsing to explore their antitumor effects in murine melanoma models. The antitumor immune response induced by the DC vaccine pulsed with iPSC exosomes (DC + EXO) was assessed in vitro and in vivo. After DC + EXO vaccination, extracted spleen T cells effectively killed a variety of tumor cells (melanoma, lung cancer, breast cancer, and colorectal cancer) in vitro. In addition, DC + EXO vaccination significantly inhibited melanoma growth and lung metastasis in mouse models. Furthermore, DC + EXO vaccination induced long-term T cell responses and prevented melanoma rechallenge. Finally, biocompatibility studies showed that the DC vaccine did not significantly alter the viability of normal cells and mouse viscera. Hence, our research may provide a prospective strategy of a safe and effective iPSC-based tumor vaccine for clinical use.
Collapse
Affiliation(s)
- Ronghao Wang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Tianchuan Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| | - Bingzong Hou
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, Guangdong, China.
| |
Collapse
|
29
|
Diao L, Liu M. Rethinking Antigen Source: Cancer Vaccines Based on Whole Tumor Cell/tissue Lysate or Whole Tumor Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300121. [PMID: 37254712 PMCID: PMC10401146 DOI: 10.1002/advs.202300121] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Indexed: 06/01/2023]
Abstract
Cancer immunotherapies have improved human health, and one among the important technologies for cancer immunotherapy is cancer vaccine. Antigens are the most important components in cancer vaccines. Generally, antigens in cancer vaccines can be divided into two categories: pre-defined antigens and unidentified antigens. Although, cancer vaccines loaded with predefined antigens are commonly used, cancer vaccine loaded with mixed unidentified antigens, especially whole cancer cells or cancer cell lysates, is a very promising approach, and such vaccine can obviate some limitations in cancer vaccines. Their advantages include, but are not limited to, the inclusion of pan-spectra (all or most kinds of) antigens, inducing pan-clones specific T cells, and overcoming the heterogeneity of cancer cells. In this review, the recent advances in cancer vaccines based on whole-tumor antigens, either based on whole cancer cells or whole cancer cell lysates, are summarized. In terms of whole cancer cell lysates, the focus is on applying whole water-soluble cell lysates as antigens. Recently, utilizing the whole cancer cell lysates as antigens in cancer vaccines has become feasible. Considering that pre-determined antigen-based cancer vaccines (mainly peptide-based or mRNA-based) have various limitations, developing cancer vaccines based on whole-tumor antigens is a promising alternative.
Collapse
Affiliation(s)
- Lu Diao
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| | - Mi Liu
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| |
Collapse
|
30
|
Wang X, Xia J, Yang L, Dai J, He L. Recent progress in exosome research: isolation, characterization and clinical applications. Cancer Gene Ther 2023; 30:1051-1065. [PMID: 37106070 DOI: 10.1038/s41417-023-00617-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Exosomes, a kind of nano-vesicles released by various cell types, carry a variety of "cargos" including proteins, RNAs, DNAs and lipids. There is substantial evidence that exosomes are involved in intercellular communication by exchanging "cargos" among cells and play important roles in cancer development. Because of the different expressions of "cargos" carried by exosomes in biological fluids under physiological and pathological conditions, exosomes have the potential as a minimally invasive method of liquid biopsy for cancer diagnosis and prognosis. In addition, due to their good biocompatibility, safety, biodistribution and low immunogenicity, exosomes also have potential applications in the development of promising cancer treatment methods. In this review, we summarize the recent progress in the isolation and characterization techniques of exosomes. Moreover, we review the biological functions of exosomes in regulating tumor metastasis, drug resistance and immune regulation during cancer development and outline the applications of exosomes in cancer therapy.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jingyi Xia
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Yang
- Department of Pharmacy, The people's hospital of jianyang city, Jianyang, 641400, China
| | - Jingying Dai
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lin He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
31
|
Luo S, Chen J, Xu F, Chen H, Li Y, Li W. Dendritic Cell-Derived Exosomes in Cancer Immunotherapy. Pharmaceutics 2023; 15:2070. [PMID: 37631284 PMCID: PMC10457773 DOI: 10.3390/pharmaceutics15082070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Exosomes are nanoscale vesicles released by diverse types of cells for complex intercellular communication. Numerous studies have shown that exosomes can regulate the body's immune response to tumor cells and interfere with the tumor microenvironment (TME). In clinical trials on dendritic cell (DC)-based antitumor vaccines, no satisfactory results have been achieved. However, recent studies suggested that DC-derived exosomes (DEXs) may be superior to DC-based antitumor vaccines in avoiding tumor cell-mediated immunosuppression. DEXs contain multiple DC-derived surface markers that capture tumor-associated antigens (TAAs) and promote immune cell-dependent tumor rejection. These findings indicate the necessity of the further development and improvement of DEX-based cell-free vaccines to complement chemotherapy, radiotherapy, and other immunotherapies. In this review, we highlighted the recent progress of DEXs in cancer immunotherapy, particularly by concentrating on landmark studies and the biological characterization of DEXs, and we summarized their important role in the tumor immune microenvironment (TIME) and clinical application in targeted cancer immunotherapy. This review could enhance comprehension of advances in cancer immunotherapy and contribute to the elucidation of how DEXs regulate the TIME, thereby providing a reference for utilizing DEX-based vaccines in clinical practice.
Collapse
Affiliation(s)
- Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Huan Chen
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China;
| | - Yiru Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (S.L.); (J.C.); (F.X.); (Y.L.)
| |
Collapse
|
32
|
Roux Q, Boiy R, De Vuyst F, Tkach M, Pinheiro C, de Geyter S, Miinalainen I, Théry C, De Wever O, Hendrix A. Depletion of soluble cytokines unlocks the immunomodulatory bioactivity of extracellular vesicles. J Extracell Vesicles 2023; 12:e12339. [PMID: 37548263 PMCID: PMC10405237 DOI: 10.1002/jev2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 08/08/2023] Open
Abstract
Despite an enormous interest in understanding the bioactivity of extracellular vesicles (EV) in physiology and disease for the development of therapeutic applications, the impact of EV preparation methods remains minimally explored. In this study, we implemented density gradient ultracentrifugation combined with size-exclusion chromatography (DG-SEC), differential ultracentrifugation (dUC) and/or stand-alone SEC (sSEC) to fractionate media conditioned by different cancer cells and/or cancer-associated fibroblasts (CAF). EV-enriched but protein-depleted versus EV-depleted but protein-enriched DG-SEC fractions, and EV-containing dUC and sSEC preparations were quality controlled for particle number, protein concentration, selected protein composition and ultrastructure, characterized for their cytokine content, and dose-dependently evaluated for monocyte-derived dendritic cell (MoDC) maturation by measuring surface marker expression and/or cytokine secretion. EV preparations obtained by DG-SEC from media conditioned by different cancer cell lines or CAF, were depleted from soluble immune suppressive cytokines such as VEGF-A and MCP-1 and potently stimulated MoDC maturation. In contrast, EV-containing dUC or sSEC preparations were not depleted from these soluble cytokines and were unable to mature MoDC. Subsequent processing of dUC EV preparations by SEC dose-dependently restored the immunomodulatory bioactivity. Overall, our results demonstrate that method-dependent off-target enrichment of soluble cytokines has implications for the study of EV immunomodulatory bioactivity and warrants careful consideration.
Collapse
Affiliation(s)
- Quentin Roux
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Robin Boiy
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Felix De Vuyst
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Mercedes Tkach
- Institute CuriePSL Research University, INSERM U932ParisFrance
| | - Claudio Pinheiro
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Sofie de Geyter
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | | | - Clotilde Théry
- Institute CuriePSL Research University, INSERM U932ParisFrance
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| |
Collapse
|
33
|
Kaur S, Nathani A, Singh M. Exosomal delivery of cannabinoids against cancer. Cancer Lett 2023; 566:216243. [PMID: 37257632 PMCID: PMC10426019 DOI: 10.1016/j.canlet.2023.216243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Exosomes are extracellular vesicles (EVs) originating from endosomes that play a role in cellular communication. These vesicles which mimic the parental cells that release them are promising candidates for targeted drug delivery and therapeutic applications against cancer because of their favorable biocompatibility, specific targeting, low toxicity, and immunogenicity. Currently, Delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and other cannabinoids (e.g., CBG, THCV, CBC), are being explored for their anticancer and anti-proliferative properties. Several mechanisms, including cell cycle arrest, proliferation inhibition, activation of autophagy and apoptosis, inhibition of adhesion, metastasis, and angiogenesis have been proposed for their anticancer activity. EVs could be engineered as cannabinoid delivery systems for tumor-specificity leading to superior anticancer effects. This review discusses current techniques for EV isolation from various sources, characterization and strategies to load them with cannabinoids. More extensively, we culminate information available on different sources of EVs that have anticancer activity, mechanism of action of cannabinoids against various wild type and resistant tumors and role of CBD in histone modifications and cancer epigenetics. We have also enumerated the role of EVs containing cannabinoids against various tumors and in chemotherapy induced neuropathic pain.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
34
|
Li T, Jiao J, Ke H, Ouyang W, Wang L, Pan J, Li X. Role of exosomes in the development of the immune microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1200201. [PMID: 37457718 PMCID: PMC10339802 DOI: 10.3389/fimmu.2023.1200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Despite numerous improved treatment methods used in recent years, hepatocellular carcinoma (HCC) is still a disease with a high mortality rate. Many recent studies have shown that immunotherapy has great potential for cancer treatment. Exosomes play a significant role in negatively regulating the immune system in HCC. Understanding how these exosomes play a role in innate and adaptive immunity in HCC can significantly improve the immunotherapeutic effects on HCC. Further, engineered exosomes can deliver different drugs and RNA molecules to regulate the immune microenvironment of HCC by regulating the aforementioned immune pathway, thereby significantly improving the mortality rate of HCC. This study aimed to declare the role of exosomes in the development of the immune microenvironment in HCC and list engineered exosomes that could be used for clinical transformation therapy. These findings might be beneficial for clinical patients.
Collapse
Affiliation(s)
- Tanghua Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiapeng Jiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haoteng Ke
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenshan Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Luobin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jin Pan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, Hongkong, Hongkong SAR, China
| | - Xin Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Feng C, Tan P, Nie G, Zhu M. Biomimetic and bioinspired nano-platforms for cancer vaccine development. EXPLORATION (BEIJING, CHINA) 2023; 3:20210263. [PMID: 37933383 PMCID: PMC10624393 DOI: 10.1002/exp.20210263] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2023]
Abstract
The advent of immunotherapy has revolutionized the treating modalities of cancer. Cancer vaccine, aiming to harness the host immune system to induce a tumor-specific killing effect, holds great promises for its broad patient coverage, high safety, and combination potentials. Despite promising, the clinical translation of cancer vaccines faces obstacles including the lack of potency, limited options of tumor antigens and adjuvants, and immunosuppressive tumor microenvironment. Biomimetic and bioinspired nanotechnology provides new impetus for the designing concepts of cancer vaccines. Through mimicking the stealth coating, pathogen recognition pattern, tissue tropism of pathogen, and other irreplaceable properties from nature, biomimetic and bioinspired cancer vaccines could gain functions such as longstanding, targeting, self-adjuvanting, and on-demand cargo release. The specific behavior and endogenous molecules of each type of living entity (cell or microorganism) offer unique features to cancer vaccines to address specific needs for immunotherapy. In this review, the strategies inspired by eukaryotic cells, bacteria, and viruses will be overviewed for advancing cancer vaccine development. Our insights into the future cancer vaccine development will be shared at the end for expediting the clinical translation.
Collapse
Affiliation(s)
- Chenchao Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Peng Tan
- Klarman Cell ObservatoryBroad Institute of MIT and HarvardCambridgeUSA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
- GBA Research Innovation Institute for NanotechnologyGuangzhouChina
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
| |
Collapse
|
36
|
Xu J, Liu H, Wang T, Wen Z, Chen H, Yang Z, Li L, Yu S, Gao S, Yang L, Li K, Li J, Li X, Liu L, Liao G, Chen Y, Liang Y. CCR7 Mediated Mimetic Dendritic Cell Vaccine Homing in Lymph Node for Head and Neck Squamous Cell Carcinoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207017. [PMID: 37092579 PMCID: PMC10265089 DOI: 10.1002/advs.202207017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Immunotherapy has been recognized as one of the most promising treatment strategies for head and neck squamous cell carcinoma (HNSCC). As a pioneering trend of immunotherapy, dendritic cell (DC) vaccines have displayed the ability to prime an immune response, while the insufficient immunogenicity and low lymph node (LN) targeting efficiency, resulted in an unsubstantiated therapeutic efficacy in clinical trials. Herein, a hybrid nanovaccine (Hy-M-Exo) is developed via fusing tumor-derived exosome (TEX) and dendritic cell membrane vesicle (DCMV). The hybrid nanovaccine inherited the key protein for lymphatic homing, CCR7, from DCMV and demonstrated an enhanced efficiency of LN targeting. Meanwhile, the reserved tumor antigens and endogenous danger signals in the hybrid nanovaccine activated antigen presenting cells (APCs) elicited a robust T-cell response. Moreover, the nanovaccine Hy-M-Exo displayed good therapeutic efficacy in a mouse model of HNSCC. These results indicated that Hy-M-Exo is of high clinical value to serve as a feasible strategy for antitumor immunotherapy.
Collapse
Affiliation(s)
- Jiabin Xu
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- School of StomatologyXuzhou Medical UniversityXuzhou221004P. R. China
- Affiliated Stomatological Hospital of Xuzhou Medical UniversityXuzhou221004P. R. China
| | - Hong Liu
- School of Materials Science and EngineeringKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Tao Wang
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
| | - Zhenfu Wen
- School of Materials Science and EngineeringKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Haolin Chen
- School of Materials Science and EngineeringKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Zeyu Yang
- School of Materials Science and EngineeringKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Liyan Li
- School of Materials Science and EngineeringKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Shan Yu
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
| | - Siyong Gao
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
| | - Le Yang
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
| | - Kan Li
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
| | - Jingyuan Li
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
| | - Xiang Li
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
| | - Lixin Liu
- School of Materials Science and EngineeringKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Guiqing Liao
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
| | - Yongming Chen
- School of Materials Science and EngineeringKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Yujie Liang
- Hospital of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou510030P. R. China
- Institute of StomatologySun Yat‐sen UniversityGuangzhou510030P. R. China
| |
Collapse
|
37
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
38
|
Yang Y, Liu K, Zhou W, Dai S. Exosomes from Ub‑HBcAg‑overexpressing dendritic cells induce T‑lymphocyte differentiation and enhance cytotoxic T‑lymphocyte activity. Exp Ther Med 2023; 25:167. [PMID: 36936705 PMCID: PMC10015322 DOI: 10.3892/etm.2023.11866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health concern. The clearance of HBV may involve cytotoxic T-lymphocyte (CTL) activity and T helper type 1 reactions. Exosomes generated from dendritic cells (DCs) can induce immunological responses capable of eradicating viruses. However, exosomes loaded with antigens have not yet demonstrated therapeutic potential in HBV infection. Therefore, the present study aimed to investigate the antiviral effects of DC-derived exosomes (Dexs) loaded with ubiquitinated HBV core antigen (Dexs-Ub-HBcAg). Murine bone marrow-derived DCs were loaded with a recombinant lentivector encoding the ubiquitinated form of HBcAg. High-purity Dexs were generated using differential velocity centrifugation. Splenic T-lymphocytes were stimulated with Dexs-Ub-HBcAg and the specific T-cell-mediated immune responses were examined. Cytokine expression was analyzed using enzyme-linked immunosorbent assays. T-lymphocyte proliferation was detected using a Cell Counting Kit-8 assay and HBcAg-specific CTL activity was determined using a lactate dehydrogenase release assay. The results revealed that Dexs-Ub-HBcAg effectively stimulated T-cell proliferation and induced the activation of antigen-specific CTLs to exhibit HBcAg-specific CTL immune responses in vitro. These results suggest the potential of Dexs-Ub-HBcAg for development as a future therapeutic option for the elimination of HBV.
Collapse
Affiliation(s)
- Yuhang Yang
- Department of Gastroenterology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Kanghao Liu
- Department of Gastroenterology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wenwen Zhou
- Department of Gastroenterology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shenglan Dai
- Department of Gastroenterology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- Correspondence to: Dr Shenglan Dai, Department of Gastroenterology, The Affiliated People's Hospital of Jiangsu University, 8 Dianli Road, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
39
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Gao Y, Yu Z. Advances of multi-omics applications in hepatic precancerous lesions and hepatocellular carcinoma: The role of extracellular vesicles. Front Mol Biosci 2023; 10:1114594. [PMID: 37006626 PMCID: PMC10060991 DOI: 10.3389/fmolb.2023.1114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Due to the lack of distinct early symptoms and specific biomarkers, most patients with hepatocellular carcinoma (HCC) are usually diagnosed at advanced stages, rendering the treatment ineffective and useless. Therefore, recognition of the malady at precancerous lesions and early stages is particularly important for improving patient outcomes. The interest in extracellular vesicles (EVs) has been growing in recent years with the accumulating knowledge of their multiple cargoes and related multipotent roles in the modulation of immune response and tumor progression. By virtue of the rapid advancement of high-throughput techniques, multiple omics, including genomics/transcriptomics, proteomics, and metabolomics/lipidomics, have been widely integrated to analyze the role of EVs. Comprehensive analysis of multi-omics data will provide useful insights for discovery of new biomarkers and identification of therapeutic targets. Here, we review the attainment of multi-omics analysis to the finding of the potential role of EVs in early diagnosis and the immunotherapy in HCC.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| |
Collapse
|
40
|
Ma Y, Guo C, Qu F, Lin H. NIR-II driven photocatalytic hydrogen peroxide-supply on metallic copper-nickel selenide (Cu-Ni 0.85Se) nanoparticle for synergistic therapy. J Colloid Interface Sci 2023; 641:113-125. [PMID: 36924541 DOI: 10.1016/j.jcis.2023.02.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Currently, finite intratumoral H2O2 content has restricted the efficacy of chemodynamic therapy (CDT). Here, Cu-Ni0.85Se@PEG nanoparticles are constructed to display intracellular NIR-II photocatalytic H2O2 supplement. The formation mechanism is explored to discover that H2O2 generation is dominated by photo-excited electrons and dissolved O2 via a typical sequential single-electron transfer process. Both density functional theory calculation and experimental data confirm its metallic feature that endows the great NIR-II absorption and photothermal conversion efficiency (59.6 %, 1064 nm). Furthermore, the photothermal-assisting consecutive interband and intraband transition in metallic catalyst contributes to the high redox capacity and efficient separation/transfer ability of photo-generated charges, boosting H2O2 production under 1064 nm laser irradiation. In addition, Cu-Ni0.85Se@PEG possess mimic peroxidase and catalase activity, leading to in-situ H2O2 activation to produce ∙OH and O2 for the enhanced CDT and hypoxia relief. What's more, the nanomaterials reveal novel biodegradation that is derived from oxidation from insolvable selenide into soluble selenate, resulting in elimination via feces and urine within 2 weeks. Synergistic CDT and photothermal therapy (PTT) further lead to great tumor inhibition and immune response for anti-tumor. The antitumor mechanism and the potential biological process also are investigated by high-throughput sequencing of expressed transcripts (RNAseq). The great treatment performance is responsible for the regulation of related oxidative stress and stimulus genes to induce organelle (mitochondrial) and membrane dysfunction. Besides, the synergistic therapy also can efficiently evoke immune response to further fight against tumor.
Collapse
Affiliation(s)
- Yajie Ma
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Changhong Guo
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Huiming Lin
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
41
|
Rao Q, Ma G, Li M, Wu H, Zhang Y, Zhang C, Ma Z, Huang L. Targeted delivery of triptolide by dendritic cell-derived exosomes for colitis and rheumatoid arthritis therapy in murine models. Br J Pharmacol 2023; 180:330-346. [PMID: 36156794 DOI: 10.1111/bph.15958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/02/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Triptolide (TP) elicits a beneficial effect in the treatment of autoimmune diseases, such as ulcerative colitis (UC) and rheumatoid arthritis (RA). However, its multiorgan toxicity needs to be resolved. Dendritic cells (DCs) are the primary target of TP, which induces immunosuppression, and DC-derived exosomes (DEX) can selectively enter DCs in vivo. Here, we encapsulated TP with DEX (DEXTP) to generate TP-targeted delivery to reduce toxicity. EXPERIMENTAL APPROACH The effect of DEXTP was evaluated in murine colitis and RA models. Toxicity was examined by haematoxylin and eosin staining and serum biochemical marker detection. Affinity of DEXs for DCs was tracked by fluorescent labelling. The immune environment was evaluated and mimicked in vitro for further analysis of the mechanism. KEY RESULTS DEXTP effectively carried TP to DCs in vivo, and alleviated local inflammation and damage in colitis and RA mice with no obvious toxicity. Additionally, DEXTP reshaped the immune milieu by decreasing CD4+ T-cell levels and increasing regulatory T-cell levels in vivo. Furthermore, consistent T-cell differentiation was observed in vitro, and DC activation was inhibited by alterations in surface factors and secrete cytokines, and by induction of apoptosis or other form of death. CONCLUSIONS AND IMPLICATIONS Encapsulating TP with DEX is a new method that both reduces the toxicity of TP and induces immunosuppression in UC and RA mice. The underlying immune mechanism involves DEXTP targeting DCs in vivo, to inhibit DC activation and induce DC apoptosis, which further induces T-cell immunosuppression.
Collapse
Affiliation(s)
- Quan Rao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangchao Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meng Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yixi Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Congen Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luqi Huang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Yao M, Liang S, Cheng B. Role of exosomes in hepatocellular carcinoma and the regulation of traditional Chinese medicine. Front Pharmacol 2023; 14:1110922. [PMID: 36733504 PMCID: PMC9886889 DOI: 10.3389/fphar.2023.1110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) usually occurs on the basis of chronic liver inflammatory diseases and cirrhosis. The liver microenvironment plays a vital role in the tumor initiation and progression. Exosomes, which are nanometer-sized membrane vesicles are secreted by a number of cell types. Exosomes carry multiple proteins, DNAs and various forms of RNA, and are mediators of cell-cell communication and regulate the tumor microenvironment. In the recent decade, many studies have demonstrated that exosomes are involved in the communication between HCC cells and the stromal cells, including endothelial cells, macrophages, hepatic stellate cells and the immune cells, and serve as a regulator in the tumor proliferation and metastasis, immune evasion and immunotherapy. In addition, exosomes can also be used for the diagnosis and treatment HCC. They can potentially serve as specific biomarkers for early diagnosis and drug delivery vehicles of HCC. Chinese herbal medicine, which is widely used in the prevention and treatment of HCC in China, may regulate the release of exosomes and exosomes-mediated intercellular communication. In this review, we summarized the latest progresses on the role of the exosomes in the initiation, progression and treatment of HCC and the potential value of Traditional Chinese medicine in exosomes-mediated biological behaviors of HCC.
Collapse
Affiliation(s)
- Man Yao
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (The Second Military Medical University), Shanghai, China,Faculty of Traditional Chinese Medicine, Naval Medical University (The Second Military Medical University), Shanghai, China,*Correspondence: Binbin Cheng,
| |
Collapse
|
43
|
Basak M, Chaudhary DK, Takahashi RU, Yamamoto Y, Tiwari S, Tahara H, Mittal A. Immunocyte Derived Exosomes: Insight into the Potential Chemo-immunotherapeutic Nanocarrier Targeting the Tumor Microenvironment. ACS Biomater Sci Eng 2023; 9:20-39. [PMID: 36524837 DOI: 10.1021/acsbiomaterials.2c00893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
"Cancer" is a dreadful immune-pathological condition that is characterized by anti-inflammatory and tumorigenic responses, elicited by the infiltrating immune cells in the vicinity of an uncontrollably proliferative tumor in the tumor microenvironment (TME). The TME offers a conducive microenvironment that supports cancer cell survival by modulating the host immune defense. Recent advancement in exosomal research has shown exosomes, originating from immune cells as well as the cancer cells, have immense potential for suppressing cancer progression and survival in the TME. Additionally, exosomes, irrespective of their diverse sources, have been reported to be efficient nanocarriers for cancer therapeutics with the ability for targeted delivery due to their biogenic nature, ease of cellular uptake, and scope for functionalization with biomolecules like peptides, aptamers, targeting ligands, etc. Immune cell-derived exosomes per se have been found efficacious against cancer owing to their immune-stimulant properties (in either naive or antigen primed form) even without loading any of cancer therapeutics or targeting ligand conjugation. Nevertheless, exosomes are being primarily explored as nanovesicular carriers for therapeutic molecules with different loading and targeting strategies, and the synergism between immunotherapeutic behavior of exosomes and the anticancer effect of the therapeutic molecules is yet to be explored. Hence, this review focuses specifically on the possible strategies to modulate the immunological nature of the source immune cells to obtain immune stimulant exosomes and bring these into the spotlight as chemo-immunotherapeutic nanovesicles, that can easily target and modulate the TME.
Collapse
Affiliation(s)
- Moumita Basak
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India
| | - Dharmendra Kumar Chaudhary
- Molecular Medicine and Biotechnology Division, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Swasti Tiwari
- Molecular Medicine and Biotechnology Division, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333031, India.,Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
44
|
Zhu G, Yang F, Wei H, Meng W, Gan J, Wang L, He C, Lu S, Cao B, Luo H, Han B, Li L. 90 K increased delivery efficiency of extracellular vesicles through mediating internalization. J Control Release 2023; 353:930-942. [PMID: 36529385 DOI: 10.1016/j.jconrel.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Using mass spectrometry-based high-throughput proteomics, we identified a membrane protein on extracellular vesicles (EVs), 90 K, which predicts poor overall survival of patients with head and neck cancer. 90 K levels in serum EVs could serve as an independent factor for poor prognosis of patients with head and neck cancer. Pre-treatment of immune competent mice with tumor-derived EVs (TDEs) elicited an immune-suppressive microenvironment for tumor cells, which was regulated by 90 K. The immunosuppressive function of TDE-90 K depends on the presence of myeloid derived suppressor cells (MDSCs) rather than regulatory T cells. The immune regulatory role of TDEs on MDSCs depends on miR-21 which is encapsulated in TDEs. Moreover, 90 K is required for the internalization of TDE cargo though interacting with integrin-β1 and anti-siglec-9 rather than directly affecting the immune function of MDSCs. 90 K modification of γδT cell-derived EVs (γδTEVs) could increase the delivery efficiency and therapeutic effect of PD-L1 siRNA by γδTEVs. We concluded that as a secreted protein modulating cell-cell and cell-matrix interactions, 90 K can be carried by TDEs to mediate the internalization and delivery of TDEs cargo by recipient cells. This function of 90 K could be utilized to improve the efficiency of EV-based drug delivery.
Collapse
Affiliation(s)
- Guiquan Zhu
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Fan Yang
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Hongxuan Wei
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Wanrong Meng
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Jianguo Gan
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Linlin Wang
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Chuanshi He
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Shun Lu
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Bangrong Cao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Huaichao Luo
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China
| | - Bo Han
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Ling Li
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of, Chengdu 610041, China.
| |
Collapse
|
45
|
Pourhamzeh M, Asadian S, Mirzaei H, Minaei A, Shahriari E, Shpichka A, Es HA, Timashev P, Hassan M, Vosough M. Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma. Mol Cell Biochem 2023; 478:23-37. [PMID: 35708866 DOI: 10.1007/s11010-022-04483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Samieh Asadian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elahe Shahriari
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
46
|
The Role of LINC01564, RAMS11, CBX4 and TOP2A in Hepatocellular Carcinoma. Biomedicines 2022; 11:biomedicines11010056. [PMID: 36672564 PMCID: PMC9855990 DOI: 10.3390/biomedicines11010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common histologic type of primary liver cancers worldwide. Hepatitis C virus (HCV) infection remains a major risk factor for chronic liver disease, cirrhosis, and HCC. To understand the molecular pathogenesis of HCC in chronic HCV infection, many molecular markers are extensively studied, including long noncoding RNAs (lncRNA). Objective: To evaluate the expression levels of lncRNAs (LINC01564, RAMS11), CBX4, and TOP2A in patients with chronic HCV infection and patients with HCC on top of chronic HCV infection and correlate these levels with the clinicopathological features of HCC. Subjects and Methods: One hundred and fifty subjects were enrolled in this study and divided into three groups: group I included 50 patients with HCC on top of chronic hepatitis C (CHC), group II included 50 patients with CHC only, and group III included 50 healthy individuals as a control group. LncRNAs relative expression level was determined by RT-PCR. Results: lncRNA (LINC01564, RAMS11), CBX4, and TOP2A relative expression levels were upregulated in both patient groups compared to controls (p < 0.001*), with the highest levels in the HCC group compared with the CHC group. Additionally, these levels were significantly positively correlated with the clinicopathological features of HCC. Conclusions: The lncRNA (LINC01564, RAMS11), CBX4, and TOP2A relative expression levels were upregulated in CHC patients—in particular, patients with HCC. Thus, these circulatory lncRNAs may be able to serve as promising noninvasive diagnostic markers for HCC associated with viral C hepatitis.
Collapse
|
47
|
Liu G, Wu J, Chen G, Shang A. The potential therapeutic value and application prospect of engineered exosomes in human diseases. Front Cell Dev Biol 2022; 10:1051380. [PMID: 36531952 PMCID: PMC9751586 DOI: 10.3389/fcell.2022.1051380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 07/22/2023] Open
Abstract
Exosomes are tiny vesicles produced by a wide range of cells that contain complex RNA and protein. In the diagnosis, treatment, and prevention of illness, they offer great potential. In vitro engineering technique modifies exosomes to produce designed exosomes that include nucleic acids, proteins, and medicines, and are targeted to particular tissues or cells. Their applications range from tumor imaging and gene therapy to vaccine production and regenerative medicine to targeted medication delivery. Many disciplines have promising futures for using this technology. In this review, we'll look at the potential therapeutic usefulness and use of engineered exosomes in a variety of human illnesses with various systemic manifestations.
Collapse
Affiliation(s)
- Gege Liu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junlu Wu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Clinical Medcine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guofei Chen
- Department of Laboratory Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Anquan Shang
- Department of Laboratory Medicine, The Second People’s Hospital of Lianyungang & Department of Laboratory Medicine, The Oncology Hospitals of Lianyungang, Lianyungang, China
| |
Collapse
|
48
|
Yong T, Wei Z, Gan L, Yang X. Extracellular-Vesicle-Based Drug Delivery Systems for Enhanced Antitumor Therapies through Modulating the Cancer-Immunity Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201054. [PMID: 35726204 DOI: 10.1002/adma.202201054] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Although immunotherapy harnessing activity of the immune system against tumors has made great progress, the treatment efficacy remains limited in most cancers. Current anticancer immunotherapy is primarily based on T-cell-mediated cellular immunity, which highly relies on efficiency of triggering the cancer-immunity cycle, namely, tumor antigen release, antigen presentation by antigen presenting cells, T cell activation, recruitment and infiltration of T cells into tumors, and recognition and killing of tumor cells by T cells. Unfortunately, these immunotherapies are restricted by inefficient drug delivery and acting on only a single step of the cancer-immunity cycle. Due to high biocompatibility, low immunogenicity, intrinsic cell targeting, and easy chemical and genetic manipulation, extracellular vesicle (EV)-based drug delivery systems are widely used to amplify anticancer immune responses by serving as an integrated platform for multiple drugs or therapeutic strategies to synergistically activate several steps of cancer-immunity cycle. This review summarizes various mechanisms related to affecting cancer-immunity cycle disorders. Meanwhile, preparation and application of EV-based drug delivery systems in modulating cancer-immunity cycle are introduced, especially in the improvement of T cell recruitment and infiltration into tumors. Finally, opportunities and challenges of EV-based drug delivery systems in translational clinical applications are briefly discussed.
Collapse
Affiliation(s)
- Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
49
|
Wang G, Luo G, Zhao M, Miao H. Significance of exosomes in hepatocellular carcinoma. Front Oncol 2022; 12:1056379. [PMID: 36531059 PMCID: PMC9748478 DOI: 10.3389/fonc.2022.1056379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Among the most prevalent cancers in the world, hepatocellular carcinoma (HCC) has a high mortality rate. The diagnosis and management of HCC are presently hindered by difficulties in early detection and suboptimal treatment outcomes. Exosomes have been shown to play an important role in hepatocarcinogenesis and can also be used for diagnosis and treatment. In this review, we discussed the research progress on exosomes in hepatocarcinogenesis development, tumor microenvironment remodeling, treatment resistance, and immunosuppression. HCC can be diagnosed and treated by understanding the pathogenesis and identifying early diagnostic markers. This review will be a significant reference for scholars with an initial understanding of the field to fully understand the role of exosomes in the organism.
Collapse
Affiliation(s)
- GuoYun Wang
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
| | - GaiXiang Luo
- The First Clinical Medical College of Lanzhou University, Gansu Provincial People’s Hospital, Lanzhou, China
| | - MeiJing Zhao
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
| | - HuiLai Miao
- Department of Hepatobiliary Surgery, The Second Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Liver Injury Diagnosis and Repair, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
50
|
Schlosser S, Tümen D, Volz B, Neumeyer K, Egler N, Kunst C, Tews HC, Schmid S, Kandulski A, Müller M, Gülow K. HCC biomarkers - state of the old and outlook to future promising biomarkers and their potential in everyday clinical practice. Front Oncol 2022; 12:1016952. [PMID: 36518320 PMCID: PMC9742592 DOI: 10.3389/fonc.2022.1016952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/04/2022] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly tumors worldwide. Management of HCC depends on reliable biomarkers for screening, diagnosis, and monitoring of the disease, as well as predicting response towards therapy and safety. To date, imaging has been the established standard technique in the diagnosis and follow-up of HCC. However, imaging techniques have their limitations, especially in the early detection of HCC. Therefore, there is an urgent need for reliable, non/minimal invasive biomarkers. To date, alpha-fetoprotein (AFP) is the only serum biomarker used in clinical practice for the management of HCC. However, AFP is of relatively rather low quality in terms of specificity and sensitivity. Liquid biopsies as a source for biomarkers have become the focus of clinical research. Our review highlights alternative biomarkers derived from liquid biopsies, including circulating tumor cells, proteins, circulating nucleic acids, and exosomes, and their potential for clinical application. Using defined combinations of different biomarkers will open new perspectives for diagnosing, treating, and monitoring HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|