1
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2024:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Teodoro Da Silva L, Tiaki Tiyo B, de Jesus Mota S, Mazzilli Ortega M, Justamante Handel Schmitz G, Nosomi Taniwaki N, Mitsue Namiyama Nishina G, José da Silva Duarte A, Miyuki Oshiro T. Effects of Injectable Solutions on the Quality of Monocyte-Derived Dendritic Cells for Immunotherapy. J Immunol Res 2024; 2024:6817965. [PMID: 38962578 PMCID: PMC11221978 DOI: 10.1155/2024/6817965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024] Open
Abstract
Therapeutic vaccines based on monocyte-derived dendritic cells have been shown to be promising strategies and may act as complementary treatments for viral infections, cancers, and, more recently, autoimmune diseases. Alpha-type-1-polarized dendritic cells (aDC1s) have been shown to induce type-1 immunity with a high capacity to produce interleukin-12p70 (IL-12p70). In the clinical use of cell-based therapeutics, injectable solutions can affect the morphology, immunophenotypic profile, and viability of cells before delivery and their survival after injection. In this sense, preparing a cell suspension that maintains the quality of aDC1s is essential to ensure effective immunotherapy. In the present study, monocytes were differentiated into aDC1s in the presence of IL-4 and GM-CSF. On day 5, the cells were matured by the addition of a cytokine cocktail consisting of IFN-α, IFN-γ, IL-1β, TNF-α, and Poly I:C. After 48 hr, mature aDC1s were harvested and suspended in two different solutions: normal saline and Ringer's lactate. The maintenance of cells in suspension was evaluated after 4, 6, and 8 hr of storage. Cell viability, immunophenotyping, and apoptosis analyses were performed by flow cytometry. Cellular morphology was observed by electron microscopy, and the production of IL-12p70 by aDC1s was evaluated by ELISA. Compared with normal saline, Ringer's lactate solution was more effective at maintaining DC viability for up to 8 hr of incubation at 4 or 22°C.
Collapse
Affiliation(s)
- Laís Teodoro Da Silva
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Bruna Tiaki Tiyo
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia de Jesus Mota
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Marina Mazzilli Ortega
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriela Justamante Handel Schmitz
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| | - Telma Miyuki Oshiro
- Laboratory of Medical Investigation in Dermatology and Immunodeficiencies (LIM-56)Clinical Hospital HCFMUSPFaculty of MedicineUniversity of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
3
|
Board NL, Moskovljevic M, Wu F, Siliciano RF, Siliciano JD. Engaging innate immunity in HIV-1 cure strategies. Nat Rev Immunol 2022; 22:499-512. [PMID: 34824401 DOI: 10.1038/s41577-021-00649-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Combination antiretroviral therapy (ART) can block multiple stages of the HIV-1 life cycle to prevent progression to AIDS in people living with HIV-1. However, owing to the persistence of a reservoir of latently infected CD4+ T cells, life-long ART is necessary to prevent viral rebound. One strategy currently under consideration for curing HIV-1 infection is known as 'shock and kill'. This strategy uses latency-reversing agents to induce expression of HIV-1 genes, allowing for infected cells to be cleared by cytolytic immune cells. The role of innate immunity in HIV-1 pathogenesis is best understood in the context of acute infection. Here, we suggest that innate immunity can also be used to improve the efficacy of HIV-1 cure strategies, with a particular focus on dendritic cells (DCs) and natural killer cells. We discuss novel latency-reversing agents targeting DCs as well as DC-based strategies to enhance the clearance of infected cells by CD8+ T cells and strategies to improve the killing activity of natural killer cells.
Collapse
Affiliation(s)
- Nathan L Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Milica Moskovljevic
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Baltimore, MD, USA.
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
de Almeida Baptista MV, da Silva LT, Samer S, Oshiro TM, Shytaj IL, Giron LB, Pena NM, Cruz N, Gosuen GC, Ferreira PRA, Cunha-Neto E, Galinskas J, Dias D, Sucupira MCA, de Almeida-Neto C, Salomão R, da Silva Duarte AJ, Janini LM, Hunter JR, Savarino A, Juliano MA, Diaz RS. Immunogenicity of personalized dendritic-cell therapy in HIV-1 infected individuals under suppressive antiretroviral treatment: interim analysis from a phase II clinical trial. AIDS Res Ther 2022; 19:2. [PMID: 35022035 PMCID: PMC8753935 DOI: 10.1186/s12981-021-00426-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Background We developed a personalized Monocyte-Derived Dendritic-cell Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses. Methods PBMCs were obtained from 10 HIV+ individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient’s HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients’ cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-γ) production were measured in CD4+ and CD8+ T-cells. Results The protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4+ and CD8+ T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-γ expression was significantly increased in CD4+ T-cells. The number of candidates that increased in vitro the cytokine levels in CD4+ and CD8+ T cells upon stimulation with Gag peptides from baseline to day 15 and from baseline to day 30 and day 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. Conclusions MDDC had a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment. Trial registration NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829, posted November 11th, 2016) Supplementary Information The online version contains supplementary material available at 10.1186/s12981-021-00426-z.
Collapse
|
5
|
Calvet-Mirabent M, Claiborne DT, Deruaz M, Tanno S, Serra C, Delgado-Arévalo C, Sánchez-Cerrillo I, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Allen TM, Buzón MJ, Balazs A, Vrbanac V, Martín-Gayo E. Poly I:C and STING agonist-primed DC increase lymphoid tissue polyfunctional HIV-1-specific CD8 + T cells and limit CD4 + T cell loss in BLT mice. Eur J Immunol 2021; 52:447-461. [PMID: 34935145 DOI: 10.1002/eji.202149502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Effective function of CD8+ T cells and enhanced innate activation of dendritic cells (DC) in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of the combination of 2´3´-c´diAM(PS)2 and Poly I:C as potential adjuvants capable of potentiating DC´s abilities to induce polyfunctional HIV-1 specific CD8+ T cell responses in vitro and in vivo using a humanized BLT mouse model. Adjuvant combination enhanced TBK-1 phosphorylation and IL-12 and IFNβ expression on DC and increased their ability to activate polyfunctional HIV-1-specific CD8+ T cells in vitro. Moreover, higher proportions of hBLT mice vaccinated with ADJ-DC exhibited less severe CD4+ T cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to lymph node and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, priming of DC with Poly I:C and STING agonists might be useful for future HIV-1 vaccine studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | | | - Maud Deruaz
- Human Immune System Mouse Program from Massachusetts General Hospital, Boston.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Serah Tanno
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Carla Serra
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón. Madrid, Spain
| | | | - Maria J Buzón
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Alejandro Balazs
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Vladimir Vrbanac
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| |
Collapse
|
6
|
The Evolution of Dendritic Cell Immunotherapy against HIV-1 Infection: Improvements and Outlook. J Immunol Res 2020; 2020:9470102. [PMID: 32537473 PMCID: PMC7267878 DOI: 10.1155/2020/9470102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are key phagocytic cells that play crucial roles in both the innate and adaptive immune responses against the human immunodeficiency virus type 1 (HIV-1). By processing and presenting pathogen-derived antigens, dendritic cells initiate a directed response against infected cells. They activate the adaptive immune system upon recognition of pathogen-associated molecular patterns (PAMPs) on infected cells. During the course of HIV-1 infection, a successful adaptive (cytotoxic CD8+ T-cell) response is necessary for preventing the progression and spread of infection in a variety of cells. Dendritic cells have thus been recognized as a valuable tool in the development of immunotherapeutic approaches and vaccines effective against HIV-1. The advancements in dendritic cell vaccines in cancers have paved the way for applications of this form of immunotherapy to HIV-1 infection. Clinical trials with patients infected with HIV-1 who are well-suppressed by antiretroviral therapy (ART) were recently performed to assess the efficacy of DC vaccines, with the goal of mounting an HIV-1 antigen-specific T-cell response, ideally to clear infection and eliminate the need for long-term ART. This review summarizes and compares methods and efficacies of a number of DC vaccine trials utilizing autologous dendritic cells loaded with HIV-1 antigens. The potential for advancement and novel strategies of improving efficacy of this type of immunotherapy is also discussed.
Collapse
|
7
|
da Silva LT, da Silva WC, de Almeida A, da Silva Reis D, Santillo BT, Rigato PO, da Silva Duarte AJ, Oshiro TM. Characterization of monocyte-derived dendritic cells used in immunotherapy for HIV-1-infected individuals. Immunotherapy 2019; 10:871-885. [PMID: 30073900 DOI: 10.2217/imt-2017-0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS A therapeutic vaccine based on monocyte-derived dendritic cells (MDDCs) has been shown to represent a promising strategy for the treatment of cancer and viral infections. Here, we characterized the MDDCs used as an immunogen in a clinical trial for an anti-HIV-1 therapeutic vaccine. PATIENTS & METHODS Monocytes obtained from 17 HIV-infected individuals were differentiated into MDDCs and, after loading with autologous HIV, the cells were characterized concerning surface molecule expression, migratory and phagocytosis capacity, cytokine production and the induction of an effective cell-mediated immune response. RESULTS The MDDCs were able to induce antigen-specific responses in autologous CD4+ and CD8+ T lymphocytes. CONCLUSIONS Despite a large interindividual variability, the results suggested that MDDCs present the potential to promote immune responses in vaccinated patients.
Collapse
Affiliation(s)
- Laís Teodoro da Silva
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Wanessa Cardoso da Silva
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Alexandre de Almeida
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Denise da Silva Reis
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Bruna Tereso Santillo
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | | | - Alberto José da Silva Duarte
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| | - Telma Miyuki Oshiro
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. 05403-903, Brazil
| |
Collapse
|
8
|
Lau JS, Smith MZ, Lewin SR, McMahon JH. Clinical trials of antiretroviral treatment interruption in HIV-infected individuals. AIDS 2019; 33:773-791. [PMID: 30883388 DOI: 10.1097/qad.0000000000002113] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
: Despite the benefits of antiretroviral therapy (ART) for people living with HIV, there has been a long-standing research interest in interrupting ART as a strategy to minimize adverse effects of ART as well as to test interventions aiming to achieve a degree of virological control without ART. We performed a systematic review of HIV clinical studies involving treatment interruption from 2000 to 2017 to describe the differences between treatment interruption in studies that contained and didn't contain an intervention. We assessed differences in monitoring strategies, threshold to restart ART, duration and adverse outcomes of treatment interruption, and factors aimed at minimizing transmission. We found that treatment interruption has been incorporated into 159 clinical studies since 2000 and is increasingly being included in trials to assess the efficacy of interventions to achieve sustained virological remission off ART. Great heterogeneity was noted in immunological, virological and clinical monitoring strategies, as well as in thresholds to recommence ART. Treatment interruption in recent intervention studies were more closely monitored, had more conservative thresholds to restart ART and had a shorter treatment interruption duration, compared with older treatment interruption studies that didn't include an intervention.
Collapse
|
9
|
da Silva LT, Santillo BT, de Almeida A, Duarte AJDS, Oshiro TM. Using Dendritic Cell-Based Immunotherapy to Treat HIV: How Can This Strategy be Improved? Front Immunol 2018; 9:2993. [PMID: 30619346 PMCID: PMC6305438 DOI: 10.3389/fimmu.2018.02993] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Harnessing dendritic cells (DC) to treat HIV infection is considered a key strategy to improve anti-HIV treatment and promote the discovery of functional or sterilizing cures. Although this strategy represents a promising approach, the results of currently published trials suggest that opportunities to optimize its performance still exist. In addition to the genetic and clinical characteristics of patients, the efficacy of DC-based immunotherapy depends on the quality of the vaccine product, which is composed of precursor-derived DC and an antigen for pulsing. Here, we focus on some factors that can interfere with vaccine production and should thus be considered to improve DC-based immunotherapy for HIV infection.
Collapse
Affiliation(s)
- Laís Teodoro da Silva
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Tereso Santillo
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre de Almeida
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alberto Jose da Silva Duarte
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Telma Miyuki Oshiro
- Laboratorio de Investigacao em Dermatologia e Imunodeficiencias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 2018; 86:77-88. [PMID: 29454038 DOI: 10.1016/j.semcdb.2018.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
The ability of immune therapies to control cancer has recently generated intense interest. This therapeutic outcome is reliant on T cell recognition of tumour cells. The natural function of dendritic cells (DC) is to generate adaptive responses, by presenting antigen to T cells, hence they are a logical target to generate specific anti-tumour immunity. Our understanding of the biology of DC is expanding, and they are now known to be a family of related subsets with variable features and function. Most clinical experience to date with DC vaccination has been using monocyte-derived DC vaccines. There is now growing experience with alternative blood-derived DC derived vaccines, as well as with multiple forms of tumour antigen and its loading, a wide range of adjuvants and different modes of vaccine delivery. Key insights from pre-clinical studies, and lessons learned from early clinical testing drive progress towards improved vaccines. The potential to fortify responses with other modalities of immunotherapy makes clinically effective "second generation" DC vaccination strategies a priority for cancer immune therapists.
Collapse
Affiliation(s)
- Christian E Bryant
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia.
| | - Sarah Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Benjamin Kong
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Derek N J Hart
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia.
| |
Collapse
|
11
|
Chistiakov DA, Grechko AV, Orekhov AN, Bobryshev YV. An immunoregulatory role of dendritic cell-derived exosomes versus HIV-1 infection: take it easy but be warned. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:362. [PMID: 28936456 DOI: 10.21037/atm.2017.06.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Alexander N Orekhov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia.,Department of Biophysics, Biological Faculty, Moscow State University, Moscow, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia.,School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| |
Collapse
|
12
|
Leal L, Lucero C, Gatell JM, Gallart T, Plana M, García F. New challenges in therapeutic vaccines against HIV infection. Expert Rev Vaccines 2017; 16:587-600. [PMID: 28431490 DOI: 10.1080/14760584.2017.1322513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION There is a growing interest in developing curative strategies for HIV infection. Therapeutic vaccines are one of the most promising approaches. We will review the current knowledge and the new challenges in this research field. Areas covered: PubMed and ClinicalTrial.gov databases were searched to review the progress and prospects for clinical development of immunotherapies aimed to cure HIV infection. Dendritic cells (DC)-based vaccines have yielded the best results in the field. However, major immune-virologic barriers may hamper current vaccine strategies. We will focus on some new challenges as the antigen presentation by DCs, CTL escape mutations, B cell follicle sanctuary, host immune environment (inflammation, immune activation, tolerance), latent reservoir and the lack of surrogate markers of response. Finally, we will review the rationale for designing new therapeutic vaccine candidates to be used alone or in combination with other strategies to improve their effectiveness. Expert commentary: In the next future, the combination of DCs targeting candidates, inserts to redirect responses to unmutated parts of the virus, adjuvants to redirect responses to sanctuaries or improve the balance between activation/tolerance (IL-15, anti-PD1 antibodies) and latency reversing agents could be necessary to finally achieve the remission of HIV-1 infection.
Collapse
Affiliation(s)
- Lorna Leal
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Constanza Lucero
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Josep M Gatell
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Teresa Gallart
- b Retrovirology and Viral Immunopathology Laboratories, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Montserrat Plana
- b Retrovirology and Viral Immunopathology Laboratories, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| | - Felipe García
- a Infectious Diseases Unit, HIVACAT, Hospital Clínic, IDIBAPS , University of Barcelona , Barcelona , Spain
| |
Collapse
|
13
|
Hsu DC, Ananworanich J. Immune Interventions to Eliminate the HIV Reservoir. Curr Top Microbiol Immunol 2017; 417:181-210. [PMID: 29071472 DOI: 10.1007/82_2017_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.
Collapse
Affiliation(s)
- Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. .,US Military HIV Research Program (MHRP), 6720-A Rockledge Drive, Suite 400, Bethesda, MD, 20817, USA.
| |
Collapse
|
14
|
Coelho AVC, de Moura RR, Kamada AJ, da Silva RC, Guimarães RL, Brandão LAC, de Alencar LCA, Crovella S. Dendritic Cell-Based Immunotherapies to Fight HIV: How Far from a Success Story? A Systematic Review and Meta-Analysis. Int J Mol Sci 2016; 17:ijms17121985. [PMID: 27898045 PMCID: PMC5187785 DOI: 10.3390/ijms17121985] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/30/2022] Open
Abstract
The scientific community still faces the challenge of developing strategies to cure HIV-1. One of these pursued strategies is the development of immunotherapeutic vaccines based on dendritic cells (DCs), pulsed with the virus, that aim to boost HIV-1 specific immune response. We aimed to review DCs-based therapeutic vaccines reports and critically assess evidence to gain insights for the improvement of these strategies. We performed a systematic review, followed by meta-analysis and meta-regression, of clinical trial reports. Twelve studies were selected for meta-analysis. The experimental vaccines had low efficiency, with an overall success rate around 38% (95% confidence interval = 26.7%–51.3%). Protocols differed according to antigen choice, DC culture method, and doses, although multivariate analysis did not show an influence of any of them on overall success rate. The DC-based vaccines elicited at least some immunogenicity, that was sometimes associated with plasmatic viral load transient control. The protocols included both naïve and antiretroviral therapy (ART)-experienced individuals, and used different criteria for assessing vaccine efficacy. Although the vaccines did not work as expected, they are proof of concept that immune responses can be boosted against HIV-1. Protocol standardization and use of auxiliary approaches, such as latent HIV-1 reservoir activation and patient genomics are paramount for fine-tuning future HIV-1 cure strategies.
Collapse
Affiliation(s)
- Antonio Victor Campos Coelho
- Department of Genetics, Federal University of Pernambuco, Avenida da Engenharia, Cidade Universitária, Recife 50740-600, Brazil.
| | - Ronald Rodrigues de Moura
- Department of Genetics, Federal University of Pernambuco, Avenida da Engenharia, Cidade Universitária, Recife 50740-600, Brazil.
| | - Anselmo Jiro Kamada
- Department of Genetics, Federal University of Pernambuco, Avenida da Engenharia, Cidade Universitária, Recife 50740-600, Brazil.
| | - Ronaldo Celerino da Silva
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Avenida da Engenharia, Cidade Universitária, Recife 50740-600, Brazil.
| | - Rafael Lima Guimarães
- Department of Genetics, Federal University of Pernambuco, Avenida da Engenharia, Cidade Universitária, Recife 50740-600, Brazil.
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Avenida da Engenharia, Cidade Universitária, Recife 50740-600, Brazil.
| | - Lucas André Cavalcanti Brandão
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Avenida da Engenharia, Cidade Universitária, Recife 50740-600, Brazil.
- Department of Pathology, Federal University of Pernambuco, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil.
| | - Luiz Cláudio Arraes de Alencar
- Department of Tropical Medicine, Federal University of Pernambuco. Avenida Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil.
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Boa Vista, Recife 50070-550, Brazil.
| | - Sergio Crovella
- IRCCS Burlo Garofolo and University of Trieste, Via dell' Istria 65/1, Trieste 34137, Italy.
| |
Collapse
|
15
|
Ugen KE, Lin X, Bai G, Liang Z, Cai J, Li K, Song S, Cao C, Sanchez-Ramos J. Evaluation of an α synuclein sensitized dendritic cell based vaccine in a transgenic mouse model of Parkinson disease. Hum Vaccin Immunother 2016; 11:922-30. [PMID: 25714663 DOI: 10.1080/21645515.2015.1012033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In order to develop a cell-based vaccine against the Parkinson disease (PD) associated protein α-synuclein (α-Syn) 3 peptides were synthesized based upon predicted B cell epitopes within the full length α-Syn protein sequence. These peptide fragments as well as the full length recombinant human α-Syn (rh- α-Syn) protein were used to sensitize mouse bone marrow-derived dendritic cells (DC) ex vivo, followed by intravenous delivery of these sensitized DCs into transgenic (Tg) mice expressing the human A53T variant of α-Syn. ELISA analysis and testing of behavioral locomotor function by rotometry were performed on all mice after the 5th vaccination as well as just prior to euthanasia. The results indicated that vaccination with peptide sensitized DCs (PSDC) as well as DCs sensitized by rh-α-Syn induced specific anti-α-Syn antibodies in all immunized mice. In terms of rotometry performance, a measure of locomotor activity correlated to brain dopamine levels, mice vaccinated with PSDC or rh- α-Syn sensitized DCs performed significantly better than non-vaccinated Tg control mice during the final assessment (i.e. at 17 months of age) before euthanasia. As well, measurement of levels of brain IL-1α, a cytokine hypothesized to be associated with neuroinflammation, demonstrated that this proinflammatory molecule was significantly reduced in the PSDC and rh- α-Syn sensitized DC vaccinated mice compared to the non-vaccinated Tg control group. Overall, α-Syn antigen-sensitized DC vaccination was effective in generating specific anti- α-Syn antibodies and improved locomotor function without eliciting an apparent general inflammatory response, indicating that this strategy may be a safe and effective treatment for PD.
Collapse
Affiliation(s)
- Kenneth E Ugen
- a Department of Molecular Medicine ; University of South Florida; Morsani College of Medicine ; Tampa , FL USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhao C, Ao Z, Yao X. Current Advances in Virus-Like Particles as a Vaccination Approach against HIV Infection. Vaccines (Basel) 2016; 4:vaccines4010002. [PMID: 26805898 PMCID: PMC4810054 DOI: 10.3390/vaccines4010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/31/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022] Open
Abstract
HIV-1 virus-like particles (VLPs) are promising vaccine candidates against HIV-1 infection. They are capable of preserving the native conformation of HIV-1 antigens and priming CD4+ and CD8+ T cell responses efficiently via cross presentation by both major histocompatibility complex (MHC) class I and II molecules. Progress has been achieved in the preclinical research of HIV-1 VLPs as prophylactic vaccines that induce broadly neutralizing antibodies and potent T cell responses. Moreover, the progress in HIV-1 dendritic cells (DC)-based immunotherapy provides us with a new vision for HIV-1 vaccine development. In this review, we describe updates from the past 5 years on the development of HIV-1 VLPs as a vaccine candidate and on the combined use of HIV particles with HIV-1 DC-based immunotherapy as efficient prophylactic and therapeutic vaccination strategies.
Collapse
Affiliation(s)
- Chongbo Zhao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Zhujun Ao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaojian Yao
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
17
|
Graziani GM, Angel JB. Evaluating the efficacy of therapeutic HIV vaccines through analytical treatment interruptions. J Int AIDS Soc 2015; 18:20497. [PMID: 26561337 PMCID: PMC4641978 DOI: 10.7448/ias.18.1.20497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION The development of an effective therapeutic HIV vaccine that induces immunologic control of viral replication, thereby eliminating or reducing the need for antiretroviral therapy (ART), would be of great value. Besides the obvious challenges of developing a therapeutic vaccine that would generate effective, sustained anti-HIV immunity in infected individuals is the issue of how to best assess the efficacy of vaccine candidates. DISCUSSION This review discusses the various outcome measures assessed in therapeutic HIV vaccine clinical trials involving individuals receiving suppressive ART, with a particular focus on the role of analytical treatment interruption (ATI) as a way to assess the virologic control induced by an immunotherapy. This strategy is critical given that there are otherwise no readily available measures to determine the ability of a vaccine-induced immune response to effectively control HIV replication. The various outcome measures that have been used to assess vaccine efficacy in published therapeutic HIV vaccine clinical trials will also be discussed. Outcome measures have included the kinetics of viral rebound, the new viral set point and changes in the size of the viral reservoir. Clinically relevant outcomes such as the CD4 decline, the time to resume therapy or the time to meet the criterion to resume therapy, the proportion of participants who resume therapy and/or the development of clinical symptoms such as acute retroviral syndrome are also measures of vaccine efficacy. CONCLUSIONS Given the lack of consistency between therapeutic HIV vaccine trials in how efficacy is assessed, comparing vaccines has been difficult. It would, therefore, be beneficial to determine the most clinically relevant measure for use in future studies. Other recommendations for future clinical trials also include studying compartments in addition to blood and replacing ATIs with single-copy assays in situations in which the use of an ATI is not ideal.
Collapse
Affiliation(s)
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Infectious Disease, The Ottawa Hospital, Ottawa, ON, Canada;
| |
Collapse
|
18
|
Miller E, Spadaccia M, Sabado R, Chertova E, Bess J, Trubey CM, Holman RM, Salazar A, Lifson J, Bhardwaj N. Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy. Vaccine 2015; 33:388-95. [PMID: 25444812 PMCID: PMC4272884 DOI: 10.1016/j.vaccine.2014.10.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/08/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022]
Abstract
Therapeutic interventions for HIV-1 that successfully augment adaptive immunity to promote killing of infected cells may be a requisite component of strategies to reduce latent cellular reservoirs. Adoptive immunotherapies utilizing autologous monocyte-derived dendritic cells (DCs) that have been activated and antigen loaded ex vivo may serve to circumvent defects in DC function that are present during HIV infection in order to enhance adaptive immune responses. Here we detail the clinical preparation of DCs loaded with autologous aldrithiol-2 (AT-2)-inactivated HIV that have been potently activated with the viral mimic, Polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose (Poly-ICLC). HIV is first propagated from CD4+ T cells from HIV-infected donors and then rendered non-replicative by chemical inactivation with aldrithiol-2 (AT-2), purified, and quantified. Viral inactivation is confirmed through measurement of Tat-regulated β-galactosidase reporter gene expression following infection of TZM-bl cells. In-process testing for sterility, mycoplasma, LPS, adventitious agents, and removal of AT-2 is performed on viral preparations. Autologous DCs are generated and pulsed with autologous AT-2-inactivated virus and simultaneously stimulated with Poly-ICLC to constitute the final DC vaccine product. Phenotypic identity, maturation, and induction of HIV-specific adaptive immune responses are confirmed via flow cytometric analysis of DCs and cocultured autologous CD4+ and CD8+ T cells. Lot release criteria for the DC vaccine have been defined in accordance with Good Manufacturing Practice (GMP) guidelines. The demonstrated feasibility of this approach has resulted in approval by the FDA for investigational use in antiretroviral (ART) suppressed individuals. We discuss how this optimized DC formulation may enhance the quality of anti-HIV adaptive responses beyond what has been previously observed during DC immunotherapy trials for HIV infection.
Collapse
Affiliation(s)
- Elizabeth Miller
- Icahn School of Medicine at Mount Sinai, Division of Infectious Diseases, New York, NY, USA.
| | - Meredith Spadaccia
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Rachel Sabado
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | | | - Julian Bess
- AIDS and Cancer Virus Program Inc., Frederick, MD, USA
| | | | - Rose Marie Holman
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | | | | | - Nina Bhardwaj
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
19
|
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part II: Vaccination strategies for HIV. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 73:169-79. [PMID: 25528627 DOI: 10.1016/j.pharma.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
HIV infection leads to a gradual loss CD4(+) T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive lifelong adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore, there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies.
Collapse
Affiliation(s)
- A L de Goede
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands.
| | - A G Vulto
- Department of Hospital Pharmacy, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands
| | - R A Gruters
- Department of Viroscience, Erasmus MC, 's-Gravendijkwal 230, PO box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
20
|
Pollard RB, Rockstroh JK, Pantaleo G, Asmuth DM, Peters B, Lazzarin A, Garcia F, Ellefsen K, Podzamczer D, van Lunzen J, Arastéh K, Schürmann D, Clotet B, Hardy WD, Mitsuyasu R, Moyle G, Plettenberg A, Fisher M, Fätkenheuer G, Fischl M, Taiwo B, Baksaas I, Jolliffe D, Persson S, Jelmert O, Hovden AO, Sommerfelt MA, Wendel-Hansen V, Sørensen B. Safety and efficacy of the peptide-based therapeutic vaccine for HIV-1, Vacc-4x: a phase 2 randomised, double-blind, placebo-controlled trial. THE LANCET. INFECTIOUS DISEASES 2014; 14:291-300. [PMID: 24525316 DOI: 10.1016/s1473-3099(13)70343-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Present combination antiretroviral therapy (cART) alone does not cure HIV infection and requires lifelong drug treatment. The potential role of HIV therapeutic vaccines as part of an HIV cure is under consideration. Our aim was to assess the efficacy, safety, and immunogenicity of Vacc-4x, a peptide-based HIV-1 therapeutic vaccine targeting conserved domains on p24(Gag), in adults infected with HIV-1. METHODS Between July, 2008, and June, 2010, we did a multinational double-blind, randomised, phase 2 study comparing Vacc-4x with placebo. Participants were adults infected with HIV-1 who were aged 18-55 years and virologically suppressed on cART (viral load <50 copies per mL) with CD4 cell counts of 400 × 10(6) cells per L or greater. The trial was done at 18 sites in Germany, Italy, Spain, the UK, and the USA. Participants were randomly assigned (2:1) to Vacc-4x or placebo. Group allocation was masked from participants and investigators. Four primary immunisations, weekly for 4 weeks, containing Vacc-4x (or placebo) were given intradermally after administration of adjuvant. Booster immunisations were given at weeks 16 and 18. At week 28, cART was interrupted for up to 24 weeks. The coprimary endpoints were cART resumption and changes in CD4 counts during treatment interruption. Analyses were by modified intention to treat: all participants who received one intervention. Furthermore, safety, viral load, and immunogenicity (as measured by ELISPOT and proliferation assays) were assessed. The 52 week follow-up period was completed in June, 2011. For the coprimary endpoints the proportion of participants who met the criteria for cART resumption was analysed with a logistic regression model with the treatment effect being assessed in a model including country as a covariate. This study is registered with ClinicalTrials.gov, number NCT00659789. FINDINGS 174 individuals were screened; because of slow recruitment, enrolment stopped with 136 of a planned 345 participants and 93 were randomly assigned to receive Vacc-4x and 43 to receive placebo. There were no differences between the two groups for the primary efficacy endpoints in those participants who stopped cART at week 28. Of the participants who resumed cART, 30 (34%) were in the Vacc-4x group and 11 (29%) in the placebo group, and percentage changes in CD4 counts were not significant (mean treatment difference -5·71, 95% CI -13·01 to 1·59). However, a significant difference in viral load was noted for the Vacc-4x group both at week 48 (median 23,100 copies per mL Vacc-4x vs 71,800 copies per mL placebo; p=0·025) and week 52 (median 19,550 copies per mL vs 51,000 copies per mL; p=0·041). One serious adverse event, exacerbation of multiple sclerosis, was reported as possibly related to study treatment. Vacc-4x was immunogenic, inducing proliferative responses in both CD4 and CD8 T-cell populations. INTERPRETATION The proportion of participants resuming cART before end of study and change in CD4 counts during the treatment interruption showed no benefit of vaccination. Vacc-4x was safe, well tolerated, immunogenic, seemed to contribute to a viral-load setpoint reduction after cART interruption, and might be worth consideration in future HIV-cure investigative strategies. FUNDING Norwegian Research Council GLOBVAC Program and Bionor Pharma ASA.
Collapse
Affiliation(s)
- Richard B Pollard
- Division of Infectious Diseases, UC Davis Medical Center, Sacramento, CA, USA
| | - Jürgen K Rockstroh
- Universitätsklinikum Bonn, Medizinische Klinik und Poliklinik I, Immunologische Ambulanz, Bonn, Germany
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - David M Asmuth
- Division of Infectious Diseases, UC Davis Medical Center, Sacramento, CA, USA
| | | | - Adriano Lazzarin
- Department of Infectious Diseases, Ospedale San Raffaele and Vita-Salute University, Milan, Italy
| | - Felipe Garcia
- Infectious Diseases and AIDS Units, Hospital Clinic/IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Kim Ellefsen
- Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniel Podzamczer
- HIV Unit, Infectious Disease Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Jan van Lunzen
- Universitätsklinikum Hamburg Eppendorf, Ambulanzzentrum Infektiologie, Hamburg, Germany
| | - Keikawus Arastéh
- EPIMED-Gesellschaft für Epidemiologische und Klinische Forschung in der Medizin mbH/Vivantes Auguste-Viktoria-Klinikum, Berlin, Germany
| | - Dirk Schürmann
- Department of Internal Medicine, Division of Infectious Diseases and Pulmonary Medicine, Charité-University Medicine Berlin, Berlin, Germany
| | - Bonaventura Clotet
- Irsicaixa Foundation, UAB, UVic, Hospital Universitari "Germans Trias i Pujol", Badalona, Catalonia, Spain
| | - W David Hardy
- Division of Infectious Diseases Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ronald Mitsuyasu
- UCLA CARE Center, University of California, Los Angeles, CA, USA
| | - Graeme Moyle
- Kobler Clinic, Chelsea and Westminster Hospital, London, UK
| | | | - Martin Fisher
- Brighton and Sussex University Hospital, HIV/GUM Research, Elton John Centre, Brighton, UK
| | - Gerd Fätkenheuer
- Klinik I für Innere Medizin, Klinikum der Universität zu Köln, Cologne, Germany
| | - Margaret Fischl
- University of Miami School of Medicine AIDS Clinical Research Unit, Miami, FL, USA
| | - Babafemi Taiwo
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Immune-based therapy (IBT) interventions have found a window of opportunity within some limitations of the otherwise successful combined antiretroviral therapy (cART). Two major paradigms drove immunotherapeutic research to combat human immunodeficiency virus (HIV) infection. First, IBTs were proposed either to help restore CD4(+) T-cell counts in cases of therapeutic failures with cytokines, interleukin-2 (IL-2) or IL-7, or to better control HIV and disease progression during treatment interruptions with anti-HIV therapeutic candidate vaccines. The most widely used candidates were HIV-recombinant live vector-based alone or combined with other vaccine compounds and dendritic cell (DC) therapies. A more recent and current paradigm aims at achieving HIV cure by combining IBT with cART using either cytokines to reactivate virus production in latently infected cells and/or therapeutic immunization to boost HIV-specific immunity in a 'shock and kill' strategy. This review summarizes the rationale, hopes, and mechanisms of successes and failures of these cytokine-based and vaccine-based immune interventions. Results from these first series of IBTs have been so far somewhat disappointing in terms of clinical relevance, but have provided lessons that are discussed in light of the future combined strategies to be developed toward an HIV cure.
Collapse
Affiliation(s)
- Guislaine Carcelain
- UPMC Univ Paris 06, UMR-S945, Laboratory of Immunity and Infection, Paris, France
| | | |
Collapse
|
22
|
Decker WK, Safdar A. Dendritic cell vaccines for the immunocompromised patient: prevention of influenza virus infection. Expert Rev Vaccines 2014; 9:721-30. [DOI: 10.1586/erv.10.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
John M. Therapeutic vaccination in HIV infection. MICROBIOLOGY AUSTRALIA 2014. [DOI: 10.1071/ma14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Wang R, Xie Y, Zhao T, Tan X, Xu J, Xiang J. HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Ghasemi M, Erturk M, Buruk K, Sonmez M. Induction of potent protection against acute and latent herpes simplex virus infection in mice vaccinated with dendritic cells. Cytotherapy 2013; 15:352-61. [PMID: 23579060 DOI: 10.1016/j.jcyt.2012.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/07/2012] [Accepted: 11/11/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND AIMS Dendritic cells (DCs) are the most potent antigen presenting cells of the immune system and have been under intense study with regard to their use in immunotherapy against cancer and infectious disease agents. In the present study, DCs were employed to assess their value in protection against live virus challenge in an experimental model using lethal and latent herpes simplex virus (HSV) infection in Balb/c mice. METHODS DCs obtained ex vivo in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 were loaded with HSV-1 proteins (DC/HSV-1 vaccine). Groups of mice were vaccinated twice, 7 days apart, via subcutaneous, intraperitoneal or intramuscular routes with DC/HSV-1 and with mock (DC without virus protein) and positive (alum adjuvanted HSV-1 proteins [HSV-1/ALH]) control vaccines. After measuring anti-HSV-1 antibody levels in blood samples, mice were given live HSV-1 intraperitoneally or via ear pinna to assess the protection level of the vaccines with respect to lethal or latent infection challenge. RESULTS Intramuscular, but not subcutaneous or intraperitoneal, administration of DC/HSV-1 vaccine provided complete protection against lethal challenge and establishment of latent infection as assessed by death and virus recovery from the trigeminal ganglia. It was also shown that the immunity was not associated with antibody production because DC/HSV-1 vaccine, as opposed to HSV-1/ALH vaccine, produced very little, if any, HSV-1-specific antibody. CONCLUSIONS Overall, our results may have some impact on the design of vaccines against genital HSV as well as chronic viral infections such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Medical Microbiology Department, Medical School, Karadeniz Technical University, Trabzon, Turkey.
| | | | | | | |
Collapse
|
26
|
García F, Plana M, Climent N, León A, Gatell JM, Gallart T. Dendritic cell based vaccines for HIV infection: the way ahead. Hum Vaccin Immunother 2013; 9:2445-52. [PMID: 23912672 PMCID: PMC3981855 DOI: 10.4161/hv.25876] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 01/23/2023] Open
Abstract
Dendritic cells have a central role in HIV infection. On one hand, they are essential to induce strong HIV-specific CD4⁺ helper T-cell responses that are crucial to achieve a sustained and effective HIV-specific CD8⁺ cytotoxic T-lymphocyte able to control HIV replication. On the other hand, DCs contribute to virus dissemination and HIV itself could avoid a correct antigen presentation. As the efficacy of immune therapy and therapeutic vaccines against HIV infection has been modest in the best of cases, it has been hypothesized that ex vivo generated DC therapeutic vaccines aimed to induce effective specific HIV immune responses might overcome some of these problems. In fact, DC-based vaccine clinical trials have yielded the best results in this field. However, despite these encouraging results, functional cure has not been reached with this strategy in any patient. In this Commentary, we discuss new approaches to improve the efficacy and feasibility of this type of therapeutic vaccine.
Collapse
Affiliation(s)
- Felipe García
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Montserrat Plana
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Nuria Climent
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Agathe León
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Jose M Gatell
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| | - Teresa Gallart
- Hospital Clinic-HIVACAT; IDIBAPS; University of Barcelona; Barcelona, Spain
| |
Collapse
|
27
|
Kløverpris HN, Jackson A, Handley A, Hayes P, Gilmour J, Riddell L, Chen F, Atkins M, Boffito M, Walker BD, Ackland J, Sullivan M, Goulder P. Non-immunogenicity of overlapping gag peptides pulsed on autologous cells after vaccination of HIV infected individuals. PLoS One 2013; 8:e74389. [PMID: 24124451 PMCID: PMC3790804 DOI: 10.1371/journal.pone.0074389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/17/2013] [Indexed: 12/30/2022] Open
Abstract
Background HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL) has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation. Methodology We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach ‘OPAL-HIV-Gag(c)’. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma) on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6), 24 mg (n = 7), 48 mg (n = 2) or matching placebo (n = 8) with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS). Results The OPAL-HIV-Gag(c) peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c), 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours) in OPAL-HIV-Gag(c) but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001), compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16). Conclusion/Significance Despite strong immunogenicity observed in several Macaca nemestrina studies using this approach, OPAL-HIV-Gag(c) was not significantly immunogenic in humans and improved methods of generating high-frequency Gag-specific T-cell responses are required. Name of Registry ClinicalTrials.gov, Registry number: NCT01123915, URL trial registry database: http://www.clinicaltrials.gov/ct2/results?term=OPAL-HIV-1001&Search=Search
Collapse
Affiliation(s)
- Henrik N. Kløverpris
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R Mandela School of Medicine, University of Kwazulu-Natal, Durban, KwaZulu-Natal, South Africa
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: ,
| | - Akil Jackson
- St Stephen's AIDS Trust St Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | | | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northhamptonshire Healthcare National Health Service Trust, Northhampton General Hospital, Cliftonville, Northhampton, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Mark Atkins
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Marta Boffito
- St Stephen's AIDS Trust St Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Maryland, Chevy Chase, Maryland, United States of America
| | - Jim Ackland
- Global Biosolutions, Craigeburn, Victoria, Australia
| | - Mark Sullivan
- Medicines Development, Melbourne, Victoria, Australia
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Abstract
Dendritic cells (DCs) are a diverse subset of innate immune cells that are key regulators of the host response to human immunodeficiency virus-1 (HIV-1) infection. HIV-1 directly and indirectly modulates DC function to hinder the formation of effective antiviral immunity and fuel immune activation. This review focuses upon the differential dysregulation of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) at various stages of HIV-1 infection providing insights into pathogenesis. HIV-1 evades innate immune sensing by mDCs resulting in suboptimal maturation, lending to poor generation of antiviral adaptive responses and contributing to T-regulatory cell (Treg) development. Dependent upon the stage of HIV-1 infection, mDC function is altered in response to Toll-like receptor ligands, which further hinders adaptive immunity and limits feasibility of therapeutic vaccine strategies. pDC interactions with HIV-1 are pleotropic, modulating immune responses on an axis between immunostimulatory and immunosuppressive. pDCs promote immune activation through an altered phenotype of persistent type I interferon secretion and weak antigen presentation capacity. Conversely, HIV-1 stimulates secretion of indolemine 2,3 dioxygenase (IDO) by pDCs resulting in Treg induction. An improved understanding of the roles and underlying mechanisms of DC dysfunction will be valuable to the development of therapeutics to enhance HIV-specific adaptive responses and to dampen immune activation.
Collapse
Affiliation(s)
- Elizabeth Miller
- Division of Infectious Diseases, New York University School of Medicine, New York, NY, USA
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York, NY, USA
- Division of Hematology and Oncology, Mount Sinai Medical Center, New York, NY, USA
| |
Collapse
|
29
|
Garcia F, Climent N, Guardo AC, Gil C, Leon A, Autran B, Lifson JD, Martinez-Picado J, Dalmau J, Clotet B, Gatell JM, Plana M, Gallart T. A Dendritic Cell-Based Vaccine Elicits T Cell Responses Associated with Control of HIV-1 Replication. Sci Transl Med 2013; 5:166ra2. [DOI: 10.1126/scitranslmed.3004682] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Vanham G, Van Gulck E. Can immunotherapy be useful as a "functional cure" for infection with Human Immunodeficiency Virus-1? Retrovirology 2012; 9:72. [PMID: 22958464 PMCID: PMC3472319 DOI: 10.1186/1742-4690-9-72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022] Open
Abstract
Immunotherapy aims to assist the natural immune system in achieving control over viral infection. Various immunotherapy formats have been evaluated in either therapy-naive or therapy-experienced HIV-infected patients over the last 20 years. These formats included non-antigen specific strategies such as cytokines that stimulate immunity or suppress the viral replication, as well as antibodies that block negative regulatory pathways. A number of HIV-specific therapeutic vaccinations have also been proposed, using in vivo injection of inactivated virus, plasmid DNA encoding HIV antigens, or recombinant viral vectors containing HIV genes. A specific format of therapeutic vaccines consists of ex vivo loading of autologous dendritic cells with one of the above mentioned antigenic formats or mRNA encoding HIV antigens.This review provides an extensive overview of the background and rationale of these different therapeutic attempts and discusses the results of trials in the SIV macaque model and in patients. To date success has been limited, which could be explained by insufficient quality or strength of the induced immune responses, incomplete coverage of HIV variability and/or inappropriate immune activation, with ensuing increased susceptibility of target cells.Future attempts at therapeutic vaccination should ideally be performed under the protection of highly active antiretroviral drugs in patients with a recovered immune system. Risks for immune escape should be limited by a better coverage of the HIV variability, using either conserved or mosaic sequences. Appropriate molecular adjuvants should be included to enhance the quality and strength of the responses, without inducing inappropriate immune activation. Finally, to achieve a long-lasting effect on viral control (i.e. a "functional cure") it is likely that these immune interventions should be combined with anti-latency drugs and/or gene therapy.
Collapse
Affiliation(s)
- Guido Vanham
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerpen, Antwerpen, Belgium
| | - Ellen Van Gulck
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Present address: Community of Research Excellence and Advanced Technology (C.R.E.A.Te), Division of Janssen, Beerse, Belgium
| |
Collapse
|
31
|
Interleukin-12p70 expression by dendritic cells of HIV-1-infected patients fails to stimulate gag-specific immune responses. Clin Dev Immunol 2012; 2012:184979. [PMID: 22844321 PMCID: PMC3401557 DOI: 10.1155/2012/184979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/28/2012] [Accepted: 05/19/2012] [Indexed: 12/22/2022]
Abstract
A variety of immune-based therapies has been developed in order to boost or induce protective CD8+ T cell responses in order to control HIV replication. Since dendritic cells (DCs) are professional antigen-presenting cells (APCs) with the unique capability to stimulate naïve T cells into effector T cells, their use for the induction of HIV-specific immune responses has been studied intensively. In the present study we investigated whether modulation of the activation state of DCs electroporated with consensus codon-optimized HxB2 gag mRNA enhances their capacity to induce HIV gag-specific T cell responses. To this end, mature DCs were (i) co-electroporated with mRNA encoding interleukin (IL)-12p70 mRNA, or (ii) activated with a cytokine cocktail consisting of R848 and interferon (IFN)-γ. Our results confirm the ability of HxB2 gag-expressing DCs to expand functional HIV-specific CD8+ T cells. However, although most of the patients had detectable gag-specific CD8+ T cell responses, no significant differences in the level of expansion of functional CD8+ T cells could be demonstrated when comparing conventional or immune-modulated DCs expressing IL-12p70. This result which goes against expectation may lead to a re-evaluation of the need for IL-12 expression by DCs in order to improve T-cell responses in HIV-1-infected individuals.
Collapse
|
32
|
Abstract
Critical advances in the early diagnosis of HIV now allow for treatment opportunities during acute infection. It remains unclear whether treatment of acute HIV infection with antiretroviral therapy improves long-term clinical outcomes for the individual and current guidelines are not definitive in recommending therapy at this stage of infection. However, treatment of acute HIV infection may have short-term benefit on viral set point when compared to delayed therapy as well as reducing the risk of transmission to others. Herein we review the immunological and clinical literature to discuss whether we should treat acute HIV infection, both from the perspective of the individual HIV-infected patient and from the public health perspective. As transmission of drug-resistant HIV variants are of concern, we also review recent clinical trial data to provide recommendations for which specific antiretroviral treatment regimens should be considered for the treatment of acute HIV infection.
Collapse
Affiliation(s)
- Meagan O’Brien
- Division of Infectious Diseases, Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, an affiliate of the Rockefeller University, New York, NY 10016, USA,
| |
Collapse
|
33
|
García F, León A, Gatell JM, Plana M, Gallart T. Therapeutic vaccines against HIV infection. Hum Vaccin Immunother 2012; 8:569-81. [PMID: 22634436 DOI: 10.4161/hv.19555] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resistance to medication, adverse effects in the medium-to-long-term and cost all place important limitations on lifelong adherence to combined antiretroviral therapy (cART). In this context, new therapeutic alternatives to 'cART for life' in HIV-infected patients merit investigation. Some data suggest that strong T cell-mediated immunity to HIV can indeed limit virus replication and protect against CD4 depletion and disease progression. The combination of cART with immune therapy to restore and/or boost immune-specific responses to HIV has been proposed, the ultimate aim being to achieve a 'functional cure'. In this scenario, new, induced, HIV-specific immune responses would be able to control viral replication to undetectable levels, mimicking the situation of the minority of patients who control viral replication without treatment and do not progress to AIDS. Classical approaches such as whole inactivated virus or recombinant protein initially proved useful as therapeutic vaccines. Overall, however, the ability of these early vaccines to increase HIV-specific responses was very limited and study results were discouraging, as no consistent immunogenicity was demonstrated and there was no clear impact on viral load. Recent years have seen the development of new approaches based on more innovative vectors such as DNA, recombinant virus or dendritic cells. Most clinical trials of these new vectors have demonstrated their ability to induce HIV-specific immune responses, although they show very limited efficacy in terms of controlling viral replication. However, some preliminary results suggest that dendritic cell-based vaccines are the most promising candidates. To improve the effectiveness of these vaccines, a better understanding of the mechanisms of protection, virological control and immune deterioration is required; without this knowledge, an efficacious therapeutic vaccine will remain elusive.
Collapse
Affiliation(s)
- Felipe García
- Hospital Clinic-HIVACAT, IDIBAPS, University of Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
34
|
Nanjundappa RH, Wang R, Xie Y, Umeshappa CS, Xiang J. Novel CD8+ T cell-based vaccine stimulates Gp120-specific CTL responses leading to therapeutic and long-term immunity in transgenic HLA-A2 mice. Vaccine 2012; 30:3519-25. [PMID: 22484292 DOI: 10.1016/j.vaccine.2012.03.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/12/2012] [Accepted: 03/25/2012] [Indexed: 12/14/2022]
Abstract
The limitations of highly active anti-retroviral therapy have necessitated the development of alternative therapeutics for human immunodeficiency virus type-1 (HIV-1)-infected patients with dysfunctional dendritic cells (DCs) and CD4(+) T cell deficiency. We previously demonstrated that HIV-1 Gp120-specific T cell-based Gp120-Texo vaccine by using ConA-stimulated C57BL/6 (B6) mouse CD8(+) T (ConA-T) cells with uptake of pcDNA(Gp120)-transfected B6 mouse DC line DC2.4 (DC2.4(Gp120))-released exosomes (EXO(Gp120)) was capable of stimulating DC and CD4(+) T cell-independent CD8(+) cytotoxic T lymphocyte (CTL) responses detected in wild-type B6 mice using non-specific PE-anti-CD44 and anti-IFN-γ antibody staining by flow cytometry. To assess effectiveness of Gp120-Texo vaccine in transgenic (Tg) HLA-A2 mice mimicking the human situation, we constructed adenoviral vector AdV(Gp120) expressing HIV-1 GP120 by recombinant DNA technology, and generated Gp120-Texo vaccine by using Tg HLA-A2 mouse CD8(+) ConA-T cells with uptake of AdV(Gp120)-transfected HLA-A2 mouse bone marrow DC (DC(Gp120))-released EXO(Gp120). We then performed animal studies to assess Gp120-Texo-induced stimulation of Gp120-specific CTL responses and antitumor immunity in Tg HLA-A2 mice. We demonstrate that Gp120-Texo vaccine stimulates Gp120-specific CTL responses detected in Tg HLA-A2 mice using Gp120-specific PE-HLA-A2/Gp120 peptide (KLTPLCVTL) tetramer staining by flow cytometry. These Gp120-specific CTLs are capable of further differentiating into functional effectors with killing activity to Gp120 peptide-pulsed splenocytes in vivo. In addition, Gp120-Texo vaccine also induces Gp120-specific preventive, therapeutic (for 6 day tumor lung metastasis) and CD4(+) T cell-independent long-term immunity against B16 melanoma BL6-10(Gp120/A2Kb) expressing both Gp120 and A2Kb (α1 and α2 domains of HLA-A2 and α3 domain of H-2K(b)) in Tg HLA-A2 mice. Taken together, the novel CD8(+) Gp120-Texo vaccine capable of stimulating efficient CD4(+) T cell-independent Gp120-specific CD8(+) CTL responses leading to therapeutic and long-term immunity in Tg HLA-A2 mice may represent a new immunotherapeutic vaccine for treatment of HIV-1 patients with CD4(+) T cell deficiency.
Collapse
Affiliation(s)
- Roopa Hebbandi Nanjundappa
- Cancer Research Unit, Saskatchewan Cancer Agency, Division of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
35
|
A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol 2012; 142:252-68. [DOI: 10.1016/j.clim.2011.10.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 11/21/2022]
|
36
|
Rodríguez-Cruz TG, Liu S, Khalili JS, Whittington M, Zhang M, Overwijk W, Lizée G. Natural splice variant of MHC class I cytoplasmic tail enhances dendritic cell-induced CD8+ T-cell responses and boosts anti-tumor immunity. PLoS One 2011; 6:e22939. [PMID: 21860662 PMCID: PMC3157908 DOI: 10.1371/journal.pone.0022939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/01/2011] [Indexed: 11/22/2022] Open
Abstract
Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-Kb generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-Db-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-Db DCs were superior to WT-Db DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy.
Collapse
Affiliation(s)
- Tania G. Rodríguez-Cruz
- Departments of Melanoma Medical Oncology and Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Shujuan Liu
- Departments of Melanoma Medical Oncology and Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jahan S. Khalili
- Departments of Melanoma Medical Oncology and Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Mayra Whittington
- Departments of Melanoma Medical Oncology and Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Minying Zhang
- Departments of Melanoma Medical Oncology and Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Willem Overwijk
- Departments of Melanoma Medical Oncology and Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gregory Lizée
- Departments of Melanoma Medical Oncology and Immunology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
García F, Routy JP. Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection Workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine 2011; 29:6454-63. [PMID: 21791232 DOI: 10.1016/j.vaccine.2011.07.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 12/21/2022]
Abstract
Therapeutic immunization has been proposed as an approach that might help limit the need for lifelong combined antiretroviral therapy (cART). One approach for therapeutic vaccination which has been explored during the last few years is the administration of autologous monocyte-derived DCs (MD-DCs) loaded ex vivo with a variety of antigens. It has been shown in experimental murine models as well as in cancer patients and in patients with chronic infections that this approach can induce and potentiate antigen-specific T-cell response (and to induce a potent protective immunity). Contrary to the wide experience with this strategy in cancer, in HIV-1 infection the experience is limited and the design of the clinical trials varies greatly between groups. This variability affects all the steps of the process, from preparation of immunogen and DCs to clinical trial design and immune monitoring. Although both the study designs and the DC preparation (the maturation stimuli and the identity and source of HIV-1 antigens used to pulse DCs) varied in most of the studies that were published so far, overall the results indicate that DC immunotherapy elicits some degree of immunological response. To address this situation and to allow comparison between trials a panel of experts working in DC-based clinical trials in HIV-1 infection met in Barcelona at the end of 2010. During this meeting, the participants shared the data of their current research activities in this field in order to unify criteria for the future. This report summarizes the present situation of the field and the discussions and conclusions of this meeting.
Collapse
Affiliation(s)
- Felipe García
- Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036 Barcelona, Spain.
| | | |
Collapse
|
38
|
Gil C, Climent N, García F, Hurtado C, Nieto-Márquez S, León A, García MT, Rovira C, Miralles L, Dalmau J, Pumarola T, Almela M, Martinez-Picado J, Lifson JD, Zamora L, Miró JM, Brander C, Clotet B, Gallart T, Gatell JM. Ex vivo production of autologous whole inactivated HIV-1 for clinical use in therapeutic vaccines. Vaccine 2011; 29:5711-24. [PMID: 21679735 DOI: 10.1016/j.vaccine.2011.05.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/29/2011] [Accepted: 05/31/2011] [Indexed: 12/24/2022]
Abstract
This study provides a detailed description and characterization of the preparation of individualized lots of autologous heat inactivated HIV-1 virions used as immunogen in a clinical trial designed to test an autologous dendritic-cell-based therapeutic HIV-1 vaccine (Clinical Trial DCV-2, NCT00402142). For each participant, ex vivo isolation and expansion of primary virus were performed by co-culturing CD4-enriched PBMCs from the HIV-1-infected patient with PBMC from HIV-seronegative unrelated healthy volunteer donors. The viral supernatants were heat-inactivated and concentrated to obtain 1 mL of autologous immunogen, which was used to load autologous dendritic cells of each patient. High sequence homology was found between the inactivated virus immunogen and the HIV-1 circulating in plasma at the time of HIV-1 isolation. Immunogens contained up to 10⁹ HIV-1 RNA copies/mL showed considerably reduced infectivity after heat inactivation (median of 5.6 log₁₀), and were free of specified adventitious agents. The production of individualized lots of immunogen based on autologous inactivated HIV-1 virus fulfilling clinical-grade good manufacturing practice proved to be feasible, consistent with predetermined specifications, and safe for use in a clinical trial designed to test autologous dendritic cell-based therapeutic HIV-1 vaccine.
Collapse
|
39
|
Kim JM, Han SH. Immunotherapeutic restoration in HIV-infected individuals. Immunotherapy 2011; 3:247-67. [PMID: 21322762 DOI: 10.2217/imt.10.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
While the development of combined active antiretroviral therapy (cART) has dramatically improved life expectancies and quality of life in HIV-infected individuals, long-term clinical problems, such as metabolic complications, remain important constraints of life-long cART. Complete immune restoration using only cART is normally unattainable even in cases of sufficient plasma viral suppression. The need for immunologic adjuncts that complement cART remains, because while cART alone may result in the complete recovery of peripheral net CD4+ T lymphocytes, it may not affect the reservoir of HIV-infected cells. Here, we review current immunotherapies for HIV infection, with a particular emphasis on recent advances in cytokine therapies, therapeutic immunization, monoclonal antibodies, immune-modulating drugs, nanotechnology-based approaches and radioimmunotherapy.
Collapse
Affiliation(s)
- June Myung Kim
- Department of Internal Medicine & AIDS Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea.
| | | |
Collapse
|
40
|
Abstract
OBJECTIVES Therapeutic HIV vaccination during the time of virologic suppression may delay or blunt viral load rebound after interruption of antiretroviral therapy (ART). The use of ALVAC, to enhance cytotoxic T-lymphocyte responses, with Remune, which provides CD4 T-cell help, may induce anti-HIV responses capable of controlling viral replication. METHODS CTN173 was a randomized, placebo-controlled double-blind study in which effectively treated HIV-infected individuals (viral load <50 copies/ml for more than 2 years) with CD4 nadir more than 250 cells/μl and current CD4 cell counts more than 500 cells/μl were randomized to receive: ALVAC with Remune, ALVAC alone or matching placebos over 20 weeks. At week 24, participants interrupted ART with intensive clinical, virologic and immunologic monitoring to week 48. RESULTS Baseline characteristics of the 52 randomized participants were balanced between arms. Forty-eight participants who received all vaccinations interrupted ART at week 24. Median time to viral load more than 50 copies/ml tended to be greater in the two vaccine arms (24.5, 23.0 vs. 13.5 days in the placebo arm, P = 0.097 for combined vaccine groups vs. placebo), but subsequent viral load set-point was not different between groups. Significantly fewer participants in the two vaccine arms restarted ART or met CD4 criteria to do so (P = 0.024). CONCLUSION Although ALVAC with or without Remune did not lower the viral load set-point, it tended to delay viral load rebound and was associated with a greater time to meet preset criteria to restart ART. Further investigations of those individuals who derived benefit from vaccination could provide important insights into HIV therapeutic vaccine development.
Collapse
|
41
|
Nanjundappa RH, Wang R, Xie Y, Umeshappa CS, Chibbar R, Wei Y, Liu Q, Xiang J. GP120-specific exosome-targeted T cell-based vaccine capable of stimulating DC- and CD4(+) T-independent CTL responses. Vaccine 2011; 29:3538-47. [PMID: 21406265 DOI: 10.1016/j.vaccine.2011.02.095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 12/26/2022]
Abstract
The limitations of highly active anti-retroviral therapy (HAART) have necessitated the development of alternative therapeutics. In this study, we generated ovalbumin (OVA)-pulsed and pcDNAgp120-transfected dendritic cell (DC)-released exosomes (EXOova and EXOgp120) and ConA-stimulated C57BL/6 CD8(+) T cells. OVA- and Gp120-Texo vaccines were generated from CD8(+) T cells with uptake of EXOova and EXOgp120, respectively. We demonstrate that OVA-Texo stimulates in vitro and in vivo OVA-specific CD4(+) and CD8(+) cytotoxic T lymphocyte (CTL) responses leading to long-term immunity against OVA-expressing BL6-10(OVA) melanoma. Interestingly, CD8(+) T cell responses are DC and CD4(+) T cell independent. Importantly, Gp120-Texo also stimulates Gp120-specific CTL responses and long-term immunity against Gp120-expressing B16 melanoma. Therefore, this novel HIV-1-specific EXO-targeted Gp120-Texo vaccine may be useful in induction of efficient CTL responses in AIDS patients with DC dysfunction and CD4(+) T cell deficiency.
Collapse
|
42
|
García F, Climent N, Assoumou L, Gil C, González N, Alcamí J, León A, Romeu J, Dalmau J, Martínez-Picado J, Lifson J, Autran B, Costagliola D, Clotet B, Gatell JM, Plana M, Gallart T. A therapeutic dendritic cell-based vaccine for HIV-1 infection. J Infect Dis 2011; 203:473-8. [PMID: 21233310 DOI: 10.1093/infdis/jiq077] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A double-blinded, controlled study of vaccination of untreated patients with chronic human immunodeficiency virus type 1 (HIV-1) infection with 3 doses of autologous monocyte-derived dendritic cells (MD-DCs) pulsed with heat inactivated autologous HIV-1 was performed. Therapeutic vaccinations were feasible, safe, and well tolerated. At week 24 after first vaccination (primary end point), a modest significant decrease in plasma viral load was observed in vaccine recipients, compared with control subjects (P = .03). In addition, the change in plasma viral load after vaccination tended to be inversely associated with the increase in HIV-specific T cell responses in vaccinated patients but tended to be directly correlated with HIV-specific T cell responses in control subjects.
Collapse
Affiliation(s)
- Felipe García
- Infectious Diseases Department, Hospital Clinic - HIV Development Program in Catalonia, Institut d'Investigacions Biomédiques August Pi I Sunyer, University of Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Routy JP, Nicolette C. Arcelis AGS-004 dendritic cell-based immunotherapy for HIV infection. Immunotherapy 2010; 2:467-76. [PMID: 20636001 DOI: 10.2217/imt.10.28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antiretroviral therapy represents a major breakthrough for the management of HIV-infected patients; however, it is not without side effects and is a life-long commitment. Thus, the development of novel strategies to enhance immune response and control viral replication are needed in order to limit exposure to antiretroviral therapy. To date, immunotherapies consisting of monocyte-derived dendritic cells expressing HIV antigens have elicited only limited immunogenicity and/or viral control. Thus, taking into consideration the variability of HIV, an investigational immunotherapeutic product (AGS-004, Argos Therapeutics Inc., NC, USA) that consists of autologous dendritic cells co-electroporated with in vitro transcribed RNA encoding four of the patient's own HIV antigens was developed. Based on the encouraging immunogenicity and tolerance observed in a Phase I study, a Phase II study has been initiated with good tolerance and partial viral control. A second Phase II placebo-controlled study is about to initiate.
Collapse
|
44
|
Schooley RT, Spritzler J, Wang H, Lederman MM, Havlir D, Kuritzkes DR, Pollard R, Battaglia C, Robertson M, Mehrotra D, Casimiro D, Cox K, Schock B. AIDS clinical trials group 5197: a placebo-controlled trial of immunization of HIV-1-infected persons with a replication-deficient adenovirus type 5 vaccine expressing the HIV-1 core protein. J Infect Dis 2010; 202:705-16. [PMID: 20662716 PMCID: PMC2916952 DOI: 10.1086/655468] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1)-specific cellular immunity contributes to the control of HIV-1 replication. HIV-1-infected volunteers who were receiving antiretroviral therapy were given a replication-defective adenovirus type 5 HIV-1 gag vaccine in a randomized, blinded therapeutic vaccination study. METHODS HIV-1-infected vaccine or placebo recipients underwent analytical treatment interruption (ATI) for 16 weeks. The log(10) HIV-1 RNA load at the ATI set point and the time-averaged area under the curve served as co-primary end points. Immune responses were measured by intracellular cytokine staining and carboxyfluorescein succinimidyl ester dye dilution. RESULTS Vaccine benefit trends were seen for both primary end points, but they did not reach a prespecified significance level of P < or = 25. The estimated shifts in the time-averaged area under the curve and the ATI set point were 0.24 (P=.04, unadjusted) and 0.26 (P=.07, unadjusted) log(10) copies lower, respectively, in the vaccine arm than in the placebo arm. HIV-1 gag-specific CD4(+) cells producing interferon-gamma were an immunologic correlate of viral control. CONCLUSION The vaccine was generally safe and well tolerated. Despite a trend favoring viral suppression among vaccine recipients, differences in HIV-1 RNA levels did not meet the prespecified level of significance. Induction of HIV-1 gag-specific CD4 cells correlated with control of viral replication in vivo. Future immunogenicity studies should require a substantially higher immunogenicity threshold before an ATI is contemplated.
Collapse
Affiliation(s)
- Robert T Schooley
- Div. of Infectious Diseases,University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
De Haes W, De Koker S, Pollard C, Atkinson D, Vlieghe E, Hoste J, Rejman J, De Smedt S, Grooten J, Vanham G, Van Gulck E. Polyelectrolyte capsules-containing HIV-1 p24 and poly I:C modulate dendritic cells to stimulate HIV-1-specific immune responses. Mol Ther 2010; 18:1408-16. [PMID: 20461059 DOI: 10.1038/mt.2010.82] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyelectrolyte microcapsules (MCs) are potent protein delivery vehicles which can be tailored with ligands to stimulate maturation of dendritic cells (DCs). We investigated the immune stimulatory capacity of monocyte-derived DC (Mo-DC) loaded with these MCs, containing p24 antigen from human immunodeficiency virus type 1 (HIV-1) alone [p24-containing MC (MCp24)] or with the Toll-like receptor ligand 3 (TLR3) ligand poly I:C (MCp24pIC) as a maturation factor. MO-DC, loaded with MCp24pIC, upregulated CCR7, CD80, CD83, and CD86 and produced high amounts of interleukin-12 (IL-12) cytokine, to a similar extent as MCp24 in the presence of an optimized cytokine cocktail. MO-DC from HIV-infected patients under highly active antiretroviral therapy (HAART) exposed to MCp24 together with cytokine cocktail or to MCp24pIC expanded autologous p24-specific CD4(+) and CD8(+) T-cell responses as measured by interferon-gamma (IFN-gamma) and IL-2 cytokine production and secretion. In vivo relevance was shown by immunizing C57BL/6 mice with MCp24pIC, which induced both humoral and cellular p24-specific immune responses. Together these data provide a proof of principle that both antigen and DC maturation signal can be delivered as a complex with polyelectrolyte capsules to stimulate virus-specific T cells both in vitro and in vivo. Polyelectrolyte MCs could be useful for in vivo immunization in HIV-1 and other infections.
Collapse
Affiliation(s)
- Winni De Haes
- Institute of Tropical Medicine of Antwerp, Department of Microbiology, Unit Virology, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kodama A, Tanaka R, Zhang LF, Adachi T, Saito M, Ansari AA, Tanaka Y. Impairment of in vitro generation of monocyte-derived human dendritic cells by inactivated human immunodeficiency virus-1: Involvement of type I interferon produced from plasmacytoid dendritc cells. Hum Immunol 2010; 71:541-50. [PMID: 20206223 DOI: 10.1016/j.humimm.2010.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 11/27/2022]
Abstract
In an attempt to simplify the protocol of DC generation in vitro, studies conducted herein show that functional DCs could be generated from bulk peripheral blood mononuclear cells (PBMCs) in media containing GM-CSF and IL-4. Interestingly, when PBMCs, but not purified monocytes, were exposed to either CCR5- or CXCR4-tropic inactivated HIV-1 isolates (iHIV-1) at the initiation of the culture, DC yields were significantly reduced in a dose-dependent manner because of monocyte apoptosis. Similar impairment of DC generation was noted using type I IFNs and poly IC not only in cultures of PBMCs but also using highly enriched monocytes. This effect was reversed by antihuman type I IFN receptor, but not by anti-FasL, anti-TRAIL, anti-TNF, or a mixture of these antibodies. iHIV-1-exposed PBMCs, but not monocytes, produced high levels of IFN-alpha but not IFN-beta. PBMCs depleted of CD123(+) plasmacytoid DCs produced low levels of IFN-alpha and were resistant to iHIV-1-mediated DC impairment. Interestingly, exogenously added TNF reversed the impairment by iHIV-1 in the PBMC cultures. In conclusion, the present results indicate that iHIV-1 impairs the in vitro generation of functional DCs from PBMCs through the induction of IFN-alpha from plasmacytoid DCs in a CD4-dependent fashion in the absence of TNF.
Collapse
Affiliation(s)
- Akira Kodama
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review sets out to overview treatment interruption in chronic HIV-1 infection: what treatment interruption promised, results from recent trials, and what the future holds. RECENT FINDINGS Recent studies have produced mixed results; several trials have been prematurely halted, whereas others have reported more positive outcomes. One consistent finding has been the identification of the CD4 T-cell count nadir as a critical parameter in determining the outcome of treatment interruption. SUMMARY The use of treatment interruption is still controversial, but it is becoming clear that certain individuals could benefit, and partial treatment interruption strategies warrant further investigation.
Collapse
|
48
|
Kloverpris HN, Karlsson I, Thorn M, Buus S, Fomsgaard A. Immune hierarchy among HIV-1 CD8+ T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice. APMIS 2009; 117:849-55. [PMID: 19845536 PMCID: PMC2774155 DOI: 10.1111/j.1600-0463.2009.02544.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent human immunodeficiency virus type 1 (HIV-1) vaccination strategies aim at targeting a broad range of cytotoxic T lymphocyte (CTL) epitopes from different HIV-1 proteins by immunization with multiple CTL epitopes simultaneously. However, this may establish an immune hierarchical response, where the immune system responds to only a small number of the epitopes administered. To evaluate the feasibility of such vaccine strategies, we used the human leukocyte antigen (HLA)-A*0201 transgenic (tg) HHD murine in vivo model and immunized with dendritic cells pulsed with seven HIV-1-derived HLA-A*0201 binding CTL epitopes. The seven peptides were simultaneously presented on the same dendritic cell (DC) or on separate DCs before immunization to one or different lymphoid compartments. Data from this study showed that the T-cell response, as measured by cytolytic activity and γ-interferon (IFN-γ)-producing CD8+ T cells, mainly focused on two of seven administered epitopes. The magnitude of individual T-cell responses induced by immunization with multiple peptides correlated with their individual immunogenicity that depended on major histocompatibility class I binding and was not influenced by mode of loading or mode of immunization. These findings may have implications for the design of vaccines based on DCs when using multiple epitopes simultaneously.
Collapse
|
49
|
Routy JP, Boulassel MR, Yassine-Diab B, Nicolette C, Healey D, Jain R, Landry C, Yegorov O, Tcherepanova I, Monesmith T, Finke L, Sékaly RP. Immunologic activity and safety of autologous HIV RNA-electroporated dendritic cells in HIV-1 infected patients receiving antiretroviral therapy. Clin Immunol 2009; 134:140-7. [PMID: 19889582 DOI: 10.1016/j.clim.2009.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/22/2009] [Accepted: 09/22/2009] [Indexed: 11/24/2022]
Abstract
Immunogenicity, manufacturing feasibility, and safety of a novel, autologous dendritic cell (DC)-based immunotherapy (AGS-004) was evaluated in ten human immunodeficiency virus type 1 (HIV-1)-infected adults successfully treated with antiretroviral therapy (ART). Personalized AGS-004 was produced from autologous monocyte-derived DCs electroporated with RNA encoding CD40L and HIV antigens (Gag, Vpr, Rev, and Nef) derived from each subjects' pre-ART plasma. Patients received monthly injections of AGS-004 in combination with ART. AGS-004 was produced within a mean of 6 weeks and yielded 4-12 doses/subject Full or partial HIV-specific proliferative immune responses occurred in 7 of 9 evaluable subjects. Responses were specific for the AGS-004 presented HIV antigens and preferentially targeted CD8(+) T cells. Mild adverse events included flu-like symptoms, fatigue, and injection site reactions. No evidence of autoimmunity, changes in viral load, or significant changes in absolute CD4(+) and CD8(+) T cell counts were observed. This pilot study supports the further clinical investigation of AGS-004.
Collapse
Affiliation(s)
- Jean-Pierre Routy
- Immunodeficiency Service and Division of Hematology, McGill University Health Centre, McGill University, Montreal, Qc, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Oshiro TM, de Almeida A, da Silva Duarte AJ. Dendritic cell immunotherapy for HIV infection: from theory to reality. Immunotherapy 2009; 1:1039-51. [DOI: 10.2217/imt.09.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Knowledge concerning the immunology of dendritic cells (DCs) accumulated over the last few decades and the development of methodologies to generate and manipulate these cells in vitro has made their therapeutic application a reality. Currently, clinical protocols for DC-based therapeutic vaccine in HIV-infected individuals show that it is a safe and promising approach. Concomitantly, important advances continue to be made in the development of methodologies to optimize DC acquisition, as well as the selection of safe, immunogenic HIV antigens and the evaluation of immune response in treated individuals.
Collapse
Affiliation(s)
- Telma Miyuki Oshiro
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| | - Alexandre de Almeida
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratório de Investigação em Dermatologia e Imunodeficiências – LIM 56, Faculdade de Medicina da Universidade de São Paulo, Instituto de Medicina Tropical – prédio II, Av. Dr. Enéas de Carvalho Aguiar, 470 – 3o andar, CEP 05403-05000, São Paulo, Brazil
| |
Collapse
|