1
|
Tseng CH, Nagtegaal MA, van Osch MJP, Jaspers J, Mendez Romero A, Wielopolski P, Smits M, Vos FM. Arterial input function estimation compensating for inflow and partial voluming in dynamic contrast-enhanced MRI. NMR IN BIOMEDICINE 2024; 37:e5225. [PMID: 39107878 DOI: 10.1002/nbm.5225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 11/15/2024]
Abstract
Both inflow and the partial volume effect (PVE) are sources of error when measuring the arterial input function (AIF) in dynamic contrast-enhanced (DCE) MRI. This is relevant, as errors in the AIF can propagate into pharmacokinetic parameter estimations from the DCE data. A method was introduced for flow correction by estimating and compensating the number of the perceived pulse of spins during inflow. We hypothesized that the PVE has an impact on concentration-time curves similar to inflow. Therefore, we aimed to study the efficiency of this method to compensate for both effects simultaneously. We first simulated an AIF with different levels of inflow and PVE contamination. The peak, full width at half-maximum (FWHM), and area under curve (AUC) of the reconstructed AIFs were compared with the true (simulated) AIF. In clinical data, the PVE was included in AIFs artificially by averaging the signal in voxels surrounding a manually selected point in an artery. Subsequently, the artificial partial volume AIFs were corrected and compared with the AIF from the selected point. Additionally, corrected AIFs from the internal carotid artery (ICA), the middle cerebral artery (MCA), and the venous output function (VOF) estimated from the superior sagittal sinus (SSS) were compared. As such, we aimed to investigate the effectiveness of the correction method with different levels of inflow and PVE in clinical data. The simulation data demonstrated that the corrected AIFs had only marginal bias in peak value, FWHM, and AUC. Also, the algorithm yielded highly correlated reconstructed curves over increasingly larger neighbourhoods surrounding selected arterial points in clinical data. Furthermore, AIFs measured from the ICA and MCA produced similar peak height and FWHM, whereas a significantly larger peak and lower FWHM was found compared with the VOF. Our findings indicate that the proposed method has high potential to compensate for PVE and inflow simultaneously. The corrected AIFs could thereby provide a stable input source for DCE analysis.
Collapse
Affiliation(s)
- Chih-Hsien Tseng
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
- Medical Delta, Delft, the Netherlands
- HollandPTC Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Center, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
| | - Martijn A Nagtegaal
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias J P van Osch
- Medical Delta, Delft, the Netherlands
- HollandPTC Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Center, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaap Jaspers
- HollandPTC Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Center, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alejandra Mendez Romero
- HollandPTC Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Center, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Piotr Wielopolski
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marion Smits
- Medical Delta, Delft, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Brain Tumour Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Frans M Vos
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
- Medical Delta, Delft, the Netherlands
- HollandPTC Consortium-Erasmus MC, Rotterdam, Holland Proton Therapy Center, Delft, Leiden University Medical Center, Leiden and Delft University of Technology, Delft, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Conte M, Woodall RT, Gutova M, Chen BT, Shiroishi MS, Brown CE, Munson JM, Rockne RC. Structural and practical identifiability of contrast transport models for DCE-MRI. PLoS Comput Biol 2024; 20:e1012106. [PMID: 38748755 PMCID: PMC11132485 DOI: 10.1371/journal.pcbi.1012106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/28/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024] Open
Abstract
Contrast transport models are widely used to quantify blood flow and transport in dynamic contrast-enhanced magnetic resonance imaging. These models analyze the time course of the contrast agent concentration, providing diagnostic and prognostic value for many biological systems. Thus, ensuring accuracy and repeatability of the model parameter estimation is a fundamental concern. In this work, we analyze the structural and practical identifiability of a class of nested compartment models pervasively used in analysis of MRI data. We combine artificial and real data to study the role of noise in model parameter estimation. We observe that although all the models are structurally identifiable, practical identifiability strongly depends on the data characteristics. We analyze the impact of increasing data noise on parameter identifiability and show how the latter can be recovered with increased data quality. To complete the analysis, we show that the results do not depend on specific tissue characteristics or the type of enhancement patterns of contrast agent signal.
Collapse
Affiliation(s)
- Martina Conte
- Department of Mathematical Sciences “G. L. Lagrange”, Politecnico di Torino, Torino, Italy
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Ryan T. Woodall
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, California, United States of America
| | - Mark S. Shiroishi
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Christine E. Brown
- Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center Duarte, California, United States of America
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, Virginia, United States of America
| | - Russell C. Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| |
Collapse
|
3
|
Ramachandran A, Hussain H, Seiberlich N, Gulani V. Perfusion MR Imaging of Liver: Principles and Clinical Applications. Magn Reson Imaging Clin N Am 2024; 32:151-160. [PMID: 38007277 DOI: 10.1016/j.mric.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Perfusion imaging techniques provide quantitative characterization of tissue microvasculature. Perfusion MR of liver is particularly challenging because of dual afferent flow, need for large organ high-resolution coverage, and significant movement with respiration. The most common MR technique used for quantifying liver perfusion is dynamic contrast-enhanced MR imaging. Here, the authors describe the various perfusion MR models of the liver, the basic concepts behind implementing a perfusion acquisition, and clinical results that have been obtained using these models.
Collapse
Affiliation(s)
- Anupama Ramachandran
- Brigham and Women's Hospital, Harvard University, Boston, MA, USA; Department of Radiology, University of Michigan, AnnArbor, MI, USA
| | - Hero Hussain
- Department of Radiology, University of Michigan, AnnArbor, MI, USA
| | | | - Vikas Gulani
- Department of Radiology, University of Michigan, AnnArbor, MI, USA.
| |
Collapse
|
4
|
Zheng S, He K, Zhang L, Li M, Zhang H, Gao P. Conventional and artificial intelligence-based computed tomography and magnetic resonance imaging quantitative techniques for non-invasive liver fibrosis staging. Eur J Radiol 2023; 165:110912. [PMID: 37290363 DOI: 10.1016/j.ejrad.2023.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Chronic liver disease (CLD) ultimately develops into liver fibrosis and cirrhosis and is a major public health problem globally. The assessment of liver fibrosis is important for patients with CLD for prognostication, treatment decisions, and surveillance. Liver biopsies are traditionally performed to determine the stage of liver fibrosis. However, the risks of complications and technical limitations restrict their application to screening and sequential monitoring in clinical practice. CT and MRI are essential for evaluating cirrhosis-associated complications in patients with CLD, and several non-invasive methods based on them have been proposed. Artificial intelligence (AI) techniques have also been applied to stage liver fibrosis. This review aimed to explore the values of conventional and AI-based CT and MRI quantitative techniques for non-invasive liver fibrosis staging and summarized their diagnostic performance, advantages, and limitations.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Kan He
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Lei Zhang
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Mingyang Li
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Huimao Zhang
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Pujun Gao
- Department of Hepatology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
5
|
Tadimalla S, Wang W, Haworth A. Role of Functional MRI in Liver SBRT: Current Use and Future Directions. Cancers (Basel) 2022; 14:cancers14235860. [PMID: 36497342 PMCID: PMC9739660 DOI: 10.3390/cancers14235860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) is an emerging treatment for liver cancers whereby large doses of radiation can be delivered precisely to target lesions in 3-5 fractions. The target dose is limited by the dose that can be safely delivered to the non-tumour liver, which depends on the baseline liver functional reserve. Current liver SBRT guidelines assume uniform liver function in the non-tumour liver. However, the assumption of uniform liver function is false in liver disease due to the presence of cirrhosis, damage due to previous chemo- or ablative therapies or irradiation, and fatty liver disease. Anatomical information from magnetic resonance imaging (MRI) is increasingly being used for SBRT planning. While its current use is limited to the identification of target location and size, functional MRI techniques also offer the ability to quantify and spatially map liver tissue microstructure and function. This review summarises and discusses the advantages offered by functional MRI methods for SBRT treatment planning and the potential for adaptive SBRT workflows.
Collapse
Affiliation(s)
- Sirisha Tadimalla
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| | - Wei Wang
- Crown Princess Mary Cancer Centre, Sydney West Radiation Oncology Network, Western Sydney Local Health District, Sydney, NSW 2145, Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
6
|
Das AB, Tranos JA, Zhang J, Wadghiri YZ, Kim SG. Estimation of Contrast Agent Concentration in DCE-MRI Using 2 Flip Angles. Invest Radiol 2022; 57:343-351. [PMID: 35025833 PMCID: PMC8986601 DOI: 10.1097/rli.0000000000000845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE The aim of this study was to investigate the feasibility of using 2 flip angles (FAs) with an ultrashort echo time during dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) for estimation of plasma gadolinium (Gd) concentration without using a precontrast longitudinal relaxation time T1 (T10) measurement. METHODS T1-weighted DCE-MRI experiments were carried out with C57BL/6J mice using the scan protocol with 2 FAs over 3 sequential segments during 1 scan. The data with 2 FAs were used to estimate T10 (T1T) during conversion of a time-intensity curve to the time-concentration curve. Three dosages of gadolinium-based contrast agent were used to achieve a wide range of variability in Gd concentrations when measured at 10 minutes postinjection: 0.05 mmol/kg (n = 6), 0.1 mmol/kg (n = 11), and 0.15 mmol/kg (n = 7). For comparison, the signal-to-concentration conversion was also conducted using the T10 measured from the precontrast scan (T1M) as well as a constant T10 (2.1 seconds) from the literature (T1C). The Gd concentrations ([Gd]) estimated using DCE-MRI data for the time of retro-orbital blood collection ([Gd]T1T, [Gd]T1M, and [Gd]T1C, respectively) were compared against the [Gd] of the blood samples measured by inductively coupled plasma mass spectrometry ([Gd]MS). In addition, contrast kinetic model analysis was conducted on mice with GL261 brain tumors (n = 5) using the 3 different methods for T10. RESULTS T1T strongly correlated with T1M (r = 0.81). [Gd]T1M and [Gd]T1T were significantly different from [Gd]T1C. [Gd]T1M and [Gd]T1T were in good agreement with [Gd]MS with strong correlations (mean percentage error ± standard deviation) of r = 0.70 (16% ± 56%) and r = 0.85 (15% ± 44%), respectively. In contrast, [Gd]T1C had a weak correlation of r = 0.52 with larger errors of 33% ± 24%. The contrast kinetic model parameters of GL261 brain tumors using T1T were not significantly different from those using T1M. CONCLUSIONS This study substantiates the feasibility of using the 2-FA approach during DCE-MRI scan to estimate [Gd] in the plasma without using an extra scan to perform precontrast T1 measurements.
Collapse
Affiliation(s)
| | - James A. Tranos
- Bernard & Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Jin Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Youssef Zaim Wadghiri
- Bernard & Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - S. Gene Kim
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
- Bernard & Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Río Bártulos C, Senk K, Schumacher M, Plath J, Kaiser N, Bade R, Woetzel J, Wiggermann P. Assessment of Liver Function With MRI: Where Do We Stand? Front Med (Lausanne) 2022; 9:839919. [PMID: 35463008 PMCID: PMC9018984 DOI: 10.3389/fmed.2022.839919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease and hepatocellular carcinoma (HCC) have become a global health burden. For this reason, the determination of liver function plays a central role in the monitoring of patients with chronic liver disease or HCC. Furthermore, assessment of liver function is important, e.g., before surgery to prevent liver failure after hepatectomy or to monitor the course of treatment. Liver function and disease severity are usually assessed clinically based on clinical symptoms, biopsy, and blood parameters. These are rather static tests that reflect the current state of the liver without considering changes in liver function. With the development of liver-specific contrast agents for MRI, noninvasive dynamic determination of liver function based on signal intensity or using T1 relaxometry has become possible. The advantage of this imaging modality is that it provides additional information about the vascular structure, anatomy, and heterogeneous distribution of liver function. In this review, we summarized and discussed the results published in recent years on this technique. Indeed, recent data show that the T1 reduction rate seems to be the most appropriate value for determining liver function by MRI. Furthermore, attention has been paid to the development of automated tools for image analysis in order to uncover the steps necessary to obtain a complete process flow from image segmentation to image registration to image analysis. In conclusion, the published data show that liver function values obtained from contrast-enhanced MRI images correlate significantly with the global liver function parameters, making it possible to obtain both functional and anatomic information with a single modality.
Collapse
Affiliation(s)
- Carolina Río Bártulos
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Karin Senk
- Institut für Röntgendiagnostik, Universtitätsklinikum Regensburg, Regensburg, Germany
| | | | - Jan Plath
- MeVis Medical Solutions AG, Bremen, Germany
| | | | | | | | - Philipp Wiggermann
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| |
Collapse
|
8
|
Wang Q, Kesen S, Liljeroth M, Nilsson H, Zhao Y, Sparrelid E, Brismar TB. Quantitative evaluation of liver function with gadoxetic acid enhanced MRI: Comparison among signal intensity-, T1-relaxometry-, and dynamic-hepatocyte-specific-contrast-enhanced MRI- derived parameters. Scand J Gastroenterol 2022:1-8. [PMID: 35108168 DOI: 10.1080/00365521.2022.2032321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
AIMS Three types of gadoxetic acid enhanced MRI parameters have been proposed to quantify liver function. However, until now there is no consensus on which one that has the greatest potential for use in clinical practice. This study was conducted to compare the efficacy of three types of gadoxetic acid enhanced MR parameters for quantitative assessment of liver function. METHODS Imaging data of 10 patients with chronic liver disease and 20 healthy volunteers were analyzed. Parameters based on signal intensity(SI), T1 changes or dynamic-hepatocyte-specific-contrast-enhancement MR were calculated. Their mutual correlations, discriminatory capacity between cirrhotic and healthy liver and correlations with Child-Pugh score and Model for end-stage liver-disease (MELD) were estimated. RESULTS The strongest correlations were observed between relative enhancement of the liver and T1 time at 20 min after contrast agent injection, and between liver-spleen contrast ratio at 20 min after contrast agent injection and hepatic uptake rate (|r|> 0.90, p < .05, both). All parameters but input-relative blood flow (p = 0.17) were significantly different between patient and control group (p < .05), with AUROCs of liver-to-muscle ratio (LMR), increase of LMR and hepatic extraction fraction greater than 0.90 (p < .05). Liver-to-spleen ratio, LMR and hepatic uptake index presented a strong correlation with Child-Pugh score and MELD (|r|> 0.8, p < .05). CONCLUSION Simple SI-based parameters were as good as more complex parameters in evaluating liver function at gadoxetic acid enhanced MR. In clinical routine LMR seems to be the easiest-to-use parameter for quantitative evaluation of liver function.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Savas Kesen
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Maria Liljeroth
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Nilsson
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ying Zhao
- Experimental Cancer Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
9
|
Li J, Cao B, Bi X, Chen W, Wang L, Du Z, Zhang X, Yu X. Evaluation of liver function in patients with chronic hepatitis B using Gd-EOB-DTPA-enhanced T1 mapping at different acquisition time points: a feasibility study. Radiol Med 2021; 126:1149-1158. [PMID: 34105102 DOI: 10.1007/s11547-021-01382-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE This study aimed to explore the impact of different acquisition times on the evaluation of liver function levels in chronic hepatitis B using Gd-EOB-DTPA-enhanced T1 positioning technology under 3.0 Tesla magnetic resonance imaging (MRI). METHODS A total of 146 patients with chronic hepatitis B (CHB) were classified into four groups as follows: chronic hepatitis B without liver cirrhosis (CH, 22 cases), liver cirrhosis with Child-Pugh classification A (LCA 63 cases), Child-Pugh B (LCB 47 cases) and Child-Pugh C (LCC 14 cases). Normal liver function (NLF) group was composed of 23 persons who had healthy liver and no medical histories of hepatitis. T1 mapping images were performed before and after administration of Gd-EOB-DPTA using Look-Locker sequence. Changes in T1 relaxation time (T1rt), the reduction rate of T1 relaxation time (ΔT1) and the increase in T1 relaxation rate (ΔR1) of liver over time (at 5, 10, 15 and 20 min) were investigated and compared among all five groups using a one-way analysis of variance (ANOVA). The Spearman's rank correlation coefficient (r) was used to show the correlations of these parameters in different liver function groups. RESULTS In the NLF, CH, LCA and LCB groups, postT1 gradually decreased, while the ΔT1 and ΔR1 gradually increased with time. The parameters were compared between different liver function levels at the same time point, and the differences were statistically significant except for NLF-CH, NLF-LCA and CH-LCA. There was no significant difference in the area under the ROC curve of other parameters at 10, 15 and 20 min. At each time point, no correlation was found between preT1rt and the degrees of liver function. PostT1rt was positively correlated with liver function classification, while ΔT1 and ΔR1 were negatively correlated with liver function classification. CONCLUSION Gd-EOB-DTPA-enhanced T1 mapping magnetic resonance imaging is beneficial to assess liver function. Using the Gd-EOB-DTPA to enhance T1 mapping imaging to assess liver function can shorten the observation time of the hepatobiliary period and 10 min after enhancement may be the best time point.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Boling Cao
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Xinjun Bi
- Department of Radiology, Affiliated Matern and Child Care Hospital of Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Weipeng Chen
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Lanjing Wang
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Zhongli Du
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Xueqin Zhang
- Department of Radiology, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226000, Jiangsu, People's Republic of China.
| | - Xiangrong Yu
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Stocker D, Hectors S, Bane O, Vietti-Violi N, Said D, Kennedy P, Cuevas J, Cunha GM, Sirlin CB, Fowler KJ, Lewis S, Taouli B. Dynamic contrast-enhanced MRI perfusion quantification in hepatocellular carcinoma: comparison of gadoxetate disodium and gadobenate dimeglumine. Eur Radiol 2021; 31:9306-9315. [PMID: 34043055 DOI: 10.1007/s00330-021-08068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/22/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES (1) To assess the quality of the arterial input function (AIF) during dynamic contrast-enhanced (DCE) MRI of the liver and (2) to quantify perfusion parameters of hepatocellular carcinoma (HCC) and liver parenchyma during the first 3 min post-contrast injection with DCE-MRI using gadoxetate disodium compared to gadobenate dimeglumine (Gd-BOPTA) in different patient populations. METHODS In this prospective study, we evaluated 66 patients with 83 HCCs who underwent DCE-MRI, using gadoxetate disodium (group 1, n = 28) or Gd-BOPTA (group 2, n = 38). AIF qualitative and quantitative features were assessed. Perfusion parameters (based on the initial 3 min post-contrast) were extracted in tumours and liver parenchyma, including model-free parameters (time-to-peak enhancement (TTP), time-to-washout) and modelled parameters (arterial flow (Fa), portal venous flow (Fp), total flow (Ft), arterial fraction, mean transit time (MTT), distribution volume (DV)). In addition, lesion-to-liver contrast ratios (LLCRs) were measured. Fisher's exact tests and Mann-Whitney U tests were used to compare the two groups. RESULTS AIF quality, modelled and model-free perfusion parameters in HCC were similar between the 2 groups (p = 0.054-0.932). Liver parenchymal flow was lower and liver enhancement occurred later in group 1 vs group 2 (Fp, p = 0.002; Ft, p = 0.001; TTP, MTT, all p < 0.001), while there were no significant differences in tumour LLCR (max. positive LLCR, p = 0.230; max. negative LLCR, p = 0.317). CONCLUSION Gadoxetate disodium provides comparable AIF quality and HCC perfusion parameters compared to Gd-BOPTA during dynamic phases. Despite delayed and decreased liver enhancement with gadoxetate disodium, LLCRs were equivalent between contrast agents, indicating similar tumour conspicuity. KEY POINTS • Arterial input function quality, modelled, and model-free dynamic parameters measured in hepatocellular carcinoma are similar in patients receiving gadoxetate disodium or gadobenate dimeglumine during the first 3 min post injection. • Gadoxetate disodium and gadobenate dimeglumine show similar lesion-to-liver contrast ratios during dynamic phases in patients with HCC. • There is lower portal and lower total hepatic flow and longer hepatic mean transit time and time-to-peak with gadoxetate disodium compared to gadobenate dimeglumine.
Collapse
Affiliation(s)
- Daniel Stocker
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stefanie Hectors
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Naik Vietti-Violi
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniela Said
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Universidad de los Andes, Santiago, Chile
| | - Paul Kennedy
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Jordan Cuevas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Guilherme M Cunha
- Liver Imaging Group, Radiology, University of California-San Diego, San Diego, CA, USA
| | - Claude B Sirlin
- Liver Imaging Group, Radiology, University of California-San Diego, San Diego, CA, USA
| | - Kathryn J Fowler
- Liver Imaging Group, Radiology, University of California-San Diego, San Diego, CA, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Li JL, Ye WT, Yan LF, Liu ZY, Cao XM, Liang CH. Influence of tube voltage, tube current and newer iterative reconstruction algorithms in CT perfusion imaging in rabbit liver VX2 tumors. ACTA ACUST UNITED AC 2021; 26:264-270. [PMID: 32490833 DOI: 10.5152/dir.2019.19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE We aimed to explore the influence of tube voltage, current and iterative reconstruction (IR) in computed tomography perfusion imaging (CTPI) and to compare CTPI parameters with microvessel density (MVD). METHODS Hepatic CTPI with three CTPI protocols (protocol A, tube voltage/current 80 kV/40 mAs; protocol B, tube voltage/current 80 kV/80 mAs; protocol C: tube voltage/current 100 kV/80 mAs) were performed in 25 rabbit liver VX2 tumor models, and filtered back projection (FBP) and IR were used for reconstruction of raw data. Hepatic arterial perfusion (HAP), hepatic portal perfusion (HPP), total perfusion (TP), hepatic arterial perfusion index (HPI), blood flow (BF) and blood volume (BV) of VX2 tumor and normal hepatic parenchyma were measured. Image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantified and radiation dose was recorded. MVD was counted using CD34 stain and compared with CTPI parameters. RESULTS The highest radiation dose was found in protocol C, followed by protocols B and A. IR lowered image noise and improved SNR and CNR in all three protocols. There was no statistical difference between HAP, HPP, TP, HPI, BF and BV of VX2 tumor and normal hepatic parenchyma among the three protocols (P > 0.05) with FBP or IR reconstruction, and no statistical difference between IR and FBP reconstruction (P > 0.05) in either protocol. MVD had a positive linear correlation with HAP, TP, BF, with best correlation observed with HAP; MVD of VX2 tumor showed no or poor correlation with HPI and BV. CONCLUSION CTPI parameters are not affected by tube voltage, current or reconstruction algorithm; HAP can best reflect MVD, but no correlation exists between BV and MVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Chang-Hong Liang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
12
|
Morisaka H, Motosugi U, Ichikawa S, Ichikawa T, Kondo T, Onishi H. Uptake of gadoxetic acid in hepatobiliary phase magnetic resonance imaging and transporter expression in hypovascular hepatocellular nodules. Eur J Radiol 2021; 138:109669. [PMID: 33770738 DOI: 10.1016/j.ejrad.2021.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the association between contrast patterns on gadoxetic acid-enhanced hepatobiliary phase (HBP) MR images and transporter expression in surgically resected hypovascular hepatocellular nodules including early hepatocellular carcinomas (HCCs). METHODS Forty-two hypovascular hepatic nodules and 43 hypervascular HCCs as a control were included in this retrospective study. Contrast of the nodules on HBP images was graded as hypo-, iso-, or hyperintense. Histopathological assessment was performed in the context of multistep hepatocarcinogenesis. Immunohistochemical staining of organic anion transporter 1B3 (OATP1B3) and multidrug resistance protein 2 (MRP2) was performed. Cramer's coefficient was used to determine the linear relationship between contrast grades and transporter expression, and the Cochran-Armitage trend test was used to determine the relationship between transporter expression and progression of multistep hepatocarcinogenesis. RESULTS Moderate linear relationships between contrast grades and OATP1B3 expression were observed for both hypo- and hypervascular nodules. OATP1B3 expression was negatively correlated with the progression of multistep hepatocarcinogenesis. MRP2 expression was not associated with the contrast grades or histopathological results. CONCLUSION OATP1B3 expression was associated with contrast grades of hepatocellular nodules observed in HBP image of gadoxetic acid-enhanced MRI in the hypovascular hepatocellular nodules and was negatively correlated with hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hiroyuki Morisaka
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan.
| | - Utaroh Motosugi
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan; Department of Radiology, Kofu-Kyoritsu Hospital, 400-0034, Takara, Kofu, Yamanashi, Japan
| | - Shintaro Ichikawa
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan
| | - Tomoaki Ichikawa
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, 371-8511, Showa, Maebashi, Gunma, Japan
| | - Tetsuo Kondo
- Department of Human Pathology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, 409-3898, Shimokato, Chuo, Yamanashi, Japan
| |
Collapse
|
13
|
Peñate Medina T, Kolb JP, Hüttmann G, Huber R, Peñate Medina O, Ha L, Ulloa P, Larsen N, Ferrari A, Rafecas M, Ellrichmann M, Pravdivtseva MS, Anikeeva M, Humbert J, Both M, Hundt JE, Hövener JB. Imaging Inflammation - From Whole Body Imaging to Cellular Resolution. Front Immunol 2021; 12:692222. [PMID: 34248987 PMCID: PMC8264453 DOI: 10.3389/fimmu.2021.692222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Imaging techniques have evolved impressively lately, allowing whole new concepts like multimodal imaging, personal medicine, theranostic therapies, and molecular imaging to increase general awareness of possiblities of imaging to medicine field. Here, we have collected the selected (3D) imaging modalities and evaluated the recent findings on preclinical and clinical inflammation imaging. The focus has been on the feasibility of imaging to aid in inflammation precision medicine, and the key challenges and opportunities of the imaging modalities are presented. Some examples of the current usage in clinics/close to clinics have been brought out as an example. This review evaluates the future prospects of the imaging technologies for clinical applications in precision medicine from the pre-clinical development point of view.
Collapse
Affiliation(s)
- Tuula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| | - Jan Philip Kolb
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Gießen, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Oula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Institute for Experimental Cancer Research (IET), University of Kiel, Kiel, Germany
| | - Linh Ha
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein Lübeck (UKSH), Lübeck, Germany
| | - Patricia Ulloa
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Magdalena Rafecas
- Institute of Medical Engineering (IMT), University of Lübeck, Lübeck, Germany
| | - Mark Ellrichmann
- Interdisciplinary Endoscopy, Medical Department1, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mariya S. Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mariia Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Jana Humbert
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jennifer E. Hundt
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| |
Collapse
|
14
|
Abstract
Perfusion imaging allows for the quantitative extraction of physiological perfusion parameters of the liver microcirculation at levels far below the spatial the resolution of CT and MR imaging. Because of its peculiar structure and architecture, perfusion imaging is more challenging in the liver than in other organs. Indeed, the liver is a mobile organ and significantly deforms with respiratory motion. Moreover, it has a dual vascular supply and the sinusoidal capillaries are fenestrated in the normal liver. Using extracellular contrast agents, perfusion imaging has shown its ability to discriminate patients with various stages of liver fibrosis. The recent introduction of hepatobiliary contrast agents enables quantification of both the liver perfusion and the hepatocyte transport function using advanced perfusion models. The purpose of this review article is to describe the characteristics of liver perfusion imaging to assess chronic liver disease, with a special focus on CT and MR imaging.
Collapse
|
15
|
Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases. J Hepatol 2020; 73:1241-1254. [PMID: 32585160 PMCID: PMC7572718 DOI: 10.1016/j.jhep.2020.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
MRI has emerged as the most comprehensive non-invasive diagnostic tool for liver diseases. In recent years, the value of MRI in hepatology has been significantly enhanced by a wide range of contrast agents, both clinically available and under development, that add functional information to anatomically detailed morphological images, or increase the distinction between normal and pathological tissues by targeting molecular and cellular events. Several classes of contrast agents are available for contrast-enhanced hepatic MRI, including i) conventional non-specific extracellular fluid contrast agents for assessing tissue perfusion; ii) hepatobiliary-specific contrast agents that are taken up by functioning hepatocytes and excreted through the biliary system for evaluating hepatobiliary function; iii) superparamagnetic iron oxide particles that accumulate in Kupffer cells; and iv) novel molecular contrast agents that are biochemically targeted to specific molecular/cellular processes for staging liver diseases or detecting treatment responses. The use of different functional and molecular MRI methods enables the non-invasive assessment of disease burden, progression, and treatment response in a variety of liver diseases. A high diagnostic performance can be achieved with MRI by combining imaging biomarkers.
Collapse
Affiliation(s)
- Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, USA,Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Onofrio A. Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, USA,Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
16
|
Lorza AMA, Ravi H, Philip RC, Galons JP, Trouard TP, Parra NA, Von Hoff DD, Read WL, Tibes R, Korn RL, Raghunand N. Dose-response assessment by quantitative MRI in a phase 1 clinical study of the anti-cancer vascular disrupting agent crolibulin. Sci Rep 2020; 10:14449. [PMID: 32879326 PMCID: PMC7468301 DOI: 10.1038/s41598-020-71246-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
The vascular disrupting agent crolibulin binds to the colchicine binding site and produces anti-vascular and apoptotic effects. In a multisite phase 1 clinical study of crolibulin (NCT00423410), we measured treatment-induced changes in tumor perfusion and water diffusivity (ADC) using dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI), and computed correlates of crolibulin pharmacokinetics. 11 subjects with advanced solid tumors were imaged by MRI at baseline and 2–3 days post-crolibulin (13–24 mg/m2). ADC maps were computed from DW-MRI. Pre-contrast T1 maps were computed, co-registered with the DCE-MRI series, and maps of area-under-the-gadolinium-concentration-curve-at-90 s (AUC90s) and the Extended Tofts Model parameters ktrans, ve, and vp were calculated. There was a strong correlation between higher plasma drug \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${C}^{max}$$\end{document}Cmax and a linear combination of (1) reduction in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${AUC}_{90s}>15.8$$\end{document}AUC90s>15.8 mM s, and, (2) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${v}_{e}<0.3$$\end{document}ve<0.3. A higher plasma drug AUC was correlated with a linear combination of (1) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}} < 1.1 \times 10^{ - 3} \;{\text{mm}}^{2} /{\text{s}}$$\end{document}ADC<1.1×10-3mm2/s, and, (2) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_{e}<0.3$$\end{document}ve<0.3. These findings are suggestive of cell swelling and decreased tumor perfusion 2–3 days post-treatment with crolibulin. The multivariable linear regression models reported here can inform crolibulin dosing in future clinical studies of crolibulin combined with cytotoxic or immune-oncology agents.
Collapse
Affiliation(s)
- Andres M Arias Lorza
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Rohit C Philip
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85724, USA
| | - Nestor A Parra
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Daniel D Von Hoff
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.,HonorHealth Clinical Research Institute, Scottsdale, AZ, USA
| | - William L Read
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Raoul Tibes
- Department of Internal Medicine II, Julius Maximilians University and Medical Center, Würzburg, Germany
| | | | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA. .,Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
17
|
Hindel S, Geisel D, Alerić I, Theilig D, Denecke T, Lüdemann L. Liver function quantification of patients with portal vein embolization using dynamic contrast-enhanced MRI for assessment of hepatocyte uptake and elimination. Phys Med 2020; 76:207-220. [PMID: 32707485 DOI: 10.1016/j.ejmp.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022] Open
Abstract
PURPOSE We evaluated pharmacokinetic models which quantify liver function including biliary elimination based on a dynamic Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) technique with sparse data collection feasible in clinical routine. METHODS Twelve patients with embolized liver segments following interventional treatment of primary liver cancer or hepatic metastasis underwent MRI. During Gd-EOB-DTPA bolus administration, a 3D dynamic gradient-echo (GRE) MRI examination was performed over approx. 28 min. Interrupted data sampling was started approx. 5 min after contrast agent administration. Different implementations of dual-inlet models were tested, namely the Euler method (DE) and convolution with residue functions (C). A simple uptake model (U) and an uptake- elimination model (UE) extended by incorporating the biliary contrast agent elimination rate (Ke) were evaluated. RESULTS The uptake-elimination model, calculated via the simple Euler method (UE- DE) and by convolution (UE-C), yielded similar overall estimates in terms of fitting quality and agreement with published values. The Euler method was approx. 50 times faster and yielded a mean elimination rate of Ke=1.8±1.2mL/(min·100 mL) in nonembolized liver tissue, which was significantly higher (p=8.8·10-4) than in embolized tissue Ke=0.4±0.4 mL/(min·100 mL). Fractional hepatocyte volume vh was not significantly higher in nonembolized tissue (52.4 ± 13.4 mL/100 mL) compared to embolized tissue (44.4 ± 26.1 mL/100 mL). CONCLUSIONS Interrupted late enhancement MRI data sampling in conjunction with the uptake-elimination model, deconvolved by integration of the differential rate equation and combined with the simple uptake model implemented with the Euler method (U-DE), turned out to be a stable and practical method for reliable noninvasive assessment of liver function.
Collapse
Affiliation(s)
- Stefan Hindel
- Department of Radiotherapy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - Dominik Geisel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ivana Alerić
- Department of Radiotherapy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany; Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, 31000 Osijek, Croatia
| | - Dorothea Theilig
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Timm Denecke
- Clinic and Polyclinic for Diagnostic and Interventional Radiology, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Lutz Lüdemann
- Department of Radiotherapy, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
18
|
Stimulation of the hepatic arterial buffer response using exogenous adenosine: hepatic rest/stress perfusion imaging. Eur Radiol 2020; 30:5852-5861. [DOI: 10.1007/s00330-020-06984-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022]
|
19
|
Mansour R, Thibodeau Antonacci A, Bilodeau L, Vazquez Romaguera L, Cerny M, Huet C, Gilbert G, Tang A, Kadoury S. Impact of temporal resolution and motion correction for dynamic contrast-enhanced MRI of the liver using an accelerated golden-angle radial sequence. Phys Med Biol 2020; 65:085004. [PMID: 32084661 DOI: 10.1088/1361-6560/ab78be] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This paper presents a prospective study evaluating the impact on image quality and quantitative dynamic contrast-enhanced (DCE)-MRI perfusion parameters when varying the number of respiratory motion states when using an eXtra-Dimensional Golden-Angle Radial Sparse Parallel (XD-GRASP) MRI sequence. DCE acquisition was performed using a 3D stack-of-stars gradient-echo golden-angle radial acquisition in free-breathing with 100 spokes per motion state and temporal resolution of 6 s/volume, and using a non-rigid motion compensation to align different motion states. Parametric analysis was conducted using a dual-input single-compartment model. Nonparametric analysis was performed on the time-intensity curves. A total of 22 hepatocellular carcinomas (size: 11-52 mm) were evaluated. XD-GRASP reconstructed with increasing number of spokes for each motion state increased the signal-to-noise ratio (SNR) (p < 0.05) but decreased temporal resolution (0.04 volume/s vs 0.17 volume/s for one motion state) (p < 0.05). A visual scoring by an experienced radiologist show no change between increasing number of motion states with same number of spokes using the Likert score. The normalized maximum intensity time ratio, peak enhancement ratio and tumor arterial fraction increased with decreasing number of motion states (p < 0.05) while the transfer constant from the portal venous plasma to the surrounding tissue significantly decreased (p < 0.05). These same perfusion parameters show a significant difference in case of tumor displacement more than 1 cm (p < 0.05) whereas in the opposite case there was no significant variation. While a higher number of motion states and higher number of spokes improves SNR, the resulting lower temporal resolution can influence quantitative parameters that capture rapid signal changes. Finally, fewer displacement compensation is advantageous with lower number of motion state due to the higher temporal resolution. XD-GRASP can be used to perform quantitative perfusion measures in the liver, but the number of motion states may significantly alter some quantitative parameters.
Collapse
Affiliation(s)
- Rihab Mansour
- Centre hospitalier de l'Université de Montréal (CHUM) Research center, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wáng YXJ, Wang X, Wu P, Wang Y, Chen W, Chen H, Li J. Topics on quantitative liver magnetic resonance imaging. Quant Imaging Med Surg 2019; 9:1840-1890. [PMID: 31867237 DOI: 10.21037/qims.2019.09.18] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Liver magnetic resonance imaging (MRI) is subject to continuous technical innovations through advances in hardware, sequence and novel contrast agent development. In order to utilize the abilities of liver MR to its full extent and perform high-quality efficient exams, it is mandatory to use the best imaging protocol, to minimize artifacts and to select the most adequate type of contrast agent. In this article, we review the routine clinical MR techniques applied currently and some latest developments of liver imaging techniques to help radiologists and technologists to better understand how to choose and optimize liver MRI protocols that can be used in clinical practice. This article covers topics on (I) fat signal suppression; (II) diffusion weighted imaging (DWI) and intravoxel incoherent motion (IVIM) analysis; (III) dynamic contrast-enhanced (DCE) MR imaging; (IV) liver fat quantification; (V) liver iron quantification; and (VI) scan speed acceleration.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | | | - Peng Wu
- Philips Healthcare (Suzhou) Co., Ltd., Suzhou 215024, China
| | - Yajie Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weibo Chen
- Philips Healthcare, Shanghai 200072, China.,Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
21
|
Schierling W, Wipper S, Behem CR, Hinck DC, Trepte CJ, Debus ES, Pfister K. Sonographic real-time imaging of tissue perfusion in a porcine haemorrhagic shock model. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2797-2804. [PMID: 31277923 DOI: 10.1016/j.ultrasmedbio.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 05/02/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Injection of fluorescence-labelled microspheres (FMs) in pigs allows only the postmortem determination of organ perfusion. Colour duplex ultrasound (CDU) and contrast-enhanced ultrasound were established as techniques for real-time imaging of tissue perfusion in a porcine haemorrhagic shock model. Haemorrhagic shock was provoked in nine domestic pigs by taking at least 15% of the calculated blood volume. Ultrasound examinations were performed with a Hitachi HI VISION Ascendus. SonoVue was injected for contrast-enhanced ultrasound. Monitoring of the resistive index and time-to-peak ratio enabled quantification of tissue perfusion in vivo during the entire study, allowing real-time differentiation of animals with systemic shock versus failing shock effect. Postmortem analyses of injected FMs confirmed the sonographic in vivo results. Determination of the resistive index and time-to-peak ratio by CDU and contrast-enhanced ultrasound allowed real-time monitoring of tissue perfusion. Effects of haemorrhagic shock and therapeutic approaches related to organ perfusion can be observed live and in vivo.
Collapse
Affiliation(s)
- Wilma Schierling
- Division of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany.
| | - Sabine Wipper
- Department of Vascular Medicine, German Aortic Center Hamburg, University Heart Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph R Behem
- Centre of Anaesthesiology and Intensive Care Medicine, Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel C Hinck
- Section of Vascular Surgery, Department of General and Visceral Surgery, Bundeswehrkrankenhaus Hamburg, Hamburg, Germany
| | - Constantin J Trepte
- Centre of Anaesthesiology and Intensive Care Medicine, Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike S Debus
- Department of Vascular Medicine, German Aortic Center Hamburg, University Heart Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Pfister
- Division of Vascular Surgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Zhang T, Runge JH, Lavini C, Stoker J, van Gulik T, Cieslak KP, van Vliet LJ, Vos FM. A pharmacokinetic model including arrival time for two inputs and compensating for varying applied flip-angle in dynamic gadoxetic acid-enhanced MR imaging. PLoS One 2019; 14:e0220835. [PMID: 31415613 PMCID: PMC6695151 DOI: 10.1371/journal.pone.0220835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/24/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Pharmacokinetic models facilitate assessment of properties of the micro-vascularization based on DCE-MRI data. However, accurate pharmacokinetic modeling in the liver is challenging since it has two vascular inputs and it is subject to large deformation and displacement due to respiration. METHODS We propose an improved pharmacokinetic model for the liver that (1) analytically models the arrival-time of the contrast agent for both inputs separately; (2) implicitly compensates for signal fluctuations that can be modeled by varying applied flip-angle e.g. due to B1-inhomogeneity. Orton's AIF model is used to analytically represent the vascular input functions. The inputs are independently embedded into the Sourbron model. B1-inhomogeneity-driven variations of flip-angles are accounted for to justify the voxel's displacement with respect to a pre-contrast image. RESULTS The new model was shown to yield lower root mean square error (RMSE) after fitting the model to all but a minority of voxels compared to Sourbron's approach. Furthermore, it outperformed this existing model in the majority of voxels according to three model-selection criteria. CONCLUSION Our work primarily targeted to improve pharmacokinetic modeling for DCE-MRI of the liver. However, other types of pharmacokinetic models may also benefit from our approaches, since the techniques are generally applicable.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Jurgen H. Runge
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Cristina Lavini
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Thomas van Gulik
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Kasia P. Cieslak
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Lucas J. van Vliet
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Frans M. Vos
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Thibodeau-Antonacci A, Petitclerc L, Gilbert G, Bilodeau L, Olivié D, Cerny M, Castel H, Turcotte S, Huet C, Perreault P, Soulez G, Chagnon M, Kadoury S, Tang A. Dynamic contrast-enhanced MRI to assess hepatocellular carcinoma response to Transarterial chemoembolization using LI-RADS criteria: A pilot study. Magn Reson Imaging 2019; 62:78-86. [PMID: 31247250 DOI: 10.1016/j.mri.2019.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/05/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To identify quantitative dynamic contrast-enhanced (DCE)-MRI perfusion parameters indicating tumor response of hepatocellular carcinoma (HCC) to transarterial chemoembolization (TACE). MATERIALS AND METHODS This prospective pilot study was approved by our institutional review board; written and informed consent was obtained for each participant. Patients underwent DCE-MRI examinations before and after TACE. A variable flip-angle unenhanced 3D mDixon sequence was performed for T1 mapping. A dynamic 4D mDixon sequence was performed after contrast injection for assessing dynamic signal enhancement. Nonparametric analysis was conducted on the time-intensity curves. Parametric analysis was performed on the time-concentration curves using a dual-input single-compartment model. Treatment response according to Liver Reporting and Data System (LI-RADS) v2018 was used as the reference standard. The comparisons within groups (before vs. after treatment) and between groups (nonviable vs. equivocal or viable tumor) were performed using nonparametric bootstrap taking into account the clustering effect of lesions in patients. RESULTS Twenty-eight patients with 52 HCCs (size: 10-104 mm) were evaluated. For nonviable tumors (n = 27), time to peak increased from 62.5 ± 18.2 s before to 83.3 ± 12.8 s after treatment (P< 0.01). For equivocal or viable tumors (n = 25), time to peak and mean transit time significantly increased (from 54.4 ± 24.1 s to 69.5 ± 18.9 s, P < 0.01 and from 14.2 ± 11.8 s to 33.9 ± 36.8 s, P= 0.01, respectively) and the transfer constant from the extracellular and extravascular space to the central vein significantly decreased from 14.8 ± 14.1 to 8.1 ± 9.1 s-1 after treatment (P= 0.01). CONCLUSION This prospective pilot DCE-MRI study showed that time to peak significantly changed after TACE treatment for both groups (nonviable tumors and equivocal or viable tumors). In our cohort, several perfusion parameters may provide an objective marker for differentiation of treatment response after TACE in HCC patients.
Collapse
Affiliation(s)
- Alana Thibodeau-Antonacci
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Léonie Petitclerc
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Laurent Bilodeau
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Damien Olivié
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Milena Cerny
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Hélène Castel
- Department of Hepatology and Liver transplantation, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Simon Turcotte
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Department of Surgery, Hepatopancreatobiliary and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Catherine Huet
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Pierre Perreault
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Gilles Soulez
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Miguel Chagnon
- Department of Mathematics and Statistics, Université de Montréal, QC, Canada
| | - Samuel Kadoury
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; École Polytechnique, Montréal, Québec, Canada
| | - An Tang
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
24
|
Ippoliti M, Lukas M, Brenner W, Schaeffter T, Makowski MR, Kolbitsch C. 3D nonrigid motion correction for quantitative assessment of hepatic lesions in DCE-MRI. Magn Reson Med 2019; 82:1753-1766. [PMID: 31228296 PMCID: PMC6771884 DOI: 10.1002/mrm.27867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022]
Abstract
Purpose To provide nonrigid respiratory motion‐corrected DCE‐MRI images with isotropic resolution of 1.5 mm, full coverage of abdomen, and covering the entire uptake curve with a temporal resolution of 6 seconds, for the quantitative assessment of hepatic lesions. Methods 3D DCE‐MRI data were acquired at 3 T during free breathing for 5 minutes using a 3D T1‐weighted golden‐angle radial phase‐encoding sequence. Nonrigid respiratory motion information was extracted and used in motion‐corrected image reconstruction to obtain high‐quality DCE‐MRI images with temporal resolution of 6 seconds and isotropic resolution of 1.5 mm. An extended Tofts model was fitted to the dynamic data sets, yielding quantitative parametric maps of endothelial permeability using the hepatic artery as input function. The proposed approach was evaluated in 11 patients (52 ± 17 years, 5 men) with and without known hepatic lesions, undergoing DCE‐MRI. Results Respiratory motion produced artifacts and misalignment between dynamic volumes (lesion average motion amplitude of 3.82 ± 1.11 mm). Motion correction minimized artifacts and improved average contrast‐to‐noise ratio of hepatic lesions in late phase by 47% (p < .01). Quantitative endothelial permeability maps of motion‐corrected data demonstrated enhanced visibility of different pathologies (e.g., metastases, hemangiomas, cysts, necrotic tumor substructure) and showed improved contrast‐to‐noise ratio by 62% (p < .01) compared with uncorrected data. Conclusion 3D nonrigid motion correction in DCE‐MRI improves both visual and quantitative assessment of hepatic lesions by ensuring accurate alignment between 3D DCE images and reducing motion blurring. This approach does not require breath‐holds and minimizes scan planning by using a large FOV with isotropic resolution.
Collapse
Affiliation(s)
- Matteo Ippoliti
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Lukas
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Marcus R Makowski
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
25
|
Assessment of liver cirrhosis for patients with Child's A classification before hepatectomy using dynamic contrast-enhanced MRI. Clin Radiol 2019; 74:407.e11-407.e17. [DOI: 10.1016/j.crad.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/23/2019] [Indexed: 01/29/2023]
|
26
|
Kruepunga N, Hakvoort TB, Hikspoors JP, Köhler SE, Lamers WH. Anatomy of rodent and human livers: What are the differences? Biochim Biophys Acta Mol Basis Dis 2019; 1865:869-878. [DOI: 10.1016/j.bbadis.2018.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/30/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
|
27
|
Intra- and interobserver reproducibility of pancreatic perfusion by computed tomography. Sci Rep 2019; 9:6043. [PMID: 30988325 PMCID: PMC6465241 DOI: 10.1038/s41598-019-42519-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/02/2019] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to measure intra- and interobserver agreement among radiologists in the assessment of pancreatic perfusion by computed tomography (CT). Thirty-nine perfusion CT scans were analyzed. The following parameters were measured by three readers: blood flow (BF), blood volume (BV), mean transit time (MTT) and time to peak (TTP). Statistical analysis was performed using the Bland-Altman method, linear mixed model analysis, and intraclass correlation coefficient (ICC). There was no significant intraobserver variability for the readers regarding BF, BV or TTP. There were session effects for BF in the pancreatic body and MTT in the pancreatic tail and whole pancreas. There were reader effects for BV in the pancreatic head, pancreatic body and whole pancreas. There were no effects for the interaction between session and reader for any perfusion parameter. ICCs showed substantial agreement for the interobserver measurements and moderate to substantial agreement for the intraobserver measurements, with the exception of MTT. In conclusion, satisfactory reproducibility of measurements was observed for TTP in all pancreatic regions, for BF in the head and BV in the tail, and these parameters seem to ensure a reasonable estimation of pancreatic perfusion.
Collapse
|
28
|
Noninvasive Assessment of Liver Fibrosis in Patients with Chronic Hepatitis B or C by Contrast-Enhanced Magnetic Resonance Imaging. Can J Gastroenterol Hepatol 2019; 2019:3024630. [PMID: 31058108 PMCID: PMC6463673 DOI: 10.1155/2019/3024630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/28/2018] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Background and Aim. To develop a noninvasive magnetic resonance imaging (MRI) method for evaluation of liver fibrosis. We evaluate the utility of hepatocyte-phase Gadoxetate disodium-enhanced magnetic resonance (MR) imaging in staging hepatic fibrosis and compare it with histological analysis as the reference standard (liver biopsy). Methods. Prospective cohort of 78 patients, who received Gadoxetate disodium dynamic contrast-enhanced MRI (DCE-MRI), were divided into three groups. The first group (n=19) was a control group of healthy individuals without liver injury and remaining 59 subjects were chronic hepatitis B and C patients who underwent liver biopsy. These patients were divided into the mild fibrosis F1-F2 (n=32) and advanced fibrosis F3-F4 (n=27) groups. Patients were examined by generated DCE-MRI in 20th minute. Variables such as liver surface changes, homogeneities, and quantitative contrast liver/spleen ratio-Q-LSCR were evaluated and these results were consequently compared between the three groups. Results. Gd-EOB-DTPA contrast-enhanced dynamic liver MRI examination (DCE-MRI) can in the 20th minute differentiate mild stage of liver fibrosis (F1-F2) from severe stage of liver fibrosis (F3-F4) on the basis of liver surface changes, homogeneities, and quantitative contrast liver/spleen ratio-Q-LSCR. Diagnostic MRI criteria were created and named MRI Triple test. This test correctly identified 96% of patients with F3-F4 fibrosis and 91% of patients with the F1-F2 fibrosis in the liver biopsy. This test correctly identified 42,1% of patients in the control group (presumed F0 fibrosis without liver disease). Spearman's rank correlation coefficient (r = 0,86, P < .001) confirmed high agreement of biopsy and MR Triple test. MR Triple test's sensitivity was 96.30% (95%CI 81.03% to 99.91%), specificity 90.62% (95%CI 74.98% to 98.02%), positive predictive value 89.66% (95%CI 74.64% to 96.23%), and negative predictive value 96.67% (95%CI 80.86% to 99.50%) for discrimination between F3-4 and F1-2 fibrosis on liver biopsy. Conclusions. Gd-EOB-DTPA contrast-enhanced MRI liver examination in 20th minute is able to reliably differentiate mild stage of liver fibrosis (F1-F2) from severe stage fibrosis (F3-F4) on the basis of Triple test (liver surface changes, homogeneities, and quantitative contrast liver/spleen ratio-Q-LSCR).
Collapse
|
29
|
T1 mapping for liver function evaluation in gadoxetic acid–enhanced MR imaging: comparison of look-locker inversion recovery and B1 inhomogeneity–corrected variable flip angle method. Eur Radiol 2019; 29:3584-3594. [DOI: 10.1007/s00330-018-5947-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/27/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
|
30
|
Ryu J, Han S, Oh S, Lee J, Kim S, Park J. A new ultrafast 3D gradient echo‐based imaging method using quadratic‐phase encoding. Magn Reson Med 2019; 82:237-250. [DOI: 10.1002/mrm.27711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Jae‐Kyun Ryu
- Center for Neuroscience Imaging Research Institute for Basic Science Suwon Republic of Korea
- Department of Biomedical Engineering Sungkyunkwan University Suwon Republic of Korea
| | - SoHyun Han
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts
| | - Se‐Hong Oh
- Division of Biomedical Engineering Hankuk University of Foreign Studies Yongin Republic of Korea
| | - Joonsung Lee
- Center for Neuroscience Imaging Research Institute for Basic Science Suwon Republic of Korea
| | - Seong‐Gi Kim
- Center for Neuroscience Imaging Research Institute for Basic Science Suwon Republic of Korea
- Department of Biomedical Engineering Sungkyunkwan University Suwon Republic of Korea
| | - Jang‐Yeon Park
- Center for Neuroscience Imaging Research Institute for Basic Science Suwon Republic of Korea
- Department of Biomedical Engineering Sungkyunkwan University Suwon Republic of Korea
| |
Collapse
|
31
|
Probst U, Sieron D, Bruenn K, Fuhrmann I, Verloh N, Stroszczynski C, Jung EM, Wiggermann P, Haimerl M. Efficacy of dynamic enhancement effects on Gd-EOB-DTPA-enhanced MRI for estimation of liver function assessed by 13C- Methacetin breath test. Clin Hemorheol Microcirc 2019; 70:595-604. [DOI: 10.3233/ch-189324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ute Probst
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Dominik Sieron
- Department of Radiology, Inselspital Tiefenau, Bern, Switzerland
| | - Karin Bruenn
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Irene Fuhrmann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Niklas Verloh
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | | | - Ernst-Michael Jung
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Wiggermann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Fuhrmann I, Brünn K, Probst U, Verloh N, Stroszczynski C, Jung EM, Wiggermann P, Haimerl M. Proof of principle: Estimation of liver function using color coded Doppler sonography of the portal vein. Clin Hemorheol Microcirc 2019; 70:585-594. [DOI: 10.3233/ch-189323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Irene Fuhrmann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Karin Brünn
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Ute Probst
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Niklas Verloh
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | | | - Ernst Michael Jung
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Wiggermann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Verloh N, Utpatel K, Zeman F, Fellner C, Schlitt HJ, Müller M, Stroszczynski C, Evert M, Wiggermann P, Haimerl M. Diagnostic performance of Gd-EOB-DTPA-enhanced MRI for evaluation of liver dysfunction: a multivariable analysis of 3T MRI sequences. Oncotarget 2018; 9:36371-36378. [PMID: 30555635 PMCID: PMC6284745 DOI: 10.18632/oncotarget.26368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the diagnostic performance of a multiparametric gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI examination for the estimation of liver dysfunction classified by the Model for End-Stage Liver Disease (MELD) score. RESULTS Liver dysfunction can be assessed by different methods. In a logistic regression analysis, T1- and T2-weighted images were affected by impaired liver function. In the assessment of liver dysfunction, the reduction rate in T1 mapping sequences showed a significant correlation in simple and multiple logistic regression. CONCLUSION Changes in Gd-EOB-DTPA-enhanced MRI between plain images and images obtained during the hepatobiliary phase allowed good prediction of liver dysfunction, especially when using T1 mapping sequences. MATERIALS AND METHODS A total of 199 patients underwent contrast-enhanced MRI with a hepatocyte-specific contrast agent at 3T. In the multivariable analysis, the full range of available MRI sequences was used to estimate the liver dysfunction of patients with various MELD scores.
Collapse
Affiliation(s)
- Niklas Verloh
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Kirsten Utpatel
- Department of Pathology, University Regensburg, Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Trials, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Fellner
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Rheumatology, and Infectious Diseases, Regensburg University Hospital, Regensburg, Germany
| | | | - Matthias Evert
- Department of Pathology, University Regensburg, Regensburg, Germany
| | - Philipp Wiggermann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
- Department of Radiology and Nuclear Medicine, Hospital Braunschweig, Braunschweig, Germany
| | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Wahyulaksana G, Saporito S, den Boer JA, Herold IHF, Mischi M. In vitro pharmacokinetic phantom for two-compartment modeling in DCE-MRI. Phys Med Biol 2018; 63:205012. [PMID: 30238927 DOI: 10.1088/1361-6560/aae33b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an established minimally-invasive method for assessment of extravascular leakage, hemodynamics, and tissue viability. However, differences in acquisition protocols, variety of pharmacokinetic models, and uncertainty on physical sources of MR signal hamper the reliability and widespread use of DCE-MRI in clinical practice. Measurements performed in a controlled in vitro setup could be used as a basis for standardization of the acquisition procedure, as well as objective evaluation and comparison of pharmacokinetic models. In this paper, we present a novel flow phantom that mimics a two-compartmental (blood plasma and extravascular extracellular space/EES) vascular bed, enabling systemic validation of acquisition protocols. The phantom consisted of a hemodialysis filter with two compartments, separated by hollow fiber membranes. The aim of this phantom was to vary the extravasation rate by adjusting the flow in the two compartments. Contrast agent transport kinetics within the phantom was interpreted using two-compartmental pharmacokinetic models. Boluses of gadolinium-based contrast-agent were injected in a tube network connected to the hollow fiber phantom; time-intensity curves (TICs) were obtained from image series, acquired using a T1-weighted DCE-MRI sequence. Under the assumption of a linear dilution system, the TICs obtained from the input and output of the system were then analyzed by a system identification approach to estimate the trans-membrane extravasation rates in different flow conditions. To this end, model-based deconvolution was employed to determine (identify) the impulse response of the investigated dilution system. The flow rates in the EES compartment significantly and consistently influenced the estimated extravasation rates, in line with the expected trends based on simulation results. The proposed phantom can therefore be used to model a two-compartmental vascular bed and can be employed to test and optimize DCE-MRI acquisition sequences in order to determine a standardized acquisition procedure leading to consistent quantification results.
Collapse
Affiliation(s)
- Geraldi Wahyulaksana
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
| | | | | | | | | |
Collapse
|
35
|
Abstract
Recent improvements in arterial spin labeled (ASL) and vastly undersampled dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) acquisitions are providing a new opportunity to explore the routine use of quantitative perfusion imaging for evaluation of a variety of abdominal diseases in clinical practice. In this review, we discuss different approaches for the acquisition and data analysis of ASL and DCE MRI techniques for quantification of tissue perfusion and present various clinical applications of these techniques in both neoplastic and non-neoplastic conditions in the abdomen.
Collapse
|
36
|
Wake N, Chandarana H, Rusinek H, Fujimoto K, Moy L, Sodickson DK, Kim SG. Accuracy and precision of quantitative DCE-MRI parameters: How should one estimate contrast concentration? Magn Reson Imaging 2018; 52:16-23. [PMID: 29777820 DOI: 10.1016/j.mri.2018.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Pharmacokinetic parameters derived from dynamic contrast-enhanced MRI (DCE-MRI) data are sensitive to acquisition and post-processing techniques, which makes it difficult to compare results obtained using different methods. In particular, one of the most important factors affecting estimation of model parameters is how to convert MRI signal intensities to contrast agent concentration. The purpose of our study was to quantitatively compare a linear signal-to-concentration conversion (LC) as an approximation and a non-linear conversion (NLC) based on the MRI signal equation, in terms of the accuracy and precision of the pharmacokinetic parameters in T1-weighted DCE-MRI. MATERIALS AND METHODS Numerical simulation studies were conducted to compare LC and NLC in terms of the accuracy and precision in contrast kinetic parameter estimation, and to evaluate their dependency on flip angle (FA), pre-contrast T1 (T10) and arterial input function (AIF). In addition, the effect of the conversion method on the diagnostic accuracy was evaluated with 36 breast lesions (19 benign and 17 malignant). RESULTS The transfer rate (Ktrans) estimated using LC and measured AIF (mAIF) were up to 38% higher than the true Ktrans values, while the LC Ktrans estimates with the presumed AIF (pAIF) were up to 7% lower than the true Ktrans values, when FA = 45°. When using a small FA, such as 12°, the LC Ktrans with pAIF had least sensitivity to the error in T10 compared to the Ktrans estimated using LC with mAIF, and NLC with pAIF or mAIF. The breast DCE-MRI study showed that both LC and NLC Ktrans were significantly different (p < 0.05) between the malignant and benign lesions. The effect size between benign and malignant values as measured by Cohen's d was 1.06 for LC Ktrans and 1.02 for NLC Ktrans. CONCLUSION The present study results show that, when precontrast T1 measurement is not available and a low FA is used for DCE-MRI, the uncertainty in the contrast kinetic parameter estimation can be reduced by using the LC method with pAIF, without compromising the diagnostic accuracy.
Collapse
Affiliation(s)
- Nicole Wake
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, United States.
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, United States
| | - Henry Rusinek
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States
| | - Koji Fujimoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto, Japan
| | - Linda Moy
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, United States
| | - Sungheon Gene Kim
- Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
37
|
Bane O, Hectors S, Wagner M, Arlinghaus LL, Aryal M, Cao Y, Chenevert T, Fennessy F, Huang W, Hylton N, Kalpathy-Cramer J, Keenan K, Malyarenko D, Mulkern R, Newitt D, Russek SE, Stupic KF, Tudorica A, Wilmes L, Yankeelov TE, Yen YF, Boss M, Taouli B. Accuracy, repeatability, and interplatform reproducibility of T 1 quantification methods used for DCE-MRI: Results from a multicenter phantom study. Magn Reson Med 2018; 79:2564-2575. [PMID: 28913930 PMCID: PMC5821553 DOI: 10.1002/mrm.26903] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE To determine the in vitro accuracy, test-retest repeatability, and interplatform reproducibility of T1 quantification protocols used for dynamic contrast-enhanced MRI at 1.5 and 3 T. METHODS A T1 phantom with 14 samples was imaged at eight centers with a common inversion-recovery spin-echo (IR-SE) protocol and a variable flip angle (VFA) protocol using seven flip angles, as well as site-specific protocols (VFA with different flip angles, variable repetition time, proton density, and Look-Locker inversion recovery). Factors influencing the accuracy (deviation from reference NMR T1 measurements) and repeatability were assessed using general linear mixed models. Interplatform reproducibility was assessed using coefficients of variation. RESULTS For the common IR-SE protocol, accuracy (median error across platforms = 1.4-5.5%) was influenced predominantly by T1 sample (P < 10-6 ), whereas test-retest repeatability (median error = 0.2-8.3%) was influenced by the scanner (P < 10-6 ). For the common VFA protocol, accuracy (median error = 5.7-32.2%) was influenced by field strength (P = 0.006), whereas repeatability (median error = 0.7-25.8%) was influenced by the scanner (P < 0.0001). Interplatform reproducibility with the common VFA was lower at 3 T than 1.5 T (P = 0.004), and lower than that of the common IR-SE protocol (coefficient of variation 1.5T: VFA/IR-SE = 11.13%/8.21%, P = 0.028; 3 T: VFA/IR-SE = 22.87%/5.46%, P = 0.001). Among the site-specific protocols, Look-Locker inversion recovery and VFA (2-3 flip angles) protocols showed the best accuracy and repeatability (errors < 15%). CONCLUSIONS The VFA protocols with 2 to 3 flip angles optimized for different applications achieved acceptable balance of extensive spatial coverage, accuracy, and repeatability in T1 quantification (errors < 15%). Further optimization in terms of flip-angle choice for each tissue application, and the use of B1 correction, are needed to improve the robustness of VFA protocols for T1 mapping. Magn Reson Med 79:2564-2575, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Octavia Bane
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| | - Stefanie Hectors
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| | | | | | - Yue Cao
- Radiation Oncology, University of Michigan
| | | | | | - Wei Huang
- Advanced Imaging Research Center, Knight Cancer Institute, Oregon Health and Science University
| | - Nola Hylton
- Radiology, University of California San Francisco
| | | | | | | | | | - David Newitt
- Radiology, University of California San Francisco
| | | | | | | | - Lisa Wilmes
- Radiology, University of California San Francisco
| | | | - Yi-Fei Yen
- Radiology, Massachusetts General Hospital
| | | | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai,Radiology, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
38
|
Wagner M, Hectors S, Bane O, Gordic S, Kennedy P, Besa C, Schiano TD, Thung S, Fischman A, Taouli B. Noninvasive prediction of portal pressure with MR elastography and DCE-MRI of the liver and spleen: Preliminary results. J Magn Reson Imaging 2018; 48:1091-1103. [PMID: 29638020 DOI: 10.1002/jmri.26026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Portal hypertension (PH), defined by hepatic venous pressure gradient (HVPG) ≥5 mmHg and clinically significant PH, defined by HVPG ≥10 mmHg, are complications of chronic liver disease. PURPOSE To assess the diagnostic performance of MR elastography (MRE) and dynamic contrast-enhanced MRI (DCE-MRI) of the liver and spleen for the prediction of PH and clinically significant PH, in comparison with a qualitative PH imaging scoring system. STUDY TYPE IRB-approved prospective study. POPULATION In all, 34 patients with chronic liver disease who underwent HVPG measurement. FIELD STRENGTH/SEQUENCE 1.5/3T examination including 2D-GRE MRE (n = 33) and DCE-MRI of the liver/spleen (n = 28). ASSESSMENT Liver and spleen stiffness were calculated from elastogram maps. DCE-MRI was analyzed using model-free parameters and pharmacokinetic modeling. Two observers calculated qualitative PH imaging scores based on routine images. STATISTICAL TESTS Imaging parameters were correlated with HVPG. Receiver operating characteristic (ROC) analysis was performed for prediction of PH and clinically significant PH. RESULTS There were significant correlations between DCE-MRI parameters (liver time-to-peak, r = 0.517 / P = 0.006, liver distribution volume, r = 0.494 / P = 0.009, liver upslope, r = -0.567 / P = 0.002), liver stiffness (r = 0.478 / P = 0.016), PH imaging score (r = 0.441 / P = 0.009), and HVPG. ROC analysis provided significant area under the ROC (AUROCs) for PH (liver upslope 0.765, liver stiffness 0.809, spleen volume/diameter 0.746-0.731, PH imaging score 0.756) and for clinically significant PH (liver and spleen perfusion parameters 0.733-0.776, liver stiffness 0.742, PH imaging score 0.742). The ratio of liver stiffness to liver upslope had the highest AUROC for diagnosing PH (0.903) and clinically significant PH (0.785). DATA CONCLUSION These preliminary results suggest that the combination of liver stiffness and perfusion metrics provide excellent accuracy for diagnosing PH, and fair accuracy for clinically significant PH. Combined MRE and DCE-MRI outperformed qualitative imaging scores for prediction of PH. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1091-1103.
Collapse
Affiliation(s)
- Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Sorbonne Universités, CNRS, INSERM, LIB, Department of Radiology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stefanie Hectors
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Octavia Bane
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sonja Gordic
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Paul Kennedy
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cecilia Besa
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas D Schiano
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Swan Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aaron Fischman
- Department of Radiology, Section of Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bachir Taouli
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
39
|
Pahwa S, Liu H, Chen Y, Dastmalchian S, O'Connor G, Lu Z, Badve C, Yu A, Wright K, Chalian H, Rao S, Fu C, Vallines I, Griswold M, Seiberlich N, Zeng M, Gulani V. Quantitative perfusion imaging of neoplastic liver lesions: A multi-institution study. Sci Rep 2018; 8:4990. [PMID: 29563601 PMCID: PMC5862961 DOI: 10.1038/s41598-018-20726-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022] Open
Abstract
We describe multi-institutional experience using free-breathing, 3D Spiral GRAPPA-based quantitative perfusion MRI in characterizing neoplastic liver masses. 45 patients (age: 48–72 years) were prospectively recruited at University Hospitals, Cleveland, USA on a 3 Tesla (T) MRI, and at Zhongshan Hospital, Shanghai, China on a 1.5 T MRI. Contrast-enhanced volumetric T1-weighted images were acquired and a dual-input single-compartment model used to derive arterial fraction (AF), distribution volume (DV) and mean transit time (MTT) for the lesions and normal parenchyma. The measurements were compared using two-tailed Student’s t-test, with Bonferroni correction applied for multiple-comparison testing. 28 hepatocellular carcinoma (HCC) and 17 metastatic lesions were evaluated. No significant difference was noted in perfusion parameters of normal liver parenchyma and neoplastic masses at two centers (p = 0.62 for AF, 0.015 for DV, 0.42 for MTT for HCC, p = 0.13 for AF, 0.97 for DV, 0.78 for MTT for metastases). There was statistically significant difference in AF, DV, and MTT of metastases and AF and DV of HCC compared to normal liver parenchyma (p < 0.5/9 = 0.0055). A statistically significant difference was noted in the MTT of metastases compared to hepatocellular carcinoma (p < 0.001*10-5). In conclusion, 3D Spiral-GRAPPA enabled quantitative free-breathing perfusion MRI exam provides robust perfusion parameters.
Collapse
Affiliation(s)
- Shivani Pahwa
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Hao Liu
- Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Chen
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Sara Dastmalchian
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory O'Connor
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Ziang Lu
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Chaitra Badve
- Radiology, University Hospitals, Cleveland, OH, United States
| | - Alice Yu
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Wright
- Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Hamid Chalian
- Radiology, University Hospitals, Cleveland, OH, United States
| | - Shengxiang Rao
- Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | | | - Mark Griswold
- Radiology, Case Western Reserve University, Cleveland, OH, United States.,Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Nicole Seiberlich
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Mengsu Zeng
- Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Vikas Gulani
- Radiology, Case Western Reserve University, Cleveland, OH, United States. .,Radiology, University Hospitals, Cleveland, OH, United States.
| |
Collapse
|
40
|
Ghodasara S, Pahwa S, Dastmalchian S, Gulani V, Chen Y. Free-Breathing 3D Liver Perfusion Quantification Using a Dual-Input Two-Compartment Model. Sci Rep 2017; 7:17502. [PMID: 29235486 PMCID: PMC5727493 DOI: 10.1038/s41598-017-17753-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/23/2017] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study is to test the feasibility of applying a dual-input two-compartment liver perfusion model to patients with different pathologies. A total of 7 healthy subjects and 11 patients with focal liver lesions, including 6 patients with metastatic adenocarcinoma and 5 with hepatocellular carcinoma (HCC), were examined. Liver perfusion values were measured from both focal liver lesions and cirrhotic tissues (from the 5 HCC patients). Compared to results from volunteer livers, significantly higher arterial fraction, fractional volume of the interstitial space, and lower permeability-surface area product were observed for metastatic lesions, and significantly higher arterial fraction and lower vascular transit time were observed for HCCs (P < 0.05). Significantly lower arterial fraction and higher vascular transit time, fractional volume of the vascular space, and fractional volume of the interstitial space were observed for metastases in comparison to HCCs (P < 0.05). For cirrhotic livers, a significantly lower total perfusion, lower fractional volume of the vascular space, higher fractional volume of the interstitial space, and lower permeability-surface area product were noted in comparison to volunteer livers (P < 0.05). Our findings support the possibility of using this model with 3D free-breathing acquisitions for lesion and diffuse liver disease characterization.
Collapse
Affiliation(s)
- Satyam Ghodasara
- Department of Radiology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Shivani Pahwa
- Department of Radiology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sara Dastmalchian
- Department of Radiology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
41
|
Chen Z, Kang L, Xia L, Wang Q, Li Y, Hu X, Liu F, Huang F. Technical Note: Sequential combination of parallel imaging and dynamic artificial sparsity framework for rapid free-breathing golden-angle radial dynamic MRI: K-T ARTS-GROWL. Med Phys 2017; 45:202-213. [DOI: 10.1002/mp.12639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/17/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Zhifeng Chen
- Department of Biomedical Engineering; Zhejiang University; Hangzhou China
| | - Liyi Kang
- Department of Biomedical Engineering; Zhejiang University; Hangzhou China
| | - Ling Xia
- Department of Biomedical Engineering; Zhejiang University; Hangzhou China
- State Key Lab of CAD&CG; Zhejiang University; Hangzhou China
| | - Qiuliang Wang
- Division of Superconducting Magnet Science and Technology; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Yi Li
- Division of Superconducting Magnet Science and Technology; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Xinning Hu
- Division of Superconducting Magnet Science and Technology; Institute of Electrical Engineering; Chinese Academy of Sciences; Beijing China
| | - Feng Liu
- School of Information Technology and Electrical Engineering; The University of Queensland; Brisbane QLD Australia
| | | |
Collapse
|
42
|
Ning J, Schubert T, Johnson KM, Roldán-Alzate A, Chen H, Yuan C, Reeder SB. Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI. Magn Reson Med 2017; 79:3093-3102. [PMID: 29124781 DOI: 10.1002/mrm.26988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. METHODS A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. RESULTS Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. CONCLUSION The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jia Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tilman Schubert
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Clinic for Radiology and Nuclear Medicine, Basel University Hospital, Basel, Switzerland
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Li JL, Ye WT, Liu ZY, Yan LF, Luo W, Cao XM, Liang C. Comparison of microvascular perfusion evaluation among IVIM-DWI, CT perfusion imaging and histological microvessel density in rabbit liver VX2 tumors. Magn Reson Imaging 2017; 46:64-69. [PMID: 29103979 DOI: 10.1016/j.mri.2017.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/12/2017] [Accepted: 10/31/2017] [Indexed: 01/17/2023]
Abstract
OBJECT To explore microcirculation features with intravoxel incoherent motion (IVIM) and to compare IVIM with CT perfusion imaging (CTPI) and microvessel density (MVD). MATERIALS AND METHODS Hepatic CTPI and IVIM were performed in 16 rabbit liver VX2 tumor models. Hepatic arterial perfusion (HAP), hepatic arterial perfusion index (HPI), Blood flow (BF), and blood volume (BV) from CTPI were measured. Apparent diffusion coefficient (ADC), true diffusion coefficient (D), perfusion fraction (f), and pseudo-diffusion coefficient (D*) from IVIM were measured. MVD was counted with CD34 stain. The microcirculation features with IVIM were compared with CTPI parameters and MVD. RESULTS Strong linear correlations were found between D value (0.89±0.21×10-3mm2/s) and HAP (15.83±6.97ml/min/100mg) (r=0.755, P=0.001) and between f value (12.64±6.66%) and BV (9.74±5.04ml/100mg) (r=0.693, P=0.004). Moderate linear correlations were observed between ADC (1.07±0.32×10-3mm2/s) and HAP (r=0.538, P=0.039), respectively; and between D value and MVD (9.31±2.57 vessels at 400×magnification) (r=0.509, P=0.044). No correlations were found between D* (119.90±37.67×10-3mm2/s) and HAP, HPI (68.34±12.91%), BF (4.95±2.16ml/min/100mg), BV. CONCLUSION IVIM parameters can characterize microcirculation to certain extent and separate it from pure water molecular diffusion. There is fair correlation between D or ADC value and CTPI parameters or MVD, but no correlation between D* or f value and CTPI parameters or MVD except f value and BV, which is still unclear and need further clinical studies to validate.
Collapse
Affiliation(s)
- Jing-Lei Li
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, PR China.
| | - Wei-Tao Ye
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, PR China
| | - Zai-Yi Liu
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, PR China
| | - Li-Fen Yan
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, PR China
| | - Wei Luo
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, PR China
| | - Xi-Ming Cao
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, PR China
| | - Changhong Liang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, PR China.
| |
Collapse
|
44
|
Taxt T, Reed RK, Pavlin T, Rygh CB, Andersen E, Jiřík R. Semi-parametric arterial input functions for quantitative dynamic contrast enhanced magnetic resonance imaging in mice. Magn Reson Imaging 2017; 46:10-20. [PMID: 29066294 DOI: 10.1016/j.mri.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/15/2017] [Accepted: 10/17/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVE An extension of single- and multi-channel blind deconvolution is presented to improve the estimation of the arterial input function (AIF) in quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). METHODS The Lucy-Richardson expectation-maximization algorithm is used to obtain estimates of the AIF and the tissue residue function (TRF). In the first part of the algorithm, nonparametric estimates of the AIF and TRF are obtained. In the second part, the decaying part of the AIF is approximated by three decaying exponential functions with the same delay, giving an almost noise free semi-parametric AIF. Simultaneously, the TRF is approximated using the adiabatic approximation of the Johnson-Wilson (aaJW) pharmacokinetic model. RESULTS In simulations and tests on real data, use of this AIF gave perfusion values close to those obtained with the corresponding previously published nonparametric AIF, and are more noise robust. CONCLUSION When used subsequently in voxelwise perfusion analysis, these semi-parametric AIFs should give more correct perfusion analysis maps less affected by recording noise than the corresponding nonparametric AIFs, and AIFs obtained from arteries. SIGNIFICANCE This paper presents a method to increase the noise robustness in the estimation of the perfusion parameter values in DCE-MRI.
Collapse
Affiliation(s)
- Torfinn Taxt
- Dept. of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5020, Norway; Dept. of Radiology, Haukeland University Hospital, Jonas Lies vei 83, Bergen N-5020, Norway
| | - Rolf K Reed
- Dept. of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5020, Norway; Centre for Cancer Biomarkers (CCBIO), University of Bergen, Jonas Lies vei 87, Bergen N-5021, Norway
| | - Tina Pavlin
- Dept. of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5020, Norway; Dept. of Radiology, Haukeland University Hospital, Jonas Lies vei 83, Bergen N-5020, Norway
| | - Cecilie Brekke Rygh
- Dept. of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen N-5020, Norway
| | - Erling Andersen
- Dept. of Clinical Engineering, Haukeland University Hospital, Jonas Lies vei 83, Bergen N-5020, Norway
| | - Radovan Jiřík
- Czech Academy of Sciences, Inst. of Scientific Instruments, Královopolská 147, Brno 61264, Czech Republic.
| |
Collapse
|
45
|
Ning J, Sun Y, Xie S, Zhang B, Huang F, Koken P, Smink J, Yuan C, Chen H. Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) for dynamic contrast-enhanced MRI of liver. Magn Reson Med 2017; 79:2629-2641. [PMID: 28905413 DOI: 10.1002/mrm.26915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/11/2017] [Accepted: 08/19/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. METHODS The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. RESULTS Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. CONCLUSIONS The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jia Ning
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yongliang Sun
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | | | | | | | | | - Chun Yuan
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Huijun Chen
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
46
|
Gill AB, Hilliard NJ, Hilliard ST, Graves MJ, Lomas DJ, Shaw A. A semi-automatic method for the extraction of the portal venous input function in quantitative dynamic contrast-enhanced CT of the liver. Br J Radiol 2017; 90:20160875. [PMID: 28511589 DOI: 10.1259/bjr.20160875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To aid the extraction of the portal venous input function (PVIF) from axial dynamic contrast-enhanced CT images of the liver, eliminating the need for full manual outlining of the vessel across time points. METHODS A cohort of 20 patients undergoing perfusion CT imaging of the liver was examined. Dynamic images of the liver were reformatted into contiguous thin slices. A region of interest was defined within a transverse section of the portal vein on a single contrast-enhanced image. This region of interest was then computationally projected across all thin slices for all time points to yield a semi-automated PVIF curve. This was compared against the "gold-standard" PVIF curve obtained by conventional manual outlining. RESULTS Bland-Altman plots of curve characteristics indicated no substantial difference between automated and manual PVIF curves [concordance correlation coefficient in the range (0.66, 0.98)]. No substantial differences were shown by Bland-Altman plots of derived pharmacokinetic parameters when a suitable kinetic model was applied in each case [concordance correlation coefficient in range (0.92, 0.95)]. CONCLUSION This semi-automated method of extracting the PVIF performed equivalently to a "gold-standard" manual method for assessing liver function. Advances in knowledge: This technique provides a quick, simple and effective solution to the problems incurred by respiration motion and partial volume factors in the determination of the PVIF in liver dynamic contrast-enhanced CT.
Collapse
Affiliation(s)
- Andrew B Gill
- 1 Department of Radiology, University of Cambridge, Cambridge, UK.,2 Department of Medical Physics, Cambridge University Hospitals, Cambridge, UK
| | | | - Simon T Hilliard
- 3 Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Martin J Graves
- 1 Department of Radiology, University of Cambridge, Cambridge, UK.,2 Department of Medical Physics, Cambridge University Hospitals, Cambridge, UK
| | - David J Lomas
- 1 Department of Radiology, University of Cambridge, Cambridge, UK.,3 Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Ashley Shaw
- 3 Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
47
|
Quantification of hepatocellular carcinoma heterogeneity with multiparametric magnetic resonance imaging. Sci Rep 2017; 7:2452. [PMID: 28550313 PMCID: PMC5446396 DOI: 10.1038/s41598-017-02706-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
Tumour heterogeneity poses a significant challenge for treatment stratification. The goals of this study were to quantify heterogeneity in hepatocellular carcinoma (HCC) using multiparametric magnetic resonance imaging (mpMRI), and to report preliminary data correlating quantitative MRI parameters with advanced histopathology and gene expression in a patient subset. Thirty-two HCC patients with 39 HCC lesions underwent mpMRI including diffusion-weighted imaging (DWI), blood-oxygenation-level-dependent (BOLD), tissue-oxygenation-level-dependent (TOLD) and dynamic contrast-enhanced (DCE)-MRI. Histogram characteristics [central tendency (mean, median) and heterogeneity (standard deviation, kurtosis, skewness) MRI parameters] in HCC and liver parenchyma were compared using Wilcoxon signed-rank tests. Histogram data was correlated between MRI methods in all patients and with histopathology and gene expression in 14 patients. HCCs exhibited significantly higher intra-tissue heterogeneity vs. liver with all MRI methods (P < 0.030). Although central tendency parameters showed significant correlations between MRI methods and with each of histopathology and gene expression, heterogeneity parameters exhibited additional complementary correlations between BOLD and DCE-MRI and with histopathologic hypoxia marker HIF1α and gene expression of Wnt target GLUL, pharmacological target FGFR4, stemness markers EPCAM and KRT19 and immune checkpoint PDCD1. Histogram analysis combining central tendency and heterogeneity mpMRI features is promising for non-invasive HCC characterization on the imaging, histologic and genomics levels.
Collapse
|
48
|
Donato H, França M, Candelária I, Caseiro-Alves F. Liver MRI: From basic protocol to advanced techniques. Eur J Radiol 2017; 93:30-39. [PMID: 28668428 DOI: 10.1016/j.ejrad.2017.05.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
Abstract
Liver MR is a well-established modality with multiparametric capabilities. However, to take advantage of its full capacity, it is mandatory to master the technique and optimize imaging protocols, apply advanced imaging concepts and understand the use of different contrast media. Physiologic artefacts although inherent to upper abdominal studies can be minimized using triggering techniques and new strategies for motion control. For standardization, the liver MR protocol should include motion-resistant T2-w sequences, in-op phase GRE T1 and T2-w fast spin echo sequences with fat suppression. Diffusion-weighted imaging (DWI) is mandatory, especially for detection of sub-centimetre metastases. Contrast-enhanced MR is the cornerstone of liver MR, especially for lesion characterization. Although extracellular agents are the most extensively used contrast agents, hepatobiliary contrast media can provide an extra-layer of functional diagnostic information adding to the diagnostic value of liver MR. The use of high field strength (3T) increases SNR but is more challenging especially concerning artefact control. Quantitative MR belongs to the new and evolving field of radiomics where the use of emerging biomarkers such as perfusion or DWI can derive new information regarding disease detection, prognostication and evaluation of tumour response. This information can overcome some of the limitations of current tests, especially when using vascular disruptive agents for oncologic treatment assessment. MR is, today, a robust, mature, multiparametric imaging modality where clinical applications have greatly expanded from morphology to advanced imaging. This new concept should be acknowledged by all those involved in producing high quality, high-end liver MR studies.
Collapse
Affiliation(s)
- Henrique Donato
- Imaging Department, Faculty of Medicine of Coimbra, University Centre Hospitals of Coimbra (CHUC), Portugal.
| | - Manuela França
- Imaging Department, Centro Hospitalar do Porto, Portugal.
| | - Isabel Candelária
- Imaging Department, Faculty of Medicine of Coimbra, University Centre Hospitals of Coimbra (CHUC), Portugal.
| | - Filipe Caseiro-Alves
- Imaging Department, Faculty of Medicine of Coimbra, University Centre Hospitals of Coimbra (CHUC), Portugal.
| |
Collapse
|
49
|
Zhang Y, Liu H, Xiao W, Zhu L, Wang N, He X, Jiang Z, Guan B. Quantitative dynamic contrast-enhanced magnetic resonance imaging in a VX2 rabbit liver tumour model using different gadolinium-based contrast agents: comparison of DCE-MRI quantitative results between Magnevist and Eovist. BJR Case Rep 2017; 3:20160099. [PMID: 30363268 PMCID: PMC6159198 DOI: 10.1259/bjrcr.20160099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Quantitative dynamic contrast enhanced MRI (DCE-MRI) can offer information related to tumour perfusion and permeability (Ktrans), rate constant (Kep), extravascular extracellular volume fraction (Ve) and distribution volume (Vd). Different types of gadolinium-based contrast agents (GBCAs) may traverse the vascular wall with different velocities owing to their physicochemical characteristics. The purpose of this article was to compare the DCE-MRI quantitative results (Ktrans, Kep, Ve and Vd) between Magnevist and Eovist in a VX2 rabbit liver tumour model. Sixteen rabbits (body weight, 3 Kg; random gender) containing implanted hepatic VX2 carcinomas were randomly divided into two groups based on the regimen of MRI contrast agent administered, eight rabbits in each group. All rabbits underwent a liver DCE-MRscan before tumour transplantation. Fourteen days after tumour transplantation, the eight rabbits in Group A (Magnevist group) underwent a liver DCE-MR scan in a 3.0 T Magnetom Verio MR scanner (Siemens Healthcare, AD, Germany) after the administration of Magnevist at the flow rate of 1 ml s–1. The Group B rabbits underwent the same scan except for the administration of Eovist at the same flow rate. Twenty-four hours after the initial DCE-MRI, repeat DCE-MRI was performed with the cross-over GBCA at the same flow rate in each group. Every rabbit received 0.6 ml GBCA (0.2 ml Kg–1) during each DCE-MRI. Ktrans, Kep, Ve and Vd were measured in the tumour lesion and compared with normal liver tissue in the same slice. A pathologic examination was also performed. Hepatocellular carcinoma was diagnosed in all 16 rabbits by pathologic examination. There were no significant differences in Ktrans, Ve, Kep and Vd between the two groups of rabbits (p > 0.05). The Ktrans, Ve, Kep and Vd of the VX2 rabbit liver tumour model were significantly higher than the normal liver parenchyma (0.742 ± 0.086 vs 0.027 ± 0.002, 7.345 ± 0.043 vs 6.721 ± 0.035, 0.101 ± 0.005 vs 0.101 ± 0.005, 0.419 ± 0.083 vs 0.037 ± 0.005, respectively; p < 0.01). The Ktrans, Ve and Vd of Eovist group were significantly higher compared with the values in the Magnevist group (0.116 ± 0.016 vs 0.010 ± 0.002, respectively, p < 0.01; 0.101 ± 0.005 vs 0.004 ± 0.0009, respectively, p < 0.01; 0.419 ± 0.083 vs 0.037 ± 0.005, respectively, p < 0.001). There was no significant difference in Kep between the Eovist and Magnevist groups (7.345 ± 0.043 vs 6.721 ± 0.035, respectively; p > 0.05). In the VX2 rabbit liver tumour model, DCE-MRI performed with different types of GBCA can develop different quantitative results with respect to Ktrans, Ve and Vd. The liver-specific GBCA, Eovist, is more sensitive than the general GBCA, Magnevist, in detecting tumour perfusion and permeability.
Collapse
Affiliation(s)
- Yule Zhang
- Ultrasound, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Liu
- MR, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weiqiang Xiao
- MR, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liling Zhu
- Ultrasound, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Wang
- Ultrasound, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuehua He
- Ultrasound, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | | | - Buyun Guan
- Ultrasound, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Haimerl M, Verloh N, Zeman F, Fellner C, Nickel D, Lang SA, Teufel A, Stroszczynski C, Wiggermann P. Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: Comparison between signal-intensity-based indices and T1 relaxometry. Sci Rep 2017; 7:43347. [PMID: 28266528 PMCID: PMC5339723 DOI: 10.1038/srep43347] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a paramagnetic hepatobiliary magnetic resonance (MR) contrast agent. Due to its OATP1B1/B3-dependent hepatocyte-specific uptake and paramagnetic properties increasing evidence has emerged to suggest that Gd-EOB-DTPA-enhanced MRI can be potentially used for evaluation of liver function. In this paper we compare the diagnostic performance of Gd-EOB-DTPA-enhanced relaxometry-based and commonly used signal-intensity (SI)-based indices, including the hepatocellular uptake index (HUI) and SI-based indices corrected by spleen or muscle, for evaluation of liver function, determined using the Indocyanin green clearance (ICG) test. Simple linear regression model showed a significant correlation of the plasma disappearance rate of ICG (ICG-PDR) with all Gd-EOB-DTPA-enhanced MRI-based liver function indices with a significantly better correlation of relaxometry-based indices on ICG-PDR compared to SI-based indices. Among SI-based indices, HUI achieved best correlation on ICG-PDR and no significant difference of respective correlations on ICG-PDR could be shown. Assessment of liver volume and consecutive evaluation of multiple linear regression model revealed a stronger correlation of ICG-PDR with both (SI)-based and T1 relaxometry-based indices. Thus, liver function can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI-based indices. Here, indices derived from T1 relaxometry are superior to SI-based indices, and all indices benefit from taking into account respective liver volumes.
Collapse
Affiliation(s)
- Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Niklas Verloh
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Trials, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Fellner
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens AG, Healthcare GmbH, Erlangen, Germany
| | - Sven A. Lang
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Teufel
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | | | - Philipp Wiggermann
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|