1
|
Suo M, Zhang T, Liang XJ. Biomedical applications of the engineered AIEgen-lipid nanostructure in vitroand in vivo. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012006. [PMID: 39688206 DOI: 10.1088/2516-1091/ad9aeb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Since the concept of aggregation-induced emission (AIE) was first coined by Tang and co-workers, AIE-active luminogens (AIEgens) have drawn widespread attention among chemists and biologists due to their unique advantages such as high fluorescence efficiency, large Stokes shift, good photostability, low background noise, and high biological visualization capabilities in the aggregated state, surpassing conventional fluorophores. A growing number of AIEgens have been engineered to possess multifunctional properties, including near-infrared emission, two-photon absorption, reactive oxygen species (ROS) generation and photothermal conversion, making them suitable for deep-tissue imaging and phototherapy. AIEgens show great potential in biomedical applicationsin vitroandin vivo. However, despite the favorable photophysical stability and ROS/heat generation capability in the aggregated state, limitations including uncontrolled size, low targeting efficiency, and unexpected dispersion in physiological environments have hindered their biomedical applications. The combination of AIEgens with lipids offers a simple, promising, and widely adopted solution to these challenges. This review article provides an overview of the synthesis methods of AIEgen-lipid nanostructures and their applications in the biomedical engineering field, aiming to serve as a guideline for developing these AIEgens-lipid nanostructures with promising biological applications.
Collapse
Affiliation(s)
- Meng Suo
- School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Tianfu Zhang
- School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Xing-Jie Liang
- School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Cheng CY, Varghese EV, Wang WJ, Yao CY, Chen CH, Li WP. Aggregation-induced emission silence-mediated pathogen detection using a rapidly degradable nanographene-embedded polymersome. J Mater Chem B 2024; 12:10028-10040. [PMID: 39253882 DOI: 10.1039/d4tb01379d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Typical pathogen detection processes are time-consuming and require expensive equipment and professional operators, limiting their practical applicability. Developing a rapid and easy-to-read method of accurately sensing pathogenic bacteria is critical for reducing the spread and risk of infection in high-risk areas. Herein, the synthesis of nanographene (nanoG) that exhibits aggregation-induced emission (AIE) is described. The nanoG was embedded into a hydrophobic shell of poly(lactic-co-glycolic acid) (PLGA) polymersome in a double-emulsion process, significantly enhancing the nanoG luminescence under irradiation at 330 nm due to the enrichment of nanoG between the inner and outer PLGA shells. Both Gram-positive and Gram-negative bacteria can rapidly degrade the PLGA vesicular structure, leading to dispersal of the nanoG inside the shell and silencing the AIE effect. A linear relationship between the bacterial concentration and emissivity was established, and the detection limit was identified. Moreover, the polymersome has excellent selectivity for methicillin-resistant Staphylococcus aureus (MRSA) detection after a screening pretreatment of a bacterial mixture with suitable antibiotics. The AIE silencing could be observed with the naked eye in an MRSA-infected wound treated with the polymersome after 1 h of incubation, demonstrating a high potential for clinical rapid screening applications.
Collapse
Affiliation(s)
- Chia-Yi Cheng
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Eldhose V Varghese
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Yu Yao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hsiang Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Ren X, Liu Y, Zhang C, Wu Z, Shi H, Zhang X, Zhang S, Xu B, Tian H, Tian W, Wang Y. Efficient Near-Infrared Fluorophores Based on Cyanostyrene Derivatives for Two-Photon Fluorescence Bioimaging. Chem Asian J 2024; 19:e202400533. [PMID: 38863063 DOI: 10.1002/asia.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Organic fluorescent materials with red/near-infrared (NIR) emission are highly promising for use in biotechnology due to their exceptional advantages. However, traditional red/NIR fluorophores often exhibit weak emission at high concentrations or in an aggregated state due to the aggregate-caused quenching effect, which severely limits their applicability in biological imaging. To address this challenge, we developed a series of cyanostyrene derivatives with aggregation-induced emission characteristics, including 2,3-Bis-(4-styryl-phenyl)-but-2-enedinitrile (DPB), 2,3-Bis-{4-[2-(4-methoxy- phenyl)-vinyl]-phenyl}-but-2-enedinitrile (DOB), 2,3-Bis-{4-[2-(4-diphenylamino- phenyl)-vinyl]-phenyl}-but-2-enedinitrile (DTB), and 2,3-Bis-[4-(2-{4-[phenyl- (4-triphenylvinyl-phenyl)-amino]-phenyl}-vinyl)- phenyl]-but-2-enedinitrile (DTTB). Notably, these compounds exhibited intense solid state fluorescence owing to AIE effect, especially DTTB shows NIR emission with high solid state quantum efficiency (712 nm, ΦF=14.2 %). Then we prepared DTTB@PS-PEG NPs nanoparticles by encapsulating DTTB with the amphiphilic polymer polystyrene-polyethylene glycol (PS-PEG). Importantly, DTTB@PS-PEG NPs exhibited highly efficient NIR luminescence (ΦF=28.7 %) and a large two-photon absorption cross-section (1900 GM) under 800 nm laser excitation. The bright two-photon fluorescence of DTTB@PS-PEG indicated that it can be a highly promising candidate for two-photon fluorescence probe. Therefore, this work provides valuable insights for the design of highly efficient and NIR-emitting two-photon fluorescent probes.
Collapse
Affiliation(s)
- Xue Ren
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, The First Hospital of Jilin University, Changchun, 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yanhong Liu
- Department of Radiology, PLA general hospital, Beijing, 100853, China
| | - Chao Zhang
- Department of Pediatric oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhiyuan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Haotian Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiyun Zhang
- Jilin Provincial Experimental School, Changchun, 130021, China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Huimin Tian
- Department of Hematology, Oncology center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yulin Wang
- Department of Radiology, PLA general hospital, Beijing, 100853, China
| |
Collapse
|
4
|
Raju G, Nayak S, Acharya N, Sunder M, Kistenev Y, Mazumder N. Exploring the future of regenerative medicine: Unveiling the potential of optical microscopy for structural and functional imaging of stem cells. JOURNAL OF BIOPHOTONICS 2024; 17:e202300360. [PMID: 38168892 DOI: 10.1002/jbio.202300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Regenerative medicine, which utilizes stem cells for tissue and organ repair, holds immense promise in healthcare. A comprehensive understanding of stem cell characteristics is crucial to unlock their potential. This study explores the pivotal role of optical microscopy in advancing regenerative medicine as a potent tool for stem cell research. Advanced optical microscopy techniques enable an in-depth examination of stem cell behavior, morphology, and functionality. The review encompasses current optical microscopy, elucidating its capabilities and constraints in stem cell imaging, while also shedding light on emerging technologies for improved stem cell visualization. Optical microscopy, complemented by techniques like fluorescence and multiphoton imaging, enhances our comprehension of stem cell dynamics. The introduction of label-free imaging facilitates noninvasive, real-time stem cell monitoring without external dyes or markers. By pushing the boundaries of optical microscopy, researchers reveal the intricate cellular mechanisms underpinning regenerative processes, thereby advancing more effective therapeutic strategies. The current study not only outlines the future of regenerative medicine but also underscores the pivotal role of optical microscopy in both structural and functional stem cell imaging.
Collapse
Affiliation(s)
- Gagan Raju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Smitha Nayak
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neha Acharya
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mridula Sunder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Yury Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Recent Advances in Biomedical Applications of Polymeric Nanoplatform Assisted with Two-Photon Absorption Process. Polymers (Basel) 2022; 14:polym14235134. [PMID: 36501528 PMCID: PMC9740256 DOI: 10.3390/polym14235134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Polymers are well-recognized carriers useful for delivering therapeutic drug and imaging probes to the target specified in the defined pathophysiological site. The functional drug molecules and imaging agents were chemically attached or physically loaded in the carrier polymer matrix via cleavable spacers. Using appropriate targeting moieties, these polymeric carriers (PCs) loaded with functional molecules were designed to realize target-specific delivery at the cellular level. The biodistribution of these carriers can be tracked using imaging agents with suitable imaging techniques. The drug molecules can be released by cleaving the spacers either by endogenous stimuli (e.g., pH, redox species, glucose level and enzymes) at the targeted physiological site or exogenous stimuli (e.g., light, electrical pulses, ultrasound and magnetism). Recently, two-photon absorption (2PA)-mediated drug delivery and imaging has gained significant attention because TPA from near-infrared light (700-950 nm, NIR) renders light energy similar to the one-photon absorption from ultraviolet (UV) light. NIR has been considered biologically safe unlike UV, which is harmful to soft tissues, cells and blood vessels. In addition to the heat and reactive oxygen species generating capability of 2PA molecules, 2PA-functionalized PCs were also found to be useful for treating diseases such as cancer by photothermal and photodynamic therapies. Herein, insights attained towards the design, synthesis and biomedical applications of 2PA-activated PCs are reviewed. In particular, specific focus is provided to the imaging and drug delivery applications with a special emphasis on multi-responsive platforms.
Collapse
|
6
|
Mawa I, Panda AN. Excited state processes in nitrile-substituted 2-(oxazolinyl)-phenols in gas and implicit solvents: A computational study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Sumohan Pillai A, Alexander A, Sri Varalakshmi G, Manikantan V, Allben Akash B, Enoch IV. Cyclodextrin and folate functionalized polymer nanocarriers: Chain length dependent properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Li Q, Liu Y, Zhao B, Lei J, Lu S, Gong W, Liang K, Wu J, Hong X, Xiao Y. A single-molecular ruthenium(II) complex-based NIR-II fluorophore for enhanced chemo-photothermal therapy. Chem Commun (Camb) 2022; 58:6546-6549. [PMID: 35579558 DOI: 10.1039/d2cc00082b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel NIR-II Ru(II) polypyridyl fluorophore Ru-1 dots for synergistic chemo-photothermal therapy against 4T1 tumors were designed and synthesized. Guided by in vivo NIR-II fluorescence imaging, the synergistic therapeutic efficacy, intracellular delivery, and biodistribution of the Ru-1 dots were precisely tracked in real-time.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. .,Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, 438000, China
| | - Yishen Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Bingshan Zhao
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, 438000, China
| | - Jiapeng Lei
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, P. R. China
| | - Siyu Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Wanxia Gong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Ke Liang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Junzhu Wu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. .,State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
9
|
Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Sun T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Wen D, Zhang X, Ding L, Wen H, Liu W, Zhang C, Wang B, Li L, Diao H. Folic acid functionalized aggregation-induced emission nanoparticles for tumor cell targeted imaging and photodynamic therapy. RSC Adv 2022; 12:4484-4489. [PMID: 35425471 PMCID: PMC8981163 DOI: 10.1039/d1ra09173e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/29/2022] [Indexed: 12/21/2022] Open
Abstract
Recently, molecules with aggregation-induced luminescence (AIE) characteristics have received more and more attention due to the fluorescence of traditional dyes being easily quenched in the aggregated state. AIE molecules have significant advantages, such as excellent light stability, bright fluorescence, high contrast, and large Stokes shift. These characteristics have aroused wide interest of researchers and opened up new applications in many fields, especially in the field of biological applications. However, AIE molecules or their aggregates have certain limitations in multifunctional biological research due to their low specific targeting ability, poor biocompatibility, and poor stability in physiological body fluids. In order to overcome these problems, a novel nanoparticle, FFM1, was fabricated and characterized. FFM1 displayed good water solubility, biocompatibility, and AIE emission properties. It could target HeLa cells specifically by recognizing their folate receptor. Reactive oxygen triggered by light irradiation induced tumor cell apoptosis. Summarily, FFM1 displayed excellent capacity in target imaging and photodynamic killing of HeLa cells. It has shown potential application value in targeted diagnosis and photodynamic therapy of tumors, and has important guiding significance for the treatment of malignant tumors. It paves a way for the development of a novel strategy for tumor theranostics.
Collapse
Affiliation(s)
- Danning Wen
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Xueyun Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Lei Ding
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Huan Wen
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Wen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Chengwu Zhang
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Bin Wang
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Lihong Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| | - Haipeng Diao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University Taiyuan 030001 P. R. China
- College of Basic Medical Sciences, Shanxi Medical University Taiyuan 030001 P. R. China
| |
Collapse
|
11
|
Yang X, Li C, Liu L, Zhang H, Feng HT, Li Y, Jiang G, Wang J. Donor–acceptor strategy to construct near infrared AIEgens for cell imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A donor–acceptor strategy was applied to construct NIR AIEgens. Six new AIEgens were obtained and among them, DMNIC exhibited the longest emission maximum at 694 nm and was successfully applied for NIR cell imaging.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Hongge Zhang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
12
|
Ramdass A, Sathish V, Thanasekaran P. AIE or AIE(P)E-active transition metal complexes for highly sensitive detection of nitroaromatic explosives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
13
|
Du W, Lu X, Yuan T, Sun Z, Li X, Li S, Zhang Q, Tian X, Li D, Tian Y. Halogen-modified carbazole derivatives for lipid droplet-specific bioimaging and two-photon photodynamic therapy. Analyst 2021; 147:66-71. [PMID: 34821886 DOI: 10.1039/d1an01826d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lipid droplets (LDs) are dynamic multifunctional organelles that participate in the regulation of many metabolic processes, visualization of which is necessary for biological research. In this work, a series of two-photon responsive fluorescent probes (C-H, C-Br, and C-I) based on carbazole units were designed and synthesized. Thereinto, an iodine-modified carbazole derivative C-I exhibited an exciting lipid droplet targeting ability due to its excellent lipophilicity. Meanwhile, benefiting from its larger Stokes shift and two-photon absorption cross-section, C-I was employed for two-photon confocal laser scanning microscopy (CLSM) and stimulated emission depletion (STED) microscopy imaging to observe LDs more accurately. In addition, given the heavy atom effect, C-I can effectively generate reactive oxygen species (ROS) leading to cancer cell apoptosis under near-infrared light irradiation. Notably, we explained the process of cell apoptosis through in vitro simulation experiments. This study provides a promising platform for visualization of lipid droplets.
Collapse
Affiliation(s)
- Wenli Du
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Xin Lu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Tong Yuan
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Zhimin Sun
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Xiaocheng Li
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Shengli Li
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China.
| | - Xiaohe Tian
- Huaxi MR Research Centre (HMRRC), Department of Radiology; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China, 610041, China
| | - Dandan Li
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China.
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, P. R. China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, P. R. China
| |
Collapse
|
14
|
Zha M, Yang G, Li Y, Zhang C, Li B, Li K. Recent Advances in AIEgen-Based Photodynamic Therapy and Immunotherapy. Adv Healthc Mater 2021; 10:e2101066. [PMID: 34519181 DOI: 10.1002/adhm.202101066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Cancer, one of the leading causes of death, has seriously threatened public health. However, there is still a lack of effective treatments. Nowadays, photodynamic therapy (PDT), relying on photosensitizers to trigger the generation of reactive oxygen species (ROS) for killing cancer cells, has been emerging as a noninvasive anti-cancer strategy. To enhance the overall anti-cancer efficacy of PDT, various approaches including molecular design and combination with other therapeutic techniques have been proposed and implemented. Especially, photodynamic immunotherapy that can effectively evoke the body's immune response has attracted much attention. Recently, a class of photosensitizers with aggregation-induced emission (AIE) character have shown unique promises, taking advantage of their profound fluorescence and ROS-generating ability in the aggregation state. Despite the promising results demonstrated by several groups, the associated studies are few and the mechanism of such AIEgen-based photodynamic immunotherapy has not been fully understood. This review discusses the recent advances in the AIEgen-based enhanced PDT with a special focus on the AIE photosensitizers for photodynamic immunotherapy, aiming to inspire more opportunities for in-depth investigation of the working principles in this emerging anti-cancer approach.
Collapse
Affiliation(s)
- Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Guang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Yaxi Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Chen Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Bo Li
- Department of Cardiology Shandong University Central Hospital of Zibo NO.10 South Shanghai Road Zibo 255000 China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
15
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
16
|
Zhang X, Wang C, Feng G, Jiang J, Hu J, du Rietz A, Brommesson C, Zhang X, Ma Y, Roberg K, Zhang F, Shen HM, Uvdal K, Hu Z. Tailorable Membrane-Penetrating Nanoplatform for Highly Efficient Organelle-Specific Localization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101440. [PMID: 34173333 DOI: 10.1002/smll.202101440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Given the breadth of currently arising opportunities and concerns associated with nanoparticles for biomedical imaging, various types of nanoparticles have been widely exploited, especially for cellular/subcellular level probing. However, most currently reported nanoparticles either have inefficient delivery into cells or lack specificity for intracellular destinations. The absence of well-defined nanoplatforms remains a critical challenge hindering practical nano-based bio-imaging. Herein, the authors elaborate on a tailorable membrane-penetrating nanoplatform as a carrier with encapsulated actives and decorated surfaces to tackle the above-mentioned issues. The tunable contents in such a versatile nanoplatform offer huge flexibility to reach the expected properties and functions. Aggregation-induced emission luminogen (AIEgen) is applied to achieve sought-after photophysical properties, specific targeting moieties are installed to give high affinity towards different desired organelles, and critical grafting of cell-penetrating cyclic disulfides (CPCDs) to promote cellular uptake efficiency without sacrificing the specificity. Hereafter, to validate its practicability, the tailored nano products are successfully applied to track the dynamic correlation between mitochondria and lysosomes during autophagy. The authors believe that the strategy and described materials can facilitate the development of functional nanomaterials for various life science applications.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Chunfei Wang
- Cancer Centre and Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Gang Feng
- Cancer Centre and Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Jianxia Jiang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Jiwen Hu
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Anna du Rietz
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Caroline Brommesson
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Xuanjun Zhang
- Cancer Centre and Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices State, South China University of Technology, Guangzhou, 510640, China
| | - Karin Roberg
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, SE581 83, Sweden
| | - Fengling Zhang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Han-Ming Shen
- Cancer Centre and Center of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Kajsa Uvdal
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| | - Zhangjun Hu
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE581 83, Sweden
| |
Collapse
|
17
|
Abstract
AbstractThere is always a need for efficient luminescent materials with simple synthesis and possible ease of hydrogen atom or functional group manipulation for use in different optoelectronic and biological applications. However, for certain real-world uses aggregation caused quenching effect of luminophores in their solid/aggregate state is undesirable, and is a cause of concern in areas, wherein the solid-state optical performance is more crucial. In this regard, chalcones have been explored for their ability to display aggregation-induced emission (AIE) or aggregation-induced enhanced emission (AIEE), which can be of practical use. This article is thus focused on an integrated evidence-based report on the AIE/AIEE-active chalcone systems for potential technological and biological applications.
Graphic abstract
Collapse
|
18
|
Wang Y, Xia K, Wang L, Wu M, Sang X, Wan K, Zhang X, Liu X, Wei G. Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005578. [PMID: 33448113 DOI: 10.1002/smll.202005578] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Fluorescent nanomaterials have exhibited promising applications in biomedical and tissue engineering fields. To improve the properties and expand bioapplications of fluorescent nanomaterials, various functionalization and biomodification strategies have been utilized to engineer the structure and function of fluorescent nanomaterials. Due to their high biocompatibility, satisfied bioactivity, unique biomimetic function, easy structural tailoring, and controlled self-assembly ability, supramolecular peptides are widely used as versatile modification agents and nanoscale building blocks for engineering fluorescent nanomaterials. In this work, recent advance in the synthesis, structure, function, and biomedical applications of peptide-engineered fluorescent nanomaterials is presented. Firstly, the types of different fluorescent nanomaterials are introduced. Then, potential strategies for the preparation of peptide-engineered fluorescent nanomaterials via templated synthesis, bioinspired conjugation, and peptide assembly-assisted synthesis are discussed. After that, the unique structure and functions through the peptide conjugation with fluorescent nanomaterials are demonstrated. Finally, the biomedical applications of peptide-engineered fluorescent nanomaterials in bioimaging, disease diagnostics and therapy, drug delivery, tissue engineering, antimicrobial test, and biosensing are presented and discussed in detail. It is helpful for readers to understand the peptide-based conjugation and bioinspired synthesis of fluorescent nanomaterials, and to design and synthesize novel hybrid bionanomaterials with special structures and improved functions for advanced applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Kai Xia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Luchen Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiujie Sang
- Department of Food and Medicine, Weifang Vocational College, Weifang, 262737, P. R. China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Faculty of Production Engineering, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
19
|
Mitochondrion-anchoring AIEgen with Large Stokes Shift for Imaging-guided Photodynamic Therapy. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Niu Y, Zhang B, Galluzzi M. An amphiphilic aggregate-induced emission polyurethane probe for in situ actin observation in living cells. J Colloid Interface Sci 2020; 582:1191-1202. [PMID: 32950835 DOI: 10.1016/j.jcis.2020.08.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023]
Abstract
The specific binding of fluorescent probes or biomolecules to the actin cytoskeleton network is increasingly important for monitoring various complex cellular activities such as cell adhesion, proliferation, locomotion, endocytosis, and cell division. However, improving cell uptake and subcellular resolution is still the main obstacle for successful and wide application of cellular fluorescent probes. Here, we designed and synthesized an amphiphilic block polyurethane with peculiar photophysical properties of aggregation induced emission (AIE), which can be used in living cell imaging to promote selective visualization of cell structures. The AIE effect polyurethane (abbreviated as AIE-PU) was prepared by two-step polymerization of diisocyanate terminated polyethylene glycol and polycaprolactone with hydroxyl terminated AIE dye. A series of characterization techniques proved the successful synthesis of AIE-PU. Due to the amphiphilic chain segment of its linear block molecule, AIE-PU block copolymers can self-assemble into spherical nanoparticles in aqueous solution, showing relatively stable photophysical properties and good water dispersion. Cellular experiments demonstrated that AIE-PUs have low toxicity and high actin network affinity. Moreover, the uptake mechanism was studied by low temperature and metabolic inhibition experiments, showing that AIE-PU nanoparticles could be easily internalized into different living cells through energy-dependent endocytosis, and can be transported from the cellular periphery to the actin network via clathrin- and caveolae-dependent transport pathway. Upon binding with the actin network, the inter-chain AIE mechanism of the probe was significantly enhanced, which is pivotal for the long-term stable fluorescence imaging of actin microfilament network in living cells. Finally, compared with commercial actin dyes, this probe showed higher photostability, even after a longer retention time, without significant fluorescence quenching.
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Bokai Zhang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Massimiliano Galluzzi
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| |
Collapse
|
21
|
Bio-safety assessment of carbon quantum dots, N-doped and folic acid modified carbon quantum dots: A systemic comparison. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Cai X, Liu B. Aggregation‐Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew Chem Int Ed Engl 2020; 59:9868-9886. [DOI: 10.1002/anie.202000845] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
23
|
Cai X, Liu B. Aggregation‐Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000845] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
24
|
Long Z, Dai J, Hu Q, Wang Q, Zhen S, Zhao Z, Liu Z, Hu JJ, Lou X, Xia F. Nanococktail Based on AIEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy. Theranostics 2020; 10:2260-2272. [PMID: 32104506 PMCID: PMC7019155 DOI: 10.7150/thno.41317] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Semiconducting polymers (SPs)-based dual photothermal therapy (PTT) obtained better therapeutic effect than single PTT due to its higher photothermal conversion efficiency. However, most dual PTT need to use two lasers for heat generation, which brings about inconvenience and limitation to the experimental operations. Herein, we report the development of "nanococktail" nanomaterials (DTPR) with 808 nm-activated image-guided dual photothermal properties for optimized cancer therapy. Methods: In this work, we co-encapsulated AIEgens (TPA-BDTO, T) and SPs (PDPPP, P) by using maleimide terminated amphiphilic polymer (DSPE-PEG2000-Mal, D), then further conjugated the targeting ligands (RGD, R) through "click" reaction. Finally, such dual PTT nanococktail (termed as DTPR) was constructed. Results: Once DTPR upon irradiation with 808 nm laser, near-infrared fluorescence from T could be partially converted into thermal energy through fluorescence resonance energy transfer (FRET) between T and P, coupling with the original heat energy generated by the photothermal agent P itself, thus resulting in image-guided dual PTT. The photothermal conversion efficiency of DTPR reached 60.3% (dual PTT), much higher as compared to its inherent photothermal effect of only 31.5% (single PTT), which was further proved by the more severe photothermal ablation in vitro and in vivo upon 808 nm laser irradiation. Conclusion: Such smart "nanococktail" nanomaterials could be recognized as a promising photothermal nanotheranostics for image-guided cancer treatment.
Collapse
Affiliation(s)
- Zi Long
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qinyu Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shijie Zhen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing-Jing Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
25
|
Xu S, Duan Y, Liu B. Precise Molecular Design for High-Performance Luminogens with Aggregation-Induced Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903530. [PMID: 31583787 DOI: 10.1002/adma.201903530] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/12/2019] [Indexed: 05/06/2023]
Abstract
Precise design of fluorescent molecules with desired properties has enabled the rapid development of many research fields. Among the different types of optically active materials, luminogens with aggregation-induced emission (AIEgens) have attracted significant interest over the past two decades. The negligible luminescence of AIEgens as a molecular species and high brightness in aggregate states distinguish them from conventional fluorescent dyes, which has galvanized efforts to bring AIEgens to a wide array of multidisciplinary applications. Herein, the useful principles and emerging structure-property relationships for precise molecular design toward AIEgens with desirable properties using concrete examples are revealed. The cutting-edge applications of AIEgens and their excellent performance in enabling new research directions in biomedical theranostics, optoelectronic devices, stimuli-responsive smart materials, and visualization of physical processes are also highlighted.
Collapse
Affiliation(s)
- Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
26
|
Wu S, Su F, Magee HY, Meldrum DR, Tian Y. cRGD functionalized 2,1,3-benzothiadiazole (BTD)-containing two-photon absorbing red-emitter-conjugated amphiphilic poly(ethylene glycol)-block-poly( ε-caprolactone) for targeted bioimaging. RSC Adv 2019; 9:34235-34243. [PMID: 31798837 PMCID: PMC6886675 DOI: 10.1039/c9ra06694b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1. Micelle 1 with cRGD targeting groups were used for targeted bioimaging. For comparison, micelle 2 without the cRGD targeting groups were also prepared and investigated. The micelles were characterized using dynamic light scattering (DLS), showing average diameters of around 77 nm. The cRGD targeting group is known to bind specifically with αvβ3 integrin in cancer cells. In this study, αvβ3 integrin overexpressed human glioblastoma U87MG cell line and αvβ3 integrin deficient human cervical cancer HeLa cell line were chosen. Results showed that the cRGD targeting group enhanced the cellular uptake efficiency of the micelles significantly in αvβ3 integrin rich U87MG cells. Higher temperature (37 °C versus 4 °C) and calcium ions (with 3 M calcium chloride in the cell culture medium versus no addition of calcium ions) enhanced the cellular uptake efficiency, suggesting that the uptake of the micelles is through the endocytosis pathway in cells. A 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the micelles and no significant cytotoxicity was observed. The BTD-containing two-photon absorbing emitter in the micelles showed a two-photon absorbing cross-section of 236 GM (1 GM = 1 × 10−50 cm4 s per photonper molecule) at 820 nm, which is among the highest values reported for red 2PA emitters. Because of the two-photon absorbing characteristics, micelle 1 was successfully used for two-photon fluorescence imaging targeted to U87MG cells under a two-photon fluorescence microscope. This study is the first report regarding the targeted imaging of a specific cancer cell line (herein, U87MG) using the BTD-conjugated-fluorophore-containing block copolymers. A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1.![]()
Collapse
Affiliation(s)
- Shanshan Wu
- Guangdong Industry Polytechnic, Foshan Municipality Anti-counterfeiting Engineering Research Center, Guangzhou, Guangdong 510300, China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hansa Y Magee
- Knowledge Enterprise, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
27
|
Fluorescent Polymer Dots for Tracking SKOV3 Cells in Living Mice with Probe-Based Confocal Laser Endomicroscopy. Mol Imaging Biol 2019; 21:1026-1033. [DOI: 10.1007/s11307-019-01343-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
NIR Emission Nanoparticles Based on FRET Composed of AIE Luminogens and NIR Dyes for Two-photon Fluorescence Imaging. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2206-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Liu Z, Liu F, Gao Y, Qing W, Huang Y, Li S, Jin D. AIEgen Nanoparticles of Arylamino Fumaronitrile Derivative with High Near-Infrared Emission for Two-Photon Imaging and in Vivo Cell Tracking. ACS APPLIED BIO MATERIALS 2018; 2:430-436. [DOI: 10.1021/acsabm.8b00643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | - Shengliang Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | | |
Collapse
|
30
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
31
|
Zhang K, Gao YJ, Yang PP, Qi GB, Zhang JP, Wang L, Wang H. Self-Assembled Fluorescent Organic Nanomaterials for Biomedical Imaging. Adv Healthc Mater 2018; 7:e1800344. [PMID: 30137689 DOI: 10.1002/adhm.201800344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/21/2018] [Indexed: 11/05/2022]
Abstract
Fluorescent nanomaterials, self-assembled from building blocks through multiple intermolecular interactions show diversified structures and functionalities, and are potential fluorescence contrast agents/probes for high-performance biomedical imaging. Self-assembled nanomaterials exhibit high stability, long circulation time, and targeted biological distribution. This review summarizes recent advances of self-assembled nanomaterials as fluorescence contrast agents/probes for biomedical imaging. The self-assembled nanomaterials are classified into two groups, i.e., ex situ and in situ construction of self-assembled nanomaterials. The advantages of ex situ as well as in situ constructed nanomaterials for biomedical applications are discussed thoroughly. The directions of future developments for self-assembled nanomaterials are provided.
Collapse
Affiliation(s)
- Kuo Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 China
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Yu-Juan Gao
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Pei-Pei Yang
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Guo-Bin Qi
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Jing-Ping Zhang
- Faculty of Chemistry; Northeast Normal University; Changchun 130024 China
| | - Lei Wang
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| | - Hao Wang
- CAS Center for Excellence Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology (NCNST); No. 11 Beiyitiao, Zhongguancun Haidian District Beijing 100190 China
| |
Collapse
|
32
|
Guo Y, Li Y, Yang Y, Tang S, Zhang Y, Xiong L. Multiscale Imaging of Brown Adipose Tissue in Living Mice/Rats with Fluorescent Polymer Dots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20884-20896. [PMID: 29893119 DOI: 10.1021/acsami.8b06094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brown adipose tissue (BAT) has been identified as a promising target for the treatment of obesity, diabetes, and relevant metabolism disorders because of the adaptive thermogenesis ability of this tissue. Visualizing BAT may provide an essential tool for pathology study, drug screening, and efficacy evaluation. Owing to limitations of current nuclear and magnetic resonance imaging approaches for BAT detection, fluorescence imaging has advantages in large-scale preclinical research on small animals. Here, fast BAT imaging in mice is conducted based on polymer dots as fluorescent probes. As early as 5 min after the intravenous injection of polymer dots, extensive fluorescence is detected in the interscapular BAT and axillar BAT. In addition, axillar and inguinal white adipose tissues (WAT) are recognized. The real-time in vivo behavior of polymer dots in rodents is monitored using the probe-based confocal laser endomicroscopy imaging, and the preferred accumulation in BAT over WAT is confirmed by histological assays. Moreover, the whole study is conducted without a low temperature or pharmaceutical stimulation. The imaging efficacy is verified at the cellular, histological, and whole-body levels, and the present results indicate that fluorescent polymer dots may be a promising tool for the visualization of BAT in living subjects.
Collapse
Affiliation(s)
- Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yidian Yang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , P. R. China
| | - Shiyi Tang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| |
Collapse
|
33
|
Clement S, Chen W, Deng W, Goldys EM. X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs. Int J Nanomedicine 2018; 13:3553-3570. [PMID: 29950835 PMCID: PMC6016269 DOI: 10.2147/ijn.s164967] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION The depth limitation of conventional photodynamic therapy (PDT) with visible electromagnetic radiation represents a challenge for the treatment of deep-seated tumors. MATERIALS AND METHODS To overcome this issue, we developed an X-ray-induced PDT system where poly(lactide-co-glycolide) (PLGA) polymeric nanoparticles (NPs) incorporating a photosensitizer (PS), verteporfin (VP), were triggered by 6 MeV X-ray radiation to generate cytotoxic singlet oxygen. The X-ray radiation used in this study allows this system to breakthrough the PDT depth barrier due to excellent penetration of 6 MeV X-ray radiation through biological tissue. In addition, the conjugation of our NPs with folic acid moieties enables specific targeting of HCT116 cancer cells that overexpress the folate receptors. We carried out physiochemical characterization of PLGA NPs, such as size distribution, zeta potential, morphology and in vitro release of VP. Cellular uptake activity and cell-killing effect of these NPs were also evaluated. RESULTS AND DISCUSSION Our results indicate that our nanoconstructs triggered by 6 MeV X-ray radiation yield enhanced PDT efficacy compared with the radiation alone. We attributed the X-ray-induced singlet oxygen generation from the PS, VP, to photoexcitation by Cherenkov radiation and/or reactive oxygen species generation facilitated by energetic secondary electrons produced in the tissue. CONCLUSION The cytotoxic effect caused by VP offers the possibility of enhancing the radiation therapy commonly prescribed for the treatment of cancer by simultaneous PDT.
Collapse
Affiliation(s)
- Sandhya Clement
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Wenjie Chen
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
| | - Wei Deng
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
- The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
34
|
Mei J, Huang Y, Tian H. Progress and Trends in AIE-Based Bioprobes: A Brief Overview. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12217-12261. [PMID: 29140079 DOI: 10.1021/acsami.7b14343] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Luminescent bioprobes are powerful analytical means for biosensing and optical imaging. Luminogens featured with aggregation-induced emission (AIE) attributes have emerged as ideal building blocks for high-performance bioprobes. Bioprobes constructed with AIE luminogens have been identified to be a novel class of FL light-up probing tools. In contrast to conventional bioprobes based on the luminophores with aggregation-caused quenching (ACQ) effect, the AIE-based bioprobes enjoy diverse superiorities, such as lower background, higher signal-to-noise ratio and sensitivity, better accuracy, and more outstanding resistance to photobleaching. AIE-based bioprobes have been tailored for a vast variety of purposes ranging from biospecies sensing to bioimaging to theranostics (i.e., image-guided therapies). In this review, recent five years' advances in AIE-based bioprobes are briefly overviewed in a perspective distinct from other reviews, focusing on the most appealing trends and progresses in this flourishing research field. There are altogether 11 trends outlined, which have been classified into four aspects: the probe composition and form (bioconjugtes, nanoprobes), the output signal of probe (far-red/near-infrared luminescence, two/three-photon excited fluorescence, phosphorescence), the modality and functionality of probing system (dual-modality, dual/multifunctionality), the probing object and application outlet (specific organelles, cancer cells, bacteria, real samples). Typical examples of each trend are presented and specifically demonstrated. Some important prospects and challenges are pointed out as well in the hope of intriguing more interests from researchers working in diverse areas into this exciting research field.
Collapse
Affiliation(s)
- Ju Mei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| | - Youhong Huang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| | - He Tian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
35
|
Synthesis, structure, photoluminescence and photochromism of phosphindole oxide and benzo[b]thiophene S,S-dioxide derivatives. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Gao H, Zhao X, Chen S. AIEgen-Based Fluorescent Nanomaterials: Fabrication and Biological Applications. Molecules 2018; 23:E419. [PMID: 29443927 PMCID: PMC6017469 DOI: 10.3390/molecules23020419] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
In recent years, luminogens with the feature of aggregation-induced emission (AIEgen) have emerged as advanced luminescent materials for fluorescent nanomaterial preparation. AIEgen-based nanomaterials show enhanced fluorescence efficiency and superior photostability, which thusly offer unique advantages in biological applications. In this review, we will summarize the fabrication methods of AIEgen-based nanomaterials and their applications in in vitro/in vivo imaging, cell tracing, photodynamic therapy and drug delivery, focusing on the recent progress.
Collapse
Affiliation(s)
- Hui Gao
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| |
Collapse
|
37
|
Ruan H, Wu X, Yang C, Li Z, Xia Y, Xue T, Shen Z, Wu A. A Supersensitive CTC Analysis System Based on Triangular Silver Nanoprisms and SPION with Function of Capture, Enrichment, Detection, and Release. ACS Biomater Sci Eng 2018; 4:1073-1082. [PMID: 33418791 DOI: 10.1021/acsbiomaterials.7b00825] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huimin Ruan
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, People’s Republic of China
- University of Chinese Academy of Sciences, 19 A Yu-quan Road, Shi-jing-shan District, Beijing 100049, People’s Republic of China
| | - Xiaoxia Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, People’s Republic of China
| | - Chengcheng Yang
- State Key Laboratory Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong-chuan Road, Min-hang District, Shanghai 200030, China
| | - Zihou Li
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, People’s Republic of China
| | - Yuanzhi Xia
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, People’s Republic of China
| | - Ting Xue
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, People’s Republic of China
| | - Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, People’s Republic of China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang 315201, People’s Republic of China
| |
Collapse
|
38
|
Yang W, Li C, Zhang M, Zhou W, Xue R, Liu H, Li Y. Aggregation-induced emission and intermolecular charge transfer effect in triphenylamine fluorophores containing diphenylhydrazone structures. Phys Chem Chem Phys 2018; 18:28052-28060. [PMID: 27722298 DOI: 10.1039/c6cp04755f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three new chromophores incorporating acceptor-π-donor-π-acceptor structural motifs and mono-, di- and tri-branched diphenylsulfone base linked to triphenylamine through a hydrazone π-bridge were synthesized, and the photoluminescence properties of the three chromophores were studied in solutions as well as in aggregated states. All the fluorophores emitted strong blue fluorescence in THF. Mono- and di-branched triphenylamine both exhibited increasing blue fluorescence and displayed an AIEE effect in the aggregated state. Tri-branched triphenylamine emitted green fluorescence and presented the AIE effect in the aggregated state. These interesting phenomena have been interpreted by a molecular stacking mode with molecular dynamics (MD) and DFT calculations. The unique propeller shaped molecular configuration of triphenylamine prevented face to face π-π stacking and induced the hindered rotation, which resulted in the AIEE or AIE effect in the aggregated state. The enlarged coplanarity of diphenylhydrazone chains increased the conjugation of tri-branched triphenylamine, which was beneficial to the formation of ICT and AIE and resulted in emitting green ICT fluorescence in the aggregated state. Fluorescent microscope imaging and the fluorescent pictures of the powder states certified the strong AIEE effect or AIE effect in the solid.
Collapse
Affiliation(s)
- Wen Yang
- School of Chemistry & Chemical Engineering and Material Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Chunchun Li
- School of Chemistry & Chemical Engineering and Material Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Mengmeng Zhang
- School of Chemistry & Chemical Engineering and Material Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Weiqun Zhou
- School of Chemistry & Chemical Engineering and Material Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Haili Liu
- Functional Nano & Soft Materials Laboratory, Soochow University, 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Youyong Li
- Functional Nano & Soft Materials Laboratory, Soochow University, 199 Ren'ai Road, Suzhou, 215123, People's Republic of China
| |
Collapse
|
39
|
Liu J, Evrard M, Cai X, Feng G, Tomczak N, Ng LG, Liu B. Organic nanoparticles with ultrahigh quantum yield and aggregation-induced emission characteristics for cellular imaging and real-time two-photon lung vasculature imaging. J Mater Chem B 2018; 6:2630-2636. [DOI: 10.1039/c8tb00386f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic nanoparticles with a high quantum yield of 90% and aggregation-induced emission characteristics were prepared for cellular imaging and real-time two-photon vasculature imaging of the lungs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical and biomolecular Engineering
- National University of Singapore
- Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN)
- Agency for Science Technology and Research (A*STAR)
- Biopolis
- Singapore
| | - Xiaolei Cai
- Department of Chemical and biomolecular Engineering
- National University of Singapore
- Singapore
| | - Guangxue Feng
- Department of Chemical and biomolecular Engineering
- National University of Singapore
- Singapore
| | - Nikodem Tomczak
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science Technology and Research (A*STAR)
- Fusionopolis
- Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN)
- Agency for Science Technology and Research (A*STAR)
- Biopolis
- Singapore
| | - Bin Liu
- Department of Chemical and biomolecular Engineering
- National University of Singapore
- Singapore
- Singapore Immunology Network (SIgN)
- Agency for Science Technology and Research (A*STAR)
| |
Collapse
|
40
|
Sun J, Xin Q, Yang Y, Shah H, Cao H, Qi Y, Gong JR, Li J. Nitrogen-doped graphene quantum dots coupled with photosensitizers for one-/two-photon activated photodynamic therapy based on a FRET mechanism. Chem Commun (Camb) 2018; 54:715-718. [DOI: 10.1039/c7cc08820e] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photosensitizers can be excited by nitrogen-doped graphene quantum dots under one-/two-photon excitation through an intramolecular FRET mechanism and induced phototoxicity.
Collapse
Affiliation(s)
- Jiaheng Sun
- School of Public Health, Jilin University
- Changchun
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
| | - Qi Xin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Hameed Shah
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Hongqian Cao
- School of Public Health, Jilin University
- Changchun
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
| | - Yanfei Qi
- School of Public Health, Jilin University
- Changchun
- China
| | - Jian Ru Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing
- China
| | - Junbai Li
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
| |
Collapse
|
41
|
Wang P, Yu N, Wang Y, Sun H, Yang Z, Zhou S. Co-delivery of PLK1-specific shRNA and doxorubicin via core-crosslinked pH-sensitive and redox ultra-sensitive micelles for glioma therapy. J Mater Chem B 2018; 6:112-124. [DOI: 10.1039/c7tb02160g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anticancer drug delivery encounters many biological barriers, including mucosal barriers, nonspecific uptake and intracellular drug resistance.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Nengwei Yu
- Department of Neurology
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
- Chengdu
- China
| | - Yi Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Huili Sun
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| | - Zhenglin Yang
- Department of Neurology
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
- Chengdu
- China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
| |
Collapse
|
42
|
Liu Y, Zhu S, Gu K, Guo Z, Huang X, Wang M, Amin HM, Zhu W, Shi P. GSH-Activated NIR Fluorescent Prodrug for Podophyllotoxin Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29496-29504. [PMID: 28758393 DOI: 10.1021/acsami.7b07091] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Theranostic prodrug therapy enables the targeted delivery of anticancer drugs with minimized adverse effects and real-time in situ monitoring of activation of the prodrugs. In this work, we report the synthesis and biological assessment of the near-infrared (NIR) prodrug DCM-S-PPT and its amphiphilic copolymer (mPEG-DSPE)-encapsulated nanoparticles. DCM-S-PPT is composed of podophyllotoxin (PPT) as the anticancer moiety and a dicyanomethylene-4H-pyran (DCM) derivative as the NIR fluorescent reporter, which are linked by a thiol-specific cleavable disulfide bond. In vitro experiments indicated that DCM-S-PPT has low cytotoxicity and that glutathione (GSH) can activate DCM-S-PPT resulting in PPT release and a concomitant significant enhancement in NIR fluorescence at 665 nm. After being intravenously injected into tumor-bearing nude mice, DCM-S-PPT exhibited excellent tumor-activated performance. Furthermore, we have demonstrated that mPEG-DSPE as a nanocarrier loaded with DCM-S-PPT (mPEG-DSPE/DCM-S-PPT) showed even greater tumor-targeting performance than DCM-S-PPT on account of the enhanced permeability and retention effect. Its tumor-targeting ability and specific drug release in tumors make DCM-S-PPT a promising prodrug that could provide a significant strategy for theranostic drug delivery systems.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, PR China
| | - Shaojia Zhu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, PR China
| | - Kaizhi Gu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, PR China
| | - Zhiqian Guo
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, PR China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, PR China
| | - Mingwei Wang
- Fudan University Shanghai Cancer Center , 270 Dongan Road, Shanghai 200032, PR China
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Weihong Zhu
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, PR China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
43
|
In vivo cancer research using aggregation-induced emission organic nanoparticles. Drug Discov Today 2017; 22:1412-1420. [DOI: 10.1016/j.drudis.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
|
44
|
|
45
|
Yang X, Wang Y, Shen X, Su C, Yang J, Piao M, Jia F, Gao G, Zhang L, Lin Q. One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci 2017; 492:1-7. [DOI: 10.1016/j.jcis.2016.12.057] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
|
46
|
Wan Q, Xu D, Mao L, He Z, Zeng G, Shi Y, Deng F, Liu M, Zhang X, Wei Y. Facile Fabrication of AIE-Active Fluorescent Polymeric Nanoparticles with Ultra-Low Critical Micelle Concentration Based on Ce(IV) Redox Polymerization for Biological Imaging Applications. Macromol Rapid Commun 2017; 38. [PMID: 28221732 DOI: 10.1002/marc.201600752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Indexed: 12/30/2022]
Abstract
Fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) property have received increasing attention and possess promising biomedical application potential in the recent years. Many efforts have been devoted to the fabrication methodologies of FPNs and significant advance has been achieved. In this contribution, a novel strategy for the fabrication of AIE-active amphiphilic copolymers is reported for the first time based on the Ce(IV) redox polymerization. As an example, ene group containing AIE-active dye (named as Phe-alc) is directly grafted onto a water soluble polymer polyethylene glycol (PEG) in H2 O/THF system under low temperature. Thus-obtained amphiphilic fluorescent polymers will self-assemble into FPNs with ultra-low critical micelle concentration, ultra-brightness, and great water dispersibility. Biological evaluation results suggest that the PEG-poly(Phe-alc) possess excellent biocompatibility and can be used for tracing their behavior in cells using confocal laser scanning microscope. These features make PEG-poly(Phe-alc) FPNs promising candidates for many biomedical applications, such as cell imaging, drug delivery vehicles, and targeted tracing. More importantly, many other functional groups can also be incorporated into these AIE-active FPNs through the redox polymerization. Therefore, the redox polymerization should be a facile and effective strategy for fabrication of AIE-active FPNs.
Collapse
Affiliation(s)
- Qing Wan
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Dazhuang Xu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Liucheng Mao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Ziyang He
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Guangjian Zeng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Yingge Shi
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P. R. China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
47
|
Guo J, Hu S, Luo W, Hu R, Qin A, Zhao Z, Tang BZ. A novel aggregation-induced emission platform from 2,3-diphenylbenzo[b]thiophene S,S-dioxide. Chem Commun (Camb) 2017; 53:1463-1466. [DOI: 10.1039/c6cc09892d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The steric hindrance and electronic push–pull effect greatly influence the aggregation-induced emission (AIE) properties of 2,3-diphenylbenzo[b]thiophene S,S-dioxide.
Collapse
Affiliation(s)
- Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Shimin Hu
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Wenwen Luo
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
- Department of Chemistry
| |
Collapse
|
48
|
Lou X, Zhao Z, Tang BZ. Organic Dots Based on AIEgens for Two-Photon Fluorescence Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6430-6450. [PMID: 27356782 DOI: 10.1002/smll.201600872] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/12/2016] [Indexed: 06/06/2023]
Abstract
Two-photon fluorescence imaging technique is a powerful bioanalytical approach in terms of high photostability, low photodamage, high spatiotemporal resolution. Recently, fluorescent organic dots comprised of organic emissive cores and a polymeric matrix are emerging as promising contrast reagents for two-photon fluorescence imaging, owing to their numerous merits of high and tunable fluorescence, good biocompatibility, strong photobleaching resistance, and multiple surface functionality. The emissive core is crucial for organic dots to get high brightness but many conventional chromophores often encounter a severe problem of fluorescence quenching when they form aggregates. To solve this problem, fluorogens featuring aggregation-induced emission (AIE) can fluoresce strongly in aggregates, and thus become ideal candidates for fluorescent organic dots. In addition, two-photon absorption property of the dots can be readily improved by just increase loading contents of AIE fluorogen (AIEgen). Hence, organic dots based on AIEgens have exhibited excellent performances in two-photon fluorescence in vitro cellular imaging, and in vivo vascular architecture visualization of mouse skin, muscle, brain and skull bone. In view of the rapid advances in this important research field, here, we highlight representative fluorescent organic dots with an emissive core of AIEgen aggregate, and discuss their great potential in bioimaging applications.
Collapse
Affiliation(s)
- Xiaoding Lou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong, China
| |
Collapse
|
49
|
Yu G, Zhao R, Wu D, Zhang F, Shao L, Zhou J, Yang J, Tang G, Chen X, Huang F. Pillar[5]arene-based amphiphilic supramolecular brush copolymer: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polym Chem 2016; 7:6178-6188. [PMID: 27795740 PMCID: PMC5084091 DOI: 10.1039/c6py01402j] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supramolecular brush copolymers have attracted continuing interest due to their unusual architectures, fascinating properties, and potential applications in many fields involving smart stimuli-responsive drug delivery systems. Herein, the first pillararene-based amphiphilic supramolecular brush copolymer (P5-PEG-Biotin⊃PTPE) was constructed on the basis of the host-guest molecular recognition between a water-soluble pillar[5]arene (P5) and a viologen salt (M). P5-PEG-Biotin⊃PTPE self-assembled into supramolecular nanoparticles (SNPs), which were utilized as a self-imaging drug delivery vehicle by taking advantage of the aggregation-induced emission (AIE) effect. Encapsulation of anticancer drug doxorubicin (DOX) caused deactivation of the fluorescences of both the tetraphenylethene (TPE) and DOX chromophores due to the energy transfer relay (ETR) effect, mediated by Förster resonance energy transfer (FRET) and aggregation-caused quenching (ACQ). The release of loaded DOX molecules can be triggered by low pH and reductase, recovering the "silenced" fluorescence caused by the interruption of the ETR effect, achieving in situ visualization of the drug release process by observing the location and magnitude of the energy transfer-dependent fluorescence variation. The biotin ligands on the surfaces of the DOX-loaded SNPs act as targeting agents to deliver DOX preferentially to cancer cells over-expressing biotin receptor. In vitro studies demonstrated that the loading of DOX by this supramolecular nanomaterial exhibited selective cytotoxicity towards cancer cells over normal cells. The potency of this sophisticated supramolecular drug delivery system in cancer therapy was further evaluated in HeLa tumor-bearing mice. In vivo experiments confirmed that the DOX-loaded SNPs possess excellent antitumor efficacy with negligible systemic toxicity.
Collapse
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Run Zhao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dan Wu
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jie Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guping Tang
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
50
|
Long Z, Liu M, Wang K, Deng F, Xu D, Liu L, Wan Y, Zhang X, Wei Y. Facile synthesis of AIE-active amphiphilic polymers: Self-assembly and biological imaging applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:215-220. [DOI: 10.1016/j.msec.2016.04.081] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
|