1
|
Rockenfeller R, Günther M, Hooper SL. Muscle active force-length curve explained by an electrophysical model of interfilament spacing. Biophys J 2022; 121:1823-1855. [PMID: 35450825 PMCID: PMC9199101 DOI: 10.1016/j.bpj.2022.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
The active isometric force-length relation (FLR) of striated muscle sarcomeres is central to understanding and modeling muscle function. The mechanistic basis of the descending arm of the FLR is well explained by the decreasing thin:thick filament overlap that occurs at long sarcomere lengths. The mechanistic basis of the ascending arm of the FLR (the decrease in force that occurs at short sarcomere lengths), alternatively, has never been well explained. Because muscle is a constant-volume system, interfilament lattice distances must increase as sarcomere length shortens. This increase would decrease thin and thick-filament electrostatic interactions independently of thin:thick filament overlap. To examine this effect, we present here a fundamental, physics-based model of the sarcomere that includes filament molecular properties, calcium binding, sarcomere geometry including both thin:thick filament overlap and interfilament radial distance, and electrostatics. The model gives extremely good fits to existing FLR data from a large number of different muscles across their entire range of measured activity levels, with the optimized parameter values in all cases lying within anatomically and physically reasonable ranges. A local first-order sensitivity analysis (varying individual parameters while holding the values of all others constant) shows that model output is most sensitive to a subset of model parameters, most of which are related to sarcomere geometry, with model output being most sensitive to interfilament radial distance. This conclusion is supported by re-running the fits with only this parameter subset being allowed to vary, which increases fit errors only moderately. These results show that the model well reproduces existing experimental data, and indicate that changes in interfilament spacing play as central a role as changes in filament overlap in determining the FLR, particularly on its ascending arm.
Collapse
Affiliation(s)
| | - Michael Günther
- Biomechanics and Biorobotics, Stuttgart Center for Simulation Sciences (SC SimTech), Universität Stuttgart, Stuttgart, Germany; Friedrich-Schiller-Universität, Jena, Germany
| | - Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, Ohio
| |
Collapse
|
2
|
Caremani M, Fusi L, Linari M, Reconditi M, Piazzesi G, Irving TC, Narayanan T, Irving M, Lombardi V, Brunello E. Dependence of thick filament structure in relaxed mammalian skeletal muscle on temperature and interfilament spacing. J Gen Physiol 2021; 153:211664. [PMID: 33416833 PMCID: PMC7802359 DOI: 10.1085/jgp.202012713] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022] Open
Abstract
Contraction of skeletal muscle is regulated by structural changes in both actin-containing thin filaments and myosin-containing thick filaments, but myosin-based regulation is unlikely to be preserved after thick filament isolation, and its structural basis remains poorly characterized. Here, we describe the periodic features of the thick filament structure in situ by high-resolution small-angle x-ray diffraction and interference. We used both relaxed demembranated fibers and resting intact muscle preparations to assess whether thick filament regulation is preserved in demembranated fibers, which have been widely used for previous studies. We show that the thick filaments in both preparations exhibit two closely spaced axial periodicities, 43.1 nm and 45.5 nm, at near-physiological temperature. The shorter periodicity matches that of the myosin helix, and x-ray interference between the two arrays of myosin in the bipolar filament shows that all zones of the filament follow this periodicity. The 45.5-nm repeat has no helical component and originates from myosin layers closer to the filament midpoint associated with the titin super-repeat in that region. Cooling relaxed or resting muscle, which partially mimics the effects of calcium activation on thick filament structure, disrupts the helical order of the myosin motors, and they move out from the filament backbone. Compression of the filament lattice of demembranated fibers by 5% Dextran, which restores interfilament spacing to that in intact muscle, stabilizes the higher-temperature structure. The axial periodicity of the filament backbone increases on cooling, but in lattice-compressed fibers the periodicity of the myosin heads does not follow the extension of the backbone. Thick filament structure in lattice-compressed demembranated fibers at near-physiological temperature is similar to that in intact resting muscle, suggesting that the native structure of the thick filament is largely preserved after demembranation in these conditions, although not in the conditions used for most previous studies with this preparation.
Collapse
Affiliation(s)
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Marco Linari
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| | - Massimo Reconditi
- PhysioLab, University of Florence, Florence, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Firenze, Italy
| | | | - Thomas C Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | | | - Malcolm Irving
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Elisabetta Brunello
- PhysioLab, University of Florence, Florence, Italy.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
3
|
Liu J, Puolanne E, Schwartzkopf M, Arner A. Altered Sarcomeric Structure and Function in Woody Breast Myopathy of Avian Pectoralis Major Muscle. Front Physiol 2020; 11:287. [PMID: 32328000 PMCID: PMC7160512 DOI: 10.3389/fphys.2020.00287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
The "Woody" or "Wooden" breast disease is a severe myopathy of pectoralis major muscle recently identified within rapidly growing broiler lines all around the world with a prevalence rate around 20%, or even higher. Although of significant ethical and economic impact, little is known regarding the structural and functional aspects of the contractile apparatus in the woody breast muscle. The aim of the present study was to determine physiological properties of the contractile system in the morphologically intact muscle fibers of focally damaged woody breast in comparison with normal muscle fibers to gain insight into the muscle function of the animal and possibly mechanisms involved in the disease development. Muscle samples were taken from woody breast (non-lesioned areas) and normal breast muscles from broilers. Length-tension curves, maximal active stress, maximal shortening velocity, calcium sensitivity, rate of tension development, lattice spacing and muscle biochemical composition were investigated on single skinned fibers. Sarcomeres of woody breast fibers were more compliant, which is very likely related to the wider spacing (18% wider compared to controls) between thick and thin filament. No differences were found in optimal sarcomere length (2.68 ± 0.04 vs. 2.65 ± 0.05 μm) nor in maximal active stress (116 ± 17 vs. 125 ± 19 mN mm-2). However, woody breast fibers had less steep descending arm as shown in length-tension curve. Woody breast muscle fibers had 40% bigger sarcomeric volume compared to controls. Content of contractile proteins (myosin and actin), and maximal shortening velocity were unchanged indicating that the growth in woody breast muscle fiber was associated with synthesis of new contractile units with unaltered kinetics. Calcium sensitivity was decreased in woody breast muscle fibers significantly. In conclusion, the results show that the rapid growth of muscle in woody breast disease is associated with significant structural and functional changes in the pectoralis major musculature, associated with alterations in the mechanical anchoring of contractile filaments.
Collapse
Affiliation(s)
- Jiao Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Thoracic Surgery, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | | | - Anders Arner
- Thoracic Surgery, Department of Clinical Sciences, Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Skeletal muscle fibre swelling contributes to force depression in rats and humans: a mechanically-skinned fibre study. J Muscle Res Cell Motil 2019; 40:343-351. [PMID: 31175519 DOI: 10.1007/s10974-019-09521-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
This study investigated the effects of fibre swelling on force production in rat and human skinned muscle fibres, using osmotic compression to reverse the fibre swelling. In mechanically-skinned fibres, the sarcolemma is removed but normal excitation-contraction coupling remains functional. Force responses in mechanically-skinned fibres were examined with and without osmotic compression by polyvinylpyrrolidone 40 kDa (PVP-40) or Dextran 500 kDa (dextran). Fibre diameter increased to 116 ± 2% (mean ± SEM) when rat skinned type II fibres were immersed in the standard intracellular solution, but remained close to the in situ size when 3% (mass/volume) PVP-40 or 4% Dextran were present. Myofibrillar Ca2+ sensitivity, as indicated by pCa50 (- log10[Ca2+] at half-maximal force), was increased in 4% Dextran (0.072 ± 0.007 pCa50 shift), but was not significantly changed in 3% PVP-40. Maximum Ca2+-activated force increased slightly to 103 ± 1% and 104 ± 1% in PVP-40 and Dextran, respectively. Both tetanic and depolarization-induced force responses in rat skinned type II fibres, elicited by electrical stimulation and ion substitution respectively, were increased by ~ 10 to 15% when the fibres were returned to their normal in situ diameter by addition of PVP-40 or Dextran. Interestingly, the potentiation of these force responses in PVP-40 was appreciably greater than could be explained by potentiation of myofibrillar function alone. These results indicate that muscle fibre swelling, as can occur with intense exercise, decreases evoked force responses by reducing both the Ca2+-sensitivity of the contractile apparatus properties and Ca2+ release from the sarcoplasmic reticulum.
Collapse
|
5
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
6
|
Stutzig N, Ryan D, Wakeling JM, Siebert T. Impact of transversal calf muscle loading on plantarflexion. J Biomech 2019; 85:37-42. [PMID: 30660380 DOI: 10.1016/j.jbiomech.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 11/29/2022]
Abstract
Muscle compression commonly occurs in daily life (for instance wearing backpacks or compression garments, and during sitting). However, the effects of the compression on contraction dynamics in humans are not well examined. The aim of the study was to quantify the alterations of contraction dynamics and muscle architecture in human muscle with external transverse loads. The posterior tibialis nerve of 29 subjects was stimulated to obtain the maximal double-twitch force of the gastrocnemius muscle with and without transverse compression that was generated using an indentor. The muscle architecture was determined by a sonographic probe that was embedded within the indentor. Five stimulations each were conducted at 5 conditions: (1) pretest (unloaded), (2) indentor loading with 2 kg, (3) 4.5 kg, (4) 10 kg, and (5) posttest (unloaded). Compared to the pretest maximal force decreased by 9%, 13% and 16% for 2 kg, 4.5 kg and 10 kg, respectively. The half-relaxation time increased with increased transverse load whereas the rate of force development decreased from pretest to 2 kg and from 4.5 kg to 10 kg. The lifting height of the indentor increased with transverse load from 2 kg to 4.5 kg but decreased from 4.5 kg to 10 kg. Increases in pennation during the twitches were reduced at the highest transverse load. The results demonstrate changes of the contraction dynamics due to transversal muscle loading. Those alterations are associated with the applied pressure, changes in muscle architecture and partitioning of muscle force in transversal and longitudinal direction.
Collapse
Affiliation(s)
- Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Germany.
| | - David Ryan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, Canada
| | - James M Wakeling
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, Canada
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Germany
| |
Collapse
|
7
|
Lamb GD, Stephenson DG. Measurement of force and calcium release using mechanically skinned fibers from mammalian skeletal muscle. J Appl Physiol (1985) 2018; 125:1105-1127. [DOI: 10.1152/japplphysiol.00445.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanically skinned (or “peeled”) skeletal muscle fiber technique is a highly versatile procedure that allows controlled examination of each of the steps in the excitation-contraction (EC)-coupling sequence in skeletal muscle fibers, starting with excitation/depolarization of the transverse tubular (T)-system through to Ca2+ release from sarcoplasmic reticulum (SR) and finally force development by the contractile apparatus. It can also show the overall response of the whole EC-coupling sequence together, such as in twitch and tetanic force responses. A major advantage over intact muscle fiber preparations is that it is possible to set and rapidly manipulate the “intracellular” conditions, allowing examination of the effects of key variables (e.g., intracellular pH, ATP levels, redox state, etc.) on each individual step in EC coupling. This Cores of Reproducibility in Physiology (CORP) article describes the rationale, procedures, and experimental details of the various ways in which the mechanically skinned fiber technique is used in our laboratory to examine the physiological mechanisms controlling Ca2+ release and contraction in skeletal muscle fibers and the aberrations and dysfunction occurring with exercise and disease.
Collapse
Affiliation(s)
- Graham D. Lamb
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - D. George Stephenson
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Liu J, Schwartzkopf M, Arner A. Rigor bonds cause reduced sarcomeric volume in skinned porcine skeletal muscle under PSE-like conditions. Meat Sci 2018; 139:91-96. [DOI: 10.1016/j.meatsci.2018.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
9
|
Affiliation(s)
- Wolfgang A. Linke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
- Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Göttingen, 37073 Göttingen, Germany
- Cardiac Mechanotransduction Group, Clinic for Cardiology and Pneumology, University Medical Center, 37073 Göttingen, Germany
| |
Collapse
|
10
|
Miyashiro D, Ohtsuki M, Shimamoto Y, Wakayama J, Kunioka Y, Kobayashi T, Ishiwata S, Yamada T. Radial stiffness characteristics of the overlap regions of sarcomeres in isolated skeletal myofibrils in pre-force generating state. Biophys Physicobiol 2017; 14:207-220. [PMID: 29362706 PMCID: PMC5773156 DOI: 10.2142/biophysico.14.0_207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 12/01/2022] Open
Abstract
We have studied the stiffness of myofilament lattice in sarcomeres in the pre-force generating state, which was realized by a relaxing reagent, BDM (butane dione monoxime). First, the radial stiffness for the overlap regions of sarcomeres of isolated single myofibrils was estimated from the resulting decreases in diameter by osmotic pressure applied with the addition of Dextran. Then, the radial stiffness was also estimated from force-distance curve measurements with AFM technology. The radial stiffness for the overlap regions thus obtained was composed of a soft and a rigid component. The soft component visco-elastically changed in a characteristic fashion depending on the physiological conditions of myofibrils, suggesting that it comes from cross-bridge structures. BDM treatments significantly affected the soft radial component of contracting myofibrils depending on the approach velocity of cantilever: It was nearly equal to that in the contracting state at high approach velocity, whereas as low as that in the relaxing state at low approach velocity. However, comparable BDM treatments greatly suppressed the force production and the axial stiffness in contracting glycerinated muscle fibers and also the sliding velocity of actin filaments in the in vitro motility assay. Considering that BDM shifts the cross-bridge population from force generating to pre-force generating states in contracting muscle, the obtained results strongly suggest that cross-bridges in the pre-force generating state are visco-elastically attached to the thin filaments in such a binding manner that the axial stiffness is low but the radial stiffness significantly high similar to that in force generating state.
Collapse
Affiliation(s)
- Daisuke Miyashiro
- Department of Physics (Biophysics Section), Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Misato Ohtsuki
- Department of Physics (Biophysics Section), Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuta Shimamoto
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Jun'ichi Wakayama
- Department of Physics (Biophysics Section), Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuki Kunioka
- Department of Physics (Biophysics Section), Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takakazu Kobayashi
- Department of Electronic Engineering, Shibaura Institute of Technology, Koto-ku, Tokyo 135-8548, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takenori Yamada
- Department of Physics (Biophysics Section), Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
11
|
Murtada SI, Humphrey JD, Holzapfel GA. Multiscale and Multiaxial Mechanics of Vascular Smooth Muscle. Biophys J 2017; 113:714-727. [PMID: 28793225 DOI: 10.1016/j.bpj.2017.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022] Open
Abstract
Mathematical models can facilitate an integrative understanding of the complexity underlying biological structure and function, but they must be informed and validated by empirical data. Uniaxial contraction of an arterial ring is a well-used in vitro approach for studying characteristics of smooth muscle contractility even though this experimental arrangement does not mimic the in vivo vascular geometry or loading. In contrast, biaxial contraction of an inflated and axially extended excised vessel provides broader information, both passive and active, under more realistic conditions. Few investigations have compared these two in vitro approaches directly, namely how their results overlap, how they differ, or if each provides unique complementary information. Toward this end, we present, to our knowledge, a new multiscale mathematical model of arterial contractility accounting for structural and functional constituents at molecular, cellular, and tissue levels. The artery is assumed to be a thick-walled incompressible cylinder described by an anisotropic model of the extracellular matrix and, to our knowledge, novel model of smooth muscle contractility. The latter includes a 3D structural sensitivity to deformation, including microscale muscle filament overlap and filament lattice spacing. The overall model captures uniaxial and biaxial experimental contraction data, which was not possible when accounting for filament overlap alone. The model also enables parameter sensitivity studies, which confirmed that uniaxial contraction tests are not as efficient as biaxial tests for identifying changes in vascular smooth muscle function.
Collapse
Affiliation(s)
- Sae-Ii Murtada
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Faculty of Engineering Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
12
|
Myosin MgADP Release Rate Decreases as Sarcomere Length Increases in Skinned Rat Soleus Muscle Fibers. Biophys J 2017; 111:2011-2023. [PMID: 27806282 DOI: 10.1016/j.bpj.2016.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/21/2022] Open
Abstract
Actin-myosin cross-bridges use chemical energy from MgATP hydrolysis to generate force and shortening in striated muscle. Previous studies show that increases in sarcomere length can reduce thick-to-thin filament spacing in skinned muscle fibers, thereby increasing force production at longer sarcomere lengths. However, it is unclear how changes in sarcomere length and lattice spacing affect cross-bridge kinetics at fundamental steps of the cross-bridge cycle, such as the MgADP release rate. We hypothesize that decreased lattice spacing, achieved through increased sarcomere length or osmotic compression of the fiber via dextran T-500, could slow MgADP release rate and increase cross-bridge attachment duration. To test this, we measured cross-bridge cycling and MgADP release rates in skinned soleus fibers using stochastic length-perturbation analysis at 2.5 and 2.0 μm sarcomere lengths as pCa and [MgATP] varied. In the absence of dextran, the force-pCa relationship showed greater Ca2+ sensitivity for 2.5 vs. 2.0 μm sarcomere length fibers (pCa50 = 5.68 ± 0.01 vs. 5.60 ± 0.01). When fibers were compressed with 4% dextran, the length-dependent increase in Ca2+ sensitivity of force was attenuated, though the Ca2+ sensitivity of the force-pCa relationship at both sarcomere lengths was greater with osmotic compression via 4% dextran compared to no osmotic compression. Without dextran, the cross-bridge detachment rate slowed by ∼15% as sarcomere length increased, due to a slower MgADP release rate (11.2 ± 0.5 vs. 13.5 ± 0.7 s-1). In the presence of dextran, cross-bridge detachment was ∼20% slower at 2.5 vs. 2.0 μm sarcomere length due to a slower MgADP release rate (10.1 ± 0.6 vs. 12.9 ± 0.5 s-1). However, osmotic compression of fibers at either 2.5 or 2.0 μm sarcomere length produced only slight (and statistically insignificant) slowing in the rate of MgADP release. These data suggest that skeletal muscle exhibits sarcomere-length-dependent changes in cross-bridge kinetics and MgADP release that are separate from, or complementary to, changes in lattice spacing.
Collapse
|
13
|
Abstract
The Frank-Starling Law dictates that the heart is able to match ejection to the dynamic changes occurring during cardiac filling, hence efficiently regulating isovolumetric contraction and shortening. In the last four decades, efforts have been made to identify a common fundamental basis for the Frank-Starling heart that can explain the direct relationship between muscle lengthening and its increased sensitization to Ca2+. The term 'myofilament length-dependent activation' describes the length-dependent properties of the myofilaments, but what is(are) the underlying molecular mechanism(s) is a matter of ongoing debate. Length-dependent activation increases formation of thick-filament strongly-bound cross-bridges on actin and imposes structural-mechanical alterations on the thin-filament with greater than normal bound Ca2+. Stretch-induced effects, rather than changes in filament spacing, appear to be primarily involved in the regulation of length-dependent activation. Here, evidence is provided to support the notion that stretch-mediated effects induced by titin govern alterations of thick-filament force-producing cross-bridges and thin-filament Ca2+-cooperative responses.
Collapse
|
14
|
Abstract
Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017.
Collapse
Affiliation(s)
| | - Gerald E Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Nikitina LV, Kopylova GV, Shchepkin DV, Nabiev SR, Bershitsky SY. Investigations of Molecular Mechanisms of Actin-Myosin Interactions in Cardiac Muscle. BIOCHEMISTRY (MOSCOW) 2016; 80:1748-63. [PMID: 26878579 DOI: 10.1134/s0006297915130106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed - two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin-myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin-myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.
Collapse
Affiliation(s)
- L V Nikitina
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Ekaterinburg, 620041, Russia.
| | | | | | | | | |
Collapse
|
16
|
Dokuchaev AD, Shikhaleva EV, Sulman TB, Vikulova NA, Nikitina LV, Katsnelson LB. Cooperativity in mechano-calcium feedbacks in the myocardium: Some conceptual discrepancies and overcoming inconsistency within the framework of a mathematical model. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916050043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Li Y, Lang P, Linke WA. Titin stiffness modifies the force-generating region of muscle sarcomeres. Sci Rep 2016; 6:24492. [PMID: 27079135 PMCID: PMC4832248 DOI: 10.1038/srep24492] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
The contractile units of striated muscle, the sarcomeres, comprise the thick (myosin) and thin (actin) filaments mediating active contraction and the titin filaments determining "passive" elasticity. We hypothesized that titin may be more active in muscle contraction by directly modulating thick-filament properties. We used single-myofibril mechanical measurements and atomic force microscopy of individual sarcomeres to quantify the effects of sarcomere strain and titin spring length on both the inter-filament lattice spacing and the lateral stiffness of the actin-myosin overlap zone (A-band). We found that strain reduced the lattice spacing similarly in sarcomeres with stiff (rabbit psoas) or compliant titin (rabbit diaphragm), but increased A-band lateral stiffness much more in psoas than in diaphragm. The strain-induced alterations in A-band stiffness that occur independently of lattice spacing effects may be due to titin stiffness-sensing by A-band proteins. This mechanosensitivity could play a role in the physiologically important phenomenon of length-dependent activation of striated muscle.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiovascular Physiology, Ruhr University Bochum, Germany
| | - Patrick Lang
- Department of Cardiovascular Physiology, Ruhr University Bochum, Germany
| | - Wolfgang A Linke
- Department of Cardiovascular Physiology, Ruhr University Bochum, Germany
| |
Collapse
|
18
|
Skeletal muscle fiber size and fiber type distribution in human cancer: Effects of weight loss and relationship to physical function. Clin Nutr 2016; 35:1359-1365. [PMID: 27010836 DOI: 10.1016/j.clnu.2016.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/13/2016] [Accepted: 02/29/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Cancer patients frequently experience weight loss, with negative consequences for functionality and prognosis. The extent to which muscle atrophy contributes to weight loss, however, is not clear, as few studies have directly measured muscle fiber morphology in cancer patients. METHODS Whole body and regional tissue composition were measured, along with the cross-sectional area (CSA) and fiber type of mechanically-isolated, single muscle fibers, in 19 cancer patients (8 with a history of weight loss, 11 weight-stable) and 15 non-diseased controls. RESULTS Whole body fat mass was reduced in cancer patients with a history of weight loss, but no differences in whole body or leg fat-free mass were apparent. In contrast, reductions (∼20%) in single muscle fiber CSA were found in both slow-twitch, myosin heavy chain (MHC) I and fast-twitch, MHC IIA fibers in both weight-stable patients and those with a history of weight loss. Fiber type distribution showed a shift towards a fast-twitch phenotype compared to controls, which may preserve muscle function in cancer patients despite atrophy, as positive relationships were found between the fractions of hybrid MHC IIAX and I/IIA fibers and 6-min walk performance. CONCLUSIONS Our results suggest that, although not apparent from whole body or regional measurements, cancer is associated with reduced skeletal muscle fiber size independent of weight loss history and a shift towards fast-twitch fibers, phenotypes that resemble adaptations to muscle disuse.
Collapse
|
19
|
Sequeira V, van der Velden J. Historical perspective on heart function: the Frank-Starling Law. Biophys Rev 2015; 7:421-447. [PMID: 28510104 DOI: 10.1007/s12551-015-0184-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
More than a century of research on the Frank-Starling Law has significantly advanced our knowledge about the working heart. The Frank-Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank-Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank-Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We "revive" a century of scientific research on the heart's fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank-Starling mechanism. It is the authors' personal beliefs that much can be gained by understanding the Frank-Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,ICIN- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
20
|
Callahan DM, Tourville TW, Miller MS, Hackett SB, Sharma H, Cruickshank NC, Slauterbeck JR, Savage PD, Ades PA, Maughan DW, Beynnon BD, Toth MJ. Chronic disuse and skeletal muscle structure in older adults: sex-specific differences and relationships to contractile function. Am J Physiol Cell Physiol 2015; 308:C932-43. [PMID: 25810256 DOI: 10.1152/ajpcell.00014.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/24/2015] [Indexed: 11/22/2022]
Abstract
In older adults, we examined the effect of chronic muscle disuse on skeletal muscle structure at the tissue, cellular, organellar, and molecular levels and its relationship to muscle function. Volunteers with advanced-stage knee osteoarthritis (OA, n = 16) were recruited to reflect the effects of chronic lower extremity muscle disuse and compared with recreationally active controls (n = 15) without knee OA but similar in age, sex, and health status. In the OA group, quadriceps muscle and single-fiber cross-sectional area were reduced, with the largest reduction in myosin heavy chain IIA fibers. Myosin heavy chain IIAX fibers were more prevalent in the OA group, and their atrophy was sex-specific: men showed a reduction in cross-sectional area, and women showed no differences. Myofibrillar ultrastructure, myonuclear content, and mitochondrial content and morphology generally did not differ between groups, with the exception of sex-specific adaptations in subsarcolemmal (SS) mitochondria, which were driven by lower values in OA women. SS mitochondrial content was also differently related to cellular and molecular functional parameters by sex: greater SS mitochondrial content was associated with improved contractility in women but reduced function in men. Collectively, these results demonstrate sex-specific structural phenotypes at the cellular and organellar levels with chronic disuse in older adults, with novel associations between energetic and contractile systems.
Collapse
Affiliation(s)
- Damien M Callahan
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopaedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Mark S Miller
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Sarah B Hackett
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Himani Sharma
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | | | - James R Slauterbeck
- Department of Orthopaedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Patrick D Savage
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Philip A Ades
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - David W Maughan
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Bruce D Beynnon
- Department of Orthopaedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont; Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
21
|
Stienen GJM. Pathomechanisms in heart failure: the contractile connection. J Muscle Res Cell Motil 2014; 36:47-60. [PMID: 25376563 DOI: 10.1007/s10974-014-9395-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/20/2014] [Indexed: 01/07/2023]
Abstract
Heart failure is a multi-factorial progressive disease in which eventually the contractile performance of the heart is insufficient to meet the demands of the body, even at rest. A distinction can be made on the basis of the cause of the disease in genetic and acquired heart failure and at the functional level between systolic and diastolic heart failure. Here the basic determinants of contractile function of myocardial cells will be reviewed and an attempt will be made to elucidate their role in the development of heart failure. The following topics are addressed: the tension generating capacity, passive tension, the rate of tension development, the rate of ATP utilisation, calcium sensitivity of tension development, phosphorylation of contractile proteins, length dependent activation and stretch activation. The reduction in contractile performance during systole can be attributed predominantly to a loss of cardiomyocytes (necrosis), myocyte disarray and a decrease in myofibrillar density all resulting in a reduction in the tension generating capacity and likely also to a mismatch between energy supply and demand of the myocardium. This leads to a decline in the ejection fraction of the heart. Diastolic dysfunction can be attributed to fibrosis and an increase in titin stiffness which result in an increase in stiffness of the ventricular wall and hampers the filling of the heart with blood during diastole. A large number of post translation modifications of regulatory sarcomeric proteins influence myocardial function by altering calcium sensitivity of tension development. It is still unclear whether in concert these influences are adaptive or maladaptive during the disease process.
Collapse
Affiliation(s)
- G J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands,
| |
Collapse
|
22
|
Carlson BE, Vigoreaux JO, Maughan DW. Diffusion coefficients of endogenous cytosolic proteins from rabbit skinned muscle fibers. Biophys J 2014; 106:780-92. [PMID: 24559981 DOI: 10.1016/j.bpj.2013.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/19/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022] Open
Abstract
Efflux time courses of endogenous cytosolic proteins were obtained from rabbit psoas muscle fibers skinned in oil and transferred to physiological salt solution. Proteins were separated by gel electrophoresis and compared to load-matched standards for quantitative analysis. A radial diffusion model incorporating the dissociation and dissipation of supramolecular complexes accounts for an initial lag and subsequent efflux of glycolytic and glycogenolytic enzymes. The model includes terms representing protein crowding, myofilament lattice hindrance, and binding to the cytomatrix. Optimization algorithms returned estimates of the apparent diffusion coefficients, D(r,t), that were very low at the onset of diffusion (∼10(-10) cm(2) s(-1)) but increased with time as cytosolic protein density, which was initially high, decreased. D(r,t) at later times ranged from 2.11 × 10(-7) cm(2) s(-1) (parvalbumin) to 0.20 × 10(-7) cm(2) s(-1) (phosphofructose kinase), values that are 3.6- to 12.3-fold lower than those predicted in bulk water. The low initial values are consistent with the presence of complexes in situ; the higher later values are consistent with molecular sieving and transient binding of dissociated proteins. Channeling of metabolic intermediates via enzyme complexes may enhance production of adenosine triphosphate at rates beyond that possible with randomly and/or sparsely distributed enzymes, thereby matching supply with demand.
Collapse
Affiliation(s)
- Brian E Carlson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Jim O Vigoreaux
- Department of Molecular Physiology and Biophysics, Health Science Research Facility, University of Vermont College of Medicine, Burlington, Vermont; Department of Biology, University of Vermont, Burlington, Vermont
| | - David W Maughan
- Department of Molecular Physiology and Biophysics, Health Science Research Facility, University of Vermont College of Medicine, Burlington, Vermont.
| |
Collapse
|
23
|
Abstract
Skeletal muscle fatigue is defined as the fall of force or power in response to contractile activity. Both the mechanisms of fatigue and the modes used to elicit it vary tremendously. Conceptual and technological advances allow the examination of fatigue from the level of the single molecule to the intact organism. Evaluation of muscle fatigue in a wide range of disease states builds on our understanding of basic function by revealing the sources of dysfunction in response to disease.
Collapse
Affiliation(s)
- Jane A Kent-Braun
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
| | | | | |
Collapse
|
24
|
Williams CD, Salcedo MK, Irving TC, Regnier M, Daniel TL. The length-tension curve in muscle depends on lattice spacing. Proc Biol Sci 2013; 280:20130697. [PMID: 23843386 DOI: 10.1098/rspb.2013.0697] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Classic interpretations of the striated muscle length-tension curve focus on how force varies with overlap of thin (actin) and thick (myosin) filaments. New models of sarcomere geometry and experiments with skinned synchronous insect flight muscle suggest that changes in the radial distance between the actin and myosin filaments, the filament lattice spacing, are responsible for between 20% and 50% of the change in force seen between sarcomere lengths of 1.4 and 3.4 µm. Thus, lattice spacing is a significant force regulator, increasing the slope of muscle's force-length dependence.
Collapse
Affiliation(s)
- C David Williams
- Department of Physiology and Biophysics, University of Washington, , Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
25
|
Miyashiro D, Wakayama J, Akiyama N, Kunioka Y, Yamada T. Radial stability of the actomyosin filament lattice in isolated skeletal myofibrils studied using atomic force microscopy. J Physiol Sci 2013; 63:299-310. [PMID: 23690090 PMCID: PMC10717890 DOI: 10.1007/s12576-013-0268-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/30/2013] [Indexed: 12/01/2022]
Abstract
The radial stability of the actomyosin filament lattice in skeletal myofibrils was examined by using atomic force microscopy. The diameter and the radial stiffness of the A-band region were examined based on force-distance curves obtained for single myofibrils adsorbed onto cover slips and compressed with the tip of a cantilever and with the Dextran treatment. The results obtained indicated that the A-band is composed of a couple of stiffness components having a rigid core-like component. It was further clarified that these radial components changed the thickness as well as the stiffness depending on the physiological condition of myofibrils. Notably, by decreasing the ionic strength, the diameter of the A-band region became greatly shrunken, but the rigid core-like component thickened, indicating that the electrostatic force distinctly affects the radial structure of actomyosin filament components. The results obtained were analyzed based on the elementary structures of the filament lattice composed of cross-bridges, thin filaments and thick filament backbones. It was clarified that the actomyosin filament lattice is radially deformable greatly and that (1), under mild compression, the filament lattice is stabilized primarily by the interactions of myosin heads with thin filaments and thick filament backbones, and (2), under severe compression, the electrostatic repulsive interactions between thin filaments and thick filament backbones became predominant.
Collapse
Affiliation(s)
- Daisuke Miyashiro
- Department of Physics (Biophysics Section), Tokyo University of Science, Tokyo, Japan
| | - Jun’ichi Wakayama
- Nanobiotechnology Laboratory (Food Engineering Division), National Food Research Institute, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Nao Akiyama
- Department of Physics (Biophysics Section), Tokyo University of Science, Tokyo, Japan
| | - Yuki Kunioka
- Japan Science and Technology Agency, Innovation Plaza Ishikawa, Ishikawa, Japan
| | - Takenori Yamada
- Department of Physics (Biophysics Section), Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
26
|
Tanner BCW, Farman GP, Irving TC, Maughan DW, Palmer BM, Miller MS. Thick-to-thin filament surface distance modulates cross-bridge kinetics in Drosophila flight muscle. Biophys J 2013; 103:1275-84. [PMID: 22995500 DOI: 10.1016/j.bpj.2012.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022] Open
Abstract
The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t(on)) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t(on) decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t(on) varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | | | | | | | | | | |
Collapse
|
27
|
Reiser PJ, Welch KC, Suarez RK, Altshuler DL. Very low force-generating ability and unusually high temperature-dependency in hummingbird flight muscle fibers. J Exp Biol 2013; 216:2247-56. [DOI: 10.1242/jeb.068825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Hummingbird flight muscle is estimated to have among the highest mass-specific power output among vertebrates, based on aerodynamic models. However, little is known about fundamental contractile properties of their remarkable flight muscles. We hypothesized that hummingbird pectoralis fibers generate relatively low force when activated in a tradeoff for high shortening speeds associated with the characteristic high wing beat frequencies that are required for sustained hovering. Our objective was to measure maximal force-generating ability (maximal force/cross-sectional area, Po/CSA) in single, skinned fibers from the pectoralis and supracoracoideus muscles, which power the wing downstroke and upstroke, respectively, in hummingbirds (Calypte anna) and in another similarly-sized species, zebra finch (Taeniopygia guttata), which also has a very high wingbeat frequency during flight but does not perform a sustained hover. Mean Po/CSA in hummingbird pectoralis fibers was very low - 1.6, 6.1 and 12.2 kN/m2, at 10, 15 and 20oC, respectively. Po/CSA in finch pectoralis fibers was also very low (for both species, ~5% of the reported Po/CSA of chicken pectoralis fast fibers at 15oC). Force generated at 20oC/force generated at 10oC ('Q10-force' value) was very high for hummingbird and finch pectoralis fibers (mean = 15.3 and 11.5, respectively), compared to rat slow and fast fibers (1.8 and 1.9, respectively). Po/CSA in hummingbird leg fibers was much higher than in pectoralis fibers, at each temperature, and the mean Q10-force was much lower. Thus, hummingbird and finch pectoralis fibers have an extremely low force-generating ability, compared to other bird and mammalian limb fibers, and an extremely high temperature-dependence of force generation. The extrapolated maximum force-generating ability of hummingbird pectoralis fibers in vivo (~48 kN/m2) is, however, substantially higher than the estimated requirements for hovering flight of C. anna. The unusually low Po/CSA of hummingbird and zebra finch pectoralis fibers may reflect a constraint imposed by a need for extremely high contraction frequencies, especially during hummingbird hovering.
Collapse
|
28
|
Williams CD, Regnier M, Daniel TL. Elastic energy storage and radial forces in the myofilament lattice depend on sarcomere length. PLoS Comput Biol 2012; 8:e1002770. [PMID: 23166482 PMCID: PMC3499250 DOI: 10.1371/journal.pcbi.1002770] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/19/2012] [Indexed: 11/29/2022] Open
Abstract
We most often consider muscle as a motor generating force in the direction of shortening, but less often consider its roles as a spring or a brake. Here we develop a fully three-dimensional spatially explicit model of muscle to isolate the locations of forces and energies that are difficult to separate experimentally. We show the strain energy in the thick and thin filaments is less than one third the strain energy in attached cross-bridges. This result suggests the cross-bridges act as springs, storing energy within muscle in addition to generating the force which powers muscle. Comparing model estimates of energy consumed to elastic energy stored, we show that the ratio of these two properties changes with sarcomere length. The model predicts storage of a greater fraction of energy at short sarcomere lengths, suggesting a mechanism by which muscle function shifts as force production declines, from motor to spring. Additionally, we investigate the force that muscle produces in the radial or transverse direction, orthogonal to the direction of shortening. We confirm prior experimental estimates that place radial forces on the same order of magnitude as axial forces, although we find that radial forces and axial forces vary differently with changes in sarcomere length. Locomotion requires energy. Very fast locomotion requires a larger amount of energy than muscle can produce in such a short time period, thus muscle must use energy that it previously produced and stored as elastic deformation. Cyclical or repeated movements can be directly powered by muscle, but energy may be conserved in such cases through elastic energy storage. Traditionally we've looked primarily at tendons, insect exoskeletons, and bones as locations where this energy is stored. However, a small but growing body of literature has recently suggested the backbone filament proteins in muscle act as elastic storage locations. We suggest that the myosin motors themselves are capable of storing more energy than the filaments, energy that may be released to power very fast movements or reduce the cost of cyclical movements. We further suggest that this energy is stored in the radial deformations of myosin motors, in a direction that is perpendicular to the axis of muscle shortening.
Collapse
Affiliation(s)
- C David Williams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
29
|
Kim JH, Thompson LV. Differential effects of mild therapeutic exercise during a period of inactivity on power generation in soleus type I single fibers with age. J Appl Physiol (1985) 2012; 112:1752-61. [PMID: 22422796 DOI: 10.1152/japplphysiol.01077.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to investigate the effects of mild therapeutic exercise (treadmill) in preventing the inactivity-induced alterations in contractile properties (e.g., power, force, and velocity) of type I soleus single fibers in three different age groups. Young adult (5- to 12-mo-old), middle-aged (24- to 31-mo-old), and old (32- to 40-mo-old) F344BNF1 rats were randomly assigned to three experimental groups: weight-bearing control (CON), non-weight bearing (NWB), and NWB with exercise (NWBX). NWB rats were hindlimb suspended for 2 wk, representing inactivity. The NWBX rats were hindlimb suspended for 2 wk and received therapeutic exercise on a treadmill four times a day for 15 min each. Peak power and isometric maximal force were reduced following hindlimb suspension (HS) in all three age groups. HS decreased fiber diameter in young adult and old rats (-21 and -12%, respectively). Specific tension (isometric maximal force/cross-sectional area) was significantly reduced in both the middle-aged (-36%) and old (-23%) rats. The effects of the mild therapeutic exercise program on fiber diameter and contractile properties were age specific. Mild treadmill therapeutic exercise attenuated the HS-induced reduction in fiber diameter (+17%, 93% level of CON group) and peak power (μN·fiber length·s(-1)) (+46%, 63% level of CON group) in young adult rats. In the middle-aged animals, this exercise protocol improved peak power (+60%, 100% level of CON group) and normalized power (kN·m(-2)·fiber length·s(-1)) (+45%, 108% level of CON group). Interestingly, treadmill exercise resulted in a further reduction in shortening velocity (-42%, 67% level of CON group) and specific tension (-29%, 55% level of CON group) in the old animals. These results suggest that mild treadmill exercise is beneficial in attenuating and preventing inactivity-induced decline in peak power of type I soleus single fibers in young adult and middle-aged animals, respectively. However, this exercise program does not prevent the HS-induced decline in muscle function in the old animals.
Collapse
Affiliation(s)
- Jong-Hee Kim
- Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
30
|
Miller MS, Farman GP, Braddock JM, Soto-Adames FN, Irving TC, Vigoreaux JO, Maughan DW. Regulatory light chain phosphorylation and N-terminal extension increase cross-bridge binding and power output in Drosophila at in vivo myofilament lattice spacing. Biophys J 2011; 100:1737-46. [PMID: 21463587 DOI: 10.1016/j.bpj.2011.02.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/20/2011] [Accepted: 02/03/2011] [Indexed: 12/01/2022] Open
Abstract
The N-terminal extension and phosphorylation of the myosin regulatory light chain (RLC) independently improve Drosophila melanogaster flight performance. Here we examine the functional and structural role of the RLC in chemically skinned fibers at various thick and thin filament lattice spacings from four transgenic Drosophila lines: rescued null or control (Dmlc2(+)), truncated N-terminal extension (Dmlc2(Δ2-46)), disrupted myosin light chain kinase phosphorylation sites (Dmlc2(S66A,S67A)), and dual mutant (Dmlc2(Δ2-46; S66A,S67A)). The N-terminal extension truncation and phosphorylation sites disruption mutations decreased oscillatory power output and the frequency of maximum power output in maximally Ca(2+)-activated fibers compressed to near in vivo inter-thick filament spacing, with the phosphorylation sites disruption mutation having a larger affect. The diminished power output parameters with the N-terminal extension truncation and phosphorylation sites disruption mutations were due to the reduction of the number of strongly-bound cross-bridges and rate of myosin force production, with the larger parameter reductions in the phosphorylation sites disruption mutation additionally related to reduced myosin attachment time. The phosphorylation and N-terminal extension-dependent boost in cross-bridge kinetics corroborates previous structural data, which indicate these RLC attributes play a complementary role in moving and orienting myosin heads toward actin target sites, thereby increasing fiber and whole fly power generation.
Collapse
Affiliation(s)
- Mark S Miller
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Sato K, Ohtaki M, Shimamoto Y, Ishiwata S. A theory on auto-oscillation and contraction in striated muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:199-207. [DOI: 10.1016/j.pbiomolbio.2010.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/15/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
|
32
|
|
33
|
Myofilament length dependent activation. J Mol Cell Cardiol 2010; 48:851-8. [PMID: 20053351 DOI: 10.1016/j.yjmcc.2009.12.017] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 01/04/2023]
Abstract
The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca(2+) ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the "Frank-Starling law of the heart" constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.
Collapse
|
34
|
Abstract
Regulation of cell volume is a fundamental property of all animal cells and is of particular importance in skeletal muscle where exercise is associated with a wide range of cellular changes that would be expected to influence cell volume. These complex electrical, metabolic and osmotic changes, however, make rigorous study of the consequences of individual factors on muscle volume difficult despite their likely importance during exercise. Recent charge-difference modelling of cell volume distinguishes three major aspects to processes underlying cell volume control: (i) determination by intracellular impermeant solute; (ii) maintenance by metabolically dependent processes directly balancing passive solute and water fluxes that would otherwise cause cell swelling under the influence of intracellular membrane-impermeant solutes; and (iii) volume regulation often involving reversible short-term transmembrane solute transport processes correcting cell volumes towards their normal baselines in response to imposed discrete perturbations. This review covers, in turn, the main predictions from such quantitative analysis and the experimental consequences of comparable alterations in extracellular pH, lactate concentration, membrane potential and extracellular tonicity. The effects of such alterations in the extracellular environment in resting amphibian muscles are then used to reproduce the intracellular changes that occur in each case in exercising muscle. The relative contributions of these various factors to the control of cell volume in resting and exercising skeletal muscle are thus described.
Collapse
|
35
|
The effect of cleft palate repair on contractile properties of single permeabilized muscle fibers from congenitally cleft goat palates. Ann Plast Surg 2008; 60:188-93. [PMID: 18216514 DOI: 10.1097/sap.0b013e318052c6f2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inherent differences in the levator veli palatini (LVP) muscle of cleft palates before palatoplasty may play a role in persistent postrepair velopharyngeal insufficiency (VPI). Contractile properties of LVP muscle fibers were analyzed from young (2-month) normal (YNP), young congenitally cleft (YCP) and again on the same YCP subjects 6 months after palatoplasty, mature repaired palate (MRP). The cross-sectional area and rate of force development (ktr) were measured. Specific force (sF(0)) and normalized power (nP(max)) were calculated. Using k(tr) to determine fiber type composition, YNP was 44% type 1 and 56% type 2, while YCP was 100% type 2. Two MRP subjects shifted to 100% type 1; 1 demonstrated increased resistance to fatigue. No differences in sF(0) were observed. nP(max) increased with presence of type 2 fibers. The persistent state of type 2 fibers following palatoplasty leads to increased fatigue in the LVP of MRP subjects and may cause VPI symptoms.
Collapse
|
36
|
van Hees HWH, van der Heijden HFM, Ottenheijm CAC, Heunks LMA, Pigmans CJC, Verheugt FWA, Brouwer RMHJ, Dekhuijzen PNR. Diaphragm single-fiber weakness and loss of myosin in congestive heart failure rats. Am J Physiol Heart Circ Physiol 2007; 293:H819-28. [PMID: 17449557 DOI: 10.1152/ajpheart.00085.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diaphragm weakness commonly occurs in patients with congestive heart failure (CHF) and is an independent predictor of mortality. However, the pathophysiology of diaphragm weakness is poorly understood. We hypothesized that CHF induces diaphragm weakness at the single-fiber level by decreasing myosin content. In addition, we hypothesized that myofibrillar Ca(2+) sensitivity is decreased and cross-bridge kinetics are slower in CHF diaphragm fibers. Finally, we hypothesized that loss of myosin in CHF diaphragm weakness is associated with increased proteolytic activities of caspase-3 and the proteasome. In skinned diaphragm single fibers of rats with CHF, induced by left coronary artery ligation, maximum force generation was reduced by approximately 35% (P < 0.01) compared with sham-operated animals for slow, 2a, and 2x fibers. In these CHF diaphragm fibers, myosin heavy chain content per half-sarcomere was concomitantly decreased (P < 0.01). Ca(2+) sensitivity of force generation and the rate constant of tension redevelopment were significantly reduced in CHF diaphragm fibers compared with sham-operated animals for all fiber types. The cleavage activity of the proteolytic enzyme caspase-3 and the proteasome were approximately 30% (P < 0.05) and approximately 60% (P < 0.05) higher, respectively, in diaphragm homogenates from CHF rats than from sham-operated rats. The present study demonstrates diaphragm weakness at the single-fiber level in a myocardial infarct model of CHF. The reduced maximal force generation can be explained by a loss of myosin content in all fiber types and is associated with activation of caspase-3 and the proteasome. Furthermore, CHF decreases myofibrillar Ca(2+) sensitivity and slows cross-bridge cycling kinetics in diaphragm fibers.
Collapse
Affiliation(s)
- Hieronymus W H van Hees
- Department of Pulmonary Diseases - 454, University Medical Centre Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Farman GP, Walker JS, de Tombe PP, Irving TC. Impact of osmotic compression on sarcomere structure and myofilament calcium sensitivity of isolated rat myocardium. Am J Physiol Heart Circ Physiol 2006; 291:H1847-55. [PMID: 16751283 DOI: 10.1152/ajpheart.01237.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in interfilament lattice spacing have been proposed as the mechanism underlying myofilament length-dependent activation. Much of the evidence to support this theory has come from experiments in which high-molecular-weight compounds, such as dextran, were used to osmotically shrink the myofilament lattice. However, whether interfilament spacing directly affects myofilament calcium sensitivity (EC50) has not been established. In this study, skinned isolated rat myocardium was osmotically compressed over a wide range (Dextran T500; 0–6%), and EC50 was correlated to both interfilament spacing and I1,1/ I1,0 intensity ratio. The latter two parameters were determined by X-ray diffraction in a separate group of skinned muscles. Osmotic compression induced a marked reduction in myofilament lattice spacing, concomitant with increases in both EC50 and I1,1/ I1,0 intensity ratio. However, interfilament spacing was not well correlated with EC50 ( r2 = 0.78). A much better and deterministic relationship was observed between EC50 and the I1,1/ I1,0 intensity ratio ( r2 = 0.99), albeit with a marked discontinuity at low levels of dextran compression; that is, a small amount of external osmotic compression (0.38 kPa, corresponding to 1% Dextran T500) produced a stepwise increase in the I1,1/ I1,0 ratio concomitant with a stepwise decrease in EC50. These parameters then remained stable over a wide range of further applied osmotic compression (up to 6% dextran). These findings provide support for a “switch-like” activation mechanism within the cardiac sarcomere that is highly sensitive to changes in external osmotic pressure.
Collapse
Affiliation(s)
- Gerrie P Farman
- Dept. of Physiology and Biophysics M/C 901, Univ. of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
38
|
Shiels HA, Calaghan SC, White E. The cellular basis for enhanced volume-modulated cardiac output in fish hearts. ACTA ACUST UNITED AC 2006; 128:37-44. [PMID: 16769795 PMCID: PMC2151555 DOI: 10.1085/jgp.200609543] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During vertebrate evolution there has been a shift in the way in which the heart varies cardiac output (the product of heart rate and stroke volume). While mammals, birds, and amphibians increase cardiac output through large increases in heart rate and only modest increases (∼30%) in stroke volume, fish and some reptiles use modest increases in heart rate and very large increases in stroke volume (up to 300%). The cellular mechanisms underlying these fundamentally different approaches to cardiac output modulation are unknown. We hypothesized that the divergence between volume modulation and frequency modulation lies in the response of different vertebrate myocardium to stretch. We tested this by progressively stretching individual cardiac myocytes from the fish heart while measuring sarcomere length (SL), developed tension, and intracellular Ca2+ ([Ca2+]i) transients. We show that in fish cardiac myocytes, active tension increases at SLs greater than those previously demonstrated for intact mammalian myocytes, representing a twofold increase in the functional ascending limb of the length–tension relationship. The mechanism of action is a length-dependent increase in myofilament Ca2+ sensitivity, rather than changes in the [Ca2+]i transient or actin filament length in the fish cell. The capacity for greater sarcomere extension in fish myocardium may be linked to the low resting tension that is developed during stretch. These adaptations allow the fish heart to volume modulate and thus underpin the fundamental difference between the way fish and higher vertebrates vary cardiac output.
Collapse
Affiliation(s)
- Holly A Shiels
- Institute of Membrane and Systems Biology, University of Leeds, UK.
| | | | | |
Collapse
|
39
|
Fuchs F, Martyn DA. Length-dependent Ca2+ activation in cardiac muscle: some remaining questions. J Muscle Res Cell Motil 2005; 26:199-212. [PMID: 16205841 DOI: 10.1007/s10974-005-9011-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 08/20/2005] [Indexed: 10/25/2022]
Abstract
The steep relationship between systolic force and end diastolic volume in cardiac muscle (Frank-Starling relation) is, to a large extent, based on length-dependent changes in myofilament Ca(2+) sensitivity. How sarcomere length modulates Ca(2+) sensitivity is still a topic of active investigation. Two general themes have emerged in recent years. On the one hand, there is a large body of evidence indicating that length-dependent changes in lattice spacing determine changes in Ca(2+) sensitivity for a given set of conditions. A model has been put forward in which the number of strong-binding cross-bridges that are formed is directly related to the proximity of the myosin heads to binding sites on actin. On the other hand, there is also a body of evidence suggesting that lattice spacing and Ca(2+) sensitivity are not tightly linked and that there is a length-sensing element in the sarcomere, which can modulate actin-myosin interactions independent of changes in lattice spacing. In this review, we examine the evidence that has been cited in support of these viewpoints. Much recent progress has been based on the combination of mechanical measurements with X-ray diffraction analysis of lattice spacing and cross-bridge interaction with actin. Compelling evidence indicates that the relationship between sarcomere length and lattice spacing is influenced by the elastic properties of titin and that changes in lattice spacing directly modulate cross-bridge interactions with thin filaments. However, there is also evidence that the precise relationship between Ca(2+) sensitivity and lattice spacing can be altered by changes in protein isoform expression, protein phosphorylation, modifiers of cross-bridge kinetics, and changes in titin compliance. Hence although there is no unique relationship between Ca(2+) sensitivity and lattice spacing the evidence strongly suggests that under any given set of physiological circumstances variation in lattice spacing is the major determinant of length-dependent changes in Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Franklin Fuchs
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
40
|
Maughan DW, Henkin JA, Vigoreaux JO. Concentrations of glycolytic enzymes and other cytosolic proteins in the diffusible fraction of a vertebrate muscle proteome. Mol Cell Proteomics 2005; 4:1541-9. [PMID: 15982968 DOI: 10.1074/mcp.m500053-mcp200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used a novel microvolumetric technique based on protein diffusion to characterize the subproteome of muscle that consists of diffusible proteins, including those involved in cell metabolism. Muscle fiber segments were mechanically demembranated under mineral oil and transferred into drops of relaxing solution. After the fiber segment was depleted of diffusible proteins, the content of each drop and residual segment was analyzed by one-dimensional polyacrylamide gel electrophoresis. Proteins were identified through peptide mass fingerprinting and quantified using purified protein standards. Ten of the most abundant cytosolic proteins, distinguished by their ability to readily diffuse out of the skinned fiber, were glycolytic enzymes whose concentrations ranged from 2.6+/-1.0 g liter-1 (phosphoglucose isomerase) to 12.8+/-1.1 g liter-1 fiber volume (pyruvate kinase). The concentrations of the other five most abundant cytosolic proteins were as follows: glycogen phosphorylase, 6.0+/-2.3 g liter-1; phosphoglucose mutase, 2.2+/-0.2 g liter-1; adenylate kinase, 1.6+/-1.3 g liter-1; phosphocreatine kinase, 6.6+/-2.6 g liter-1; and parvalbumin, 0.7+/-0.4 g liter-1. Given the molecular weight and subunit number of each enzyme, the combined concentration of the 15 most abundant cytosolic proteins was 82.3 g liter-1; the volume fraction was 0.093. The large volume fraction of diffusible proteins favors nonspecific interactions and associations, particularly if the glycolytic enzymes and diffusible phosphocreatine kinase are restricted to the I-band as previous studies suggest. The relative molar concentration of glycolytic enzymes is roughly consistent with a stoichiometry of 1:2 for enzymes catalyzing the hexose and triose sugar reactions, respectively, a stoichiometry that may favor metabolic channeling of intermediates during glycolysis. Our results indicate that subcellular fractionation of muscle proteins, in which cytosolic constituents are distinguished by their ability to diffuse readily from demembranated cells, is a promising microvolumetric technique that allows conclusions to be drawn about native protein-protein interactions based on concentration and stoichiometry.
Collapse
Affiliation(s)
- David W Maughan
- Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | |
Collapse
|
41
|
Nelson FE, Gabaldón AM, Roberts TJ. Force-velocity properties of two avian hindlimb muscles. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:711-21. [PMID: 15123179 DOI: 10.1016/j.cbpb.2004.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 01/05/2004] [Accepted: 02/10/2004] [Indexed: 11/15/2022]
Abstract
Recent work has provided measurements of power output in avian skeletal muscles during running and flying, but little is known about the contractile properties of avian skeletal muscle. We used an in situ preparation to characterize the force-velocity properties of two hind limb muscles, the lateral gastrocnemius (LG) and peroneus longus (PL), in Wild Turkeys (Meleagris gallopavo). A servomotor measured shortening velocity for at least six different loads over the plateau region of the length-tension curve. The Hill equation was fit to the data to determine maximum shortening velocity and peak instantaneous power. Maximum unloaded shortening velocity was 13.0+/-1.6 L s(-1) for the LG muscle and 14.8+/-1.0 L s(-1) for the PL muscle (mean+/-S.E.M.). These velocities are within the range of values published for reptilian and mammalian muscles. Values recorded for maximum isometric force per cross-sectional area, 271+/-28 kPa for the LG and 257+/-30.5 kPa for the PL, and peak instantaneous power output, 341.7+/-36.4 W kg(-1) for the LG and 319.4+/-42.5 W kg(-1) for the PL, were also within the range of published values for vertebrate muscle. The force-velocity properties of turkey LG and PL muscle do not reveal any extreme differences in the mechanical potential between avian and other vertebrate muscle.
Collapse
Affiliation(s)
- Frank E Nelson
- Zoology Institute, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331-2914, USA.
| | | | | |
Collapse
|
42
|
Balogh J, Li Z, Paulin D, Arner A. Desmin filaments influence myofilament spacing and lateral compliance of slow skeletal muscle fibers. Biophys J 2004; 88:1156-65. [PMID: 15542565 PMCID: PMC1305120 DOI: 10.1529/biophysj.104.042630] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intermediate filaments composed of desmin interlink Z-disks and sarcolemma in skeletal muscle. Depletion of desmin results in lower active stress of smooth, cardiac, and skeletal muscles. Structural functions of intermediate filaments in fast (psoas) and slow (soleus) skeletal muscle were examined using x-ray diffraction on permeabilized muscle from desmin-deficient mice (Des-/-) and controls (Des+/+). To examine lateral compliance of sarcomeres and cells, filament distances and fiber width were measured during osmotic compression with dextran. Equatorial spacing (x-ray diffraction) of contractile filaments was wider in soleus Des-/- muscle compared to Des+/+, showing that desmin is important for maintaining lattice structure. Osmotic lattice compression was similar in Des-/- and Des+/+. In width measurements of single fibers and bundles, Des-/- soleus were more compressed by dextran compared to Des+/+, showing that intermediate filaments contribute to whole-cell compliance. For psoas fibers, both filament distance and cell compliance were similar in Des-/- and Des+/+. We conclude that desmin is important for stabilizing sarcomeres and maintaining cell compliance in slow skeletal muscle. Wider filament spacing in Des-/- soleus cannot, however, explain the lower active stress, but might influence resistance to stretch, possibly minimizing stretch-induced cell injury.
Collapse
Affiliation(s)
- J Balogh
- Department of Physiological Sciences, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
43
|
Andruchov O, Andruchova O, Wang Y, Galler S. Kinetic properties of myosin heavy chain isoforms in mouse skeletal muscle: comparison with rat, rabbit, and human and correlation with amino acid sequence. Am J Physiol Cell Physiol 2004; 287:C1725-32. [PMID: 15306546 DOI: 10.1152/ajpcell.00255.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stretch activation kinetics were investigated in skinned mouse skeletal muscle fibers of known myosin heavy chain (MHC) isoform content to assess kinetic properties of different myosin heads while generating force. The time to peak of stretch-induced delayed force increase (t(3)) was strongly correlated with MHC isoforms [t(3) given in ms for fiber types containing specified isoforms; means +/- SD with n in parentheses: MHCI 680 +/- 108 (13), MHCIIa 110.5 +/- 10.7 (23), MHCIIx(d) 46.2 +/- 5.2 (20), MHCIIb 23.5 +/- 3.3 (76)]. This strong correlation suggests different kinetics of force generation of different MHC isoforms in the following order:MHCIIb > MHCIIx(d) > MHCIIa >> MHCI. For rat, rabbit, and human skeletal muscles the same type of correlation was found previously. The kinetics decreases slightly with increasing body mass. Available amino acid sequences were aligned to quantify the structural variability of MHC isoforms of different animal species. The variation in t(3) showed a correlation with the structural variability of specific actin-binding loops (so-called loop 2 and loop 3) of myosin heads (r = 0.74). This suggests that alterations of amino acids in these loops contribute to the different kinetics of myosin heads of various MHC isoforms.
Collapse
Affiliation(s)
- Oleg Andruchov
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
44
|
Creazzo TL, Burch J, Godt RE. Calcium buffering and excitation-contraction coupling in developing avian myocardium. Biophys J 2004; 86:966-77. [PMID: 14747332 PMCID: PMC1303944 DOI: 10.1016/s0006-3495(04)74172-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 09/23/2003] [Indexed: 12/20/2022] Open
Abstract
This report provides a detailed analysis of developmental changes in cytoplasmic free calcium (Ca(2+)) buffering and excitation-contraction coupling in embryonic chick ventricular myocytes. The peak magnitude of field-stimulated Ca(2+) transients declined by 41% between embryonic day (ED) 5 and 15, with most of the decline occurring between ED5 and 11. This was due primarily to a decrease in Ca(2+) currents. Sarcoplasmic reticulum (SR) Ca(2+) content increased 14-fold from ED5 to 15. Ca(2+) transients in voltage-clamped myocytes after blockade of SR function permitted computation of the fast Ca buffer power of the cytosol as expressed as generalized values of B(max) and K(D). B(max) rose with development whereas K(D) did not change significantly. The computed SR Ca(2+) contribution to the Ca(2+) transient and gain factor for Ca(2+)-induced Ca(2+) release increased markedly between ED5 and 11 and slightly thereafter. These results paralleled the maturation of SR and peripheral couplings reported by others and demonstrated a strong relationship between structure and function in development of excitation-contraction coupling. Modeling of buffer power from estimates of the major cytosolic Ca binding moieties yielded a B(max) and K(D) in reasonable agreement with experiment. From ED5 to 15, troponin C was the major Ca(2+) binding moiety, followed by SR and calmodulin.
Collapse
Affiliation(s)
- Tony L Creazzo
- Neonatal/Perinatal Research Institute, Department of Pediatrics/Neonatology Division, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
45
|
Stelzer JE, Widrick JJ. Effect of hindlimb suspension on the functional properties of slow and fast soleus fibers from three strains of mice. J Appl Physiol (1985) 2003; 95:2425-33. [PMID: 12949008 DOI: 10.1152/japplphysiol.01091.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cross-sectional area (CSA), peak Ca2+-activated force (Po), fiber specific force (Po/CSA), and unloaded shortening velocity (Vo) were measured in slow-twitch [containing type I myosin heavy chain (MHC)] and fast-twitch (containing type II MHC) chemically skinned soleus muscle fiber segments obtained from three strains of weight-bearing and 7-day hindlimb-suspended (HS) mice. HS reduced soleus slow MHC content (from approximately 50 to approximately 33%) in CBA/J and ICR strains without affecting slow MHC content in C57BL/6 mice ( approximately 20% of total MHC). Two-way ANOVA revealed HS-induced reductions in CSA, Po, and Po/CSA of slow and fast fibers from all strains. Fiber Vo was elevated post-HS, but not consistently across strains. No MHC x HS treatment interactions were observed for any variable for C57BL/6 and CBA/J mice, and the two significant interactions found for the ICR strain (CSA, Po) appeared related to inherent pre-HS differences in slow vs. fast fiber CSA. In the mouse HS models studied here, fiber atrophy and contractile dysfunction were partially dependent on animal strain and generally independent of fiber MHC isoform content.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Biomechanical Phenomena
- Body Weight/physiology
- Calcium/physiology
- Electrophoresis, Polyacrylamide Gel
- Hindlimb Suspension/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred ICR
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/chemistry
- Myosin Heavy Chains/metabolism
- Species Specificity
- Transducers, Pressure
Collapse
Affiliation(s)
- Julian E Stelzer
- Department of Exercise and Sport Science, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
46
|
Linari M, Bottinelli R, Pellegrino MA, Reconditi M, Reggiani C, Lombardi V. The mechanism of the force response to stretch in human skinned muscle fibres with different myosin isoforms. J Physiol 2003; 554:335-52. [PMID: 14555725 PMCID: PMC1664769 DOI: 10.1113/jphysiol.2003.051748] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Force enhancement during lengthening of an active muscle, a condition that normally occurs during locomotion in vivo, is attributed to recruitment of myosin heads that exhibit fast attachment to and detachment from actin in a cycle that does not imply ATP splitting. We investigated the kinetic and mechanical features of this cycle in Ca(2+) activated single skinned fibres from human skeletal muscles containing different myosin heavy chain (MHC) isoforms, identified with single-fibre gel electrophoresis. Fibres were activated by using a new set-up that allows development of most of the tension following a temperature jump from 0-1 degrees C to the test temperature (approximately 12 degrees C). In this way we could prevent the development of sarcomere non-uniformity and record sarcomere length changes with a striation follower in any phase of the mechanical protocol. We found that: (i) fibres with fast MHC isoforms develop 40-70% larger isometric forces than those with slow isoforms, as a result of both a larger fraction of force-generating myosin heads and a higher force per head; (ii) in both slow and fast fibres, force enhancement by stretch is due to recruitment of myosin head attachments, without increase in strain per head above the value generated by the isometric heads; and (iii) the extent of recruitment is larger in slow fibres than in fast fibres, so that the steady force and power output elicited by lengthening become similar, indicating that mechanical and kinetic properties of the actin-myosin interactions under stretch become independent of the MHC isoform.
Collapse
Affiliation(s)
- Marco Linari
- Laboratorio di Fisiologia, Viale GB Morgagni, 63-50134 Firenze, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Shoepe TC, Stelzer JE, Garner DP, Widrick JJ. Functional adaptability of muscle fibers to long-term resistance exercise. Med Sci Sports Exerc 2003; 35:944-51. [PMID: 12783042 DOI: 10.1249/01.mss.0000069756.17841.9e] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We compared the functional properties of muscle fibers from two groups of subjects that differed widely in their training history to investigate whether long-term resistance exercise alters the intrinsic contractile properties of skeletal muscle fibers. METHODS Vastus lateralis muscle biopsies were obtained from six sedentary males (NT group, age = 23 +/- 1 yr) and six males who had participated in regular resistance exercise training over the preceding 7.6 +/- 1.6 yr (RT group, 22 +/- 1 yr). Chemically skinned muscle fiber segments were activated with a saturating free [Ca2+] to quantify fiber peak Ca2+-activated force (P(o)), unloaded shortening velocity (V(o)), and peak power. Fiber segment myosin heavy chain (MHC) isoform content was identified by gel electrophoresis. RESULTS Slow and fast fibers from the RT group were larger in CSA and produced greater absolute P(o) and absolute peak power in comparison with fibers from the NT group. However, these differences were no longer evident after P(o) and peak power were normalized to fiber CSA and fiber volume, respectively. V(o)/fiber length was dependent on fiber MHC content but independent of training status. CONCLUSION Fiber hypertrophy was sufficient to account for intergroup differences in P(o) and peak power of slow and fast fibers. There was no evidence that the intrinsic contractility of slow or fast fibers, as evaluated by force, shortening velocity, and power normalized to the appropriate fiber dimensions, differed between RT and NT groups.
Collapse
Affiliation(s)
- Todd C Shoepe
- Department of Exercise and Sport Science, Oregon State University, Corvallis 97331, USA
| | | | | | | |
Collapse
|
48
|
D'Antona G, Megighian A, Bortolotto S, Pellegrino MA, Marchese-Ragona R, Staffieri A, Bottinelli R, Reggiani C. Contractile properties and myosin heavy chain isoform composition in single fibre of human laryngeal muscles. J Muscle Res Cell Motil 2003; 23:187-95. [PMID: 12500898 DOI: 10.1023/a:1020963021105] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study we aimed to determine the functional properties and the myosin heavy chain (MHC) isoform composition of single chemically skinned fibres from the vocal muscle of four adult men (age: 55-67 years). Single fibres, dissected from the bioptic samples, were chemically skinned and isometric tension (P0) and maximal shortening velocity (V0) were measured at pCa 4.6. MHC and myosin light chain (MLC) composition of fibre segments and MHC distribution of the biopsy samples were analysed by SDS-poly-acrylamide gel electrophoresis (SDS-PAGE) and densitometry. Four MHC isoforms (1, 2A, 2X and a fourth isoform, provisionally called L) and five MLC isoforms (MLC1s, MLC1f, MLC3f, MLC2f, MLC2s) were identified. The major findings of this study were: (1) fast MHC isoforms (in particular MHC-2A) and fast fibres were predominant, (2) one-third of the fibres were mixed or hybrid, i.e. expressed more than one MHC isoform, (3) V0 and P0 values were determined by the MHC isoform composition and mixed fibres showed functional properties which were intermediate between pure fibres; MHC-L was associated with V0 values similar to those of MHC-2A, (4) compared with limb muscles, V0 values of laryngeal fibres were similar to those of limb muscle fibres containing the same MHC isoform whereas P0 values were lower for slow and fast 2X fibres and similar for fibres expressing MHC-2A.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Institute of Human Physiology, University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.
Collapse
Affiliation(s)
- Pieter P de Tombe
- Department of Physiology and Biophysics, and Cardiovascular Science Program, College of Medicine, University of Illinois, 900 S. Ashland Ave, Chicago, IL 60607-7171, USA.
| |
Collapse
|
50
|
Konhilas JP, Irving TC, Wolska BM, Jweied EE, Martin AF, Solaro RJ, de Tombe PP. Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing. J Physiol 2003; 547:951-61. [PMID: 12562915 PMCID: PMC2342721 DOI: 10.1113/jphysiol.2002.038117] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 12/20/2002] [Indexed: 11/08/2022] Open
Abstract
Cyclic AMP-dependent protein kinase (PKA) targets contractile proteins, troponin-I (TnI) and myosin binding protein C (MyBP-C) in the heart and induces a decrease in myofilament Ca2+ sensitivity. Yet, the effect of sarcomere length (SL) change on Ca2+ sensitivity (length-dependent activation: LDA) following PKA-dependent phosphorylation is not clear. To clarify the role of PKA-dependent phosphorylation of TnI and MyBP-C on LDA in the heart, we examined LDA in skinned myocytes from a non-transgenic (NTG) and a transgenic murine model in which the native cardiac isoform (cTnI) was completely replaced by the slow skeletal isoform of TnI (ssTnI-TG) lacking the phosphorylation sites for PKA, while retaining PKA sites on MyBP-C. In NTG myocytes, PKA treatment decreased Ca2+ sensitivity at each SL, but enhanced the impact of SL change on Ca2+ sensitivity. Despite a greater sensitivity to Ca2+ and a reduction in LDA, neither Ca2+ responsiveness nor LDA was affected by PKA treatment in ssTnI-TG myocytes. To determine whether the above observations could be explained by the lateral separation between thick and thin filaments, as suggested by others, we measured interfilament spacing by X-ray diffraction as a function of SL in skinned cardiac trabeculae in the passive state from both NTG and ssTnI-TG models before and following treatment with PKA. Phosphorylation by PKA increased lattice spacing at every SL in NTG trabeculae. However, the relationship between SL and myofilament lattice spacing in ssTnI-TG was markedly shifted downward to an overall decreased myofilament lattice spacing following PKA treatment. We conclude: (1) PKA-dependent phosphorylation enhances length-dependent activation in NTG hearts; (2) replacement of native TnI with ssTnI increases Ca2+ sensitivity of tension but reduces length-dependent activation; (3) MyBP-C phosphorylation by PKA does not alter calcium responsiveness and induces a decrease in myofilament lattice spacing at all sarcomere lengths and (4) length-dependent activation in the heart cannot be entirely explained by alterations in myofilament lattice spacing.
Collapse
Affiliation(s)
- John P Konhilas
- Program in Cardiovascular Sciences, Department of Physiology and Biophysics, Section of Cardiology, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|