1
|
Klinaki E, Ogrodnik M. In the land of not-unhappiness: On the state-of-the-art of targeting aging and age-related diseases by biomedical research. Mech Ageing Dev 2024; 219:111929. [PMID: 38561164 DOI: 10.1016/j.mad.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The concept of the Land of Not-Unhappiness refers to the potential achievement of eliminating the pathologies of the aging process. To inform of how close we are to settling in the land, we summarize and review the achievements of research on anti-aging interventions over the last hundred years with a specific focus on strategies that slow down metabolism, compensate for aging-related losses, and target a broad range of age-related diseases. We critically evaluate the existing interventions labeled as "anti-aging," such as calorie restriction, exercise, stem cell administration, and senolytics, to provide a down-to-earth evaluation of their current applicability in counteracting aging. Throughout the text, we have maintained a light tone to make it accessible to non-experts in biogerontology, and provide a broad overview for those considering conducting studies, research, or seeking to understand the scientific basis of anti-aging medicine.
Collapse
Affiliation(s)
- Eirini Klinaki
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna 1200, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna 1200, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
2
|
Potential anti-cancer effects of hibernating common carp (Cyprinus carpio) plasma on B16-F10 murine melanoma: In vitro and in vivo studies. Int J Biol Macromol 2023; 238:124058. [PMID: 36931484 DOI: 10.1016/j.ijbiomac.2023.124058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Melanoma is the major type of skin cancer, which its treatment is still a challenge in the world. In recent years, interest in hibernation-based therapeutic approaches for various biomedical applications has been increased. Many studies indicated that some factors in the blood plasma of hibernating animals such as alpha-2-macroglobulin (A2M) cause anti-proliferative effects. Considering that, the present study was conducted to investigate the anti-cancer effects of hibernating common carp plasma (HCCP) on murine melanoma (B16-F10) in vitro and in vivo. The effect of HCCP on cell viability, migration, apoptosis rate, and cell cycle distribution of B16-F10 cells, tumor growth, and rate of survival were evaluated. To investigate the role of A2M in the anti-cancer effects of HCCP, the gene of interest and proteins in HCCP and non-hibernating common carp plasma (NHCCP) were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry analysis. Based on our findings, HCCP significantly decreased B16-F10 cell viability. Moreover, HCCP caused morphological alternations, inhibition of migration, induction of apoptosis, and significantly induced the cell cycle arrest at the G2/M phase. In addition, A2M level was significantly increased in HCCP compared with NHCCP. Taken together, our findings suggested that HCCP had the potential to be a promising novel therapeutic target for cancer treatment because of its anti-cancer properties.
Collapse
|
3
|
Watson CC, Shaikh D, DiGiacomo JC, Brown AC, Wallace R, Singh S, Szydziaka L, Cardozo-Stolberg S, Angus LG. Unraveling quad fever: Severe hyperthermia after traumatic cervical spinal cord injury. Chin J Traumatol 2023; 26:27-32. [PMID: 35177288 PMCID: PMC9912181 DOI: 10.1016/j.cjtee.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/05/2021] [Accepted: 01/02/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE There are many infectious and inflammatory causes for elevated core-body temperatures, though they rarely pass 40 ℃ (104 ℉). The term "quad fever" is used for extreme hyperpyrexia in the setting of acute cervical spinal cord injuries (SCIs). The traditional methods of treating hyperpyrexia are often ineffective and reported morbidity and mortality rates approach 100%. This study aims to identify the incidence of elevated temperatures in SCIs at our institution and assess the effectiveness of using a non-invasive dry water temperature management system as a treatment modality with mortality. METHODS A retrospective analysis of acute SCI patients requiring surgical intensive care unit admission who experienced fevers ≥ 40 ℃ (104 ℉) were compared to patients with maximum temperatures < 40 ℃. Patients ≥18 years old who sustained an acute traumatic SCI were included in this study. Patients who expired in the emergency department; had a SCI without radiologic abnormality; had neuropraxia; were admitted to any location other than the surgical intensive care unit; or had positive blood cultures were excluded. SAS 9.4 was used to conduct statistical analysis. RESULTS Over the 9-year study period, 35 patients were admitted to the surgical intensive care unit with a verified SCI. Seven patients experienced maximum temperatures of ≥ 40 ℃. Six of those patients were treated with the dry water temperature management system with an overall mortality of 57.1% in this subgroup. The mortality rate for the 28 patients who experienced a maximum temperature of ≤ 40 ℃ was 21.4% (p = 0.16). CONCLUSION The diagnosis of quad fever should be considered in patients with cervical SCI in the presence of hyperthermia. In this study, there was no significant difference in mortality between quad fever patients treated with a dry water temperature management system versus SCI patients without quad fever. The early use of a dry water temperature management system appears to decrease the mortality rate of quad fever.
Collapse
Affiliation(s)
- Carlton C.L. Watson
- Department of Surgery, Nassau University Medical Center, East Meadow, NY, 1155, USA
| | - Dooniya Shaikh
- Department of Surgery, Nassau University Medical Center, East Meadow, NY, 1155, USA
| | - Jody C. DiGiacomo
- Department of Surgery, Nassau University Medical Center, East Meadow, NY, 1155, USA,Corresponding author.
| | - Aaron C. Brown
- American University of the Caribbean School of Medicine, Pembroke Pines, FL, 33027, USA
| | - Raina Wallace
- Department of Surgery, Nassau University Medical Center, East Meadow, NY, 1155, USA
| | - Shridevi Singh
- Department of Surgery, Nassau University Medical Center, East Meadow, NY, 1155, USA
| | - Lisa Szydziaka
- Department of Surgery, Nassau University Medical Center, East Meadow, NY, 1155, USA
| | | | - L.D. George Angus
- Department of Surgery, Nassau University Medical Center, East Meadow, NY, 1155, USA
| |
Collapse
|
4
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. Moderate systemic therapeutic hypothermia is insufficient to protect blood-spinal cord barrier in spinal cord injury. Front Neurol 2022; 13:1041099. [DOI: 10.3389/fneur.2022.1041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Blood–spinal cord barrier (BSCB) disruption is a pivotal event in spinal cord injury (SCI) that aggravates secondary injury but has no specific treatment. Previous reports have shown that systemic therapeutic hypothermia (TH) can protect the blood–brain barrier after brain injury. To verify whether a similar effect exists on the BSCB after SCI, moderate systemic TH at 32°C was induced for 4 h on the mice with contusion-SCI. In vivo two-photon microscopy was utilized to dynamically monitor the BSCB leakage 1 h after SCI, combined with immunohistochemistry to detect BSCB leakage at 1 and 4 h after SCI. The BSCB leakage was not different between the normothermia (NT) and TH groups at both the in vivo and postmortem levels. The expression of endothelial tight junctions was not significantly different between the NT and TH groups 4 h after SCI, as detected by capillary western blotting. The structural damage of the BSCB was examined with immunofluorescence, but the occurrence of junctional gaps was not changed by TH 4 h after SCI. Our results have shown that moderate systemic TH induced for 4 h does not have a protective effect on the disrupted BSCB in early SCI. This treatment method has a low value and is not recommended for BSCB disruption therapy in early SCI.
Collapse
|
5
|
Abstract
OBJECTIVE Temperature abnormalities are recognized as a marker of human disease, and the therapeutic value of temperature is an attractive treatment target. The objective of this synthetic review is to summarize and critically appraise evidence for active temperature management in critically ill patients. DATA SOURCES We searched MEDLINE for publications relevant to body temperature management (including targeted temperature management and antipyretic therapy) in cardiac arrest, acute ischemic and hemorrhagic stroke, traumatic brain injury, and sepsis. Bibliographies of included articles were also searched to identify additional relevant studies. STUDY SELECTION English-language systematic reviews, meta-analyses, randomized trials, observational studies, and nonhuman data were reviewed, with a focus on the most recent randomized control trial evidence. DATA EXTRACTION Data regarding study methodology, patient population, temperature management strategy, and clinical outcomes were qualitatively assessed. DATA SYNTHESIS Temperature management is common in critically ill patients, and multiple large trials have been conducted to elucidate temperature targets, management strategies, and timing. The strongest data concerning the use of therapeutic hypothermia exist in comatose survivors of cardiac arrest, and recent trials suggest that appropriate postarrest temperature targets between 33°C and 37.5°C are reasonable. Targeted temperature management in other critical illnesses, including acute stroke, traumatic brain injury, and sepsis, has not shown benefit in large clinical trials. Likewise, trials of pharmacologic antipyretic therapy have not demonstrated improved outcomes, although national guidelines do recommend treatment of fever in patients with stroke and traumatic brain injury based on observational evidence associating fever with worse outcomes. CONCLUSIONS Body temperature management in critically ill patients remains an appealing therapy for several illnesses, and additional studies are needed to clarify management strategies and therapeutic pathways.
Collapse
|
6
|
Konovalov AN, Pilipenko YV, Tsarukaev BA, Baranich AI, Oshorov AV, Eliava SS. [Intravascular hypothermia for cerebral ischemia after microsurgical clipping of complex MCA aneurysms]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:36-44. [PMID: 35412711 DOI: 10.17116/neiro20228602136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
UNLABELLED Hypothermia for neuroprotection and correction of intracranial hypertension was described in both experimental and clinical studies. Effectiveness of hypothermia for improvement of functional outcomes in neurosurgical patients is still unclear despite the previous randomized trials. In available national and foreign literature, we found no trials devoted to hypothermia in patients with ischemia after surgical treatment of complex aneurysms of the middle cerebral artery (MCA). OBJECTIVE To analyze the effectiveness of intravascular hypothermia in patients with ischemic cerebrovascular accidents in early postoperative period after microsurgical clipping of complex MCA aneurysms. MATERIAL AND METHODS We present four patients with cerebral ischemia after microsurgical treatment of complex MCA aneurysms. In all cases, ischemic disorders developed immediately after surgery. We induced intravascular hypothermia 32-34 °C in all patients. CT-based volumetry of ischemia and edema foci was performed to objectively assess the dynamics of ischemic disorders. We carried out volumetry using segmentation of edema and ischemia foci (range 5-33 Hounsfield units). RESULTS According to brain CT data, all four patients had enlargement of postoperative ischemic brain damage. Nevertheless, ICP was stable that made it possible to avoid decompressive craniotomy. CONCLUSION Early hypothermia for acute ischemic injury after surgery for complex MCA aneurysms can reduce ischemic perifocal edema. This approach effectively reduces ICP and can exclude the need for decompressive craniotomy in some cases. No side effects of hypothermia justifies further research in this field.
Collapse
Affiliation(s)
| | | | | | | | - A V Oshorov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
7
|
Abstract
Neuroprotection after acute spinal cord injury is an important strategy to limit secondary injury. Animal studies have shown that systemic hypothermia is an effective neuroprotective strategy that can be combined with other therapies. Systemic hypothermia affects several processes at the cellular level to reduce metabolic activity, oxidative stress, and apoptotic neuronal cell death. Modest systemic hypothermia has been shown to be safe and feasible in the acute phase after cervical spinal cord injury. These data have provided the impetus for an active multicenter randomized controlled trial for modest systemic hypothermia in acute cervical spinal cord injury.
Collapse
|
8
|
Ferreira RES, de Paiva BLC, de Freitas FGR, Machado FR, Silva GS, Raposo RM, Silveira CF, Centeno RS. Efficacy and Safety of a Nasopharyngeal Catheter for Selective Brain Cooling in Patients with Traumatic Brain Injury: A Prospective, Non-randomized Pilot Study. Neurocrit Care 2021; 34:581-592. [PMID: 32676873 DOI: 10.1007/s12028-020-01052-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The efficacy objective was to determine whether a novel nasopharyngeal catheter could be used to cool the human brain after traumatic brain injury, and the safety objective was to assess the local and systemic effects of this therapeutic strategy. METHODS This was a prospective, non-randomized, interventional clinical trial that involved five patients with severe traumatic brain injury. The intervention consisted of inducing and maintaining selective brain cooling for 24 h by positioning a catheter in the nasopharynx and circulating cold water inside the catheter in a closed-loop arrangement. Core temperature was maintained at ≥ 35 °C using counter-warming. RESULTS In all study participants, a brain temperature reduction of ≥ 2 °C was achieved. The mean brain temperature reduction from baseline was 2.5 ± 0.9 °C (P = .04, 95% confidence interval). The mean systemic temperature was 37.3 ± 1.1 °C at baseline and 36.0 ± 0.8 °C during the intervention. The mean difference between the brain temperature and the systemic temperature during intervention was - 1.2 ± 0.8 °C (P = .04). The intervention was well tolerated with no significant changes observed in the hemodynamic parameters. No relevant variations in intracranial pressure and transcranial Doppler were observed. The laboratory results underwent no major changes, aside from the K+ levels and blood counts. The K+ levels significantly varied (P = .04); however, the variation was within the normal range. Only one patient experienced an event of mild localized and superficial nasal discoloration, which was re-evaluated on the seventh day and indicated complete recovery. CONCLUSION The results suggest that our noninvasive method for selective brain cooling, using a novel nasopharyngeal catheter, was effective and safe for use in humans.
Collapse
Affiliation(s)
- Raphael Einsfeld Simões Ferreira
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, Av. Moema 170, Cj. 83. Moema, São Paulo, SP, 04077-020, Brazil.
| | | | | | - Flávia Ribeiro Machado
- Departamento de Anestesiologia, Dor e Terapia Intensiva, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gisele Sampaio Silva
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, Av. Moema 170, Cj. 83. Moema, São Paulo, SP, 04077-020, Brazil
| | - Rafael Mônaco Raposo
- Serviço de Otorrinolaringologia UNIFESP e Serviço de Otorrinolaringologia, Hospital Santa Paula, São Paulo, Brazil
| | - Conrado Feisthauer Silveira
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, Av. Moema 170, Cj. 83. Moema, São Paulo, SP, 04077-020, Brazil
| | - Ricardo Silva Centeno
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, Av. Moema 170, Cj. 83. Moema, São Paulo, SP, 04077-020, Brazil
| |
Collapse
|
9
|
Abstract
This article introduces the basic concepts of intracranial physiology and pressure dynamics. It also includes discussion of signs and symptoms and examination and radiographic findings of patients with acute cerebral herniation as a result of increased as well as decreased intracranial pressure. Current best practices regarding medical and surgical treatments and approaches to management of intracranial hypertension as well as future directions are reviewed. Lastly, there is discussion of some of the implications of critical medical illness (sepsis, liver failure, and renal failure) and treatments thereof on causation or worsening of cerebral edema, intracranial hypertension, and cerebral herniation.
Collapse
Affiliation(s)
- Aleksey Tadevosyan
- Department of Neurology, Tufts University School of Medicine, Beth Israel Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA 01805, USA.
| | - Joshua Kornbluth
- Department of Neurology, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Box#314, Boston, MA 02111, USA
| |
Collapse
|
10
|
Brandt JB, Steiner S, Schlager G, Sadeghi K, Vargha R, Golej J, Hermon M. Necessity of early and continuous monitoring for possible infectious complications in children undergoing therapeutic hypothermia. Acta Paediatr 2021; 110:805-810. [PMID: 33074577 PMCID: PMC7984159 DOI: 10.1111/apa.15506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 01/24/2023]
Abstract
AIM Since therapeutic hypothermia (TH) is known for its inhibitory effects on leucocyte migration and cytokine synthesis, our aim was to underline the necessity of early monitoring for potential immunomodulatory risks. METHODS Using a 13-year retrospective case-control study at the paediatric intensive care unit (PICU) of the Medical University in Vienna, all newborn infants and children receiving TH were screened and compared with a diagnosis-matched control group undergoing conventional normothermic treatment (NT). TH was accomplished by using a non-invasive cooling device. Target temperature was 32-34°C. Children with evident infections, a medical history of an immunodeficiency or undergoing immunosuppressive therapy, were excluded. RESULTS During the observational period, 108 patients were screened, 27 of which underwent TH. Culture-proven infections occurred in 22% of the TH group compared with 4% of the normothermic controls (P = .1). From the second day following PICU admission, median C-reactive protein (CRP) values were higher in the TH group (day two P = .002, day three P = .0002, day six P = .008). CONCLUSION Children undergoing TH showed earlier and higher increases in CRP levels when compared to normothermic controls. These data underline the necessity of early and continuous monitoring for possible infectious complications.
Collapse
Affiliation(s)
- Jennifer B. Brandt
- Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics Department of Paediatric and Adolescent Medicine Medical University of Vienna Vienna Austria
| | - Sabine Steiner
- Department of Anaesthesiology Intensive Care and Pain Therapy Hospital of St. John of God Vienna Austria
| | - Gerald Schlager
- Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics Department of Paediatric and Adolescent Medicine Medical University of Vienna Vienna Austria
| | - Kambis Sadeghi
- Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics Department of Paediatric and Adolescent Medicine Medical University of Vienna Vienna Austria
| | - Regina Vargha
- Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics Department of Paediatric and Adolescent Medicine Medical University of Vienna Vienna Austria
| | - Johann Golej
- Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics Department of Paediatric and Adolescent Medicine Medical University of Vienna Vienna Austria
| | - Michael Hermon
- Division of Neonatology, Paediatric Intensive Care & Neuropaediatrics Department of Paediatric and Adolescent Medicine Medical University of Vienna Vienna Austria
| |
Collapse
|
11
|
Idris Z, Ang SY, Wan Hassan WMN, Hassan MH, Mohd Zain KA, Abdul Manaf A. A Clinical Test for a Newly Developed Direct Brain Cooling System for the Injured Brain and Pattern of Cortical Brainwaves in Cooling, Noncooling, and Dead Brain. Ther Hypothermia Temp Manag 2021; 12:103-114. [PMID: 33513054 DOI: 10.1089/ther.2020.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To ensure the direct delivery of therapeutic hypothermia at a selected constant temperature to the injured brain, a newly innovated direct brain cooling system was constructed. The practicality, effectiveness, and safety of this system were clinically tested in our initial series of 14 patients with severe head injuries. The patients were randomized into two groups: direct brain cooling at 32°C and the control group. All of them received intracranial pressure (ICP), focal brain oxygenation, brain temperature, and direct cortical brainwave monitoring. The direct brain cooling group did better in the Extended Glasgow Outcome Scale at the time of discharge and at 6 months after trauma. This could be owing to a trend in the monitored parameters; reduction in ICP, increment in cerebral perfusion pressure, optimal brain redox regulation, near-normal brain temperature, and lessening of epileptic-like brainwave activities are likely the reasons for better outcomes in the cooling group. Finally, this study depicts interesting cortical brainwaves during a transition time from being alive to dead. It is believed that the demonstrated cortical brainwaves follow the principles of quantum physics.
Collapse
Affiliation(s)
- Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Brain and Behaviour Cluster (BBC), School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Song Yee Ang
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Mohd Nazaruddin Wan Hassan
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Anaesthesiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mohd Hasyizan Hassan
- Hospital Universiti Sains Malaysia (HUSM), Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Anaesthesiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Khairu Anuar Mohd Zain
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Asrulnizam Abdul Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Bayan Lepas, Malaysia
| |
Collapse
|
12
|
Chen J, Wang X, Hu J, Du J, Dordoe C, Zhou Q, Huang W, Guo R, Han F, Guo K, Ye S, Lin L, Li X. FGF20 Protected Against BBB Disruption After Traumatic Brain Injury by Upregulating Junction Protein Expression and Inhibiting the Inflammatory Response. Front Pharmacol 2021; 11:590669. [PMID: 33568994 PMCID: PMC7868342 DOI: 10.3389/fphar.2020.590669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) and the cerebral inflammatory response occurring after traumatic brain injury (TBI) facilitate further brain damage, which leads to long-term complications of TBI. Fibroblast growth factor 20 (FGF20), a neurotrophic factor, plays important roles in brain development and neuronal homeostasis. The aim of the current study was to assess the protective effects of FGF20 on TBI via BBB maintenance. In the present study, recombinant human FGF20 (rhFGF20) reduced neurofunctional deficits, brain edema, Evans blue extravasation and neuroinflammation in a TBI mouse model. In an in vitro TNF-α-induced human brain microvascular endothelial cell (HBMEC) model of BBB disruption, rhFGF20 reduced paracellular permeability and increased trans-endothelial electrical resistance (TEER). Both in the TBI mouse model and in vitro, rhFGF20 increased the expression of proteins composing in BBB-associated tight junctions (TJs) and adherens junctions (AJs), and decreased the inflammatory response, which protected the BBB integrity. Notably, rhFGF20 preserved BBB function by activating the AKT/GSK3β pathway and inhibited the inflammatory response by regulating the JNK/NFκB pathway. Thus, FGF20 is a potential candidate treatment for TBI that protects the BBB by upregulating junction protein expression and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingting Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiulin Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruili Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fanyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kaiming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, China
| |
Collapse
|
13
|
Håheim B, Kondratiev T, Dietrichs ES, Tveita T. Comparison Between Two Pharmacologic Strategies to Alleviate Rewarming Shock: Vasodilation vs. Inodilation. Front Med (Lausanne) 2020; 7:566388. [PMID: 33282886 PMCID: PMC7689197 DOI: 10.3389/fmed.2020.566388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Rewarming from hypothermia is often challenged by coexisting cardiac dysfunction, depressed organ blood flow (OBF), and increased systemic vascular resistance. Previous research shows cardiovascular inotropic support and vasodilation during rewarming to elevate cardiac output (CO). The present study aims to compare the effects of inodilatation by levosimendan (LS) and vasodilation by nitroprusside (SNP) on OBF and global oxygen transport during rewarming from hypothermia. We used an in vivo experimental rat model of 4 h 15°C hypothermia and rewarming. A stable isotope-labeled microsphere technique was used to determine OBF. Cardiac and arterial pressures were monitored with fluid-filled pressure catheters, and CO was measured by thermodilution. Two groups were treated with either LS (n = 7) or SNP (n = 7) during the last hour of hypothermia and throughout rewarming. Two groups served as hypothermic (n = 7) and normothermic (n = 6) controls. All hypothermia groups had significantly reduced CO, oxygen delivery, and OBF after rewarming compared to their baseline values. After rewarming, LS had elevated CO significantly more than SNP (66.57 ± 5.6/+30% vs. 54.48 ± 5.2/+14%) compared to the control group (47.22 ± 3.9), but their ability to cause elevation of brain blood flow (BBF) was the same (0.554 ± 0.180/+81 vs. 0.535 ± 0.208/+75%) compared to the control group (0.305 ± 0.101). We interpret the vasodilator properties of LS and SNP to be the primary source to increase organ blood flow, superior to the increase in CO.
Collapse
Affiliation(s)
- Brage Håheim
- Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Timofei Kondratiev
- Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Erik Sveberg Dietrichs
- Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway.,Experimental and Clinical Pharmacology Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Torkjel Tveita
- Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT, The Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
14
|
Management for the Drowning Patient. Chest 2020; 159:1473-1483. [PMID: 33065105 DOI: 10.1016/j.chest.2020.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Drowning is "the process of experiencing respiratory impairment from submersion or immersion in liquid." According to the World Health Organization, drowning claims the lives of > 40 people every hour of every day. Drowning involves some physiological principles and medical interventions that are unique. It occurs in a deceptively hostile environment that involves an underestimation of the dangers or an overestimation of water competency. It has been estimated that > 90% of drownings are preventable. When water is aspirated into the airways, coughing is the initial reflex response. The acute lung injury alters the exchange of oxygen in different proportions. The combined effects of fluid in the lungs, loss of surfactant, and increased capillary-alveolar permeability result in decreased lung compliance, increased right-to-left shunting in the lungs, atelectasis, and alveolitis, a noncardiogenic pulmonary edema. Salt and fresh water aspirations cause similar pathology. If the person is not rescued, aspiration continues, and hypoxemia leads to loss of consciousness and apnea in seconds to minutes. As a consequence, hypoxic cardiac arrest occurs. The decision to admit to an ICU should consider the patient's drowning severity and comorbid or premorbid conditions. Ventilation therapy should achieve an intrapulmonary shunt ≤ 20% or Pao2:Fio2 ≥ 250. Premature ventilatory weaning may cause the return of pulmonary edema with the need for re-intubation and an anticipation of prolonged hospital stays and further morbidity. This review includes all the essential steps from the first call to action until the best practice at the prehospital, ED, and hospitalization.
Collapse
|
15
|
Chen CT, Chen CH, Chen TY, Yen DHT, How CK, Hou PC. Comparison of in-hospital and out-of-hospital cardiac arrest patients receiving targeted temperature management: A matched case-control study. J Chin Med Assoc 2020; 83:858-864. [PMID: 32371666 PMCID: PMC7478210 DOI: 10.1097/jcma.0000000000000343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Evidences that support the use of targeted temperature management (TTM) for in-hospital cardiac arrest (IHCA) are lacking. We aimed to investigate the hypothesis that TTM benefits for patients with IHCA are similar to those with out-of-hospital cardiac arrest (OHCA) and to determine the independent predictors of resuscitation outcomes in patients with cardiac arrest receiving subsequent TTM. METHODS This is a retrospective, matched, case-control study (ratio 1:1) including 93 patients with IHCA treated with TTM after the return of spontaneous circulation, who were admitted to Partners HealthCare system in Boston from January 2011 to December 2018. Controls were defined as the same number of patients with OHCA, matched for age, Charlson score, and sex. Survival and neurological outcomes upon discharge were the primary outcome measures. RESULTS Patients with IHCA were more likely to have experienced a witnessed arrest and receive bystander cardiopulmonary resuscitation, a larger total dosage of epinephrine, and extracorporeal membrane oxygenation. The time duration for ROSC was shorter in patients with IHCA than in those with OHCA. The IHCA group was more likely associated with mild thrombocytopenia during TTM than the OHCA group. Survival after discharge and favorable neurological outcomes did not differ between the two groups. Among all patients who had cardiac arrest treated with TTM, the initial shockable rhythm, time to ROSC, and medical history of heart failure were independent outcome predictors for survival to hospital discharge. The only factor to predict favorable neurological outcomes at discharge was initial shockable rhythm. CONCLUSION The beneficial effects of TTM in eligible patients with IHCA were similar with those with OHCA. Initial shockable rhythm was the only independent predictor of both survival and favorable neurological outcomes at discharge in all cardiac arrest survivors receiving TTM.
Collapse
Affiliation(s)
- Chung-Ting Chen
- Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
| | - Cheng-Han Chen
- Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
| | - Tzu-Yin Chen
- Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - David Hung-Tsang Yen
- Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
| | - Chorng-Kuang How
- Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
- Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan, ROC
- Address correspondence. Dr. Chorng-Kuang How, Emergency Department, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail: (C.-K.How.)
| | - Peter Chuanyi Hou
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Dugan EA, Bennett C, Tamames I, Dietrich WD, King CS, Prasad A, Rajguru SM. Therapeutic hypothermia reduces cortical inflammation associated with utah array implants. J Neural Eng 2020; 17:026035. [PMID: 32240985 DOI: 10.1088/1741-2552/ab85d2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. APPROACH A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. MAIN RESULTS The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. SIGNIFICANCE This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation.
Collapse
Affiliation(s)
- Elizabeth A Dugan
- Department of Biomedical Engineering, University of Miami, FL, United States of America
| | | | | | | | | | | | | |
Collapse
|
17
|
Bender D, Tweer S, Werdin F, Rothenberger J, Daigeler A, Held M. The acute impact of local cooling versus local heating on human skin microcirculation using laser Doppler flowmetry and tissue spectrophotometry. Burns 2020; 46:104-109. [DOI: 10.1016/j.burns.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 12/09/2018] [Accepted: 03/03/2019] [Indexed: 02/02/2023]
|
18
|
Reuter-Rice K, Christoferson E. Critical Update on the Third Edition of the Guidelines for Managing Severe Traumatic Brain Injury in Children. Am J Crit Care 2020; 29:e13-e18. [PMID: 31968082 DOI: 10.4037/ajcc2020228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) is associated with high rates of death and disability. As a result, the revised guidelines for the management of pediatric severe TBI address some of the previous gaps in pediatric TBI evidence and management strategies targeted to promote overall health outcomes. OBJECTIVES To provide highlights of the most important updates featured in the third edition of the guidelines for the management of pediatric severe TBI. These highlights can help critical care providers apply the most current and appropriate therapies for children with severe TBI. METHODS AND RESULTS After a brief overview of the process behind identifying the evidence to support the third edition guidelines, both relevant and new recommendations from the guidelines are outlined to provide critical care providers with the most current management approaches needed for children with severe TBI. Recommendations for neuroimaging, hyperosmolar therapy, analgesics and sedatives, seizure prophylaxis, ventilation therapies, temperature control/hypothermia, nutrition, and corticosteroids are provided. In addition, the complete guideline document and its accompanying algorithm for recommended therapies are available electronically and are referenced within this article. CONCLUSIONS The evidence base for treating pediatric TBI is increasing and provides the basis for high-quality care. This article provides critical care providers with a quick reference to the current evidence when caring for a child with a severe TBI. In addition, it provides direct access links to the comprehensive guideline document and algorithms developed to support critical care providers.
Collapse
Affiliation(s)
- Karin Reuter-Rice
- Karin Reuter-Rice is an associate professor, Duke University School of Nursing, Duke University School of Medicine Department of Pediatrics, and Duke Institute for Brain Sciences, Durham, North Carolina
| | - Elise Christoferson
- Elise Christoferson is an accelerated BSN student at Duke University School of Nursing
| |
Collapse
|
19
|
|
20
|
Chen H, Wu F, Yang P, Shao J, Chen Q, Zheng R. A meta-analysis of the effects of therapeutic hypothermia in adult patients with traumatic brain injury. Crit Care 2019; 23:396. [PMID: 31806001 PMCID: PMC6896404 DOI: 10.1186/s13054-019-2667-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/12/2019] [Indexed: 11/10/2022] Open
Abstract
Purpose Therapeutic hypothermia management remains controversial in patients with traumatic brain injury. We conducted a meta-analysis to evaluate the risks and benefits of therapeutic hypothermia management in patients with traumatic brain injury. Methods We searched the Web of Science, PubMed, Embase, Cochrane (Central) and Clinical Trials databases from inception to January 17, 2019. Eligible studies were randomised controlled trials that investigated therapeutic hypothermia management versus normothermia management in patients with traumatic brain injury. We collected the individual data of the patients from each included study. Meta-analyses were performed for 6-month mortality, unfavourable functional outcome and pneumonia morbidity. The risk of bias was evaluated using the Cochrane Risk of Bias tool. Results Twenty-three trials involving a total of 2796 patients were included. The randomised controlled trials with a high quality show significantly more mortality in the therapeutic hypothermia group [risk ratio (RR) 1.26, 95% confidence interval (CI) 1.04 to 1.53, p = 0.02]. Lower mortality in the therapeutic hypothermia group occurred when therapeutic hypothermia was received within 24 h (RR 0.83, 95% CI 0.71 to 0.96, p = 0.01), when hypothermia was received for treatment (RR 0.66, 95% CI 0.49 to 0.88, p = 0.006) or when hypothermia was combined with post-craniectomy measures (RR 0.69, 95% CI 0.48 to 1.00, p = 0.05). The risk of unfavourable functional outcome following therapeutic hypothermia management appeared to be significantly reduced (RR 0.78, 95% CI 0.67 to 0.91, p = 0.001). The meta-analysis suggested that there was a significant increase in the risk of pneumonia with therapeutic hypothermia management (RR 1.48, 95% CI 1.11 to 1.97, p = 0.007). Conclusions Our meta-analysis demonstrated that therapeutic hypothermia did not reduce but might increase the mortality rate of patients with traumatic brain injury in some high-quality studies. However, traumatic brain injury patients with elevated intracranial hypertension could benefit from hypothermia in therapeutic management instead of prophylaxis when initiated within 24 h.
Collapse
Affiliation(s)
- Hanbing Chen
- Graduate School of Dalian Medical University; Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| | - Fei Wu
- Department of Intensive Care Unit, Affiliated Hospital of Yangzhou University, Clinical Medical College, Yangzhou University, No.368 Hanjiangzhonglu Road, Yangzhou, 225001, Jiangsu, China
| | - Penglei Yang
- Graduate School of Dalian Medical University; Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| | - Jun Shao
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| | - Qihong Chen
- Department of Critical Care Medicine, Jiangdu People's Hospital of Yangzhou, Jiangdu People's Hospital Affiliated to Medical College of Yangzhou University, No 9 Dongfanghong Road of Jiangdu District, Yangzhou, 225001, Jiangsu, China.
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital; Clinical Medical College, Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu, China
| |
Collapse
|
21
|
Kalisvaart ACJ, Prokop BJ, Colbourne F. Hypothermia: Impact on plasticity following brain injury. Brain Circ 2019; 5:169-178. [PMID: 31950092 PMCID: PMC6950515 DOI: 10.4103/bc.bc_21_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic hypothermia (TH) is a potent neuroprotectant against multiple forms of brain injury, but in some cases, prolonged cooling is needed. Such cooling protocols raise the risk that TH will directly or indirectly impact neuroplasticity, such as after global and focal cerebral ischemia or traumatic brain injury. TH, depending on the depth and duration, has the potential to broadly affect brain plasticity, especially given the spatial, temporal, and mechanistic overlap with the injury processes that cooling is used to treat. Here, we review the current experimental and clinical evidence to evaluate whether application of TH has any adverse or positive effects on postinjury plasticity. The limited available data suggest that mild TH does not appear to have any deleterious effect on neuroplasticity; however, we emphasize the need for additional high-quality preclinical and clinical work in this area.
Collapse
|
22
|
Abstract
Hemorrhagic shock is the leading cause of preventable death after trauma. Hibernation-based treatment approaches have been of increasing interest for various biomedical applications. Owing to apparent similarities in tissue perfusion and metabolic activity between severe blood loss and the hibernating state, hibernation-based approaches have also emerged for the treatment of hemorrhagic shock. Research has shown that hibernators are protected from shock-induced injury and inflammation. Utilizing the adaptive mechanisms that prevent injury in these animals may help alleviate the detrimental effects of hemorrhagic shock in non-hibernating species. This review describes hibernation-based preclinical and clinical approaches for the treatment of severe blood loss. Treatments include the delta opioid receptor agonist D-Ala-Leu-enkephalin (DADLE), the gasotransmitter hydrogen sulfide, combinations of adenosine, lidocaine, and magnesium (ALM) or D-beta-hydroxybutyrate and melatonin (BHB/M), and therapeutic hypothermia. While we focus on hemorrhagic shock, many of the described treatments may be used in other situations of hypoxia or ischemia/reperfusion injury.
Collapse
|
23
|
Hypothermia-rewarming: A Double-edged sword? Med Hypotheses 2019; 133:109387. [PMID: 31541781 DOI: 10.1016/j.mehy.2019.109387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023]
Abstract
Hypothermia is a condition in which the body's core temperature drops below 35.0 °C. Hypothermia is the opposite of hyperthermia, which the metabolism and body functions are abnormal. Severe hypothermia is a life-threatening problem that may cause atrial and ventricular dysrhythmias, coagulopathy, cardiac, and central nervous system depression. What is worse, it is fatal when untreated or treated improperly. Accidental deaths due to hypothermia resulting from immersion in cold water, especially involving naval fighters and maritime victims have occurred continually in the past years. Currently, the treatment of hypothermia has become a research focus. Rewarming is the only approach that should be considered for hypothermia treatment. However, the treatment is of low efficiency, and few active rewarming cases have been reported. It is well known that timely reperfusion is the best way to save the lives of patients with ischemia. Similarly, reoxygenation is effective for hypoxia. However, several studies have identified that improper reperfusion of ischemic tissues and reoxygenation of hypoxic tissues give rise to further injury. Analogically, this study attempts to propose the hypothesis that hypothermia-rewarming injury may also exist. When suffered from hypothermia, both the blood circulation and the oxygen supply in the body will be affected in a deficient state, an injury may also appear in the improper rewarming process. In a word, hypothermia-rewarming may be a double-edged sword.
Collapse
|
24
|
Kubrova E, Qu W, Galvan ML, Paradise CR, Yang J, Dietz AB, Dudakovic A, Smith J, van Wijnen AJ. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 2019; 722:144058. [PMID: 31494240 DOI: 10.1016/j.gene.2019.144058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (MSCs) are attractive biological agents in regenerative medicine. To optimize cell therapies, it is necessary to determine the most effective delivery method for MSCs. Therefore, we evaluated the biological properties of MSCs after exposure to various temperatures to define optimal storage conditions prior to therapeutic delivery of MSCs. DESIGN Prospective observational study. METHODS AND MATERIALS Adherent and non-adherent MSCs were incubated at multiple temperatures (i.e., 4, 23 and 37 °C) in Lactated Ringers (LR) solution lacking essential cell growth ingredients, or in culture media which is optimized for cell growth. Cells were assessed either after the temperature changes (4 h) or after recovery (24 h). Metabolic activity of MSCs, cell number and expression of representative mRNA biomarkers were evaluated to assess the biological effects of temperature. We monitored changes in mRNAs expression related to cytoprotective- or stress-related responses (e.g., FOS, JUN, ATF1, ATF4, EGR1, EGR2, MYC), proliferation (e.g., HIST2H4, CCNB2), and extracellular matrix production (ECM; e.g., COL3A1, COL1A1) by quantitative real time reverse-transcriptase polymerase chain reaction (RT-qPCR) analysis. RESULTS Our study demonstrates that storing MSCs in Lactated Ringers (LR) solution for 4 h decreases cell number and metabolic activity. The number of viable MSCs decreased significantly when cultured at physiological temperature (37 °C) and severe hypothermia (4 °C), while cells grown at ambient temperature (23 °C) exhibited the least detrimental effects. There were no appreciable biological differences in mRNA markers for proliferation or ECM deposition at any of the temperatures. However, biomarkers related to cytoprotective- or stress-responses were selectively elevated depending on temperature or media type (i.e., LR versus standard media). CONCLUSION The biological impact of nutrient-free media and temperature changes after 4 h exposure persists after a 24 h recovery period. Hence, storage temperature and media conditions should be optimized to improve effective dosing of MSCs.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Wenchun Qu
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Juan Yang
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay Smith
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
25
|
Urits I, Jones MR, Orhurhu V, Sikorsky A, Seifert D, Flores C, Kaye AD, Viswanath O. A Comprehensive Update of Current Anesthesia Perspectives on Therapeutic Hypothermia. Adv Ther 2019; 36:2223-2232. [PMID: 31301055 PMCID: PMC6822844 DOI: 10.1007/s12325-019-01019-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 12/16/2022]
Abstract
Normal thermal regulation is a result of the integration of afferent sensory, central control, and efferent responses to temperature change. Therapeutic hypothermia (TH) is a technique utilized during surgery to protect vital organs from ischemia; however, in doing so leads to other physiological changes. Indications for inducing hypothermia have been described for neuroprotection, coronary artery bypass graft (CABG) surgery, surgical repair of thoracoabdominal and intracranial aneurysms, pulmonary thromboendarterectomy, and arterial switch operations in neonates. Initially it was thought that induced hypothermia worked exclusively by a temperature-dependent reduction in metabolism causing a decreased demand for oxygen and glucose. Induced hypothermia exerts its neuroprotective effects through multiple underlying mechanisms including preservation of the integrity and survival of neurons through a reduction of extracellular levels of excitatory neurotransmitters dopamine and glutamate, therefore reducing central nervous system hyperexcitability. Risks of hypothermia include increased infection risk, altered drug pharmacokinetics, and systemic cardiovascular changes. Indications for TH include ischemia-inducing surgeries and diseases. Two commonly used methods are used to induce TH, surface cooling and endovascular cooling. Core body temperature monitoring is essential during induction of TH and rewarming, with central venous temperature as the gold standard. The aim of this review is to highlight current literature discussing perioperative considerations of TH including risks, benefits, indications, methods, and monitoring.
Collapse
Affiliation(s)
- Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Mark R Jones
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vwaire Orhurhu
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew Sikorsky
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, AZ, USA
| | - Danica Seifert
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, AZ, USA
| | - Catalina Flores
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, AZ, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Omar Viswanath
- Valley Anesthesiology and Pain Consultants, Phoenix, AZ, USA
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
26
|
Abstract
OBJECTIVES The Eurotherm3235 trial showed that therapeutic hypothermia was deleterious in patients with raised intracranial pressure following traumatic brain injury. We sought to ascertain if increased temperature variability within the first 48 hours, or for 7 days post randomization, were modifiable risk factors associated with poorer outcome. DESIGN Eurotherm3235 was a multicenter randomized controlled trial. Patients were randomized to receive either therapeutic hypothermia in addition to standard care or the later only. Mean moving range (mr) was used to stratify subjects into tertiles by the variability present in their core temperature within the first 48 hours post randomization and within 7 days post randomization. The primary outcome measure was a collapsed Glasgow Outcome Scale-Extended at 6 months post randomization. The temperature variability effect was estimated with ordinal logistic regression adjusted for baseline covariates and treatment effect. SETTING Forty-seven critical care units in 18 countries. PATIENTS Patients enrolled in the Eurotherm3235 trial to either therapeutic hypothermia or control treatments only. MEASUREMENTS AND MAIN RESULTS Three hundred eighty-six patients were included in our study. High level of temperature variability during the first 48 hours was associated with poorer collapsed Glasgow Outcome Scale-Extended. This effect remained statistically significant when only the control arm of the study was analyzed. No statistically significant effect was seen within the first 48 hours in the hypothermia group or within 7 days in either group. CONCLUSIONS When targeting normothermia, temperature variability may be a statistically significant variable in an ordinal analysis adjusted for baseline covariates.
Collapse
|
27
|
Brown AM, Evans RD, Smith PA, Rich LR, Ransom BR. Hypothermic neuroprotection during reperfusion following exposure to aglycemia in central white matter is mediated by acidification. Physiol Rep 2019; 7:e14007. [PMID: 30834716 PMCID: PMC6399195 DOI: 10.14814/phy2.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 11/24/2022] Open
Abstract
Hypoglycemia is a common iatrogenic consequence of type 1 diabetes therapy that can lead to central nervous system injury and even death if untreated. In the absence of clinically effective neuroprotective drugs we sought to quantify the putative neuroprotective effects of imposing hypothermia during the reperfusion phase following aglycemic exposure to central white matter. Mouse optic nerves (MONs), central white matter tracts, were superfused with oxygenated artificial cerebrospinal fluid (aCSF) containing 10 mmol/L glucose at 37°C. The supramaximal compound action potential (CAP) was evoked and axon conduction was assessed as the CAP area. Extracellular lactate was measured using an enzyme biosensor. Exposure to aglycemia, simulated by omitting glucose from the aCSF, resulted in axon injury, quantified by electrophysiological recordings, electron microscopic analysis confirming axon damage, the extent of which was determined by the duration of aglycemia exposure. Hypothermia attenuated injury. Exposing MONs to hypothermia during reperfusion resulted in improved CAP recovery compared with control recovery measured at 37°C, an effect attenuated in alkaline aCSF. Hypothermia decreases pH implying that the hypothermic neuroprotection derives from interstitial acidification. These results have important clinical implications demonstrating that hypothermic intervention during reperfusion can improve recovery in central white matter following aglycemia.
Collapse
Affiliation(s)
- Angus M. Brown
- School of Life SciencesQueens Medical CentreUniversity of NottinghamNottinghamUnited Kingdom
- Department of NeurologySchool of MedicineUniversity of WashingtonSeattleWashington
| | - Richard D. Evans
- School of Life SciencesQueens Medical CentreUniversity of NottinghamNottinghamUnited Kingdom
| | - Paul A. Smith
- School of Life SciencesQueens Medical CentreUniversity of NottinghamNottinghamUnited Kingdom
| | - Laura R. Rich
- School of Life SciencesQueens Medical CentreUniversity of NottinghamNottinghamUnited Kingdom
| | - Bruce R. Ransom
- Department of NeurologySchool of MedicineUniversity of WashingtonSeattleWashington
| |
Collapse
|
28
|
Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines. Pediatr Crit Care Med 2019; 20:S1-S82. [PMID: 30829890 DOI: 10.1097/pcc.0000000000001735] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Klitgaard TL, Kjaergaard B, Staehr JB. Successful resuscitation after drowning with severe hypernatraemia and prolonged time to return of spontaneous circulation. Anaesth Rep 2019; 7:11-13. [PMID: 32051937 PMCID: PMC6931307 DOI: 10.1002/anr3.12002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 11/11/2022] Open
Abstract
We describe the successful resuscitation of a 23-year-old previously healthy man who had drowned. After prolonged submersion, hypothermia, severe hypernatraemia, a prolonged time to return of spontaneous circulation was possible using a combination of extracorporal life support and early continuous veno-venous haemofiltration. This combination of clinical circumstances is rarely associated with positive outcomes, but this case demonstrates the utility of extracorporeal life support and haemofiltration in patients drowned in saltwater.
Collapse
Affiliation(s)
- T. L. Klitgaard
- Department of AnesthesiaAalborg University HospitalAalborgDenmark
| | - B. Kjaergaard
- Department of Cardiothoracic SurgeryAalborg University HospitalAalborgDenmark
| | - J. B. Staehr
- Department of AnesthesiaAalborg University HospitalAalborgDenmark
| |
Collapse
|
30
|
Yuan W, Wu JY, Zhao YZ, Li J, Li JB, Li ZH, Li CS. Effects of Mild Hypothermia on Cardiac and Neurological Function in Piglets Under Pathological and Physiological Stress Conditions. Ther Hypothermia Temp Manag 2018; 9:136-145. [PMID: 30239278 DOI: 10.1089/ther.2018.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate the different effects of mild hypothermia on pathological and physiological stress conditions in piglets, 30 pigs were randomized into four groups: cardiac arrest and mild hypothermia (CA-MH group), cardiac arrest and normothermia (CA-NH group), non-CA-MH (NCA-MH group), and a sham operation. The same hypothermia intervention was implemented in both CA-MH and NCA-MH groups. The CA-NH group did not undergo therapeutic hypothermia after resuscitation. The hemodynamic parameters were recorded. Cerebral metabolism variables and neurotransmitters in the extracellular fluid were collected through microdialysis tubes. The serum of venous blood was used to detect levels of inflammatory factors. The cerebral function was evaluated. At 24 and 72 hours after resuscitation, the cerebral performance category and neurological deficit score in the CA-NH group had higher values. Heart rate and cardiac output (CO) in the CA-MH group during cooling were lower than that of the CA-NH group, but CO was higher after rewarming. Glucose was higher during cooling, and extracellular lactate and lactate/pyruvate ratio in the CA-MH group were lower than that of the CA-NH group. Noradrenaline and 5-hydroxytryptamine in the CA-MH and NCA-MH groups were lower than that of the CA-NH group and sham group during cooling, respectively. Inflammatory factor levels, including interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, and tumor necrosis factor-α, in the CA-MH group were lower than that of the CA-NH group at cooling for 12 hours. These values in the NCA-MH group were higher than that of the sham group. Under a light and an electron microscope, the worse pathological results of heart and brain were observed in the two cardiac arrest groups. Mild hypothermia can provide limited organ protection in the specific pathological condition caused by ischemia-reperfusion, but it may produce a negative effect in a normal physiological state.
Collapse
Affiliation(s)
- Wei Yuan
- 1 Department of Emergency, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Jun-Yuan Wu
- 1 Department of Emergency, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Yong-Zhen Zhao
- 1 Department of Emergency, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Jie Li
- 3 Department of Emergency, Beijing Fu-Xing Hospital, Capital Medical University, Beijing, China
| | - Jie-Bin Li
- 4 Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhen-Hua Li
- 5 Department of Emergency, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chun-Sheng Li
- 1 Department of Emergency, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| |
Collapse
|
31
|
Bi M, Wang J, Zhang Y, Li L, Wang L, Yao R, Duan S, Tong S, Li J. Bone mesenchymal stem cells transplantation combined with mild hypothermia improves the prognosis of cerebral ischemia in rats. PLoS One 2018; 13:e0197405. [PMID: 30067742 PMCID: PMC6070180 DOI: 10.1371/journal.pone.0197405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are used as a great promising choice for the treatment of cerebral ischemia. Herein, we discuss the neuroprotective effects of the combination of BMSCs transplantation and mild hypothermia (MH) in an ischemia-reperfusion rat model. First, BMSCs were isolated using density gradient centrifugation and the adherent screening method, followed by culture, identification and labeling with DAPI. Second, adult male SD rats were divided into 5 groups: sham group (surgery without blockage of middle cerebral artery), model group (middle cerebral artery occlusion (MCAO) was established 2h prior to reperfusion), BMSCs group (injection of BMSCs via the lateral ventricle 24h after MCAO), MH group (mild hypothermia for 3h immediately after MCAO) and combination therapy group (combination of BMSCs and MH). Finally, the modified neurological severity score (mNSS) test was performed to assess behavioral function at different time points (before MCAO, before transplantation, at day 1, day 5 and day 10 after transplantation). After that, the brain was subjected to TTC staining, and the homing and angiogenesis were evaluated by immumofluorescence and immunohistochemistry. Immunofluorescence staining and Western Blot analysis were performed to calculate the percentage of the infarct area and explore glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF). Our results showed that the combination therapy significantly decreased mNSS scores (P<0.01) and reduced the percentage of the infarct area (P<0.01) than a single treatment. Moreover, the expression of GFAP and VEGF increased significantly in the combination therapy group (at day 5, day 10 after transplantation; at all time points after transplantation, respectively) compared to the single treatment groups. Taken together, it was suggested that the combination of BMSCs transplantation and MH can significantly reduce the percentage of the infarct area and improve functional recovery by promoting homing and angiogenesis, which may be a beneficial treatment for cerebral ischemia.
Collapse
Affiliation(s)
- Min Bi
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jiawei Wang
- Medical College of Xiamen University, Xiamen, Fujian, China
- Department of Neurology, The 184th Hospital of People’s Liberation Army of China, Yingtan, Jiangxi, China
| | - Yidan Zhang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Longzhu Li
- Medical College of Xiamen University, Xiamen, Fujian, China
| | - Linhui Wang
- Medical College of Xiamen University, Xiamen, Fujian, China
| | - Ran Yao
- Medical College of Xiamen University, Xiamen, Fujian, China
| | - Shijie Duan
- Medical College of Xiamen University, Xiamen, Fujian, China
| | - Suijun Tong
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- * E-mail: (ST); (JL)
| | - Jianpeng Li
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- * E-mail: (ST); (JL)
| |
Collapse
|
32
|
Wang W, Xiao Q, Hu XY, Liu ZZ, Zhang XJ, Xia ZP, Ye QF, Niu Y. Mild Hypothermia Pretreatment Attenuates Liver Ischemia Reperfusion Injury Through Inhibiting c-Jun NH2-terminal Kinase Phosphorylation in Rats. Transplant Proc 2018; 50:259-266. [PMID: 29407320 DOI: 10.1016/j.transproceed.2017.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mild hypothermia is known to be protected against ischemia reperfusion (IR) injury. But the exact mechanisms of protection have not yet been fully understood and its usage has been limited. Mild hypothermia pretreatment (MHP) is used to investigate the mechanisms of the protective effects against liver IR injury. METHODS Anesthetized male Sprague-Dawley rats were randomly divided into five groups including the normal group (N), sham group (S), MHP group, normothermia pretreatment (NP) + IR group, and the MHP + IR group. In the pretreatment groups, mild hypothermia (32.2 ± 0.3°C) and normothermia (37 ± 0.5°C) pretreatment were applied for 2 hours, respectively. Then the IR groups suffered partial (70%) hepatic ischemia for 1 hour and reperfusion for 6 hours. At last, hepatic injury, apoptosis, and protein expression were assessed. RESULTS Levels of serum alanine transaminase, hepatic injury, hepatocyte apoptosis, and c-Jun N-terminal kinase (JNK) phosphorylation were significantly higher in the IR groups. But when compared to NP, all these changes induced by IR were markedly attenuated by MHP. Serum alanine transaminase levels were 383.4 ± 13.1U/L in the MHP + IR group and 951.3 ± 39.4 U/L in the NP + IR group. The histologic score of liver injury in the MHP + IR group was 4.83 ± 1.17, whereas in the NP + IR group it was 10.5 ± 1.05. The proportion of apoptotic cells in the MHP + IR group was 11.58 ± 0.60, but in the NP + IR group, it was 44.95 ± 1.61. The phosphorylation of JNK was also significantly reduced in the MHP + IR group. All these differences are statistically significant (P < .05). CONCLUSIONS MHP could markedly reduce liver IR injury, and these protective effects may be mainly exerted via inhibition of JNK phosphorylation.
Collapse
Affiliation(s)
- W Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Q Xiao
- The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| | - X-Y Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Z-Z Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - X-J Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Z-P Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Q-F Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China; The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China.
| | - Y Niu
- The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, China
| |
Collapse
|
33
|
Miao J, Huo Y, Shi H, Fang J, Wang J, Guo W. A Si-rhodamine-based near-infrared fluorescent probe for visualizing endogenous peroxynitrite in living cells, tissues, and animals. J Mater Chem B 2018; 6:4466-4473. [DOI: 10.1039/c8tb00987b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An aromatic tertiary amine-functionalized Si-rhodamine dye has been exploited as a near-infrared fluorescent probe for visualizing endogenous peroxynitrite in living cells, tissues, and mice.
Collapse
Affiliation(s)
- Junfeng Miao
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yingying Huo
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Hu Shi
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
- Institute of Molecular Science
| | - Junru Fang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Juanjuan Wang
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
| | - Wei Guo
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
34
|
Dietrich WD, Bramlett HM. Therapeutic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circ 2017; 3:186-198. [PMID: 30276324 PMCID: PMC6057704 DOI: 10.4103/bc.bc_28_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a worldwide medical problem, and currently, there are few therapeutic interventions that can protect the brain and improve functional outcomes in patients. Over the last several decades, experimental studies have investigated the pathophysiology of TBI and tested various pharmacological treatment interventions targeting specific mechanisms of secondary damage. Although many preclinical treatment studies have been encouraging, there remains a lack of successful translation to the clinic and no therapeutic treatments have shown benefit in phase 3 multicenter trials. Therapeutic hypothermia and targeted temperature management protocols over the last several decades have demonstrated successful reduction of secondary injury mechanisms and, in some selective cases, improved outcomes in specific TBI patient populations. However, the benefits of therapeutic hypothermia have not been demonstrated in multicenter randomized trials to significantly improve neurological outcomes. Although the exact reasons underlying the inability to translate therapeutic hypothermia into a larger clinical population are unknown, this failure may reflect the suboptimal use of this potentially powerful therapeutic in potentially treatable severe trauma patients. It is known that multiple factors including patient recruitment, clinical treatment variables, and cooling methodologies are all important in yielding beneficial effects. High-quality multicenter randomized controlled trials that incorporate these factors are required to maximize the benefits of this experimental therapy. This article therefore summarizes several factors that are important in enhancing the beneficial effects of therapeutic hypothermia in TBI. The current failures of hypothermic TBI clinical trials in terms of clinical protocol design, patient section, and other considerations are discussed and future directions are emphasized.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
35
|
Mohiyaddin S, Nanjaiah P, Saad AO, Acharya MN, Khan TA, Davies RH, Ashraf S. Suspended animation: the past, present and future of major cardiothoracic trauma. ANZ J Surg 2017; 88:678-682. [PMID: 29150890 DOI: 10.1111/ans.14313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/22/2017] [Indexed: 11/27/2022]
Abstract
About 50% of the trauma victims die at the scene mostly because of exsanguinating haemorrhage. Most trials of resuscitation fail in face of the ongoing bleeding. Ongoing research/studies to save these victims by inducing rapid hypothermia using cardiopulmonary bypass as an emergency initial measure along with delayed resuscitation show improved outcomes. A comprehensive review of this research and analysis of studies showed that rapid induction of hypothermia within 5 min of cardiac arrest is associated with better survival and improved neurological outcome. This led us to conclude that suspended animation is a lifesaving modality for the treatment of trauma victims, otherwise hurtling towards certain death. This should be integrated into regular clinical practice. The US Food and Drug Administration has given its approval for clinical trials on such an intervention.
Collapse
Affiliation(s)
- Syed Mohiyaddin
- Department of Cardiothoracic Surgery, Morriston Hospital, Swansea, UK
| | - Prakash Nanjaiah
- Department of Cardiothoracic Surgery, Northern General Hospital, Sheffield, UK
| | - Ahmed O Saad
- Department of Cardiothoracic Surgery, Harefield Hospital, London, UK
| | - Metesh N Acharya
- Department of Surgery and Cancer, Hammersmith Hospital, London, UK
| | - Tanveer A Khan
- Department of Cardiac Surgery, Frontline Heart and Lung Centre, Bangalore, India
| | | | - Saeed Ashraf
- Department of Cardiothoracic Surgery, Morriston Hospital, Swansea, UK
| |
Collapse
|
36
|
Prasetyo E, Asadul Islam A, Hatta M, Widodo D, Pattelongi I. The Profile of MMP-9, MMP-9 mRNA Expression, -1562 C/T Polymorphism and Outcome in High-risk Traumatic Brain Injury: The Effect of Therapeutic Mild Hypothermia. Neurol Med Chir (Tokyo) 2017; 57:612-619. [PMID: 28966304 PMCID: PMC5709715 DOI: 10.2176/nmc.oa.2016-0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the effect of mild hypothermia therapy (34–36°C) and the alterations of matrix metalloproteinase-9 (MMP-9) in 20 patients with high-risk traumatic brain injury (TBI). The neurologic status and outcome were assessed using Full Outline of UnResponsiveness (FOUR) score and Glasgow Coma Scale (GCS). A prospective randomized control study involved patients with high-risk TBI (FOUR score ≤ 7). Patients were randomized into two groups, with and without mild hypothermia therapy which were investigated within 24 and 72 h. The MMP-9 level, MMP-9 mRNA expression and -1562 C/T polymorphism were estimated using enzyme-linked immune sorbent assay (ELISA), reversing transcription polymerase chain reaction (RT-PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). Different levels of these variables were compared in the two groups. In the hypothermia group, the expression of MMP-9 mRNA and the level of serum MMP-9 were significantly decreased (P < 0.05) within 72 h. There was a highly significant correlation between the expression of MMP-9 mRNA and the level of MMP-9 protein (R2 = 0.741, r = 0.861, P < 0.05). The study did not find in -1562 C/T polymorphism. The patients’ outcome was improved significantly after mild hypothermia therapy (P < 0.05). The data obtained from this study show that mild hypothermia therapy down regulated the expression of MMP-9 mRNA, the MMP-9 protein level and increased the FOUR score and GCS in high-risk TBI patients within 72 h.
Collapse
Affiliation(s)
- Eko Prasetyo
- Post Graduate, Faculty Medicine, University of Hasanuddin.,Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sam Ratulangi
| | - Andi Asadul Islam
- Post Graduate, Faculty Medicine, University of Hasanuddin.,Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Hasanuddin
| | - Mochammad Hatta
- Post Graduate, Faculty Medicine, University of Hasanuddin.,Molecular Biology and Immunology Laboratory, Faculty of Medicine, University of Hasanuddin
| | - Djoko Widodo
- Post Graduate, Faculty Medicine, University of Hasanuddin.,Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Hasanuddin
| | - Ilhamjaya Pattelongi
- Post Graduate, Faculty Medicine, University of Hasanuddin.,Department of Physiology, Faculty of Medicine, University of Hasanuddin
| |
Collapse
|
37
|
Cobas MA, Vera-Arroyo A. Hypothermia: Update on Risks and Therapeutic and Prophylactic Applications. Adv Anesth 2017; 35:25-45. [PMID: 29103575 DOI: 10.1016/j.aan.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Miguel A Cobas
- Department of Anesthesiology and Perioperative Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Arnaldo Vera-Arroyo
- Department of Anesthesiology and Perioperative Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
38
|
Shah N, Chaudhary R, Mehta K, Agarwal V, Garg J, Freudenberger R, Jacobs L, Cox D, Kern KB, Patel N. Therapeutic Hypothermia and Stent Thrombosis: A Nationwide Analysis. JACC Cardiovasc Interv 2017; 9:1801-11. [PMID: 27609254 DOI: 10.1016/j.jcin.2016.06.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/02/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVES This study sought to determine whether "real-world" data supported the hypothesis that therapeutic hypothermia (TH) led to increased rates of stent thrombosis. BACKGROUND TH, which is often instituted after cardiac arrest (CA) to improve neurologic outcomes, alters pharmacokinetics of antiplatelet medications, leading to a theoretical risk of stent thrombosis after percutaneous coronary intervention (PCI). METHODS CA patients with acute myocardial infarction undergoing PCI were identified from the Nationwide Inpatient Sample from 2006 to 2011, with a defined primary outcome of stent thrombosis. The incidence of stent thrombosis in patients undergoing TH versus those not undergoing TH was compared using both logistic regression and propensity score matching. RESULTS In this dataset, 49,109 CA patients underwent PCI for acute myocardial infarction from 2006 to 2011, of whom 1,193 (2.4%) underwent TH. The incidence of stent thrombosis in the TH group was 3.9% (43 of 1,193), compared to 4.7% (2,271 of 47,916) in the no TH group (p = 0.61). Logistic regression showed that TH was not a significant predictor of stent thrombosis with an adjusted odds ratio of 0.71 (95% confidence interval: 0.28 to 1.76; p = 0.46). Propensity matching was performed to adjust for baseline differences between the TH and no TH groups, matching 1,155 patients in the TH group with 3,399 patients in the no TH group. No difference was observed in the incidence of stent thrombosis in the TH and the no TH groups after propensity matching (3.5% vs. 6.1%; p = 0.17). CONCLUSIONS TH does not increase the incidence of stent thrombosis after primary PCI in patients with acute myocardial infarction presenting as CA.
Collapse
Affiliation(s)
- Neeraj Shah
- Lehigh Valley Health Network, Allentown, Pennsylvania.
| | - Rahul Chaudhary
- Johns Hopkins University/Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Kathan Mehta
- University of Pittsburgh Medical Center at Shadyside, Pittsburgh, Pennsylvania
| | | | - Jalaj Garg
- Lehigh Valley Health Network, Allentown, Pennsylvania
| | | | - Larry Jacobs
- Lehigh Valley Health Network, Allentown, Pennsylvania
| | - David Cox
- Lehigh Valley Health Network, Allentown, Pennsylvania
| | - Karl B Kern
- University of Arizona College of Medicine, Tucson, Arizona
| | - Nainesh Patel
- Lehigh Valley Health Network, Allentown, Pennsylvania
| |
Collapse
|
39
|
Neveu MA, Joudiou N, De Preter G, Dehoux JP, Jordan BF, Gallez B. 17 O MRS assesses the effect of mild hypothermia on oxygen consumption rate in tumors. NMR IN BIOMEDICINE 2017; 30:e3726. [PMID: 28430379 DOI: 10.1002/nbm.3726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
Although oxygen consumption is a key factor in metabolic phenotyping, its assessment in tumors remains critical, as current technologies generally display poor specificity. The objectives of this study were to explore the feasibility of direct 17 O nuclear magnetic resonance (NMR) spectroscopy to assess oxygen metabolism in tumors and its modulations. To investigate the impact of hypometabolism induction in the murine fibrosarcoma FSAII tumor model, we monitored the oxygen consumption of normothermic (37°C) and hypothermic (32°C) tumor-bearing mice. Hypothermic animals showed an increase in tumor pO2 (measured by electron paramagnetic resonance oximetry) contrary to normothermic animals. This was related to a decrease in oxygen consumption rate (assessed using 17 O magnetic resonance spectroscopy (MRS) after the inhalation of 17 O2 -enriched gas). This study highlights the ability of direct 17 O MRS to measure oxygen metabolism in tumors and modulations of tumor oxygen consumption rate.
Collapse
Affiliation(s)
- Marie-Aline Neveu
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Nicolas Joudiou
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Géraldine De Preter
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Jean-Paul Dehoux
- Experimental Surgery Unit, Medical School, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCL), Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Belgium
| |
Collapse
|
40
|
Chacko PSE, Seifi A, Diller KR. A Human Thermoregulation Simulator for Calibrating Water-Perfused Cooling Pad Systems for Therapeutic Hypothermia. J Med Device 2017. [DOI: 10.1115/1.4037054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The induction of a mild reduction in body core temperature has been demonstrated to provide neuroprotection for patients who have suffered a medical event resulting in ischemia to the brain or vital organs. Temperatures in the range of 32–34 °C provide the required level of protection and can be produced and maintained by diverse means for periods of days. Rewarming from hypothermia must be conducted slowly to avoid serious adverse consequences and usually is performed under control of the thermal therapeutic device based on a closed-loop feedback strategy based on the patient's core temperature. Given the sensitivity and criticality of this process, it is important that the device control system be able to interact with the human thermoregulation system, which itself is highly nonlinear. The therapeutic hypothermia device must be calibrated periodically to ensure that its performance is accurate and safe for the patient. In general, calibration processes are conducted with the hypothermia device operating on a passive thermal mass that behaves much differently than a living human. This project has developed and demonstrated an active human thermoregulation simulator (HTRS) that embodies major governing thermal functions such as central metabolism, tissue conduction, and convective transport between the core and the skin surface via the flow of blood and that replicates primary dimensions of the torso. When operated at physiological values for metabolism and cardiac output, the temperature gradients created across the body layers and the heat exchange with both an air environment and a clinical water-circulating cooling pad system match that which would occur in a living body. Approximately two-thirds of the heat flow between the core and surface is via convection rather than conduction, highlighting the importance of including the contribution of blood circulation to human thermoregulation in a device designed to calibrate the functioning of a therapeutic hypothermia system. The thermoregulation simulator functions as anticipated for a typical living patient during both body cooling and warming processes. This human thermoregulatory surrogate can be used to calibrate the thermal function of water-perfused cooling pads for a hypothermic temperature management system during both static and transient operation.
Collapse
Affiliation(s)
- Priya S. E. Chacko
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| | - Ali Seifi
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, MC7843, 7703 Floyd Curl Drive, San Antonio, TX 78229 e-mail:
| | - Kenneth R. Diller
- Fellow ASME Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| |
Collapse
|
41
|
Muengtaweepongsa S, Srivilaithon W. Targeted temperature management in neurological intensive care unit. World J Methodol 2017; 7:55-67. [PMID: 28706860 PMCID: PMC5489424 DOI: 10.5662/wjm.v7.i2.55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Targeted temperature management (TTM) shows the most promising neuroprotective therapy against hypoxic/ischemic encephalopathy (HIE). In addition, TTM is also useful for treatment of elevated intracranial pressure (ICP). HIE and elevated ICP are common catastrophic conditions in patients admitted in Neurologic intensive care unit (ICU). The most common cause of HIE is cardiac arrest. Randomized control trials demonstrate clinical benefits of TTM in patients with post-cardiac arrest. Although clinical benefit of ICP control by TTM in some specific critical condition, for an example in traumatic brain injury, is still controversial, efficacy of ICP control by TTM is confirmed by both in vivo and in vitro studies. Several methods of TTM have been reported in the literature. TTM can apply to various clinical conditions associated with hypoxic/ischemic brain injury and elevated ICP in Neurologic ICU.
Collapse
|
42
|
Meta-Analysis of Therapeutic Hypothermia for Traumatic Brain Injury in Adult and Pediatric Patients. Crit Care Med 2017; 45:575-583. [PMID: 27941370 DOI: 10.1097/ccm.0000000000002205] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Therapeutic hypothermia has been used to attenuate the effects of traumatic brain injuries. However, the required degree of hypothermia, length of its use, and its timing are uncertain. We undertook a comprehensive meta-analysis to quantify benefits of hypothermia therapy for traumatic brain injuries in adults and children by analyzing mortality rates, neurologic outcomes, and adverse effects. DATA SOURCES Electronic databases PubMed, Google Scholar, Web of Science, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov and manual searches of studies were conducted for relevant publications up until February 2016. STUDY SELECTION Forty-one studies in adults (n = 3,109; age range, 18-81 yr) and eight studies in children (n = 454; age range, 3 mo to 18 yr) met eligibility criteria. DATA EXTRACTION Baseline patient characteristics, enrollment time, methodology of cooling, target temperature, duration of hypothermia, and rewarming protocols were extracted. DATA SYNTHESIS Risk ratios with 95% CIs were calculated. Compared with adults who were kept normothermic, those who underwent therapeutic hypothermia were associated with 18% reduction in mortality (risk ratio, 0.82; 95% CI, 0.70-0.96; p = 0.01) and a 35% improvement in neurologic outcome (risk ratio, 1.35; 95% CI, 1.18-1.54; p < 0.00001). The optimal management strategy for adult patients included cooling patients to a minimum of 33°C for 72 hours, followed by spontaneous, natural rewarming. In contrast, adverse outcomes were observed in children who underwent hypothermic treatment with a 66% increase in mortality (risk ratio, 1.66; 95% CI, 1.06-2.59; p = 0.03) and a marginal deterioration of neurologic outcome (risk ratio, 0.90; 95% CI, 0.80-1.01; p = 0.06). CONCLUSIONS Therapeutic hypothermia is likely a beneficial treatment following traumatic brain injuries in adults but cannot be recommended in children.
Collapse
|
43
|
Therapeutic dormancy to delay postsurgical glioma recurrence: the past, present and promise of focal hypothermia. J Neurooncol 2017; 133:447-454. [DOI: 10.1007/s11060-017-2471-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/07/2017] [Indexed: 01/06/2023]
|
44
|
Szpilman D, Orlowski JP. Sports related to drowning. Eur Respir Rev 2017; 25:348-59. [PMID: 27581833 DOI: 10.1183/16000617.0038-2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
Aquatic sports are included in the top list of risky practices as the environment per se carries a possibility of death by drowning if not rescued in time. Not only are aquatic sports related to a high risk of death, but also all sports practiced on the water, over the water and on ice. Whatever the reason a person is in the water, drowning carries a higher possibility of death if the individual is unable to cope with the water situation, which may simply be caused by an inability to stay afloat and get out of the water or by an injury or disease that may lead to physical inability or unconsciousness. The competitive nature of sports is a common pathway that leads the sports person to exceed their ability to cope with the environment or simply misjudge their physical capability. Drowning involves some principles and medical interventions that are rarely found in other medical situations as it occurs in a deceptively hostile environment that may not seem dangerous. Therefore, it is essential that health professionals are aware of the complete sequence of action in drowning. This article focuses on the pulmonary injury in sports and recreational activities where drowning plays the major role.
Collapse
Affiliation(s)
- David Szpilman
- Sociedade Brasileira de Salvamento Aquatico - SOBRASA, Rio de Janeiro, Brazil
| | - James P Orlowski
- Division of Pediatrics, Dept of Pediatric Critical Care Medicine, Florida Hospital Tampa, Tampa, FL, USA Dept of Pediatrics and Critical Care Medicine, Johns Hopkins All Childrens Hospital, St Petersburg, FL, USA
| |
Collapse
|
45
|
Jentzer JC, Clements CM, Murphy JG, Scott Wright R. Recent developments in the management of patients resuscitated from cardiac arrest. J Crit Care 2017; 39:97-107. [PMID: 28242531 DOI: 10.1016/j.jcrc.2017.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 01/31/2023]
Abstract
Cardiac arrest is the leading cause of death in Europe and the United States. Many patients who are initially resuscitated die in the hospital, and hospital survivors often have substantial neurologic dysfunction. Most cardiac arrests are caused by coronary artery disease; patients with coronary artery disease likely benefit from early coronary angiography and intervention. After resuscitation, cardiac arrest patients remain critically ill and frequently suffer cardiogenic shock and multiorgan failure. Early cardiopulmonary stabilization is important to prevent worsening organ injury. To achieve best patient outcomes, comprehensive critical care management is needed, with primary goals of stabilizing hemodynamics and preventing progressive brain injury. Targeted temperature management is frequently recommended for comatose survivors of cardiac arrest to mitigate the neurologic injury that drives outcomes. Accurate neurologic assessment is central to managing care of cardiac arrest survivors and should combine physical examination with objective neurologic testing, with the caveat that delaying neurologic prognosis is essential to avoid premature withdrawal of supportive care. A combination of clinical findings and diagnostic results should be used to estimate the likelihood of functional recovery. This review focuses on recent advances in care and specific cardiac intensive care strategies that may improve morbidity and mortality for patients after cardiac arrest.
Collapse
Affiliation(s)
- Jacob C Jentzer
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN; Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN.
| | | | - Joseph G Murphy
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - R Scott Wright
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|
46
|
Czosnyka M, Pickard J, Steiner L. Principles of intracranial pressure monitoring and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2017; 140:67-89. [DOI: 10.1016/b978-0-444-63600-3.00005-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Djaiani GN. Aortic Arch Atheroma: Stroke Reduction in Cardiac Surgical Patients. Semin Cardiothorac Vasc Anesth 2016; 10:143-57. [PMID: 16959741 DOI: 10.1177/1089253206289006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiac surgery is increasingly performed on elderly patients with extensive coronary artery abnormalities who have impaired left ventricular function, decreased physiologic reserve, and multiple comorbid conditions. Considerable numbers of these patients develop perioperative neurologic complications ranging from subtle cognitive dysfunction to more evident postoperative confusion, delirium, and, less commonly, clinically apparent stroke. Magnetic resonance imaging studies have elucidated that a considerable number of patients have new ischemic brain infarcts, particularly after conventional coronary artery bypass graft surgery. Mechanisms of cerebral injury during and after cardiac surgery are discussed. Intraoperative transesophageal echocardiography and epiaortic scanning for detection of atheromatous disease of the proximal thoracic aorta is paramount in identifying patients at high risk from neurologic injury. It is important to recognize that our efforts to minimize neurologic injury should not be limited to the intraoperative period. Particular efforts should be directed to temperature management, glycemia control, and pharmacologic neuroprotection extending into the postoperative period. Preoperative magnetic resonance angiography may be of value for screening patients with significant atheroma of the proximal thoracic aorta. It is likely that for patients with no significant atheromatous disease, conventional coronary artery revascularization is the most effective long-term strategy, whereas patients with atheromatous thoracic aorta may be better managed with beating heart surgery, hybrid techniques, or medical therapy alone. Patient stratification based on the aortic atheromatic burden should be addressed in future trials designed to tailor treatment strategies to improve long-term outcomes of coronary heart disease and reduce the risks of perioperative neurologic injury.
Collapse
Affiliation(s)
- George N Djaiani
- Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Aujla GS, Nattanmai P, Premkumar K, Newey CR. Comparison of Two Surface Cooling Devices for Temperature Management in a Neurocritical Care Unit. Ther Hypothermia Temp Manag 2016; 7:147-151. [PMID: 27960070 DOI: 10.1089/ther.2016.0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Fever increases mortality and morbidity and length of stay in neurocritically ill patients. Various methods are used in the neuroscience intensive care unit (NSICU) to control fever. Two such methods involve the Arctic Sun hydrogel wraps and the Gaymar cooling wraps. The purpose of our study was to compare these two methods in neurocritical care patients who had temperature >37.5°C for more than three consecutive hours and that was refractory to standard treatments. Data of patients requiring cooling wraps for treatment of hyperthermia at an NSICU at an academic, tertiary referral center were retrospectively reviewed. The average temperature before cooling was 38.5°C ± 0.38°C and 38.4°C ± 0.99°C for the Gaymar and Arctic Sun groups, respectively (p = 0.89). The Gaymar group took on average 16 ± 21.9 hours to reach goal temperature, whereas the Arctic Sun group took 2.22 ± 1.39 hours (p = 0.08). The average time outside of the target temperature was 57.0 ± 58.0 hours in the Gaymar group compared with 13.7 ± 17.1 hours in the Arctic Sun group (p = 0.04). Average duration of using the cooling wraps was similar between the two groups; 81.8% of patients had rebound hyperthermia in the Gaymar group compared with 20% in the Arctic Sun group (p = 0.0089). The Arctic Sun group had a nonsignificant increased incidence of shivering compared with the Gaymar group (40% vs. 18.18%, p = 0.36). We found that Arctic Sun surface cooling device was more efficient in attaining the target temperature, had less incidence of rebound hyperthermia, and was able to maintain normothermia better than Gaymar cooling wraps. The incidence of shivering tended to be more common in the Arctic Sun group.
Collapse
|
49
|
Subnormothermic Perfusion in the Isolated Rat Liver Preserves the Antioxidant Glutathione and Enhances the Function of the Ubiquitin Proteasome System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9324692. [PMID: 27800122 PMCID: PMC5075307 DOI: 10.1155/2016/9324692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022]
Abstract
The reduction of oxidative stress is suggested to be one of the main mechanisms to explain the benefits of subnormothermic perfusion against ischemic liver damage. In this study we investigated the early cellular mechanisms induced in isolated rat livers after 15 min perfusion at temperatures ranging from normothermia (37°C) to subnormothermia (26°C and 22°C). Subnormothermic perfusion was found to maintain hepatic viability. Perfusion at 22°C raised reduced glutathione levels and the activity of glutathione reductase; however, lipid and protein oxidation still occurred as determined by malondialdehyde, 4-hydroxynonenal-protein adducts, and advanced oxidation protein products. In livers perfused at 22°C the lysosomal and ubiquitin proteasome system (UPS) were both activated. The 26S chymotrypsin-like (β5) proteasome activity was significantly increased in the 26°C (46%) and 22°C (42%) groups. The increased proteasome activity may be due to increased Rpt6 Ser120 phosphorylation, which is known to enhance 26S proteasome activity. Together, our results indicate that the early events produced by subnormothermic perfusion in the liver can induce oxidative stress concomitantly with antioxidant glutathione preservation and enhanced function of the lysosomal and UPS systems. Thus, a brief hypothermia could trigger antioxidant mechanisms and may be functioning as a preconditioning stimulus.
Collapse
|
50
|
Chavez LO, Leon M, Einav S, Varon J. Editor's Choice- Inside the cold heart: A review of therapeutic hypothermia cardioprotection. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2016; 6:130-141. [PMID: 26714973 DOI: 10.1177/2048872615624242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Targeted temperature management has been originally used to reduce neurological injury and improve outcome in patients after out-of-hospital cardiac arrest. Myocardial infarction remains a major cause of death in the world and several investigators are studying the effect of mild therapeutic hypothermia during an acute cardiac ischemic injury. A search on MEDLINE, Scopus and EMBASE databases was conducted to obtain data regarding the cardioprotective properties of therapeutic hypothermia. Preclinical studies have shown that therapeutic hypothermia provides a cardioprotective effect in animals. The proposed pathways for the cardioprotective effects of therapeutic hypothermia include stabilization of mitochondrial permeability, production of nitric oxide, equilibration of reactive oxygen species, and calcium channels homeostasis. Clinical trials in humans have yielded controversial results. Current trials are therefore seeking to combine therapeutic hypothermia with other treatment modalities in order to improve the outcomes of patients with acute ischemic injury. This article provides a review of the hypothermia effects on the cardiovascular system, from the basic science of physiological changes in the human body and molecular mechanisms of cardioprotection to the bench of clinical trials with therapeutic hypothermia in patients with acute ischemic injury.
Collapse
Affiliation(s)
- Luis O Chavez
- 1 University General Hospital, Houston, USA.,2 Universidad Autonoma de Baja California, Facultad de Medicina y Psicología, Tijuana, Mexico
| | - Monica Leon
- 1 University General Hospital, Houston, USA.,3 Universidad Popular Autonoma del Estado de Puebla, Facultad de Medicina Puebla, Mexico
| | - Sharon Einav
- 4 Shaare Zedek Medical Center and Hadassah-Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | |
Collapse
|