1
|
Pérez-Soto M, Ramos-Soriano J, Peñalver P, Belmonte-Reche E, O'Hagan MP, Cucchiarini A, Mergny JL, Galán MC, López López MC, Thomas MDC, Morales JC. DNA G-quadruplexes in the genome of Trypanosoma cruzi as potential therapeutic targets for Chagas disease: Dithienylethene ligands as effective antiparasitic agents. Eur J Med Chem 2024; 276:116641. [PMID: 38971047 DOI: 10.1016/j.ejmech.2024.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi and affects over 7 million people worldwide. The two actual treatments, Benznidazole (Bzn) and Nifurtimox, cause serious side effects due to their high toxicity leading to treatment abandonment by the patients. In this work, we propose DNA G-quadruplexes (G4) as potential therapeutic targets for this infectious disease. We have found 174 PQS per 100,000 nucleotides in the genome of T. cruzi and confirmed G4 formation of three frequent motifs. We synthesized a family of 14 quadruplex ligands based in the dithienylethene (DTE) scaffold and demonstrated their binding to these identified G4 sequences. Several DTE derivatives exhibited micromolar activity against epimastigotes of four different strains of T. cruzi, in the same concentration range as Bzn. Compounds L3 and L4 presented remarkable activity against trypomastigotes, the active form in blood, of T. cruzi SOL strain (IC50 = 1.5-3.3 μM, SI = 25-40.9), being around 40 times more active than Bzn and displaying much better selectivity indexes.
Collapse
Affiliation(s)
- Manuel Pérez-Soto
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | | | - Pablo Peñalver
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain
| | - Efres Belmonte-Reche
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada / Andalusian Regional Government, PTS Granada, Av. de La Ilustración, 114, 18016 Granada, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Hospital Virgen de Las Nieves, Granada, Spain
| | - Michael P O'Hagan
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Anne Cucchiarini
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean-Louis Mergny
- Laboratoire d'optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - M Carmen Galán
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.
| | - Manuel Carlos López López
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - María Del Carmen Thomas
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| | - Juan Carlos Morales
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida Del Conocimiento, 17, Armilla, 18016 Granada, Spain.
| |
Collapse
|
2
|
Olfert M, Knappe C, Sievers-Engler A, Masberg B, Lämmerhofer M. Determination of double bond positions in unsaturated fatty acids by pre-column derivatization with dimethyl and dipyridyl disulfide followed by LC-SWATH-MS analysis. Anal Bioanal Chem 2024:10.1007/s00216-024-05542-z. [PMID: 39367908 DOI: 10.1007/s00216-024-05542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Comprehensive in-depth structural characterization of free mono-unsaturated and polyunsaturated fatty acids often requires the determination of carbon-carbon double bond positions due to their impact on physiological properties and relevance in biological samples or during impurity profiling of pharmaceuticals. In this research, we report on the evaluation of disulfides as suitable derivatization reagents for the determination of carbon-carbon double bond positions of unsaturated free fatty acids by UHPLC-ESI-QTOF-MS/MS analysis and SWATH (sequential windowed acquisition of all theoretical mass spectra) acquisition. Iodine-catalyzed derivatization of C = C double bonds with dimethyl disulfide (DMDS) enabled detection of characteristic carboxy-terminal MS2 fragments for various fatty acids in ESI negative mode. The determination of double bond positions of fatty acids with up to three double bonds, the transfer of the method to plasma samples, and its limitations have been shown. To achieve charge-switching for positive ion mode MS-detection, derivatization with 2,2'-dipyridyldisulfide (DPDS) was investigated. It enabled detection of both corresponding characteristic omega-end- and carboxy-end-fragments for fatty acids with up to two double bonds in positive ion mode. It provides a straightforward strategy for designing MRM transitions for targeted LC-MS/MS assays. Both derivatization techniques represent a simple and inexpensive way for the determination of double bond positions in fatty acids with low number of double bonds. No adaptation of MS hardware is required and the specific isotopic pattern of resulting sulfur-containing products provides additional structural confirmation. This reaction scheme opens up the avenue of structural tuning of disulfide reagents beyond DMDS and DPDS using reagents like cystine and analogs to achieve enhanced performance and sensitivity.
Collapse
Affiliation(s)
- Matthias Olfert
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Benedikt Masberg
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Keyes P, Halimah N, Xiong B. Deciphering polymer degradation chemistry via integrating new database construction into suspect screening analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1184-1197. [PMID: 38804611 DOI: 10.1039/d4em00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Water-soluble synthetic polymers and their environmental degradation products are overlooked but important industrial pollutants in wastewater. However, the detection of degradation products is limited to bulk solution chemistry and molecular-level analysis remains unreachable. In this work, we assessed the feasibility of current suspect screening and nontarget workflow using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to elucidate molecular level information about polyacrylamide (PAM) and its degraded products by free radicals. Radical chain scission of PAM (10 kDa) using heat-activated persulfate was conducted to simulate hydraulic fracturing conditions in the deep subsurface. We found that the current workflows in the commercial software generated predicted formulae with low accuracy, due to limited capability of peak picking and formula prediction for high mass and charge features. By modeling literature-reported degradation pathways, we constructed a degradation product database of over 463 000 unique formulae, which improved the accuracy of the predicted formula. For the matched features, the ratio of aldehyde/ketone terminating molecule abundance was found to increase over 24 h degradation time, suggesting increasing content of aldehydes by radical-induced oxidative chain scission of PAM. This is contradictory to previously proposed ratios of carbon-centered radical position on polymer backbone initiated by hydroxyl radicals. Using in silico fragmentation of MS1 features, we identified 11 structures with confidence levels 2b and 3 using their MS2 information. This is the first attempt to resolve complex polymer degradation chemistry using HRMS that can advance our ability to detect water-soluble polymer pollutants and their transformation products in environmental samples.
Collapse
Affiliation(s)
- Phoebe Keyes
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| | - Noor Halimah
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| | - Boya Xiong
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| |
Collapse
|
4
|
Yuan Y, Ren M, Zhu C, Lou Y, Liang Q, Xiong Z. Chemoselectivity Strategy Based on B-Label Integrated with Tailored COF for Targeted Metabolomic Analysis of Short-Chain Fatty Acids by UHPLC-MS/MS. Anal Chem 2024; 96:6575-6583. [PMID: 38637908 DOI: 10.1021/acs.analchem.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chemoselective extraction strategy is an emerging and powerful means for targeted metabolomics analysis, which allows for the selective identification of biomarkers. Short-chain fatty acids (SCFAs) as functional metabolites for many diseases pose challenges in qualitative and quantitative analyses due to their high polarity and uneven abundance. In our study, we proposed the B-labeled method for the derivatization of SCFAs using easily available 3-aminobenzeneboronic acid as the derivatization reagent, which enables the introduction of recognition unit (boric acid groups). To analyze the B-labeled targeted metabolites accurately, cis-diol-based covalent organic framework (COF) was designed to specifically capture and release target compounds by pH-response borate affinity principle. The COF synthesized by the one-step Schiff base reaction possessed a large surface area (215.77 m2/g), excellent adsorption capacity (774.9 μmol/g), good selectivity, and strong regeneration ability (20 times). Combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, our results indicated that the detection sensitivities of SCFAs increased by 1.2-2500 folds compared with unlabeled method, and the retention time and isomer separation were improved. Using this strategy, we determined twenty-six SCFAs in the serum and urine of rats in four groups about osteoporosis and identified important biomarkers related to the tricarboxylic acid cycle and fatty acid metabolism pathways. In summary, UHPLC-MS/MS based on B-labeled derivatization with tailored COF strategy shows its high selectivity, excellent sensitivity, and good chromatographic behavior and has remarkable application prospect in targeted metabolomics study of biospecimens.
Collapse
Affiliation(s)
- Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Mengxin Ren
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Chengze Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Qinghua Liang
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning 117004, PR China
| |
Collapse
|
5
|
Chadha RS, Guerrero JA, Wei L, Sanchez LM. Seeing is Believing: Developing Multimodal Metabolic Insights at the Molecular Level. ACS CENTRAL SCIENCE 2024; 10:758-774. [PMID: 38680555 PMCID: PMC11046475 DOI: 10.1021/acscentsci.3c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
This outlook explores how two different molecular imaging approaches might be combined to gain insight into dynamic, subcellular metabolic processes. Specifically, we discuss how matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and stimulated Raman scattering (SRS) microscopy, which have significantly pushed the boundaries of imaging metabolic and metabolomic analyses in their own right, could be combined to create comprehensive molecular images. We first briefly summarize the recent advances for each technique. We then explore how one might overcome the inherent limitations of each individual method, by envisioning orthogonal and interchangeable workflows. Additionally, we delve into the potential benefits of adopting a complementary approach that combines both MSI and SRS spectro-microscopy for informing on specific chemical structures through functional-group-specific targets. Ultimately, by integrating the strengths of both imaging modalities, researchers can achieve a more comprehensive understanding of biological and chemical systems, enabling precise metabolic investigations. This synergistic approach holds substantial promise to expand our toolkit for studying metabolites in complex environments.
Collapse
Affiliation(s)
- Rahuljeet S Chadha
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 United States
| | - Jason A Guerrero
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064 United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 United States
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064 United States
| |
Collapse
|
6
|
Pöstges T, Galster F, Kampschulze J, Hanekamp W, Lehr M. ω-(5-Phenyl-2H-tetrazol-2-yl)alkyl-substituted glycine amides and related compounds as inhibitors of the amine oxidase vascular adhesion protein-1 (VAP-1). Bioorg Med Chem 2024; 98:117558. [PMID: 38142562 DOI: 10.1016/j.bmc.2023.117558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Vascular adhesion protein-1 (VAP-1), also known as plasma amine oxidase or semicarbazide-sensitive amine oxidase, is an enzyme that degrades primary amines to aldehydes with the formation of hydrogen peroxide and ammonia. Among others, it plays a role in inflammatory processes as it can mediate the migration of leukocytes from the blood to the inflamed tissue. We prepared a series of ω-(5-phenyl-2H-tetrazol-2-yl)alkyl-substituted glycine amides and related compounds and tested them for inhibition of purified bovine plasma VAP-1. Compounds with submicromolar activity were obtained. Studies on the mechanism of action revealed that the glycine amides are substrate inhibitors, i.e., they are also converted to an aldehyde derivative. However, the reaction proceeds much more slowly than that of the substrate used in the assay, whose conversion is thus blocked. Examination of the selectivity of the synthesized glycine amides with respect to other amine oxidases showed that they inhibited diamine oxidase, which is structurally related to VAP-1, but only to a much lesser extent. In contrast, the activity of monoamine oxidase A and B was not affected. Selected compounds also inhibited VAP-1 in human plasma. The IC50 values measured were higher than those determined with the bovine enzyme. However, the structure-activity relationships obtained with the glycine amides were similar for both enzymes.
Collapse
Affiliation(s)
- Timo Pöstges
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, D-48149 Münster, Germany
| | - Florian Galster
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, D-48149 Münster, Germany
| | - Jan Kampschulze
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, D-48149 Münster, Germany
| | - Walburga Hanekamp
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, D-48149 Münster, Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, D-48149 Münster, Germany.
| |
Collapse
|
7
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
8
|
Zemaitis KJ, Lin VS, Ahkami AH, Winkler TE, Anderton CR, Veličković D. Expanded Coverage of Phytocompounds by Mass Spectrometry Imaging Using On-Tissue Chemical Derivatization by 4-APEBA. Anal Chem 2023; 95:12701-12709. [PMID: 37594382 DOI: 10.1021/acs.analchem.3c01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Probing the entirety of any species metabolome is an analytical grand challenge, especially on a cellular scale. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a common spatial metabolomics assay, but this technique has limited molecular coverage for several reasons. To expand the application space of spatial metabolomics, we developed an on-tissue chemical derivatization (OTCD) workflow using 4-APEBA for the confident identification of several dozen elusive phytocompounds. Overall, this new OTCD method enabled the annotation of roughly 280 metabolites, with only a 10% overlap in metabolic coverage when compared to analog negative ion mode MALDI-MSI on serial sections. We demonstrate that 4-APEBA outperforms other derivatization agents by providing: (1) broad specificity toward carbonyls, (2) low background, and (3) introduction of bromine isotopes. Notably, the latter two attributes also facilitate more confidence in our bioinformatics for data processing. The workflow detailed here trailblazes a path toward spatial hormonomics within plant samples, enhancing the detection of carboxylates, aldehydes, and plausibly other carbonyls. As such, several phytohormones, which have various roles within stress responses and cellular communication, can now be spatially profiled, as demonstrated in poplar root and soybean root nodule.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vivian S Lin
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Amir H Ahkami
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tanya E Winkler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher R Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Dušan Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
9
|
Huang L, Teng H, Wang M, Fang J, Yuan Y, Ma M, Luo Z, Chen B, Guo B. Isotope-coded derivatization with designed Girard-type reagent as charged isobaric mass tags for non-targeted profiling and discovery of natural aldehydes by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1702:464084. [PMID: 37236140 DOI: 10.1016/j.chroma.2023.464084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Aldehyde-containing metabolites are reactive electrophiles that have attracted extensive attention due to their widespread occurrence in organisms and natural foods. Herein we described a newly-designed Girard's reagent, 1-(4-hydrazinyl-4-oxobutyl)pyridin-1-ium bromide (HBP), as charged tandem mass (MS/MS) tags to facilitate selective capture, sensitive detection and semi-targeted discovery of aldehyde metabolites via hydrazone formation. After HBP labeling, the detection signals of the test aldehydes were increased by 21-2856 times, with the limits of detection were 2.5-7 nM. Upon isotope-coded derivatization with a pair of labeling reagents, HBP-d0 and its deuterium-labeled counterpart HBP-d5, the aldehyde analytes were converted to hydrazone derivatives, which generated characteristic neutral fragments of 79 Da and 84 Da, respectively. The isobaric HBP-d0/HBP-d5 labeling based LC-MS/MS method was validated by relative quantification of human urinary aldehydes (slope=0.999, R2 > 0.99, RSDs ≤ 8.5%) and discrimination analysis between diabetic and control samples. The unique isotopic doubles (Δm/z = 5 Da) by dual neutral loss scanning (dNLS) provided a generic reactivity-based screening strategy that allowed non-targeted profiling and identification of endogenous aldehydes even amidst noisy data. The LC-dNLS-MS/MS screening of cinnamon extracts led to finding 61 possible natural aldehydes and guided discovery of 10 previously undetected congeners in this medicinal plant.
Collapse
Affiliation(s)
- Libin Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Hao Teng
- National Chiral Pharmaceuticals Engineering and Technology Research Center, Lunan Pharmaceutical Group Co., Ltd., Linyi 273400, China
| | - Meiling Wang
- China Certification & Inspection Group Hunan Co., Ltd., Changsha 410021, China
| | - Jing Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Yu Yuan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Ziwei Luo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Bin Guo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
10
|
Gao S, Zhou X, Yue M, Zhu S, Liu Q, Zhao XE. Advances and perspectives in chemical isotope labeling-based mass spectrometry methods for metabolome and exposome analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
11
|
Pöstges T, Lehr M. Metabolism of sumatriptan revisited. Pharmacol Res Perspect 2023; 11:e01051. [PMID: 36655303 PMCID: PMC9849828 DOI: 10.1002/prp2.1051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023] Open
Abstract
Scientific literature describes that sumatriptan is metabolized by oxidative deamination of its dimethylaminoethyl residue by monoamine oxidase A (MAO A) and not by cytochrome P450 (CYP)-mediated demethylation, as is usual for such structural elements. Using recombinant human enzymes and HPLC-MS analysis, we found that CYP enzymes may also be involved in the metabolism of sumatriptan. The CYP1A2, CYP2C19, and CYP2D6 isoforms converted this drug into N-desmethyl sumatriptan, which was further demethylated to N,N-didesmethyl sumatriptan by CYP1A2 and CYP2D6. Otherwise, sumatriptan and its two desmethyl metabolites were metabolized by recombinant MAO A but not by MAO B to the corresponding acetaldehyde, with sumatriptan being only a poor substrate for MAO A compared to the N-demethylated and the N,N-didemethylated derivatives.
Collapse
Affiliation(s)
- Timo Pöstges
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
12
|
Mungalachetty P, Kulkarni P, Wang P, Giese R. A high-specificity aniline-based mass tag for aldehyde detection. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9322. [PMID: 35506207 PMCID: PMC9625853 DOI: 10.1002/rcm.9322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE We studied an aldehyde-labeling reagent, N-{2-[(4-aminophenoxy)methyl]benzyl}-N,N-diethylethanaminium bromide (CAX-A), containing an aniline functional group for the detection of aldehydes with high specificity. METHODS Six standard aldehydes were labeled by CAX-A and analyzed using LC-ESI-Orbitrap-MS. The aldehydes (each 40 nmol) were derivatized with CAX-A in the presence of sodium cyanoborohydride at room temperature overnight. The labeling reaction was applied to two urine samples for the detection of putative aldehydes. RESULTS All six standard CAX-aldehyde derivatives were detected as precursor ions by dilution to 830 fmol/injection (signal-to-noise [S/N] ratio 587-1573). A total of 2184 MS1 features were detected overall in urine and blanks, of which 14 were putative aldehydes found only in urine. CONCLUSIONS CAX-A can provide three levels of specificity for aldehyde detection. First is the known labeling specificity of the aniline functional group for aldehydes, which we confirmed here by observing a significant peak only from the aldehyde (S/N = 3388) when a mixture of an aldehyde, a ketone (no peak), and a quinone (S/N = 2.3) was tested. Second is the ease of formation of an analyte-characteristic first product ion (via anchimeric-assisted loss of triethylamine as a neutral) in MS2 from a CAX-labeled analyte. Third is the formation of a characteristic second product ion via loss of CO in MS3. CAX-A enables the specific, convenient detection of putative aldehydes in urine.
Collapse
Affiliation(s)
- Prisca Mungalachetty
- Bouvé College of Health Sciences, Department of Pharmaceutical Science, Northeastern University, Boston, MA, USA
| | - Pushkar Kulkarni
- Bouvé College of Health Sciences, Department of Pharmaceutical Science, Northeastern University, Boston, MA, USA
| | - Poguang Wang
- Bouvé College of Health Sciences, Department of Pharmaceutical Science, Northeastern University, Boston, MA, USA
| | - Roger Giese
- Bouvé College of Health Sciences, Department of Pharmaceutical Science, Northeastern University, Boston, MA, USA
| |
Collapse
|
13
|
Wang SY, Liu H, Zhu JH, Zhou SS, Xu JD, Zhou J, Mao Q, Kong M, Li SL, Zhu H. 2,4-dinitrophenylhydrazine capturing combined with mass defect filtering strategy to identify aliphatic aldehydes in biological samples. J Chromatogr A 2022; 1679:463405. [DOI: 10.1016/j.chroma.2022.463405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
|
14
|
Leemans M, Bauër P, Cuzuel V, Audureau E, Fromantin I. Volatile Organic Compounds Analysis as a Potential Novel Screening Tool for Breast Cancer: A Systematic Review. Biomark Insights 2022; 17:11772719221100709. [PMID: 35645556 PMCID: PMC9134002 DOI: 10.1177/11772719221100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction An early diagnosis is crucial in reducing mortality among people who have breast cancer (BC). There is a shortfall of characteristic early clinical symptoms in BC patients, highlighting the importance of investigating new methods for its early detection. A promising novel approach is the analysis of volatile organic compounds (VOCs) produced and emitted through the metabolism of cancer cells. Methods The purpose of this systematic review is to outline the published research regarding BC-associated VOCs. For this, headspace analysis of VOCs was explored in patient-derived body fluids, animal model-derived fluids, and BC cell lines to identify BC-specific VOCs. A systematic search in PubMed and Web of Science databases was conducted according to the PRISMA guidelines. Results Thirty-two studies met the criteria for inclusion in this review. Results highlight that VOC analysis can be promising as a potential novel screening tool. However, results of in vivo, in vitro and case-control studies have delivered inconsistent results leading to a lack of inter-matrix consensus between different VOC sampling methods. Discussion Discrepant VOC results among BC studies have been obtained, highly due to methodological discrepancies. Therefore, methodological issues leading to disparities have been reviewed and recommendations have been made on the standardisation of VOC collection and analysis methods for BC screening, thereby improving future VOC clinical validation studies.
Collapse
Affiliation(s)
| | - Pierre Bauër
- Institut Curie, Ensemble hospitalier, Unité Plaies et Cicatrisation, Paris, France
| | - Vincent Cuzuel
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Caserne Lange, Cergy Pontoise Cedex, France
| | - Etienne Audureau
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Isabelle Fromantin
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Institut Curie, Ensemble hospitalier, Unité Plaies et Cicatrisation, Paris, France
| |
Collapse
|
15
|
Dogra R, Kumar M, Kumar A, Roverso M, Bogialli S, Pastore P, Mandal UK. Derivatization, an Applicable Asset for Conventional HPLC Systems without MS Detection in Food and Miscellaneous Analysis. Crit Rev Anal Chem 2022; 53:1807-1827. [PMID: 35201944 DOI: 10.1080/10408347.2022.2042671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the most valuable practices for analyzing not-so-analytical-friendly analytes in complex, heterogenous matrices is derivatization. Availability of numerous derivatizing reagents (DRs) makes the modification of analyte more exploitable in terms of an analytical perspective. A wide array of derivatization techniques like pre or post-column, in-situ, enzymatic, ultrasound-assisted, microwave-assisted, photochemical derivatization has added much-needed methodological strength in analyzing intricate analytical matrices (food, water, and soil). In recent years, analytical chemistry has achieved greater heights through the development of new sensitive methods with simple conventional instruments like High-Performance Liquid Chromatography (HPLC) devoid of Mass detectors. The prompt availability of these straightforward instruments also makes it a favorable option for routine analysis in food, environmental, bioanalytical chemistry. Analyzing food, environmental or bioanalytical specimen has some of the most problematic aspects, like the low concentration of the analytes accompanied by not too suitable analytical properties. Even though conventional HPLC lacks the required sensitivity but merger with derivatization can lead to a remarkable increase in sensitivity. In recent years there has been a lot of application of diverse derivatizations to increase the sensitivity and selectivity of the analyte for available instruments, resulting in notable findings. Therefore, this review describes the application of derivatization principles in the analysis of analytes in food and additional matrices using conventional HPLC instruments such as HPLC-UV, HPLC-DAD, and HPLC-FD. In this article, we will briefly review the different modes and multiple types of derivatizing reagents with their mechanisms and importance for encouraging the use of established HPLC instruments.
Collapse
Affiliation(s)
- Raghav Dogra
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Mohit Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Arvind Kumar
- Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Uttam Kumar Mandal
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| |
Collapse
|
16
|
Progress and Challenges in Quantifying Carbonyl-Metabolomic Phenomes with LC-MS/MS. Molecules 2021; 26:molecules26206147. [PMID: 34684729 PMCID: PMC8541004 DOI: 10.3390/molecules26206147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Carbonyl-containing metabolites widely exist in biological samples and have important physiological functions. Thus, accurate and sensitive quantitative analysis of carbonyl-containing metabolites is crucial to provide insight into metabolic pathways as well as disease mechanisms. Although reversed phase liquid chromatography electrospray ionization mass spectrometry (RPLC-ESI-MS) is widely used due to the powerful separation capability of RPLC and high specificity and sensitivity of MS, but it is often challenging to directly analyze carbonyl-containing metabolites using RPLC-ESI-MS due to the poor ionization efficiency of neutral carbonyl groups in ESI. Modification of carbonyl-containing metabolites by a chemical derivatization strategy can overcome the obstacle of sensitivity; however, it is insufficient to achieve accurate quantification due to instrument drift and matrix effects. The emergence of stable isotope-coded derivatization (ICD) provides a good solution to the problems encountered above. Thus, LC-MS methods that utilize ICD have been applied in metabolomics including quantitative targeted analysis and untargeted profiling analysis. In addition, ICD makes multiplex or multichannel submetabolome analysis possible, which not only reduces instrument running time but also avoids the variation of MS response. In this review, representative derivatization reagents and typical applications in absolute quantification and submetabolome profiling are discussed to highlight the superiority of the ICD strategy for detection of carbonyl-containing metabolites.
Collapse
|
17
|
Towards Aldehydomics: Untargeted Trapping and Analysis of Reactive Diet-Related Carbonyl Compounds Formed in the Intestinal Lumen. Antioxidants (Basel) 2021; 10:antiox10081261. [PMID: 34439509 PMCID: PMC8389236 DOI: 10.3390/antiox10081261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Lipid peroxidation and subsequent formation of toxic aldehydes, such as 4-hydroxynonenal, is known to be involved in numerous pathophysiological processes, possibly including the development of colorectal cancer. This work aimed at the development of an untargeted approach using high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) for tracking aldehydes in both suspect screening and untargeted methods in fecal water, representing the aqueous environment of colon epithelial cells. This original approach is based on the introduction of a characteristic isotopic labeling by selective derivatization of the carbonyl function using a brominated reagent. Following a metabolomics workflow, the developed methodology was applied to the characterization of aldehyde compounds formed by lipid peroxidation in rats fed two different diets differentially prone to lipoperoxidation. Derivatized aldehydes were first selectively detected on the basis of their isotopic pattern, then annotated and finally identified by tandem mass spectrometry. This original approach allowed us to evidence the occurrence of expected aldehydes according to their fatty acid precursors in the diet, and to characterize other aldehydes differentiating the different diets.
Collapse
|
18
|
Lee-Okada HC, Hama K, Yokoyama K, Yokomizo T. Development of a liquid chromatography-electrospray ionization tandem mass spectrometric method for the simultaneous analysis of free fatty acids. J Biochem 2021; 170:389-397. [PMID: 34009367 DOI: 10.1093/jb/mvab054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Fatty acids (FAs) play important roles in several physiological and pathophysiological processes, functioning as both non-esterified free FAs (FFAs) and components of other lipid classes. Although many lipid classes are readily measured using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), the measurement of FFAs by this method is not straightforward because of inconsistent fragmentation behaviors. In this study, we describe a strategy to measure FFAs using conventional reverse-phase LC-ESI-MS/MS, without derivatization. The strategy combines three key methods: 1) an isocratic LC separation with a high organic solvent ratio, 2) post-column base addition, and 3) pseudo-multiple reaction monitoring. The method facilitates the measurement of ultra-long-chain FAs, the accumulation of which is a common biochemical abnormality in peroxisomal disorders. This study delivers a broad strategy that measures a wide spectrum of FFA species in complex biological samples.
Collapse
Affiliation(s)
- Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kotaro Hama
- Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Kazuaki Yokoyama
- Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
19
|
Hughes CC. Chemical labeling strategies for small molecule natural product detection and isolation. Nat Prod Rep 2021; 38:1684-1705. [PMID: 33629087 DOI: 10.1039/d0np00034e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to 2020.It is widely accepted that small molecule natural products (NPs) evolved to carry out a particular ecological function and that these finely-tuned molecules can sometimes be appropriated for the treatment of disease in humans. Unfortunately, for the natural products chemist, NPs did not evolve to possess favorable physicochemical properties needed for HPLC-MS analysis. The process known as derivatization, whereby an NP in a complex mixture is decorated with a nonnatural moiety using a derivatizing agent (DA), arose from this sad state of affairs. Here, NPs are freed from the limitations of natural functionality and endowed, usually with some degree of chemoselectivity, with additional structural features that make HPLC-MS analysis more informative. DAs that selectively label amines, carboxylic acids, alcohols, phenols, thiols, ketones, and aldehydes, terminal alkynes, electrophiles, conjugated alkenes, and isocyanides have been developed and will be discussed here in detail. Although usually employed for targeted metabolomics, chemical labeling strategies have been effectively applied to uncharacterized NP extracts and may play an increasing role in the detection and isolation of certain classes of NPs in the future.
Collapse
Affiliation(s)
- Chambers C Hughes
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany 72076.
| |
Collapse
|
20
|
Zaikin VG, Borisov RS. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit Rev Anal Chem 2021; 52:1287-1342. [PMID: 33557614 DOI: 10.1080/10408347.2021.1873100] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inclusion of preliminary chemical labeling (derivatization) in the analysis process by such powerful and widespread methods as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a popular and widely used methodological approach. This is due to the need to remove some fundamental limitations inherent in these powerful analytic methods. Although a number of special reviews has been published discussing the utilization of derivatization approaches, the purpose of the present critical review is to comprehensively summarize, characterize and evaluate most of the previously developed and practically applied, as well as recently proposed representative derivatization reagents for ESI-MS and MALDI-MS platforms in their mostly sensitive positive ion mode and frequently hyphenated with separation techniques. The review is focused on the use of preliminary chemical labeling to facilitate the detection, identification, structure elucidation, quantification, profiling or MS imaging of compounds within complex matrices. Two main derivatization approaches, namely the introduction of permanent charge-fixed or highly proton affinitive residues into analytes are critically evaluated. In situ charge-generation, charge-switch and charge-transfer derivatizations are considered separately. The potential of using reactive matrices in MALDI-MS and chemical labeling in MS-based omics sciences is given.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
21
|
Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. Recent progress in the LC-MS/MS analysis of oxidative stress biomarkers. Electrophoresis 2020; 42:402-428. [PMID: 33280143 DOI: 10.1002/elps.202000208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC-MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC-MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven - Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD group, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
David V, Moldoveanu SC, Galaon T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis. Biomed Chromatogr 2020; 35:e5008. [PMID: 33084080 DOI: 10.1002/bmc.5008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Derivatization, or chemical structure modification, is often used in bioanalysis performed by liquid chromatography technique in order to enhance detectability or to improve the chromatographic performance for the target analytes. The derivatization process is discussed according to the analytical procedure used to achieve the reaction between the reagent and the target compounds (containing hydroxyl, thiol, amino, carbonyl and carboxyl as the main functional groups involved in derivatization). Important procedures for derivatization used in bioanalysis are in situ or based on extraction processes (liquid-liquid, solid-phase and related techniques) applied to the biomatrix. In the review, chiral, isotope-labeling, hydrophobicity-tailored and post-column derivatizations are also included, based on representative publications in the literature during the last two decades. Examples of derivatization reagents and brief reaction conditions are included, together with some bioanalytical applications and performances (chromatographic conditions, detection limit, stability and sample biomatrix).
Collapse
Affiliation(s)
- Victor David
- Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
| | | | - Toma Galaon
- National Research and Development Institute for Industrial Ecology - ECOIND, Bucharest-6, Romania
| |
Collapse
|
23
|
Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Derivatization strategy combined with parallel reaction monitoring for the characterization of short-chain fatty acids and their hydroxylated derivatives in mouse. Anal Chim Acta 2019; 1100:66-74. [PMID: 31987154 DOI: 10.1016/j.aca.2019.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Short-chain fatty acids (SCFAs) and hydroxylated short-chain fatty acids (OH-SCFAs) are crucial intermediates related to a variety of diseases, such as bowel disease, cardiovascular disease, renal disease and cancer. A global profiling method to screen SCFAs and OH-SCFAs was developed by tagging these analytes with d0/d6-N, N-dimethyl-6,7-dihydro-5H-pyrrolo [3,4-d] pyrimidine-2-amine (d0/d6-DHPP) and using ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-MS/MS) in parallel reaction monitoring (PRM) mode. The derivatization procedure was simple and rapid. The targeted compounds could be derivatized within 3 min under mild condition and analyzed without the need of further purification. The derivatization significantly improved the chromatographic performance and mass spectrometry response. The d6-DHPP tagged standards were used as internal standards, which remarkably reduced the matrix effects. The use of high resolution PRM mode made it possible to locate unknown SCFA and OH-SCFA species, and greatly reduced the false positive identification results. The developed method was successfully applied to the analysis of mouse fecal, serum, and liver tissue samples harvested from the breast cancer nude mice that had been exposed with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Results showed that 40 analytes (10 SCFAs and 30 OH-SCFAs) were characterized. Semi-quantitative analysis indicated that the exposure of BDE-47 to the mice altered the SCFA and OH-SCFA metabolism, especially in the high dose group. This study provides a high-throughput method to characterize SCFAs and OH-SCFAs in mouse samples.
Collapse
|
25
|
Kishikawa N, El-Maghrabey MH, Kuroda N. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples. J Pharm Biomed Anal 2019; 175:112782. [DOI: 10.1016/j.jpba.2019.112782] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
|
26
|
Donegatti TA, Lobato A, Moreira Gonçalves L, Alves Pereira E. Cyclohexane‐1,3‐dione as a derivatizing agent for the analysis of aldehydes by micelar electrokinetic chromatography with diode array detection. Electrophoresis 2019; 40:2929-2935. [DOI: 10.1002/elps.201900171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Tiago Augusto Donegatti
- Departamento de FísicaQuímica e MatemáticaUniversidade Federal de São Carlos ‐ UFSCar Sorocaba Brazil
| | - Alnilan Lobato
- Departamento de Química FundamentalInstituto de QuímicaUniversidade de São Paulo (USP) São Paulo Brazil
| | - Luís Moreira Gonçalves
- Departamento de Química FundamentalInstituto de QuímicaUniversidade de São Paulo (USP) São Paulo Brazil
| | - Elisabete Alves Pereira
- Departamento de FísicaQuímica e MatemáticaUniversidade Federal de São Carlos ‐ UFSCar Sorocaba Brazil
| |
Collapse
|
27
|
Conway LP, Garg N, Lin W, Vujasinovic M, Löhr JM, Globisch D. Chemoselective probe for detailed analysis of ketones and aldehydes produced by gut microbiota in human samples. Chem Commun (Camb) 2019; 55:9080-9083. [PMID: 31287110 DOI: 10.1039/c9cc04605d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New strategies are required for the discovery of unknown bioactive molecules produced by gut microbiota in the human host. Herein, we utilize a chemoselective probe immobilized to magnetic beads for analysis of carbonyls in human fecal samples. We identified 112 metabolites due to femtomole analysis and an increased mass spectrometric sensitivity by up to six orders of magnitude.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| | - Neeraj Garg
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| | - Weifeng Lin
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| | - Miroslav Vujasinovic
- Department for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - J-Matthias Löhr
- Department for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden and Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Daniel Globisch
- Department of Medicinal Chemistry, Science for Life Laboratory, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| |
Collapse
|
28
|
Bioanalytical and Mass Spectrometric Methods for Aldehyde Profiling in Biological Fluids. TOXICS 2019; 7:toxics7020032. [PMID: 31167424 PMCID: PMC6630274 DOI: 10.3390/toxics7020032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Human exposure to aldehydes is implicated in multiple diseases including diabetes, cardiovascular diseases, neurodegenerative disorders (i.e., Alzheimer’s and Parkinson’s Diseases), and cancer. Because these compounds are strong electrophiles, they can react with nucleophilic sites in DNA and proteins to form reversible and irreversible modifications. These modifications, if not eliminated or repaired, can lead to alteration in cellular homeostasis, cell death and ultimately contribute to disease pathogenesis. This review provides an overview of the current knowledge of the methods and applications of aldehyde exposure measurements, with a particular focus on bioanalytical and mass spectrometric techniques, including recent advances in mass spectrometry (MS)-based profiling methods for identifying potential biomarkers of aldehyde exposure. We discuss the various derivatization reagents used to capture small polar aldehydes and methods to quantify these compounds in biological matrices. In addition, we present emerging mass spectrometry-based methods, which use high-resolution accurate mass (HR/AM) analysis for characterizing carbonyl compounds and their potential applications in molecular epidemiology studies. With the availability of diverse bioanalytical methods presented here including simple and rapid techniques allowing remote monitoring of aldehydes, real-time imaging of aldehydic load in cells, advances in MS instrumentation, high performance chromatographic separation, and improved bioinformatics tools, the data acquired enable increased sensitivity for identifying specific aldehydes and new biomarkers of aldehyde exposure. Finally, the combination of these techniques with exciting new methods for single cell analysis provides the potential for detection and profiling of aldehydes at a cellular level, opening up the opportunity to minutely dissect their roles and biological consequences in cellular metabolism and diseases pathogenesis.
Collapse
|
29
|
Huang T, Armbruster MR, Coulton JB, Edwards JL. Chemical Tagging in Mass Spectrometry for Systems Biology. Anal Chem 2018; 91:109-125. [DOI: 10.1021/acs.analchem.8b04951] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Michael R. Armbruster
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - John B. Coulton
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - James L. Edwards
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
30
|
Huang T, Toro M, Lee R, Hui DS, Edwards JL. Multi-functional derivatization of amine, hydroxyl, and carboxylate groups for metabolomic investigations of human tissue by electrospray ionization mass spectrometry. Analyst 2018; 143:3408-3414. [PMID: 29915825 DOI: 10.1039/c8an00490k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolomics, the study of small molecules involved in cellular processes, offers the potential to reveal insights into the pathophysiology of disease states. Analysis of metabolites by electrospray mass spectrometry is complicated by their structural diversity. Amine, hydroxyl, and carboxylate groups all affect signal responses differently based on their polarity and proton affinity. This heterogeneity of signal response, sensitivity, and resistance to competing ionization complicates metabolite quantitation. Such limitations can be mitigated by a dual derivatization scheme. In this work, primary amine and hydroxyl groups are tagged with a linear acyl chloride head containing a tertiary amine tail, followed by carboxylate groups coupled to a linear amine tag with a tertiary amine tail. This tagging scheme increases analyte proton affinity and hydrophobicity. In the case of carboxylate groups, the inherent anionic charge is inverted to a cationic charge. This dual tagging is completed within 2.5 hours, diminishes adduct formation, and improves sensitivity by >75-fold. The average limit of detection for 23 metabolites was 38 nM and the R2 was 0.97. This process was used to investigate metabolite changes from human tissue. Examination of diabetic and non-diabetic human tissue showed marked changes in both energy metabolites and amino acids. Further examination of the tissue showed that HbA1C value is inversely correlated with fumarate levels. This technique potentially allows for the analysis of virtually all metabolites in a single analytical run. Thus, it may lead to a more complete picture of metabolic dysfunction in human disease.
Collapse
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St louis MO, USA.
| | - Maria Toro
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St louis MO, USA. and Department of Chemistry, Duke University, Durham, NC, USA
| | - Richard Lee
- Cardiovascular Comprehensive Care Center, Saint Louis University, 3635 Vista Ave, St louis MO, USA
| | - Dawn S Hui
- Cardiovascular Comprehensive Care Center, Saint Louis University, 3635 Vista Ave, St louis MO, USA
| | - James L Edwards
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave, St louis MO, USA.
| |
Collapse
|
31
|
4-hydrazinobenzoic acid as a derivatizing agent for aldehyde analysis by HPLC-UV and CE-DAD. Talanta 2018; 187:113-119. [PMID: 29853022 DOI: 10.1016/j.talanta.2018.04.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022]
Abstract
Aldehydes are relevant analytes in a wide range of samples, in particular, food and beverages but also body fluids. Hydrazines can undergo nucleophilic addition with aldehydes or ketones giving origin to hydrazones (a group of stable imines) that can be suitably used in the identification of aldehydes. Herein, 4-hydrazinobenzoic acid (HBA) was, for the first time, used as the derivatizing agent in analytical methodologies using liquid chromatography aiming the determination of low-molecular aldehydes. The derivatization reaction was simultaneously performed along with the extraction process, using gas-diffusion microextraction (GDME), which resulted in a clean extract containing the HBA-aldehyde derivates. The corresponding formed imines were determined by both high-performance liquid chromatography (LC) with UV spectrophotometric detection (HPLC-UV) and capillary electrophoresis with diode array detection (CE-DAD). HBA showed to be a rather advantageous derivatization reagent due to its stability, relatively high solubility in water and other solvents, high selectivity and sensibility, reduced impurities, simple preparation steps and applicability to different separation and/or different detection techniques. Limits of detections (LODs) of the optimized methodologies (in terms of time and pH among other experimental variables) were all below 0.5 mg L-1, using both instrumental techniques. Furthermore, for the first time, the HBA-aldehyde derivatives were analyzed by LC with mass spectrometry (LC-MS), demonstrating the possibility of identification by MS of each compound. The developed methodologies were also successfully applied in the analysis of formaldehyde and acetaldehyde in several alcoholic beverages. This was also the first time GDME was combined with CE, showing that it can be a valuable sample preparation tool for electrophoresis, in particular by eliminating the interference of ions and inorganic constituents present in the samples.
Collapse
|
32
|
Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1083:137-145. [DOI: 10.1016/j.jchromb.2018.02.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 01/04/2023]
|
33
|
Khamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. MASS SPECTROMETRY REVIEWS 2017; 36:115-134. [PMID: 25881008 DOI: 10.1002/mas.21455] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/05/2014] [Accepted: 10/05/2014] [Indexed: 05/25/2023]
Abstract
Urine metabolomics has recently emerged as a prominent field for the discovery of non-invasive biomarkers that can detect subtle metabolic discrepancies in response to a specific disease or therapeutic intervention. Urine, compared to other biofluids, is characterized by its ease of collection, richness in metabolites and its ability to reflect imbalances of all biochemical pathways within the body. Following urine collection for metabolomic analysis, samples must be immediately frozen to quench any biogenic and/or non-biogenic chemical reactions. According to the aim of the experiment; sample preparation can vary from simple procedures such as filtration to more specific extraction protocols such as liquid-liquid extraction. Due to the lack of comprehensive studies on urine metabolome stability, higher storage temperatures (i.e. 4°C) and repetitive freeze-thaw cycles should be avoided. To date, among all analytical techniques, mass spectrometry (MS) provides the best sensitivity, selectivity and identification capabilities to analyze the majority of the metabolite composition in the urine. Combined with the qualitative and quantitative capabilities of MS, and due to the continuous improvements in its related technologies (i.e. ultra high-performance liquid chromatography [UPLC] and hydrophilic interaction liquid chromatography [HILIC]), liquid chromatography (LC)-MS is unequivocally the most utilized and the most informative analytical tool employed in urine metabolomics. Furthermore, differential isotope tagging techniques has provided a solution to ion suppression from urine matrix thus allowing for quantitative analysis. In addition to LC-MS, other MS-based technologies have been utilized in urine metabolomics. These include direct injection (infusion)-MS, capillary electrophoresis-MS and gas chromatography-MS. In this article, the current progresses of different MS-based techniques in exploring the urine metabolome as well as the recent findings in providing potentially diagnostic urinary biomarkers are discussed. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:115-134, 2017.
Collapse
Affiliation(s)
- Mona M Khamis
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
- Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Darryl J Adamko
- Department of Pediatrics, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
34
|
Donegatti TA, Gonçalves LM, Pereira EA. Derivatizing assay for the determination of aldehydes using micellar electrokinetic chromatography. Electrophoresis 2017; 38:1068-1074. [DOI: 10.1002/elps.201600483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/28/2022]
Affiliation(s)
| | - Luís Moreira Gonçalves
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências; Universidade do Porto (FCUP); Porto Portugal
| | | |
Collapse
|
35
|
Muz M, Ost N, Kühne R, Schüürmann G, Brack W, Krauss M. Nontargeted detection and identification of (aromatic) amines in environmental samples based on diagnostic derivatization and LC-high resolution mass spectrometry. CHEMOSPHERE 2017; 166:300-310. [PMID: 27705823 DOI: 10.1016/j.chemosphere.2016.09.138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
The presence of aromatic amines in the environment has been in the focus of research, as many of these compounds are known or suspected mutagens and carcinogens. To facilitate the detection of aromatic amines in complex environmental samples by LC-high resolution mass spectrometry, an on-line-post-column and a pre-column derivatization method to label (in an ideal case) all aromatic amines was evaluated by applying different derivatization reagents. 4-Fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) was found to be the most promising labeling reagent due to its high reactivity with both primary and secondary amines and its low signal in positive mode electrospray ionization (ESI+). Post-column on-line derivatization did not result in sufficient signal intensities of derivatives. With pre-column derivatization most of the selected aromatic amines resulted in a derivative that shows common fragments of diagnostic value. The selectivity of NBD-F was studied in depth with a data set of 220 compounds with different functional groups showing that also aliphatic amines and some thiols yield a derivative. The developed method was successfully applied to wastewater effluent samples and several derivatives were confirmed by diagnostic neutral losses.
Collapse
Affiliation(s)
- Melis Muz
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074, Aachen, Germany.
| | - Norbert Ost
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Ralph Kühne
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Gerrit Schüürmann
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596, Freiberg, Germany
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074, Aachen, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
36
|
Ye M, Zhang L, Xu P, Zhang R, Xu J, Wu X, Chen J, Zhou C, Yan X. Simultaneous analysis of ten low-molecular-mass organic acids in the tricarboxylic acid cycle and photorespiration pathway inThalassiosira pseudonanaat different growth stages. J Sep Sci 2016; 40:635-645. [DOI: 10.1002/jssc.201600852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/30/2016] [Accepted: 11/09/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Mengwei Ye
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; Ningbo University; Ningbo P.R. China
| | - Lijing Zhang
- Zhejiang Pharmaceutical College; Ningbo P.R. China
| | - Panpan Xu
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
| | - Runtao Zhang
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
| | - Jilin Xu
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
| | - Xiaokai Wu
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; Ningbo University; Ningbo P.R. China
| | - Juanjuan Chen
- Key Laboratory of Applied Marine Biotechnology; Ningbo University; Chinese Ministry of Education; Ningbo P.R. China
| | - Chengxu Zhou
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; Ningbo University; Ningbo P.R. China
| | - Xiaojun Yan
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture; Ningbo University; Ningbo P.R. China
| |
Collapse
|
37
|
Kinani A, Kinani S, Bouchonnet S. Formation and determination of organohalogen by-products in water. Part III. Characterization and quantitative approaches. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Development and evaluation of a liquid chromatography–mass spectrometry method for rapid, accurate quantitation of malondialdehyde in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:205-212. [DOI: 10.1016/j.jchromb.2016.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/05/2023]
|
39
|
El-Maghrabey M, Kishikawa N, Kuroda N. 9,10-Phenanthrenequinone as a mass-tagging reagent for ultra-sensitive liquid chromatography–tandem mass spectrometry assay of aliphatic aldehydes in human serum. J Chromatogr A 2016; 1462:80-9. [DOI: 10.1016/j.chroma.2016.07.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
40
|
Baghdady YZ, Schug KA. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry. J Sep Sci 2015; 39:102-14. [DOI: 10.1002/jssc.201501003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Yehia Z. Baghdady
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| | - Kevin A. Schug
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
41
|
Beyond classical derivatization: analyte ‘derivatives’ in the bioanalysis of endogenous and exogenous compounds. Bioanalysis 2015; 7:2501-13. [DOI: 10.4155/bio.15.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The analysis of endogenous and exogenous analytes in biological matrices presents several challenges to the bioanalyst. These analytes are often present at low concentrations, typically in complex matrices, and may have physicochemical properties that are not amenable to LC–MS analysis. The bioanalyst thus relies heavily on the formation of analyte derivatives for the efficient quantification of these compounds. These derivatives are also critically employed to derive information on the biology of living systems, potential drug or disease targets, and biomarkers of drug efficacy, safety, or disease progression. In this perspective, we demonstrate how analyte derivatives are applied in modern bioanalytical workflows and we discuss the potential use of these derivatives in the future.
Collapse
|
42
|
Jouanin I, Chevolleau S, Canlet C, Lorber C, Pierre F, Guéraud F, Debrauwer L. Facile Oxime Ether Synthesis: Free Carbonyl Compound Derivatization by a Brominated O-Benzylhydroxylamine. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2015.1035791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Isabelle Jouanin
- INRA, UMR, Toxalim, Research Center in Food Toxicology, Toulouse, France
- Université de Toulouse, INP, Toxalim, Toulouse, France
| | - Sylvie Chevolleau
- INRA, UMR, Toxalim, Research Center in Food Toxicology, Toulouse, France
- Université de Toulouse, INP, Toxalim, Toulouse, France
| | - Cécile Canlet
- INRA, UMR, Toxalim, Research Center in Food Toxicology, Toulouse, France
- Université de Toulouse, INP, Toxalim, Toulouse, France
| | - Christian Lorber
- CNRS, Laboratoire de Chimie de Coordination (LCC), Toulouse, France
- Université de Toulouse, UPS, INPT, LCC, Toulouse, France
| | - Fabrice Pierre
- INRA, UMR, Toxalim, Research Center in Food Toxicology, Toulouse, France
- Université de Toulouse, INP, Toxalim, Toulouse, France
| | - Françoise Guéraud
- INRA, UMR, Toxalim, Research Center in Food Toxicology, Toulouse, France
- Université de Toulouse, INP, Toxalim, Toulouse, France
| | - Laurent Debrauwer
- INRA, UMR, Toxalim, Research Center in Food Toxicology, Toulouse, France
- Université de Toulouse, INP, Toxalim, Toulouse, France
| |
Collapse
|
43
|
Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J Biomark 2015; 2015:981458. [PMID: 26317039 PMCID: PMC4437398 DOI: 10.1155/2015/981458] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
An early diagnosis and appropriate treatment are crucial in reducing mortality among people suffering from cancer. There is a lack of characteristic early clinical symptoms in most forms of cancer, which highlights the importance of investigating new methods for its early detection. One of the most promising methods is the analysis of volatile organic compounds (VOCs). VOCs are a diverse group of carbon-based chemicals that are present in exhaled breath and biofluids and may be collected from the headspace of these matrices. Different patterns of VOCs have been correlated with various diseases, cancer among them. Studies have also shown that cancer cells in vitro produce or consume specific VOCs that can serve as potential biomarkers that differentiate them from noncancerous cells. This review identifies the current challenges in the investigation of VOCs as potential cancer biomarkers, by the critical evaluation of available matrices for the in vivo and in vitro approaches in this field and by comparison of the main extraction and detection techniques that have been applied to date in this area of study. It also summarises complementary in vivo, ex vivo, and in vitro studies conducted to date in order to try to identify volatile biomarkers of cancer.
Collapse
|
44
|
Analysis of biologically-active, endogenous carboxylic acids based on chromatography-mass spectrometry. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Tan B, Lu Z, Dong S, Zhao G, Kuo MS. Derivatization of the tricarboxylic acid intermediates with O-benzylhydroxylamine for liquid chromatography-tandem mass spectrometry detection. Anal Biochem 2014; 465:134-47. [PMID: 25102203 DOI: 10.1016/j.ab.2014.07.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 02/04/2023]
Abstract
The tricarboxylic acid (TCA) cycle is an interface among glycolysis, lipid metabolism, and amino acid metabolism. Increasing interest in cancer metabolism has created a demand for rapid and sensitive methods for quantifying the TCA cycle intermediates and related organic acids. We have developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify the TCA cycle intermediates in a 96-well format after O-benzylhydroxylamine (O-BHA) derivatization under aqueous conditions. This method was validated for quantitation of all common TCA cycle intermediates with good sensitivity, including α-ketoglutarate, malate, fumarate, succinate, 2-hydroxyglutarate, citrate, oxaloacetate, pyruvate, isocitrate, and lactate using a 8-min run time in cancer cells and tissues. The method was used to detect and quantify changes in metabolite levels in cancer cells and tumor tissues treated with a pharmacological inhibitor of nicotinamide phosphoribosyl transferase (NAMPT). This method is rapid, sensitive, and reproducible, and it can be used to assess metabolic changes in cancer cells and tumor samples.
Collapse
Affiliation(s)
- Bo Tan
- Tailored Therapeutics, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Zhaohai Lu
- Cancer Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Sucai Dong
- Cancer Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Genshi Zhao
- Cancer Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ming-Shang Kuo
- Tailored Therapeutics, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| |
Collapse
|
46
|
Qi BL, Liu P, Wang QY, Cai WJ, Yuan BF, Feng YQ. Derivatization for liquid chromatography-mass spectrometry. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Sun Z, Wang X, Cai Y, Fu J, You J. Development of a pair of differential H/D isotope-coded derivatization reagents d0/d3-4-(1-methyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenlamine and its application for determination of aldehydes in selected aquatic products by liquid chromatography–tandem mass spectrometry. Talanta 2014; 120:84-93. [DOI: 10.1016/j.talanta.2013.11.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 11/27/2022]
|
48
|
Ren X, Liu J, Zhang C, Sun J, Luo H. Signal enhancement of carboxylic acids by inclusion with β-cyclodextrin in negative high-voltage-assisted laser desorption ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:115-122. [PMID: 24285396 DOI: 10.1002/rcm.6767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE It is difficult to directly analyze carboxylic acids in complex mixtures by ambient high-voltage-assisted laser desorption ionization mass spectrometry (HALDI-MS) in negative ion mode due to the low ionization efficiency of carboxylic acids. METHODS A method for the rapid detection of carboxylic acids in negative HALDI-MS has been developed based on their inclusion with β-cyclodextrin (β-CD). RESULTS The negative HALDI-MS signal-to-noise ratios (S/Ns) of aliphatic, aromatic and hetero atom-containing carboxylic acids can all be significantly improved by forming 1:1 complexes with β-CD. These complexes are mainly formed by specific inclusion interactions which are verified by their collision-induced dissociation behaviors in comparison with that of their corresponding maltoheptaose complexes. A HALDI-MS/MS method has been successfully developed for the detection of α-lipoic acid in complex cosmetics and ibuprofen in a viscous drug suspension. CONCLUSIONS The negative HALDI-MS S/Ns of carboxylic acids can be improved up to 30 times via forming non-covalent complexes with β-CD. The developed method shows the advantages of being rapid and simple, and is promising for rapid detection of active ingredients in complex samples or fast screening of drugs and cosmetics.
Collapse
Affiliation(s)
- Xinxin Ren
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
49
|
van Wijk A, Niederländer H, Siebum A, Vervaart M, de Jong G. A new derivatization reagent for LC–MS/MS screening of potential genotoxic alkylation compounds. J Pharm Biomed Anal 2013; 74:133-40. [DOI: 10.1016/j.jpba.2012.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 09/29/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
|
50
|
A highly sensitive isotope-coded derivatization method and its application for the mass spectrometric analysis of analytes containing the carboxyl group. Anal Chim Acta 2013; 758:114-21. [DOI: 10.1016/j.aca.2012.11.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/01/2012] [Accepted: 11/06/2012] [Indexed: 11/20/2022]
|