1
|
Li CL, Ma XY, Yi P. Bispecific Antibodies, Immune Checkpoint Inhibitors, and Antibody-Drug Conjugates Directing Antitumor Immune Responses: Challenges and Prospects. Cell Biochem Funct 2024; 42:e70011. [PMID: 39463028 DOI: 10.1002/cbf.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD-1, PD-L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD-1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD-L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody-drug conjugates (ADCs). The development of truly effective therapies for patients with treatment-resistant cancers can be achieved by optimizing the various components of ADCs.
Collapse
Affiliation(s)
- Chen Lu Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yuan Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yi
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Yang G, Zhou Z, Liu C. Efficacy and safety of combining radiotherapy with immune checkpoint inhibitors in patients with advanced non-small cell lung cancer: a real-world study. Immunopharmacol Immunotoxicol 2024:1-11. [PMID: 39431538 DOI: 10.1080/08923973.2024.2415121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/05/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND The significance of local radiotherapy (RT) in advanced non-small-cell lung cancer (NSCLC) is well documented. However, the advent of immunotherapy has raised questions regarding the synergistic survival benefits or potential adverse effects. OBJECTIVE This study aimed to explore whether a combination of RT and systematic immune checkpoint inhibitors (ICIs) can improve the survival outcomes for NSCLC patients. METHODS Based on collected data patients who received RT were defined as the RT group, and those who had not for any site were defined as the non-RT group. Propensity score matching (PSM) was employed to mitigate bias. The primary endpoint was progression-free survival (PFS), with secondary endpoints including overall survival (OS) and treatment-related adverse events (AEs). RESULTS Out of 709 patients (235 in RT group and 474 in non-RT group) were included, with 213 patients per group. The median PFS of the RT group was better than that of the non-RT group (13.8 months versus 9.5 months; p < 0.0001), although no superiority in median overall survival (OS) of the RT group was observed (p = 0.715). However, among the cohort of patients with ≤3 metastases, the median OS of the RT group improved significantly (HR = 0.60, [95% CI 0.44-0.83]; p = 0.004). Treatment-related AEs occurred in 94.5% of RT group patients and in 94.9% of non-RT group patients (p = 0.792), which indicated no observable increase in AEs from RT. CONCLUSIONS These results demonstrate the tolerability of RT when administered along with immunotherapy, suggesting its potential to positively impact the survival outcomes of NSCLC patients.
Collapse
Affiliation(s)
- Guanli Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhen Zhou
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chengxin Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Coussement M, Fazio R, Audisio A, El Khoury R, Abbassi FZ, Assaf I, Conti C, Gallio C, Benhima N, Bregni G, Gkolfakis P, Spagnolo V, Anthoine G, Liberale G, Moretti L, Martinive P, Hendlisz A, Demetter P, Sclafani F. PD-L1 Expression in Paired Samples of Rectal Cancer. Cancers (Basel) 2024; 16:2606. [PMID: 39061244 PMCID: PMC11275196 DOI: 10.3390/cancers16142606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Immune checkpoint inhibitors and immune-related biomarkers are increasingly investigated in rectal cancer (RC). We retrospectively analysed PD-L1 expression in diagnostic biopsy and resection samples from RC patients treated at our centre between 2000 and 2020. PD-L1 immunostaining (22C3 clone) was evaluated according to tumour proportion (TPS), immune cell (ICS), and the combined positive score (CPS). Eighty-three patients were included. At diagnosis, PD-L1 expression ≥1%/≥5% was observed in 15.4%/0%, 80.7%/37.4%, and 69.2%/25.6% of patients based on TPS, ICS, and CPS, respectively. At surgery, the respective figures were 4.6%/1.5%, 60.2%/32.5%, and 50.7%/26.2%. Using the 1% cut-off and regardless of the scoring system, PD-L1 was less expressed in surgery than biopsy samples (p ≤ 0.04). In paired specimens, PD-L1-ICS reduction was especially observed following neoadjuvant long-course (chemo)radiotherapy (p = 0.03). PD-L1-ICS of ≥5% in surgical samples (HR: 0.17; p = 0.02), and a biopsy-to-surgery increase in PD-L1-ICS (HR: 0.19; p = 0.04) was predictive for longer disease-free survival, while the PD-L1-ICS of either ≥1% (HR 0.28; p = 0.04) or ≥5% (HR 0.19; p = 0.03) in surgical samples and the biopsy-to-surgery increase in PD-L1-ICS (HR: 0.20; p = 0.04) were associated with better overall survival. Our study suggests that PD-L1 expression in RC is largely reflective of immune cell infiltration, and its presence/increase in surgical samples predicts better outcomes.
Collapse
Affiliation(s)
- Mina Coussement
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Roberta Fazio
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Alessandro Audisio
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Reem El Khoury
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Fatima-Zahra Abbassi
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Irene Assaf
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Chiara Conti
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Chiara Gallio
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Nada Benhima
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Giacomo Bregni
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Paraskevas Gkolfakis
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Valentina Spagnolo
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Geraldine Anthoine
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Gabriel Liberale
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Luigi Moretti
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Philippe Martinive
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Alain Hendlisz
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Pieter Demetter
- Cerba Path, Division CMP, 1070 Brussels, Belgium
- Laboratory for Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Francesco Sclafani
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| |
Collapse
|
4
|
Fazio R, Audisio A, Daprà V, Conti C, Benhima N, Abbassi FZ, Assaf I, Hendlisz A, Sclafani F. Non-operative management after immune checkpoint inhibitors for early-stage, dMMR/MSI-H gastrointestinal cancers. Cancer Treat Rev 2024; 128:102752. [PMID: 38772170 DOI: 10.1016/j.ctrv.2024.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
Surgery is a standard treatment for early-stage gastrointestinal cancers, often preceded by neoadjuvant chemo(radio)therapy or followed by adjuvant therapy. While leading to cure in a proportion of patients, it has some drawbacks such as intra/post-operative complications, mutilation and life-long functional sequelae. Further to the unprecedented efficacy data from studies of immune checkpoint inhibitors for advanced mismatch repair deficient/microsatellite instable (dMMR/MSI-H) tumours, a strong interest has recently emerged for the investigation of such agents in the neoadjuvant setting. Although limited by the exploratory design and small sample size, trials of neoadjuvant immune checkpoint inhibitors for early-stage dMMR/MSI-H gastrointestinal cancers have consistently reported complete response rates ranging from 70 % to 100 %. As a result, the question has arisen as to whether surgery is still needed or organ-preserving strategies should be offered to this especially immuno-sensitive population. In this article, we discuss the available evidence for neoadjuvant immune checkpoint inhibitors in dMMR/MSI-H gastrointestinal cancers and analyse opportunities and challenges to the implementation of non-operative management approaches in this setting.
Collapse
Affiliation(s)
- Roberta Fazio
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Alessandro Audisio
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Valentina Daprà
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Chiara Conti
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Nada Benhima
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Fatima-Zahara Abbassi
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Irene Assaf
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Alain Hendlisz
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium
| | - Francesco Sclafani
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), Institut Jules Bordet, Brussels, Belgium.
| |
Collapse
|
5
|
Xianyu B, Pan S, Gao S, Xu H, Li T. Selenium-Containing Nanocomplexes Achieve Dual Immune Checkpoint Blockade for NK Cell Reinvigoration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306225. [PMID: 38072799 DOI: 10.1002/smll.202306225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Indexed: 05/12/2024]
Abstract
The blockade of immune checkpoints has emerged as a promising strategy for cancer immunotherapy. However, most of the current approaches focus on T cells, leaving natural killer (NK) cell-mediated therapeutic strategies rarely explored. Here, a selenium-containing nanocomplex is developed that acts as a dual immune checkpoint inhibitor to reinvigorate NK cell-based cancer immunotherapy. The Se nanocomplex can deliver and release siRNA that targets programmed death ligand-1 (PD-L1) in tumor cells, thereby silencing the checkpoint receptor PD-L1. The intracellular reactive oxygen species generated by porphyrin derivatives in the nanocomplexes can oxidize the diselenide bond into seleninic acid, which blocks the expression of another checkpoint receptor, human leukocyte antigen E. The blockade of dual immune checkpoints shows synergistic effects on promoting NK cell-mediated antitumoral activity. This study provides a new strategy to reinvigorate NK cell immunity for the development of combined cancer immunotherapy.
Collapse
Affiliation(s)
- Banruo Xianyu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shiqian Gao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Vaishampayan UN, Heilbrun L, Vaishampayan N, Harper FWK, Shi D, Smith D, Green K, Guru K, Li Q, Kuettel M, Chatta G, Maier J, Dickow B, Moore TF, George S. Phase II Trial of Concurrent Nivolumab and Radiation Therapy for Muscle-Invasive Bladder Cancer of Older or Chemotherapy-Ineligible Patients. Int J Radiat Oncol Biol Phys 2024; 118:1472-1480. [PMID: 37981040 DOI: 10.1016/j.ijrobp.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE Bladder cancer is predominantly a disease of older individuals. Concurrent chemotherapy and radiation is a bladder-sparing strategy for management of muscle-invasive bladder cancer; however, many patients are not candidates for chemotherapy due to comorbidities or impaired performance status. We conducted a study in a chemotherapy-ineligible patient population with the objectives of evaluating the safety, efficacy, and quality-of-life effect of the combination of nivolumab and radiation therapy in patients with localized/locally advanced urothelial cancer. METHODS AND MATERIALS Eligible patients had muscle-invasive bladder cancer and were not candidates for standard chemoradiation strategy due to at least one of the following: performance status of 2, creatinine clearance ≤60 mL/min, cardiac disease, neuropathy, and intolerance to previous treatment. Creatinine clearance ≥40 mL/min, normal marrow, and liver function were required. The primary endpoint was progression-free survival at 12 months. Nivolumab was started within 3 days of radiation therapy and administered at a dose of 240 mg intravenously every 2 weeks for a maximum of 6 months. Radiation therapy was per standard of care for bladder cancer. Imaging and cystoscopy and biopsy evaluation were required at months 3, 6, and 12 and then annually until progression. RESULTS Twenty patients were enrolled, with a median age of 78.5 years (range, 58-95 years); 80% of patients were >70 years of age, and 8 (40%) were >80 years of age. Median creatinine clearance was 52 mL/min. Nine patients (48%) were progression free at 12 months. Median progression-free survival was 11.4 months (90% CI, 7.5-23.7 months), and median overall survival was 15.6 months (90% CI, 9.1-26.1 months). CONCLUSIONS Concurrent nivolumab and radiation therapy is tolerable but demonstrated limited efficacy in an older population with multiple comorbidities. Immune correlates demonstrated that patients with baseline programmed cell death ligand 1 combined prognostic score ≥5% had numerically longer progression-free survival.
Collapse
Affiliation(s)
- Ulka N Vaishampayan
- Department of Medicine/Oncology, University of Michigan, Ann Arbor, Michigan.
| | - Lance Heilbrun
- Karmanos Cancer Center/Wayne State University, Detroit, Michigan
| | | | | | - Dongping Shi
- Karmanos Cancer Center/Wayne State University, Detroit, Michigan
| | - Daryn Smith
- Karmanos Cancer Center/Wayne State University, Detroit, Michigan
| | - Kelly Green
- Department of Oncology, Roswell Park Cancer Center, Buffalo, New York
| | - Khurshid Guru
- Department of Oncology, Roswell Park Cancer Center, Buffalo, New York
| | - Qiang Li
- Department of Oncology, Roswell Park Cancer Center, Buffalo, New York
| | - Michael Kuettel
- Department of Oncology, Roswell Park Cancer Center, Buffalo, New York
| | - Gurkamal Chatta
- Department of Oncology, Roswell Park Cancer Center, Buffalo, New York
| | - Jordan Maier
- Karmanos Cancer Center/Wayne State University, Detroit, Michigan
| | - Brenda Dickow
- Karmanos Cancer Center/Wayne State University, Detroit, Michigan
| | | | - Saby George
- Department of Oncology, Roswell Park Cancer Center, Buffalo, New York
| |
Collapse
|
7
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
8
|
Song D, Ding Y. A new target of radiotherapy combined with immunotherapy: regulatory T cells. Front Immunol 2024; 14:1330099. [PMID: 38259489 PMCID: PMC10800811 DOI: 10.3389/fimmu.2023.1330099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Radiotherapy is one important treatment for malignant tumours. It is widely believed today that radiotherapy has not only been used as a local tumour treatment method, but also can induce systemic anti-tumour responses by influencing the tumour microenvironment, but its efficacy is limited by the tumour immunosuppression microenvironment. With the advancement of technology, immunotherapy has entered a golden age of rapid development, gradually occupying a place in clinical tumour treatment. Regulatory T cells (Tregs) widely distributing in the tumour microenvironment play an important role in mediating tumour development. This article analyzes immunotherapy, the interaction between Tregs, tumours and radiotherapy. It briefly introduces immunotherapies targeting Tregs, aiming to provide new strategies for radiotherapy combined with Immunotherapy.
Collapse
Affiliation(s)
| | - Yun Ding
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
9
|
Qin Y, Huang S, Tang J, Fan Y, Deng X, Guan P, Zhang Z, Wen Q, Li D. Case report: Interstitial implantation radiotherapy combined with immunotherapy and GM-CSF in oligometastatic platinum-resistant ovarian cancer. Front Immunol 2024; 14:1329951. [PMID: 38235148 PMCID: PMC10791797 DOI: 10.3389/fimmu.2023.1329951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Background Treatment for platinum-resistant ovarian cancer is challenging. Currently, platinum-resistant ovarian cancer is typically treated with non-platinum single-agent chemotherapy ± bevacizumab, but the prognosis is often extremely poor. In the treatment of platinum-resistant ovarian cancer patients, reports of triple therapy with interstitial implantation radiotherapy combined with immunotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF) (PRaG for short) are relatively rare. Case description Here, we report a patient with oligometastatic platinum-resistant ovarian cancer. The patient achieved partial response (PR) of the lesion and sustained benefit for more than six months after receiving interstitial implantation radiotherapy combined with immunotherapy along with GM-CSF. Conclusion This triple therapy may provide additional options for these patients.
Collapse
Affiliation(s)
- Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Junli Tang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Oncology, The First People’s Hospital of Suining, Suining, Sichuan, China
| | - Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiangyu Deng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Ping Guan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhenhua Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinglian Wen
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Singh B, Patwardhan RS, Pal D, Maurya DK, Singh BG, Checker R, Sharma D, Sandur SK. Repurposing of FDA approved kinase inhibitor bosutinib for mitigation of radiation induced damage via inhibition of JNK pathway. Toxicol Appl Pharmacol 2024; 482:116792. [PMID: 38142783 DOI: 10.1016/j.taap.2023.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Radiotherapy is a common modality for cancer treatment. However, it is often associated with normal tissue toxicity in 20-80% of the patients. Radioprotectors can improve the outcome of radiotherapy by selectively protecting normal cells against radiation toxicity. In the present study, compound libraries containing 54 kinase inhibitors and 80 FDA-approved drugs were screened for radioprotection of lymphocytes using high throughput cell analysis. A second-generation FDA-approved kinase inhibitor, bosutinib, was identified as a potential radioprotector for normal cells. The radioprotective efficacy of bosutinib was evinced from a reduction in radiation induced DNA damage, caspase-3 activation, DNA fragmentation and apoptosis. Oral administration of bosutinib protected mice against whole body irradiation (WBI) induced morbidity and mortality. Bosutinib also reduced radiation induced bone-marrow aplasia and hematopoietic damage in mice exposed to 4 Gy and 6 Gy dose of WBI. Mechanistic studies revealed that the radioprotective action of bosutinib involved interaction with cellular thiols and modulation of JNK pathway. The addition of glutathione and N-acetyl cysteine significantly reduced the radioprotective efficacy of bosutinib. Moreover, bosutinib did not protect cancer cells against radiation induced toxicity. On the contrary, bosutinib per se exhibited anticancer activity against human cancer cell lines. The results highlight possible use of bosutinib as a repurposable radioprotective agent for mitigation of radiation toxicity in cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Babita Singh
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Debojyoti Pal
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Dharmendra K Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Beena G Singh
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
11
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential targets and applications of nanodrug targeting myeloid cells in osteosarcoma for the enhancement of immunotherapy. Front Pharmacol 2023; 14:1271321. [PMID: 37808190 PMCID: PMC10551637 DOI: 10.3389/fphar.2023.1271321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Targeted immunotherapies have emerged as a transformative approach in cancer treatment, offering enhanced specificity to tumor cells, and minimizing damage to healthy tissues. The targeted treatment of the tumor immune system has become clinically applicable, demonstrating significant anti-tumor activity in both early and late-stage malignancies, subsequently enhancing long-term survival rates. The most frequent and significant targeted therapies for the tumor immune system are executed through the utilization of checkpoint inhibitor antibodies and chimeric antigen receptor T cell treatment. However, when using immunotherapeutic drugs or combined treatments for solid tumors like osteosarcoma, challenges arise due to limited efficacy or the induction of severe cytotoxicity. Utilizing nanoparticle drug delivery systems to target tumor-associated macrophages and bone marrow-derived suppressor cells is a promising and attractive immunotherapeutic approach. This is because these bone marrow cells often exert immunosuppressive effects in the tumor microenvironment, promoting tumor progression, metastasis, and the development of drug resistance. Moreover, given the propensity of myeloid cells to engulf nanoparticles and microparticles, they are logical therapeutic targets. Therefore, we have discussed the mechanisms of nanomedicine-based enhancement of immune therapy through targeting myeloid cells in osteosarcoma, and how the related therapeutic strategies well adapt to immunotherapy from perspectives such as promoting immunogenic cell death with nanoparticles, regulating the proportion of various cellular subgroups in tumor-associated macrophages, interaction with myeloid cell receptor ligands, activating immunostimulatory signaling pathways, altering myeloid cell epigenetics, and modulating the intensity of immunostimulation. We also explored the clinical implementations of immunotherapy grounded on nanomedicine.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
13
|
Affolter A, Liebel K, Tengler L, Seiz E, Tiedtke M, Azhakesan A, Schütz J, Theodoraki MN, Kern J, Ruder AM, Fleckenstein J, Weis CA, Bieback K, Kramer B, Lammert A, Scherl C, Rotter N, Ludwig S. Modulation of PD‑L1 expression by standard therapy in head and neck cancer cell lines and exosomes. Int J Oncol 2023; 63:102. [PMID: 37503786 PMCID: PMC10552694 DOI: 10.3892/ijo.2023.5550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/15/2023] [Indexed: 07/29/2023] Open
Abstract
Although checkpoint inhibitors (CPI) have recently extended the treatment options and improved clinical response of advanced stage head and neck squamous cell carcinoma (HNSCC), treatment success remains unpredictable. Programmed cell death ligand‑1 (PD‑L1) is a key player in immunotherapy. Tumor cells, and exosomes derived therefrom, are carriers of PD‑L1 and efficiently suppress immune responses. The aim of the present study was to analyze the influence of established therapies on PD‑L1 expression of HNSCC cell lines and their exosomes. The HNSCC cell lines, UM‑SCC‑11B, UM‑SCC‑14C and UM‑SCC‑22C were treated with fractionated radiotherapy (RT; 5x2 Gy), cisplatin (CT) and cetuximab (Cetux) as monotherapy, or combined therapy, chemoradiotherapy (CRT; RT and CT) or radioimmunotherapy (RT and Cetux). The expression of PD‑L1 and phosphorylated (p)ERK1/2 as a mediator of radioresistance were assessed using western blotting, immunohistochemistry and an ex vivo vital tissue culture model. Additionally, exosomes were isolated from concentrated supernatants of the (un‑)treated HNSCC cell lines by size exclusion chromatography. Exosomal protein expression levels of PD‑L1 were detected using western blotting and semi‑quantitative levels were calculated. The functional impact of exosomes from the (un‑)treated HNSCC cell lines on the proliferation (MTS assay) and apoptosis (Caspase 3/7 assay) of the untreated HNSCC cell lines were measured and compared. The HNSCC cell lines UM‑SCC‑11B and UM‑SCC‑22B showed strong expression of pERK1/2 and PD‑L1, respectively. RT upregulated the PD‑L1 expression in UM‑SCC‑11B and UM‑SCC‑14C and in exosomes from all three cell lines. CT alone induced PD‑L1 expression in all cell lines. CRT induced the expression of PD‑L1 in all HNSCC cell lines and exosomes from UM‑SCC‑14C and UM‑SCC‑22B. The data indicated a potential co‑regulation of PD‑L1 and activated ERK1/2, most evident in UM‑SCC‑14C. Exosomes from irradiated UM‑SCC‑14C cells protected the unirradiated cells from apoptosis by Caspase 3/7 downregulation. The present study suggested a tumor cell‑mediated regulation of PD‑L1 upon platinum‑based CRT in HNSCC and in exosomes. A co‑regulation of PD‑L1 and MAPK signaling response was hypothesized.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Kai Liebel
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Luisa Tengler
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Elena Seiz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Moritz Tiedtke
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Alexya Azhakesan
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Julia Schütz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Ulm, D-89075 Ulm
| | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Arne M. Ruder
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
- Department of Radiation Oncology, University Hospital Heidelberg, D-69120 Heidelberg
| | - Jens Fleckenstein
- Department of Radiation Oncology, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Cleo-Aron Weis
- Department of Pathology, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Mannheim
- Department of Pathology, Heidelberg University Hospital
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, D-68167 Mannheim, Germany
| | - Benedikt Kramer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Anne Lammert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Claudia Scherl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| | - Sonja Ludwig
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D-68167 Mannheim
| |
Collapse
|
14
|
Kang K, Wu Y, Yao Z, Lu Y. Tackling the current dilemma of immunotherapy in extensive-stage small cell lung cancer: A promising strategy of combining with radiotherapy. Cancer Lett 2023; 565:216239. [PMID: 37211066 DOI: 10.1016/j.canlet.2023.216239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Progress in the treatment of small cell lung cancer (SCLC) has been modest over the past decades until the advent of immune checkpoint inhibitors, which have redefined the standard first-line treatment for extensive-stage SCLC (ES-SCLC). However, despite the positive results of several clinical trials, the limited survival benefit achieved suggests that the priming and sustaining of immunotherapeutic efficacy are poor and further investigation is urgently needed. In this review, we aim to summarize the potential mechanisms underlying the limited efficacy of immunotherapy and intrinsic resistance in ES-SCLC, including impaired antigen presentation and limited T cell infiltration. Moreover, to tackle the current dilemma, given the synergistic effects of radiotherapy on immunotherapy, especially the unique advantages of low-dose radiotherapy (LDRT), such as less immunosuppression and lower radiation toxicity, we propose radiotherapy as a booster to enhance the immunotherapeutic efficacy by overcoming the poor priming effect. Recent clinical trials, including ours, have also focused on adding radiotherapy, including LDRT, to first-line treatment of ES-SCLC. Additionally, we also suggest combination strategies to sustain the immunostimulatory effect of radiotherapy, as well as the cancer-immunity cycle, and further improve survival outcomes.
Collapse
Affiliation(s)
- Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Zhen W, Weichselbaum RR, Lin W. Nanoparticle-Mediated Radiotherapy Remodels the Tumor Microenvironment to Enhance Antitumor Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206370. [PMID: 36524978 PMCID: PMC10213153 DOI: 10.1002/adma.202206370] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/12/2022] [Indexed: 05/26/2023]
Abstract
Radiotherapy (RT) uses ionizing radiation to eradicate localized tumors and, in rare cases, control tumors outside of the irradiated fields via stimulating an antitumor immune response (abscopal effect). However, the therapeutic effect of RT is often limited by inherent physiological barriers of the tumor microenvironment (TME), such as hypoxia, abnormal vasculature, dense extracellular matrix (ECM), and an immunosuppressive TME. Thus, it is critical to develop new RT strategies that can remodel the TME to overcome radio-resistance and immune suppression. In the past decade, high-Z-element nanoparticles have been developed to increase radiotherapeutic indices of localized tumors by reducing X-ray doses and side effects to normal tissues and enhance abscopal effects by activating the TME to elicit systemic antitumor immunity. In this review, the principles of RT and radiosensitization, the mechanisms of radio-resistance and immune suppression, and the use of various nanoparticles to sensitize RT and remodel TMEs for enhanced antitumor efficacy are discussed. The challenges in clinical translation of multifunctional TME-remodeling nanoradiosensitizers are also highlighted.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, Department of Radiation and Cellular Oncology, and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, Department of Radiation and Cellular Oncology, and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
16
|
Song S, Zhang Y, Duan X, Liu C, Du Y, Wang X, Luo Y, Cui Y. HIF-1α/IL-8 axis in hypoxic macrophages promotes esophageal cancer progression by enhancing PD-L1 expression. Cancer Gene Ther 2023; 30:358-367. [PMID: 36357565 DOI: 10.1038/s41417-022-00551-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Esophageal cancer (EC) is a malignancy with poor prognosis and high mortality. Hypoxic microenvironment has also been proved to be an important feature of tumors. Herein, we mainly studied the influence of hypoxia-treated tumor-associated macrophages (TAMs) on EC malignant phenotype and related molecular mechanism. In this paper, we found that hypoxic macrophages contributed to EC cell proliferation, cell cycle progression, and metastasis. Besides, the hypoxia treatment expedited the transformation of macrophages into M2 polarization. The level of interleukin (IL)-8 was boosted in macrophages after hypoxia treatment. Moreover, hypoxia treatment heightened IL-8 secretion by macrophages via positively regulating hypoxia-inducible factor-1α (HIF-1α) expression. The IL-8 secreted by hypoxic macrophages facilitated EC cell proliferation, cell cycle progression, and metastasis by elevating ligand of programmed death 1 (PD-L1) expression. In the end, IL-8 also expedited EC tumorigenesis in vivo. In conclusion, HIF-1α/IL-8 axis in hypoxic macrophages could expedite EC advancement by upregulating PD-L1 level, which might deliver a novel thought for EC cure.
Collapse
Affiliation(s)
- Shuai Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinchun Duan
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunquan Liu
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanlin Du
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoran Wang
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Luo
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Darvishi M, Tosan F, Nakhaei P, Manjili DA, Kharkouei SA, Alizadeh A, Ilkhani S, Khalafi F, Zadeh FA, Shafagh SG. Recent progress in cancer immunotherapy: Overview of current status and challenges. Pathol Res Pract 2023; 241:154241. [PMID: 36543080 DOI: 10.1016/j.prp.2022.154241] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Cancer treatment is presently one of the most important challenges in medical science. Surgery, chemotherapy, radiotherapy, or combining these methods is used to eliminate the tumor. Hormone therapy, bone marrow transplantation, stem cell therapy as well as immunotherapy are other well-known therapeutic modalities. Immunotherapy, as the most important complementary method, uses the immune system for treating cancer followed by surgery, chemotherapy, and radiotherapy. This method is systematically used to prevent malignancies development mainly via potentiating antitumor immune cells activation and conversely compromising their exhaustion with the lowest negative effects on healthy cells. Active immunotherapy can be employed for cancer immunotherapy by directly using the ingredients of the immune system and activating immune responses. On the other hand, inactive immunotherapy is utilized by indirect induction and using immune cell-based products consisting of monoclonal antibodies. It has strongly been proved that combination therapy with immunotherapies and other therapeutic means, such as anti-angiogenic agents, could be a rational plan to treat cancer. Herein, we have focused on recent findings concerning the therapeutic merits of cancer therapy using immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT) and cancer vaccine alone or in combination with other approaches. Also, we offer a glimpse into the current challenges in this context.
Collapse
Affiliation(s)
- Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medicinal Sciences, Tehran, Iran.
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Danial Amiri Manjili
- Department of Infectious Disease, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Ali Alizadeh
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
19
|
Zhu S, Wang Y, Tang J, Cao M. Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Front Immunol 2022; 13:1074477. [PMID: 36532071 PMCID: PMC9753984 DOI: 10.3389/fimmu.2022.1074477] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging evidence indicates that the induction of radiotherapy(RT) on the immunogenic cell death (ICD) is not only dependent on its direct cytotoxic effect, changes in the tumor immune microenvironment also play an important role in it. Tumor immune microenvironment (TIME) refers to the immune microenvironment that tumor cells exist, including tumor cells, inflammatory cells, immune cells, various signaling molecules and extracellular matrix. TIME has a barrier effect on the anti-tumor function of immune cells, which can inhibit all stages of anti-tumor immune response. The remodeling of TIME caused by RT may affect the degree of immunogenicity, and make it change from immunosuppressive phenotype to immunostimulatory phenotype. It is of great significance to reveal the causes of immune escape of tumor cells, especially for the treatment of drug-resistant tumor. In this review, we focus on the effect of RT on the TIME, the mechanism of RT in reversing the TIME to suppress intrinsic immunity, and the sensitization effect of the remodeling of TIME caused by RT on the effectiveness of immunotherapy.
Collapse
|
20
|
Barsheshet Y, Voloshin T, Brant B, Cohen G, Koren L, Blatt R, Cahal S, Haj Khalil T, Zemer Tov E, Paz R, Klein-Goldberg A, Tempel-Brami C, Jacobovitch S, Volodin A, Kan T, Koltun B, David C, Haber A, Giladi M, Weinberg U, Palti Y. Tumor Treating Fields (TTFields) Concomitant with Immune Checkpoint Inhibitors Are Therapeutically Effective in Non-Small Cell Lung Cancer (NSCLC) In Vivo Model. Int J Mol Sci 2022; 23:ijms232214073. [PMID: 36430552 PMCID: PMC9696536 DOI: 10.3390/ijms232214073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt cellular processes critical for cancer cell viability and tumor progression. TTFields induce anti-mitotic effects through the disruption of the mitotic spindle and abnormal chromosome segregation, which trigger several forms of cell death, including immunogenic cell death (ICD). The efficacy of TTFields concomitant with anti-programmed death-1 (anti-PD-1) treatment was previously shown in vivo and is currently under clinical investigation. Here, the potential of TTFields concomitant with anti- PD-1/anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed death-ligand 1 (anti-PD-L1) immune checkpoint inhibitors (ICI) to improve therapeutic efficacy was examined in lung tumor-bearing mice. Increased circulating levels of high mobility group box 1 protein (HMGB1) and elevated intratumoral levels of phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α) were found in the TTFields-treated mice, indicative of ICD induction. The concomitant application of TTFields and ICI led to a significant decrease in tumor volume as compared to all other groups. In addition, significant increases in the number of tumor-infiltrating immune cells, specifically cytotoxic T-cells, were observed in the TTFields plus anti-PD-1/anti-CTLA-4 or anti-PD-L1 groups. Correspondingly, cytotoxic T-cells isolated from these tumors showed higher levels of IFN-γ production. Collectively, these results suggest that TTFields have an immunoactivating role that may be leveraged for concomitant treatment with ICI to achieve better tumor control by enhancing antitumor immunity.
Collapse
|
21
|
Blood Immune Cell Biomarkers in Lung Cancer Patients Undergoing Treatment with a Combination of Chemotherapy and Immune Checkpoint Blockade. Cancers (Basel) 2022; 14:cancers14153690. [PMID: 35954354 PMCID: PMC9367406 DOI: 10.3390/cancers14153690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
Although immune checkpoint inhibitor (ICI) therapies have improved the treatment of patients with advanced non-small cell lung cancer (NSCLC), several patients do not achieve durable clinical responses. Biomarkers for the prediction of therapy responses are urgently needed. To identify blood cell parameters correlating with patients’ survival, immune cells from 90 patients with NSCLC undergoing a combination of ICI and chemotherapy were prospectively monitored. At the time point of the first and third antibody administration, complete leukocyte blood count, the percentage of HLA-DRlow monocytes, the percentage of 6-Sulfo LacNAc (slan)+CD16+ non-classical monocytes, and the number of circulating dendritic cell (DC) subtypes, as well as T-, B-, and NK cells were determined by multi-color flow cytometry in peripheral blood. The prognostic value of the immune cell parameters investigated was evaluated by patients’ survival analysis, with progression-free survival (PFS) as the main criterion. A total of 67 patients (74.4%) showed a partial remission or a stable disease, and 35% of patients even survived 12 months and longer. Patients with a neutrophil-to-lymphocyte ratio (NLR) ≥6.1, a frequency of HLA-DRlow monocytes ≥22%, of slan+ non-classical monocytes <0.25% of leukocytes, and/or a sum of myeloid DC (MDC) and plasmacytoid DC (PDC) ≤0.14% of leukocytes had a poorer prognosis. The hazard ratio for PFS was 2.097 (1.208−3.640) for the NLR, 1.964 (1.046−3.688) for HLA-DRlow monocytes, 3.202 (1.712−5.99) for slan+ non-classical monocytes, and 2.596 (1.478−4.56) for the MDC/PDC sum. Patients without any of the four risk factors showed the best PFS. Furthermore, low NK cell counts correlated with shorter PFS (cutoff 200 cells/µL). Female patients had lower baseline NK cell counts and a shorter PFS. Our study confirms the usefulness of blood immune cells as biomarkers for clinical response and survival in NSCLC patients undergoing a combined ICI/chemotherapy.
Collapse
|
22
|
Walter Y, Hubbard A, Benoit A, Jank E, Salas O, Jordan D, Ekpenyong A. Development of In Vitro Assays for Advancing Radioimmunotherapy against Brain Tumors. Biomedicines 2022; 10:biomedicines10081796. [PMID: 35892697 PMCID: PMC9394411 DOI: 10.3390/biomedicines10081796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Due to high resistance to treatment, local invasion, and a high risk of recurrence, GBM patient prognoses are often dismal, with median survival around 15 months. The current standard of care is threefold: surgery, radiation therapy, and chemotherapy with temozolomide (TMZ). However, patient survival has only marginally improved. Radioimmunotherapy (RIT) is a fourth modality under clinical trials and aims at combining immunotherapeutic agents with radiotherapy. Here, we develop in vitro assays for the rapid evaluation of RIT strategies. Using a standard cell irradiator and an Electric Cell Impedance Sensor, we quantify cell migration following the combination of radiotherapy and chemotherapy with TMZ and RIT with durvalumab, a PD-L1 immune checkpoint inhibitor. We measure cell survival using a cloud-based clonogenic assay. Irradiated T98G and U87 GBM cells migrate significantly (p < 0.05) more than untreated cells in the first 20−40 h post-treatment. Addition of TMZ increases migration rates for T98G at 20 Gy (p < 0.01). Neither TMZ nor durvalumab significantly change cell survival in 21 days post-treatment. Interestingly, durvalumab abolishes the enhanced migration effect, indicating possible potency against local invasion. These results provide parameters for the rapid supplementary evaluation of RIT against brain tumors.
Collapse
Affiliation(s)
- Yohan Walter
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Anne Hubbard
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Allie Benoit
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Erika Jank
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Olivia Salas
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
| | - Destiny Jordan
- Department of Biology, Creighton University, Omaha, NE 68178, USA;
| | - Andrew Ekpenyong
- Department of Physics, Creighton University, Omaha, NE 68178, USA; (Y.W.); (A.H.); (A.B.); (E.J.); (O.S.)
- Correspondence: ; Tel.: +1-402-280-2208
| |
Collapse
|
23
|
Gamma Irradiation Triggers Immune Escape in Glioma-Propagating Cells. Cancers (Basel) 2022; 14:cancers14112728. [PMID: 35681710 PMCID: PMC9179833 DOI: 10.3390/cancers14112728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Stem cell-like glioma-propagating cells (GPCs) are crucial for initiation, growth, and treatment resistance of glioblastoma multiforme. Due to their strong immunosuppressive activities, they essentially limit immunotherapeutic approaches. This study offers a new model of radio-selected patient-derived GPCs mimicking a clinical treatment regime of tumor irradiation which is especially useful for immunotherapeutic studies. We provide evidence that clinically relevant, sub-lethal fractions of γ radiation select for a more radio-resistant GPC phenotype with lower immunogenic potential, potentially hampering the success of adjuvant T-cell-based immunotherapies. The immune evasion in GPCs was characterized by quantitative proteomics. It revealed a marked downregulation of the antigen processing machinery in lipid rafts of these cells, leading to reduced MHC surface expression and weaker cytotoxic T lymphocyte (CTL) recognition. Abstract Glioblastoma multiforme is the most common and devastating form of brain tumor for which only palliative radio- and chemotherapy exists. Although some clinical studies on vaccination approaches have shown promising efficacy due to their potential to generate long-term immune surveillance against cancer cells, the evasion mechanisms preventing therapy response are largely uncharacterized. Here, we studied the response of glioblastoma-propagating cells (GPCs) to clinically relevant doses of γ radiation. GPCs were treated with 2.5 Gy of γ radiation in seven consecutive cellular passages to select for GPCs with increased colony-forming properties and intrinsic or radiation-induced resistance (rsGPCs). Quantitative proteomic analysis of the cellular signaling platforms of the detergent-resistant membranes (lipid rafts) in GPCs vs. rsGPCs revealed a downregulation of the MHC class I antigen-processing and -presentation machinery. Importantly, the radio-selected GPCs showed reduced susceptibility towards cytotoxic CD8+ T-cell-mediated killing. While previous studies suggested that high-dose irradiation results in enhanced antigen presentation, we demonstrated that clinically relevant sub-lethal fractionated irradiation results in reduced expression of components of the MHC class I antigen-processing and -presentation pathway leading to immune escape.
Collapse
|
24
|
Yang Z, Zhang X, Zhang J, Gao J, Bai Z, Deng W, Chen G, An Y, Liu Y, Wei Q, Han J, Li A, Liu G, Sun Y, Kong D, Yao H, Zhang Z. Rationale and design of a prospective, multicenter, phase II clinical trial of safety and efficacy evaluation of long course neoadjuvant chemoradiotherapy plus tislelizumab followed by total mesorectal excision for locally advanced rectal cancer (NCRT-PD1-LARC trial). BMC Cancer 2022; 22:462. [PMID: 35477432 PMCID: PMC9044580 DOI: 10.1186/s12885-022-09554-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Long course radiotherapy plus neoadjuvant chemotherapy followed by resection (total mesorectal excision, TME) has accepted widespread recognized in the treatment of locally advanced rectal cancer (LARC). Tislelizumab, an anti-PD1 humanized IgG4 monoclonal antibody, has been demonstrated with clinical activity and is approved for treating recurrent/refractory classical Hodgkin lymphoma and locally advanced/metastatic urothelial carcinoma in China. However, the safety and efficacy of long course (neoadjuvant chemoradiotherapy, NCRT) plus tislelizumab followed by TME for LARC is still uncertain. METHODS This NCRT-PD1-LARC trial will be a prospective, multicenter and phase II clinical trial designed to evaluate the safety and efficacy of LARC patients treated with long course NCRT plus tislelizumab followed by TME. This trial will consecutively enroll 50 stage II/III LARC patients (cT3N0M0 and cT1-3N1-2M0) with the tumor distal location ≤ 7 cm from anal verge at 7 centers in China. The enrolled patients will receive long course radiotherapy (50 Gy/25 f, 2 Gy/f, 5 days/week) and three 21-day cycles capecitabine (1000 mg/m2, bid, po, day1-14) plus three 21-day cycles tislelizumab (200 mg, iv.gtt, day8), followed by TME 6-8 weeks after the end of radiotherapy. The primary efficacy endpoint will be the pathological complete response (pCR) rate, which is defined as absence of viable tumor cells in the primary tumor and lymph nodes. DISCUSSION To our knowledge, this trial is the first multicenter clinical trial in China to assess the safety and efficacy of NCRT plus anti-PD1 therapy followed by TME to treat patients with LARC. NCRT followed by TME was recognized as the most recommended treatment against LARC while could not be completely satisfied in clinic. This study expects to provide a solid basis and encouraging outcomes for this promising combination of radiotherapy, chemotherapy and immunotherapy in LARC. TRIAL REGISTRATION Name of the registry: ClinicalTrials.gov. TRIAL REGISTRATION NUMBER NCT04911517. Date of registration: 23 May 2021. URL of trial registry record: https://www. CLINICALTRIALS gov/ct2/show/NCT04911517?id=BFH-NCRTPD&draw=2&rank=1 .
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongbo An
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Qi Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Anorectal, Tianjin People's Hospital, Tianjin, China
| | - Dalu Kong
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
25
|
Immune Checkpoint Inhibitors in Cancer Therapy. Curr Oncol 2022; 29:3044-3060. [PMID: 35621637 PMCID: PMC9139602 DOI: 10.3390/curroncol29050247] [Citation(s) in RCA: 390] [Impact Index Per Article: 195.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of immune checkpoint proteins such as PD-1/PDL-1 and CTLA-4 represents a significant breakthrough in the field of cancer immunotherapy. Therefore, humanized monoclonal antibodies, targeting these immune checkpoint proteins have been utilized successfully in patients with metastatic melanoma, renal cell carcinoma, head and neck cancers and non-small lung cancer. The US FDA has successfully approved three different categories of immune checkpoint inhibitors (ICIs) such as PD-1 inhibitors (Nivolumab, Pembrolizumab, and Cemiplimab), PDL-1 inhibitors (Atezolimumab, Durvalumab and Avelumab), and CTLA-4 inhibitor (Ipilimumab). Unfortunately, not all patients respond favourably to these drugs, highlighting the role of biomarkers such as Tumour mutation burden (TMB), PDL-1 expression, microbiome, hypoxia, interferon-γ, and ECM in predicting responses to ICIs-based immunotherapy. The current study aims to review the literature and updates on ICIs in cancer therapy.
Collapse
|
26
|
Revolutionization in Cancer Therapeutics via Targeting Major Immune Checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals (Basel) 2022; 15:ph15030335. [PMID: 35337133 PMCID: PMC8952773 DOI: 10.3390/ph15030335] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Numerous research reports have witnessed dramatic advancements in cancer therapeutic approaches through immunotherapy. Blocking immunological checkpoint pathways (mechanisms employed by malignant cells to disguise themselves as normal human body components) has emerged as a viable strategy for developing anticancer immunity. Through the development of effective immune checkpoint inhibitors (ICIs) in multiple carcinomas, advances in cancer immunity have expedited a major breakthrough in cancer therapy. Blocking a variety of ICIs, such as PD-1 (programmed cell death-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has improved the immune system’s efficacy in combating cancer cells. Recent studies also supported the fact that ICIs combined with other potent antitumor candidates, such as angiogenic agents, could be a solid promising chemopreventive therapeutic approach in improving the effectiveness of immune checkpoint inhibitors. Immune checkpoint blockade has aided antiangiogenesis by lowering vascular endothelial growth factor expression and alleviating hypoxia. Our review summarized recent advances and clinical improvements in immune checkpoint blocking tactics, including combinatorial treatment of immunogenic cell death (ICD) inducers with ICIs, which may aid future researchers in creating more effective cancer-fighting strategies.
Collapse
|
27
|
Valle L, Katz J, Duffy A, Hueman M, Wang HW, Hughes M, Sissung T, Figg W, Citrin D. Enhanced toxicity to chemoradiation in a patient with Anti-Jo-1-antisynthetase syndrome. BJR Case Rep 2022; 8:20210188. [PMID: 36101738 PMCID: PMC9461731 DOI: 10.1259/bjrcr.20210188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/05/2022] Open
Abstract
Appropriate counseling of patients with autoimmune connective tissue disorders (ACTDs) is often challenging for radiation oncologists, especially regarding anticipated side-effects of radiation treatment. These patients can have highly variable and unpredictable sequelae from radiation therapy, and the uncertainty builds when radiation is convoluted by the addition of concurrent chemotherapy. While many patients may experience a mild intensification of toxicity above what is expected, some patients experience much more severe toxicity. These patients become critical learning cases, enabling a better understanding of the delicate and complex ways in which radiation response is altered in the context of ACTDs while allowing other patients with similar ACTD profiles to benefit from past experience. Our report makes an important contribution to this space by describing a particularly severe case of toxicity that manifested in such a patient and the ensuing clinical decision-making. Comprehensive genotyping of classic pharmacokinetic and pharmacodynamic pathway genes (including mutations in DPD and CDA) did not reveal any signatures that might explain her enhanced toxicity and we demonstrate that severe toxicity can still manifest in the era of modern conformal radiation treatments for rectal cancer. We urge caution in the treatment of patients with rare ACTDs, but also emphasize that curative treatment should not be withheld in such patients. We conclude by advocating for the development and maintenance of a prospective multiinstitutional database of patients with ACTDs to help inform and improve future practice.
Collapse
Affiliation(s)
- Luca Valle
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - James Katz
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Austin Duffy
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Matthew Hueman
- Surgical Oncology Division, Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marybeth Hughes
- Division of Surgical Oncology, Department of Surgery, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Tristan Sissung
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - William Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Deborah Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
28
|
Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int 2022; 22:2. [PMID: 34980128 PMCID: PMC8725311 DOI: 10.1186/s12935-021-02407-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) therapy has become a promising therapeutic strategy with encouraging therapeutic outcomes due to their durable anti-tumor effects. Though, tumor inherent or acquired resistance to ICIs accompanied with treatment-related toxicities hamper their clinical utility. Overall, about 60-70% of patients (e.g., melanoma and lung cancer) who received ICIs show no objective response to intervention. The resistance to ICIs mainly caused by alterations in the tumor microenvironment (TME), which in turn, supports angiogenesis and also blocks immune cell antitumor activities, facilitating tumor cells' evasion from host immunosurveillance. Thereby, it has been supposed and also validated that combination therapy with ICIs and other therapeutic means, ranging from chemoradiotherapy to targeted therapies as well as cancer vaccines, can capably compromise tumor resistance to immune checkpoint blocked therapy. Herein, we have focused on the therapeutic benefits of ICIs as a groundbreaking approach in the context of tumor immunotherapy and also deliver an overview concerning the therapeutic influences of the addition of ICIs to other modalities to circumvent tumor resistance to ICIs.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Angelina O. Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramadhan Ado Khanamir
- Internal Medicine and Surgery Department, College of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | | | | | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
29
|
Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101460. [PMID: 34342126 DOI: 10.1002/smll.202101460] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The antitumor efficiency and clinical translation of traditional nanomedicines is mainly restricted by low drug loading, complex preparation technology, and potential toxicity caused by the overused carrier materials. In recent decades, small-molecule prodrug nanoassemblies (SMP-NAs), which are formed by the self-assembly of prodrugs themselves, have been widely investigated with distinct advantages of ultrahigh drug-loading and negligible excipients-trigged adverse reaction. Benefited from the simple preparation process, SMP-NAs are widely used for chemotherapy, phototherapy, immunotherapy, and tumor diagnosis. In addition, combination therapy based on the accurate co-delivery behavior of SMP-NAs can effectively address the challenges of tumor heterogeneity and multidrug resistance. Recent trends in SMP-NAs are outlined, and the corresponding self-assembly mechanisms are discussed in detail. Besides, the smart stimuli-responsive SMP-NAs and the combination therapy based on SMP-NAs are summarized, with special emphasis on the structure-function relationships. Finally, the outlooks and potential challenges of SMP-NAs in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
30
|
Wedekind H, Walz K, Buchbender M, Rieckmann T, Strasser E, Grottker F, Fietkau R, Frey B, Gaipl US, Rückert M. Head and neck tumor cells treated with hypofractionated irradiation die via apoptosis and are better taken up by M1-like macrophages. Strahlenther Onkol 2021; 198:171-182. [PMID: 34665291 PMCID: PMC8789708 DOI: 10.1007/s00066-021-01856-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Purpose The incidence of head and neck squamous cell carcinomas (HNSCC) is increasing worldwide, especially when triggered by the human papilloma virus (HPV). Radiotherapy has immune-modulatory properties, but the role of macrophages present in HNSCC and having contact with irradiated tumor cells remains unclear. The influence of irradiated (2 × 5Gy) HNSCC cells on the (re-)polarization and phagocytosis of human macrophages, either non-polarized or with a more M1 or M2 phenotype, was therefore investigated. Methods Human monocytes were differentiated with the hematopoietic growth factors M‑CSF (m) or GM-CSF (g) and additionally pre-polarized with either interleukin (IL)-4 and IL-10 or interferon (IFN)-γ and lipopolysaccharides (LPS), respectively. Subsequently, they were added to previously irradiated (2 × 5Gy) and mock-treated HPV-positive (UD-SCC-2) and HPV-negative (Cal33) HNSCC cells including their supernatants. Results The HNSCC cells treated with hypofractionated irradiation died via apoptosis and were strongly phagocytosed by M0m and M2 macrophages. M0g and M1 macrophages phagocytosed the tumor cells to a lesser extent. Irradiated HNSCC cells were better phagocytosed by M1 macrophages compared to mock-treated controls. The polarization status of the macrophages was not significantly changed, except for the expression of CD206 on M2 macrophages, which was reduced after phagocytosis of irradiated HPV-negative cells. Further, a significant increase in the uptake of irradiated HPV-positive cells by M0g macrophages when compared to HPV-negative cells was observed. Conclusion HNSCC cells treated with hypofractionated irradiation foster phagocytosis by anti-tumorigenic M1 macrophages. The data provide the first evidence on the impact of the HPV status of HNSCC cells on the modulation of the macrophage response to irradiated tumor cells.
Collapse
Affiliation(s)
- Hanna Wedekind
- Translational Radiobiology, Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kristina Walz
- Translational Radiobiology, Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mayte Buchbender
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thorsten Rieckmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Erwin Strasser
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fridolin Grottker
- Translational Radiobiology, Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
31
|
Paving the Way for Immunotherapy in Pediatric Acute Myeloid Leukemia: Current Knowledge and the Way Forward. Cancers (Basel) 2021; 13:cancers13174364. [PMID: 34503174 PMCID: PMC8431730 DOI: 10.3390/cancers13174364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Immunotherapy may be an attractive treatment option to increase survival, and to reduce treatment-related side effects, for children with acute myeloid leukemia (AML). While immunotherapies have shown successes in many cancer types, the development and subsequent clinical implementation have proven difficult in pediatric AML. To expedite the development of immunotherapy, it will be crucial to understand which pediatric AML patients are likely to respond to immunotherapies. Emerging research in solid malignancies has shown that the number and phenotype of immune cells in the tumor microenvironment is predictive of response to several types of immunotherapies. Such a predictive model may also be applicable for AML and, thus, knowledge on the immune cells infiltrating the bone marrow environment is needed. Here, we discuss the current state of knowledge on these infiltrating immune cells in pediatric AML, as well as ongoing immunotherapy trials, and provide suggestions concerning the way forward. Abstract Immunotherapeutic agents may be an attractive option to further improve outcomes and to reduce treatment-related toxicity for pediatric AML. While improvements in outcome have been observed with immunotherapy in many cancer types, immunotherapy development and implementation into patient care for both adult and pediatric AML has been hampered by an incomplete understanding of the bone marrow environment and a paucity of tumor-specific antigens. Since only a minority of patients respond in most immunotherapy trials across different cancer types, it will be crucial to understand which children with AML are likely to respond to or may benefit from immunotherapies. Immune cell profiling efforts hold promise to answer this question, as illustrated by the development of predictive scores in solid cancers. Such information on the number and phenotype of immune cells during current treatment regimens will be pivotal to generate hypotheses on how and when to intervene with immunotherapy in pediatric AML. In this review, we discuss the current understanding of the number and phenotype of immune cells in the bone marrow in pediatric AML, ongoing immunotherapy trials and how comprehensive immune profiling efforts may pave the way for successful clinical trials (and, ultimately, implementation into patient care).
Collapse
|
32
|
De Caluwé A, Buisseret L, Poortmans P, Van Gestel D, Salgado R, Sotiriou C, Larsimont D, Paesmans M, Craciun L, Stylianos D, Vandekerckhove C, Reyal F, Isabelle V, Eiger D, Piccart M, Romano E, Ignatiadis M. Neo-CheckRay: radiation therapy and adenosine pathway blockade to increase benefit of immuno-chemotherapy in early stage luminal B breast cancer, a randomized phase II trial. BMC Cancer 2021; 21:899. [PMID: 34362344 PMCID: PMC8343924 DOI: 10.1186/s12885-021-08601-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/14/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Residual breast cancer after neo-adjuvant chemotherapy (NACT) predicts disease outcome and is a surrogate for survival in aggressive breast cancer (BC) subtypes. Pathological complete response (pCR) rate, however, is lower for luminal B BC in comparison to the triple negative (TNBC) and HER2+ subtypes. The addition of immune checkpoint blockade (ICB) to NACT has the potential to increase pCR rate but is hampered by the lower immunogenicity of luminal B BC. Novel strategies are needed to stimulate the immune response and increase the response rate to ICB in luminal B BC. METHODS The Neo-CheckRay trial is a randomized phase II trial investigating the impact of stereotactic body radiation therapy (SBRT) to the primary breast tumor in combination with an anti-CD73 (oleclumab) to increase response to anti PD-L1 (durvalumab) and NACT. The trial is designed as a three-arm study: NACT + SBRT +/- durvalumab +/- oleclumab. The result at surgery will be evaluated using the residual cancer burden (RCB) index as the primary endpoint. Six patients will be included in a safety run-in, followed by a randomized phase II trial that will include 136 evaluable patients in 3 arms. Inclusion is limited to luminal B breast cancers that are MammaPrint genomic high risk. DISCUSSION combination of ICB with chemotherapy in luminal B BC might benefit from immune priming agents to increase the response rate. As none have been identified so far, this phase II trial will evaluate SBRT and oleclumab as potential immune priming candidates. TRIAL REGISTRATION trial registered on ClinicalTrials.gov ( NCT03875573 ) on March 14th, 2019.
Collapse
Affiliation(s)
- Alex De Caluwé
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium.
| | - Laurence Buisseret
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | | | - Dirk Van Gestel
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | | | - Christos Sotiriou
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | - Denis Larsimont
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | - Marianne Paesmans
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | - Ligia Craciun
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | - Drisis Stylianos
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | | | | | - Veys Isabelle
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | - Daniel Eiger
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | - Martine Piccart
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| | | | - Michail Ignatiadis
- Institut Jules Bordet, Université Libre de Bruxelles, Rue Héger Bordet 1, 1000, Brussels, Belgium
| |
Collapse
|
33
|
A Prospective Real-World Multi-Center Study to Evaluate Progression-Free and Overall Survival of Radiotherapy with Cetuximab and Platinum-Based Chemotherapy with Cetuximab in Locally Recurrent Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13143413. [PMID: 34298628 PMCID: PMC8305667 DOI: 10.3390/cancers13143413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Despite recent developments in immune checkpoint inhibitors, the treatment of locoregionally recurrent head and neck squamous cell cancer (HNSCC) remains challenging. Prospective data comparing re-irradiation with systemic treatment are not available. The SOCCER trial represents a prospective non-interventional multicenter trial that enrolled patients with locoregionally recurrent HNSCC treated with cetuximab in combination with re-radiotherapy or chemotherapy. A total of 192 patients were analyzed. Radiotherapy combined with cetuximab had superior progression-free and overall survival compared to chemotherapy with cetuximab. This highlights the high efficacy of local re-radiotherapy in combination with cetuximab in patients with locoregionally recurrent HNSCC. Abstract Treatment options of locoregional recurrent head and neck squamous cell cancer (HNSCC) include both local strategies as surgery or re-radiotherapy and systemic therapy. In this prospective, multi-center, non-interventional study, patients were treated either with platinum-based chemotherapy and cetuximab (CT + Cet) or re-radiotherapy and cetuximab (RT + Cet). In the current analysis, progression-free survival (PFS) and overall survival (OS) were compared in patients with locoregional recurrence. Four hundred seventy patients were registered in 97 German centers. After exclusion of patients with distant metastases, a cohort of 192 patients was analyzed (129 CT + Cet, 63 RT + Cet). Radiotherapy was delivered as re-irradiation to 70% of the patients. The mean radiation dose was 51.8 Gy, whereas a radiation dose of ≥60 Gy was delivered in 33% of the patients. Chemotherapy mainly consisted of cisplatin/5-flurouracil (40%) or carboplatin/5-flurouracil (29%). The median PFS was 9.2 months in the RT + Cet group versus 5.1 months in the CT + Cet group (hazard ratio for disease progression or death, 0.40, 95% CI, 0.27–0.57, p < 0.0001). Median OS was 12.8 months in the RT + Cet group versus 7.9 months in the CT + Cet group (hazard ratio for death, 0.50, 95% CI, 0.33–0.75, p = 0.0008). In conclusion, radiotherapy combined with cetuximab improved survival compared to chemotherapy combined with cetuximab in locally recurrent HNSCC.
Collapse
|
34
|
Balakrishnan PB, Sweeney EE, Ramanujam AS, Fernandes R. Photothermal therapies to improve immune checkpoint blockade for cancer. Int J Hyperthermia 2021; 37:34-49. [PMID: 33426992 DOI: 10.1080/02656736.2020.1797190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint blockade (ICB) comprising monoclonal antibodies (mAbs) against immune 'checkpoints', such as CTLA-4 and the PD1/PDL1 axis have dramatically improved clinical outcomes for patients with cancer. However, ICB by itself has failed to provide benefit in a wide range of solid tumors, where recurrence still occurs with high incidence. These poor response rates may be due to the therapeutic shortcomings of ICB; namely, a lack of cancer-specific cytotoxicity and ability to debulk tumors. To overcome these limitations, effective ICB therapy may require the combination with other complementary therapeutic platforms. Here, we propose that photothermal therapy (PTT) is an ideal therapeutic modality for combination with ICB because it can generate both tumor-specific cytotoxicity and immunogenicity. PTT elicits these specific effects because it is a localized thermal ablation technique that utilizes light-responsive nanoparticles activated by a wavelength-matched laser. While ICB immunotherapy alone improves cancer immunogenicity but does not generate robust antitumor cytotoxicity, nanoparticle-based PTT elicits targeted and controlled cytotoxicity but sub-optimal long-term immunogenicity. Thus, the two platforms offer complementary and potentially synergistic antitumor effects, which will be detailed in this review. We highlight three classes of nanoparticles used as agents of PTT (i.e., metallic inorganic nanoparticles, carbon-based nanoparticles and organic dyes), and illustrate the potential for nanoparticle-based PTT to potentiate the effects of ICB in preclinical models. Through this discussion, we aim to present PTT combined with ICB as a potent synergistic combination treatment for diverse cancer types currently refractory to ICB as well as PTT monotherapies.
Collapse
Affiliation(s)
- Preethi B Balakrishnan
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA
| | - Anvitha S Ramanujam
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA.,Thomas Jefferson High School for Science and Technology, Alexandria, VA, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC, USA.,The Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA.,Department of Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
35
|
He M, Yang T, Wang Y, Wang M, Chen X, Ding D, Zheng Y, Chen H. Immune Checkpoint Inhibitor-Based Strategies for Synergistic Cancer Therapy. Adv Healthc Mater 2021; 10:e2002104. [PMID: 33709564 DOI: 10.1002/adhm.202002104] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Immune checkpoint blockade therapy (ICBT) targeting checkpoints, such as, cytotoxic T-lymphocyte associated protein-4 (CTLA-4), programmed death-1 (PD-1), or programmed death-ligand 1 (PD-L1), can yield durable immune response in various types of cancers and has gained constantly increasing research interests in recent years. However, the efficacy of ICBT alone is limited by low response rate and immune-related side effects. Emerging preclinical and clinical studies reveal that chemotherapy, radiotherapy, phototherapy, or other immunotherapies can reprogramm immunologically "cold" tumor microenvironment into a "hot" one, thus synergizing with ICBT. In this review, the working principle and current development of various immune checkpoint inhibitors are summarized, while the interactive mechanism and recent progress of ICBT-based synergistic therapies with other immunotherapy, chemotherapy, phototherapy, and radiotherapy in fundamental and clinical studies in the past 5 years are depicted and highlighted. Moreover, the potential issues in current studies of ICBT-based synergistic therapies and future perspectives are also discussed.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yuhan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Xingye Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yiran Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
- State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou 215123 China
| |
Collapse
|
36
|
de Jong FC, Rutten VC, Zuiverloon TCM, Theodorescu D. Improving Anti-PD-1/PD-L1 Therapy for Localized Bladder Cancer. Int J Mol Sci 2021; 22:2800. [PMID: 33802033 PMCID: PMC7998260 DOI: 10.3390/ijms22062800] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
In high-risk non-muscle invasive bladder cancer (HR-NMIBC), patient outcome is negatively affected by lack of response to Bacillus-Calmette Guérin (BCG) treatment. Lack of response to cisplatin-based neoadjuvant chemotherapy and cisplatin ineligibility reduces successful treatment outcomes in muscle-invasive bladder cancer (MIBC) patients. The effectiveness of PD-1/PD-L1 immune checkpoint inhibitors (ICI) in metastatic disease has stimulated its evaluation as a treatment option in HR-NMIBC and MIBC patients. However, the observed responses, immune-related adverse events and high costs associated with ICI have provided impetus for the development of methods to improve patient stratification, enhance anti-tumorigenic effects and reduce toxicity. Here, we review the challenges and opportunities offered by PD-1/PD-L1 inhibition in HR-NMIBC and MIBC. We highlight the gaps in the field that need to be addressed to improve patient outcome including biomarkers for response stratification and potentially synergistic combination therapy regimens with PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Florus C. de Jong
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (F.C.d.J.); (V.C.R.); (T.C.M.Z.)
| | - Vera C. Rutten
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (F.C.d.J.); (V.C.R.); (T.C.M.Z.)
| | - Tahlita C. M. Zuiverloon
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands; (F.C.d.J.); (V.C.R.); (T.C.M.Z.)
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Departments of Surgery (Urology) and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
37
|
Song M, Liu C, Chen S, Zhang W. Nanocarrier-Based Drug Delivery for Melanoma Therapeutics. Int J Mol Sci 2021; 22:1873. [PMID: 33668591 PMCID: PMC7918190 DOI: 10.3390/ijms22041873] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma, as a tumor cell derived from melanocyte transformation, has the characteristics of malignant proliferation, high metastasis, rapid recurrence, and a low survival rate. Traditional therapy has many shortcomings, including drug side effects and poor patient compliance, and so on. Therefore, the development of an effective treatment is necessary. Currently, nanotechnologies are a promising oncology treatment strategy because of their ability to effectively deliver drugs and other bioactive molecules to targeted tissues with low toxicity, thereby improving the clinical efficacy of cancer therapy. In this review, the application of nanotechnology in the treatment of melanoma is reviewed and discussed. First, the pathogenesis and molecular targets of melanoma are elucidated, and the current clinical treatment strategies and deficiencies of melanoma are then introduced. Following this, we discuss the main features of developing efficient nanosystems and introduce the latest reports in the literature on nanoparticles for the treatment of melanoma. Subsequently, we review and discuss the application of nanoparticles in chemotherapeutic agents, immunotherapy, mRNA vaccines, and photothermal therapy, as well as the potential of nanotechnology in the early diagnosis of melanoma.
Collapse
Affiliation(s)
| | | | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (M.S.); (C.L.)
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China; (M.S.); (C.L.)
| |
Collapse
|
38
|
Bladder preservation therapy in combination with atezolizumab and radiation therapy for invasive bladder cancer (BPT-ART) - A study protocol for an open-label, phase II, multicenter study. Contemp Clin Trials Commun 2021; 21:100724. [PMID: 33615035 PMCID: PMC7878176 DOI: 10.1016/j.conctc.2021.100724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/09/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
Radical cystectomy (RC) is recommended for muscle-invasive bladder cancer (MIBC) or highest-risk non-muscle-invasive bladder cancer (NMIBC). Trimodal therapy (TMT) is the most favorable strategy among bladder preservation therapies (BPT) for patients who are ineligible for or refuse RC. However, referrals for TMT, especially following chemotherapy, are limited by the patient's condition. Therefore, new BPT approaches are needed. Atezolizumab inhibits programmed death-ligand 1, is well-tolerated in patient populations heavily dominated by renal insufficiency, and is expected to have synergistic anti-tumor effects in combination with radiation therapy (RT). Therefore, we have conducted this open-label phase II multicenter study to evaluate the efficacy and safety of RT in combination with atezolizumab for T2-3 MIBC and highest-risk T1 NMIBC patients. This study was initiated in January 2019, and we aimed to enroll a total of 45 patients. The study is registered in the Japan Registry of Clinical Trials (Identifier: RCT2031180060).
Collapse
|
39
|
Das D, Li J, Cheng L, Franco S, Mahairaki V. Human Forebrain Organoids from Induced Pluripotent Stem Cells: A Novel Approach to Model Repair of Ionizing Radiation-Induced DNA Damage in Human Neurons. Radiat Res 2020; 194:191-198. [PMID: 32845994 DOI: 10.1667/rr15567.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/30/2020] [Indexed: 11/03/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) can generate virtually any cell type and therefore are applied to studies of organ development, disease modeling, drug screening and cell replacement therapy. Under proper culture conditions in vitro induced pluripotent stem cells (iPSCs) can be differentiated to form organ-like tissues, also known as "organoids", which resemble organs more closely than cells, in vivo. We hypothesized that human brain organoids can be used as an experimental model to study mechanisms underlying DNA repair in human neurons and their progenitors after radiation-induced DNA double-strand breaks (DSBs), the most severe form of DNA damage. To this end, we customized a protocol for brain organoid generation that is time efficient. These organoids recapitulate key features of human cortical neuron development, including a subventricular zone containing neural progenitors that mature to postmitotic cortical neurons. Using immunofluorescence to measure DNA DSB markers, such as γ-H2AX and 53BP1, we quantified the kinetics of DSB repair in neural progenitors within the subventricular zone for up to 24 h after a single 2 Gy dose of ionizing radiation. Our data on DNA repair in progenitor versus mature neurons indicate a similar timeline: both repair DNA DSBs which is mostly resolved by 18 h postirradiation. However, repair kinetics are more acute in progenitors than mature neurons in the mature organoid. Overall, this study supports the use of 3D organoid culture technology as a novel platform to study DNA damage responses in developing or mature neurons, which has been previously difficult to study.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Radiation Oncology and Molecular Radiation Sciences, and the Sidney Kimmel Comprehensive Cancer Center.,Department of Neurology
| | | | - Linzhao Cheng
- Division of Hematology, Department of Medicine, and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Sonia Franco
- Department of Radiation Oncology and Molecular Radiation Sciences, and the Sidney Kimmel Comprehensive Cancer Center
| | | |
Collapse
|
40
|
Hecht M, Gaipl US, Fietkau R. [Promising results of the combination of radiotherapy and pembrolizumab in metastatic NSCLC]. Strahlenther Onkol 2020; 196:289-292. [PMID: 32040692 DOI: 10.1007/s00066-019-01573-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Markus Hecht
- Universitäts-Strahlenklinik Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Deutschland.
| | - Udo S Gaipl
- Universitäts-Strahlenklinik Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Deutschland
| | - Rainer Fietkau
- Universitäts-Strahlenklinik Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Deutschland
| |
Collapse
|
41
|
Chen Y, Zheng ZQ, Chen FP, Yan JY, Huang XD, Li F, Sun Y, Zhou GQ. Role of Postoperative Radiotherapy in Nonmetastatic Head and Neck Adenoid Cystic Carcinoma. J Natl Compr Canc Netw 2020; 18:1476-1484. [PMID: 33152705 DOI: 10.6004/jnccn.2020.7593] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/19/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Head and neck adenoid cystic carcinoma (ACC) is a rare malignant tumor that is prone to local recurrence. The NCCN Guidelines for Head and Neck Cancers recommend that all patients with ACC receive postoperative radiotherapy (PORT). However, whether PORT can improve local control and which patients can benefit from PORT are unknown. This study aimed to assess the role of PORT and provide individualized suggestions for postoperative therapy in patients with ACC. PATIENTS AND METHODS We retrospectively reviewed patients with nonmetastatic head and neck ACC who underwent surgery with or without PORT. Recursive partitioning analysis (RPA) was performed to categorize the patients and predict local recurrence-free survival (LRFS). The survival outcome was compared between non-PORT and PORT groups. RESULTS A total of 319 patients were included. PORT was identified as a prognostic factor for LRFS in univariate (P=.01) and multivariate analysis (P<.01). However, it did not improve distant metastasis-free survival, disease-free survival, or overall survival in univariate analysis. RPA categorized patients into 3 prognostic groups: low-risk (negative margin, T1-T2, primary location = major or minor salivary gland), intermediate-risk (negative margin, T1-T2, primary location = other locations instead of a major or minor salivary gland; negative margin, T3-T4; positive margin, without bone invasion), and high-risk (positive margin, with bone invasion). Significant LRFS improvements in the PORT group were observed among intermediate-risk (P<.01) and high-risk patients (P<.05). LRFS improvements among low-risk patients were relatively insignificant (P=.10). CONCLUSIONS PORT was shown to be a positive prognostic factor for improved LRFS in ACC. Furthermore, PORT could significantly improve LRFS in intermediate-risk and high-risk patients with ACC, but whether low-risk patients could benefit from PORT needs further study.
Collapse
Affiliation(s)
- Yue Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center.,State Key Laboratory of Oncology in South China.,Collaborative Innovation Center of Cancer Medicine, and.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China; and
| | - Zi-Qi Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center.,State Key Laboratory of Oncology in South China.,Collaborative Innovation Center of Cancer Medicine, and.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China; and
| | - Fo-Ping Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center.,State Key Laboratory of Oncology in South China.,Collaborative Innovation Center of Cancer Medicine, and.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China; and
| | - Jian-Ye Yan
- Department of Radiation Oncology, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People's Republic of China
| | - Xiao-Dan Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center.,State Key Laboratory of Oncology in South China.,Collaborative Innovation Center of Cancer Medicine, and.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China; and
| | - Feng Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center.,State Key Laboratory of Oncology in South China.,Collaborative Innovation Center of Cancer Medicine, and.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China; and
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center.,State Key Laboratory of Oncology in South China.,Collaborative Innovation Center of Cancer Medicine, and.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China; and
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center.,State Key Laboratory of Oncology in South China.,Collaborative Innovation Center of Cancer Medicine, and.,Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China; and
| |
Collapse
|
42
|
Schubert P, Rutzner S, Eckstein M, Frey B, Schweizer C, Haderlein M, Lettmaier S, Semrau S, Gostian AO, Zhou JG, Gaipl US, Fietkau R, Hecht M. Prospective Evaluation of All-lesion Versus Single-lesion Radiotherapy in Combination With PD-1/PD-L1 Immune Checkpoint Inhibitors. Front Oncol 2020; 10:576643. [PMID: 33251140 PMCID: PMC7673414 DOI: 10.3389/fonc.2020.576643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022] Open
Abstract
Background Local ablative treatments improve survival in patients with oligometastatic disease in addition to chemotherapy. The application of immune checkpoint inhibitors prolonged patients’ survival in different tumor entities. This raises the question if patients still benefit from intensified local treatments in combination with a more efficient systemic treatment with immune checkpoint inhibitors. Methods The prospective non-interventional ST-ICI trial investigates treatment with PD-1/PD-L1 (Programmed cell death protein 1/Programmed cell death 1 ligand 1) immune checkpoint inhibitors and radiotherapy in different tumor entities. Patients who started radiotherapy and immunotherapy concomitantly were included in this interim analysis. In this cohort patients with all-lesion radiotherapy (all tumor lesions irradiated, al-RT) were compared to patients with radiotherapy to only a single of their tumor lesions (single-lesion radiotherapy, sl-RT). Endpoints of the interim analysis were progression-free survival (PFS), overall survival (OS) and time to progression (TTP). Results A total of 104 patients were registered between April 2017 and August 2019. Fifty patients started immune checkpoint inhibitor treatment and radiotherapy concomitantly and were included. Most frequent tumor entities were non-small cell lung cancer (62%) followed by head and neck squamous cell cancer (26%). Most frequent location of radiotherapy was lung (34%) and central nervous system (20%). Median duration of follow-up was 8.6 months beginning with first administration of the immune-checkpoint-inhibitor. Median PFS was 9.2 months (95% CI, 5.8 – 12.6) in the al-RT group and 3.0 months (95% CI, 2.5 – 3.5) in the sl-RT group (p<0.001). Median OS was 11.6 months (95% CI, 8.1 - 15.1) in the al-RT group and 4.2 months (95% CI, 3.0 - 5.4) in the sl-RT group (p=0.007). Median TTP was not reached in the al-RT group compared to 4.6 months (95% CI, 1.1–8.0) in the sl-RT group (p=0.028). Univariate Cox regression analyses computed tumor entity, histology, central nervous system metastases, immunotherapy drug and al-RT as predictors of OS (with an effect p-value of ≤ 0.1). In the multivariable analysis only tumor entity and al-RT remained prognostic factors for OS. Conclusion Patients with PD-1/PD-L1 immune checkpoint inhibitor therapy benefit from local radiotherapy to all known lesions compared to single-lesion radiotherapy regarding PFS and OS.
Collapse
Affiliation(s)
- Philipp Schubert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sandra Rutzner
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Claudia Schweizer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Marlen Haderlein
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sabine Semrau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Antoniu-Oreste Gostian
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Department of Otolaryngology-Head & Neck Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jian-Guo Zhou
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
43
|
Sun L, Huang C, Zhu M, Guo S, Gao Q, Wang Q, Chen B, Li R, Zhao Y, Wang M, Chen Z, Shen B, Zhu W. Gastric cancer mesenchymal stem cells regulate PD-L1-CTCF enhancing cancer stem cell-like properties and tumorigenesis. Am J Cancer Res 2020; 10:11950-11962. [PMID: 33204322 PMCID: PMC7667687 DOI: 10.7150/thno.49717] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Mesenchymal stem cells (MSCs) have been the focus of many studies because of their abilities to modulate immune responses, angiogenesis, and promote tumor growth and metastasis. Our previous work showed that gastric cancer MSCs (GCMSCs) promoted immune escape by secreting of IL-8, which induced programmed cell death ligand 1 (PD-L1) expression in GC cells. Mounting evidence has revealed that PD-L1 expression is related to intrinsic tumor cell properties. Here, we investigated whether GCMSCs maintained a pool of cancer stem cells (CSCs) through PD-L1 signaling and the specific underlying molecular mechanism. Methods: Stem cell surface markers, aldehyde dehydrogenase (ALDH) activity, migration and sphere formation abilities were tested to evaluate the stemness of GC cells. PD-L1-expressing lentivirus and PD-L1 specific siRNA were used to analyze the effects of PD-L1 on GC cells stemness. Annexin V/PI double staining was used to assess apoptosis of GC cells induced by chemotherapy. Co-Immunoprecipitation (Co-IP) and Mass spectrometry were employed to determine the PD-L1 binding partner in GC cells. PD-L1Negative and PD-L1Positive cells were sorted by flow cytometry and used for limiting dilution assays to verify the effect of PD-L1 on tumorigenic ability in GC cells. Results: The results showed that GCMSCs enhanced the CSC-like properties of GC cells through PD-L1, which led to the resistance of GC cells to chemotherapy. PD-L1 associated with CTCF to contribute to the stemness and self-renewal of GC cells. In vivo, PD-L1Positive GC cells had greater stemness potential and tumorigenicity than PD-L1Negative GC cells. The results also indicated that GC cells were heterogeneous, and that PD-L1 in GC cells had different reactivity to GCMSCs. Conclusions: Overall, our data indicated that GCMSCs enriched CSC-like cells in GC cells, which gives a new insight into the mechanism of GCMSCs prompting GC progression and provides a potential combined therapeutic target.
Collapse
|
44
|
Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, Kiaie SH, Jadidi-Niaragh F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 2020; 77:3693-3710. [PMID: 32006051 PMCID: PMC11104895 DOI: 10.1007/s00018-020-03459-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy is considered as an effective method for cancer treatment owing to the induction of specific and long-lasting anti-cancer effects. Immunotherapeutic strategies have shown significant success in human malignancies, particularly in prostate cancer (PCa), a major global health issue regarding its high metastatic rates. In fact, the first cancer vaccine approved by FDA was Provenge, which has been successfully used for treatment of PCa. Despite the remarkable success of cancer immunotherapy in PCa, many of the developed immunotherapy methods show poor therapeutic outcomes. Immunosuppression in tumor microenvironment (TME) induced by non-functional T cells (CD4+ and CD8+), tolerogenic dendritic cells (DCs), and regulatory T cells, has been reported to be the main obstacle to the effectiveness of anti-tumor immune responses induced by an immunotherapy method. The present review particularly focuses on the latest findings of the immune checkpoints (ICPs), including CTLA-4, PD-1, PD-L1, LAG-3, OX40, B7-H3, 4-1BB, VISTA, TIM-3, and ICOS; these checkpoints are able to have immune modulatory effects on the TME of PCa. This paper further discusses different approaches in ICPs targeting therapy and summarizes the latest advances in the clinical application of ICP-targeted therapy as monotherapy or in combination with other cancer therapy modalities in PCa.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| | - Houman Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saied Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasrin Maleki-Dizaji
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Barghi
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Nielsen S, Bassler N, Grzanka L, Swakon J, Olko P, Horsman MR, Sørensen BS. Proton scanning and X-ray beam irradiation induce distinct regulation of inflammatory cytokines in a preclinical mouse model. Int J Radiat Biol 2020; 96:1238-1244. [PMID: 32780616 DOI: 10.1080/09553002.2020.1807644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Conventional X-ray radiotherapy induces a pro-inflammatory response mediated by altered expression of inflammation-regulating cytokines. Proton scanning and X-ray irradiation produce distinct changes to cytokine gene expression in vitro suggesting that proton beam therapy may induce an inflammatory response dissimilar to that of X-ray radiation. The purpose of the present study was to determine whether proton scanning beam radiation and conventional X-ray photon radiation would induce differential regulation of circulating cytokines in vivo. MATERIALS AND METHODS Female CDF1 mice were irradiated locally at the right hind leg using proton pencil beam scanning or X-ray photons. Blood samples were obtained from two separate mice groups. Samples from one group were drawn by retro-orbital puncture 16 months post irradiation, while samples from the other group were drawn 5 and 30 days post irradiation. Concentration of the cytokines IL-6, IL-1β, IL-10, IL-17A, IFN-γ, and TNFα was measured in plasma using bead-based immunoassays. RESULTS The cytokines IL-6, IL-1β, IL-10, IFN-γ, and TNFα were expressed at lower levels in plasma samples from proton-irradiated mice compared with X-ray-irradiated mice 16 months post irradiation. The same cytokines were downregulated in proton-irradiated mice 5 days post irradiation when compared to controls, while at day 30 expression had increased to the same level or higher. X-ray radiation did not markedly change expression levels at days 5 and 30. CONCLUSIONS The inflammatory response to proton and X-ray irradiation seem to be distinct as the principal pro-inflammatory cytokines are differentially regulated short- and long-term following irradiation. Both the development of normal tissue damage and efficacy of immunotherapy could be influenced by an altered inflammatory response to irradiation.
Collapse
Affiliation(s)
- Steffen Nielsen
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
46
|
Trommer M, Kinsky J, Adams A, Hellmich M, Schlaak M, von Bergwelt-Baildon M, Celik E, Rosenbrock J, Morgenthaler J, Herter JM, Linde P, Mauch C, Theurich S, Marnitz S, Baues C. Addition of Radiotherapy to Immunotherapy: Effects on Outcome of Different Subgroups Using a Propensity Score Matching. Cancers (Basel) 2020; 12:cancers12092429. [PMID: 32867046 PMCID: PMC7563550 DOI: 10.3390/cancers12092429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibition (ICI) has been established as successful modality in cancer treatment. Combination concepts are used to optimize treatment outcome, but may also induce higher toxicity rates than monotherapy. Several rationales support the combination of radiotherapy (RT) with ICI as radioimmunotherapy (RIT), but it is still unknown in which clinical situation RIT would be most beneficial. Therefore, we have conducted a retrospective matched-pair analysis of 201 patients with advanced-stage cancers and formed two groups treated with programmed cell death protein 1 (PD-1) inhibitors only (PD1i) or in combination with local RT (RIT) at our center between 2013 and 2017. We collected baseline characteristics, programmed death ligand 1 (PD-L1) status, mutational status, PD-1 inhibitor and RT treatment details, and side effects according to the Common Terminology Criteria for Adverse Events (CTCAE) v.5.0. Patients received pembrolizumab (n = 93) or nivolumab (n = 108), 153 with additional RT. For overall survival (OS) and progression-free survival (PFS), there was no significant difference between both groups. After propensity score matching (PSM), we analyzed 96 patients, 67 with additional and 29 without RT. We matched for different covariates that could have a possible influence on the treatment outcome. The RIT group displayed a trend towards a longer OS until the PD1i group reached a survival plateau. PD-L1-positive patients, smokers, patients with a BMI ≤ 25, and patients without malignant melanoma showed a longer OS when treated with RIT. Our data show that some subgroups may benefit more from RIT than others. Suitable biomarkers as well as the optimal timing and dosage must be established in order to achieve the best effect on cancer treatment outcome.
Collapse
Affiliation(s)
- Maike Trommer
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (J.K.); (E.C.); (J.R.); (J.M.); (J.M.H.); (P.L.); (S.M.); (C.B.)
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (M.S.); (M.v.B.-B.); (S.T.)
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Correspondence: ; Tel.: +49-221-4780; Fax: +49-221-4786648
| | - Jaika Kinsky
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (J.K.); (E.C.); (J.R.); (J.M.); (J.M.H.); (P.L.); (S.M.); (C.B.)
| | - Anne Adams
- Institute of Medical Statistics and Computational Biology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (A.A.); (M.H.)
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (A.A.); (M.H.)
| | - Max Schlaak
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (M.S.); (M.v.B.-B.); (S.T.)
- Department of Dermatology and Allergology, LMU University Hospital, Ludwig-Maximilians University (LMU), Munich, Frauenlobstr. 9-11, 80377 Munich, Germany
| | - Michael von Bergwelt-Baildon
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (M.S.); (M.v.B.-B.); (S.T.)
- Department III of Internal Medicine, LMU University Hospital, Ludwig-Maximilians University (LMU), Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (J.K.); (E.C.); (J.R.); (J.M.); (J.M.H.); (P.L.); (S.M.); (C.B.)
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
| | - Johannes Rosenbrock
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (J.K.); (E.C.); (J.R.); (J.M.); (J.M.H.); (P.L.); (S.M.); (C.B.)
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
| | - Janis Morgenthaler
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (J.K.); (E.C.); (J.R.); (J.M.); (J.M.H.); (P.L.); (S.M.); (C.B.)
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
| | - Jan M. Herter
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (J.K.); (E.C.); (J.R.); (J.M.); (J.M.H.); (P.L.); (S.M.); (C.B.)
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Philipp Linde
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (J.K.); (E.C.); (J.R.); (J.M.); (J.M.H.); (P.L.); (S.M.); (C.B.)
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
| | - Cornelia Mauch
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
- Department of Dermatology and Allergology, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sebastian Theurich
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (M.S.); (M.v.B.-B.); (S.T.)
- Department III of Internal Medicine, LMU University Hospital, Ludwig-Maximilians University (LMU), Munich, Marchioninistr. 15, 81377 Munich, Germany
- Cancer & Immunometabolism Research Group, Gene Center LMU, Ludwig-Maximilians University, Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Simone Marnitz
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (J.K.); (E.C.); (J.R.); (J.M.); (J.M.H.); (P.L.); (S.M.); (C.B.)
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (M.S.); (M.v.B.-B.); (S.T.)
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
| | - Christian Baues
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (J.K.); (E.C.); (J.R.); (J.M.); (J.M.H.); (P.L.); (S.M.); (C.B.)
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (M.S.); (M.v.B.-B.); (S.T.)
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
47
|
Attademo L, Tuninetti V, Pisano C, Cecere SC, Di Napoli M, Tambaro R, Valabrega G, Musacchio L, Setola SV, Piccirillo P, Califano D, Spina A, Losito S, Greggi S, Pignata S. Immunotherapy in cervix cancer. Cancer Treat Rev 2020; 90:102088. [PMID: 32827839 DOI: 10.1016/j.ctrv.2020.102088] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
The treatment approach to cervix cancer has remained unchanged for several decades and new therapeutic strategies are now required to improve outcomes, as the prognosis is still poor. In the last years, a better understanding of HPV tumor-host immune system interactions and the development of new therapeutics targeting immune checkpoints generated interest in the use of immunotherapy in cervix cancer. Preliminary phase I-II trials demonstrated the efficacy, the duration of responses and the manageable safety of this approach. Currently, many phase II and III studies are ongoing in both locally advanced and metastatic cervical cancer, assessing immunotherapy as a single agent or in combination with chemotherapy and radiotherapy. We reviewed the published data and the therapeutic implications of the most promising novel immunotherapeutic agents under investigation in cervix cancer.
Collapse
Affiliation(s)
- Laura Attademo
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Valentina Tuninetti
- Candiolo Cancer Institute, FPO-IRCCS Candiolo (TO), Italy; Department of Oncology, University of Torino, Italy.
| | - Carmela Pisano
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Sabrina Chiara Cecere
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Marilena Di Napoli
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Rosa Tambaro
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Giorgio Valabrega
- Candiolo Cancer Institute, FPO-IRCCS Candiolo (TO), Italy; Department of Oncology, University of Torino, Italy.
| | - Lucia Musacchio
- Department of Maternal and Child Health and Urological Sciences, University "Sapienza", Policlinico Umberto I, Rome, Italy.
| | | | - Patrizia Piccirillo
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Daniela Califano
- Functional Genomic Unit, Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Anna Spina
- Functional Genomic Unit, Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Simona Losito
- Surgical Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Stefano Greggi
- Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.
| |
Collapse
|
48
|
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol 2020; 86:106761. [PMID: 32629409 DOI: 10.1016/j.intimp.2020.106761] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy is one of the most common modalities for the treatment of cancer. One of the most promising effects of radiotherapy is immunologic cell death and the release of danger alarms, which are known as damage-associated molecular patterns (DAMPs). DAMPs are able to trigger cancer cells and other cells within tumor microenvironment (TME), either for suppression or promotion of tumor growth. Heat shock proteins (HSPs) including HSP70 and HSP90, high mobility group box 1 (HMGB1), and adenosine triphosphate (ATP) and its metabolites such as adenosine are the most common danger alarms that are released after radiotherapy-induced immunologic cell death. Some DAMPs including adenosine is able to interact with both cancer cells as well as other cells in TME to promote tumor growth and resistance to radiotherapy. However, others are able to trigger anti-tumor immunity or both tumor suppressive and immunosuppressive mechanisms depending on affected cells. In this review, we explain the mechanisms behind the release of radiation-induced DAMPs, and its consequences on cells within tumor. Targeting of these mechanisms may be in favor of tumor control in combination with radiotherapy and radioimmunotherapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| | - Shahram Taeb
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
49
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
50
|
Ahlstedt J, Konradsson E, Ceberg C, Redebrandt HN. Increased effect of two-fraction radiotherapy in conjunction with IDO1 inhibition in experimental glioblastoma. PLoS One 2020; 15:e0233617. [PMID: 32469935 PMCID: PMC7259656 DOI: 10.1371/journal.pone.0233617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/09/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives The aim of the study was to investigate therapeutic efficacy of single- or two-fraction radiotherapy in conjunction with IDO1-inhibition in a syngeneic rat glioblastoma model. IDO is known to cause immunosuppression through breakdown of tryptophan in the tumor microenvironment. Methods Gene expression analyses of IDO in glioblastoma were performed with data from publicly available datasets. Fractionation studies were done on animals to evaluate tumor size, immune cell infiltration of tumors and serum profile on day 18 after tumor inoculation. Survival analyses were done with animals carrying intracranial glioblastomas comparing two-fraction radiotherapy+IDO1-inhibition to controls. IDO inhibition was achieved by administration of 1-methyl tryptophan (1-MT), and radiotherapy (RT) was delivered in doses of 8Gy. Results The expression of IDO1 was increased on gene level in glioblastoma stem cells. Tumor size was significantly reduced in animals treated with 1-MT+RTx 2 (both long and short intervals, i.e. 7 and 4 days between the treatments) as compared to control animals, animals treated with only 1-MT or animals treated with 1-MT+RTx1. Serum levels of IL-1A were significantly altered in all treated animals as compared to control animals. Survival was significantly increased in the animals treated with 1-MT+RTx2 (7-day interval) compared to control animals. Conclusions Addition of two-fraction RT to IDO1 inhibition with 1-MT significantly reduced tumor size in animals with glioblastoma. Survival was significantly increased in animals treated with two-fractioned RT+1-MT as compared to untreated controls increased significantly. Advances in knowledge The currently used combination of only two fractions of radiotherapy and immune therapy is a promising area of research, increasing efficacy compared to single fraction irradiation, while potentially lowering radiation side effects compared to radiation in current clinical practice.
Collapse
Affiliation(s)
- Jonatan Ahlstedt
- Division of Neurosurgery, Department of Clinical Sciences, The Rausing Laboratory, Lund University, Lund, Sweden
- * E-mail:
| | - Elise Konradsson
- Department of Clinical Sciences, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Crister Ceberg
- Department of Clinical Sciences, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- Division of Neurosurgery, Department of Clinical Sciences, The Rausing Laboratory, Lund University, Lund, Sweden
| |
Collapse
|