1
|
Algazlan AJ, Aljazeeri I, Yousef M, Abdelsamad Y, Almuhawas F, Alzahrani F, Alsanosi A. Electrophysiological and Behavioral Programming Parameters in Patients with Facial Nerve Stimulation Post-Cochlear Implantation. J Int Adv Otol 2025; 21:1-6. [PMID: 40207349 PMCID: PMC12001502 DOI: 10.5152/iao.2025.241704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 04/11/2025] Open
Abstract
Background The aim of this study is to compare patients who develop facial nerve stimulation (FNS) after cochlear implantation (CI) and are managed with a triphasic stimulation pulse pattern (TPP) to those who do not develop FNS regarding the behavioral mapping parameters including the most comfortable loudness level (MCL) charge and amplitude, and the threshold level (THR), as well as the electrophysiological mapping parameters including phase duration (PD) and impedance level. Methods A retrospective chart review of the patients who developed FNS at any point after device activation and were managed with TPP was carried out. Electrophysiological and behavioral mapping parameters were retrieved from the programming software database at 3 time points: the time of implantation, the time of shift to TPP, and the last programming session. A control group with no FNS was matched randomly to evaluate any difference in the mapping parameters that could be attributed to FNS. Results Sixteen ears with FNS were found to be eligible for inclusion in this study. These cases were matched to 16 ears in the control group. The programming was changed from biphasic pulse pattern (BPP) to TPP (time point -1) after a period of 22.37 ± 14.62 months. Resolution of FNS was achieved in 14 ears (87.5%) by using TPP alone. Conclusion The TPP mapping strategy, in addition to decreased phase duration, showed successful results in managing facial nerve stimulation while allowing an increase in the hearing level in the form of increased MCL amplitude.
Collapse
Affiliation(s)
- Alhassan J Algazlan
- King Abdullah Ear Specialist Center, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Otolaryngology-Head and Neck Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Isra Aljazeeri
- King Abdullah Ear Specialist Center, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Otolaryngology-Head and Neck Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
- Otolaryngology and Ophthalmology Specialized Aljaber Hospital, Ministry of Health, Ahsa, Saudi Arabia
| | - Medhat Yousef
- King Abdullah Ear Specialist Center, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Otolaryngology-Head and Neck Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
- Department of ENT, Audio Vestibular Medicine Unit, Menoufia University, Menoufia, Egypt
| | | | - Fida Almuhawas
- King Abdullah Ear Specialist Center, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Otolaryngology-Head and Neck Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Farid Alzahrani
- King Abdullah Ear Specialist Center, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Otolaryngology-Head and Neck Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
| | - Abdulrahman Alsanosi
- King Abdullah Ear Specialist Center, King Saud University Medical City, Riyadh, Saudi Arabia
- Department of Otolaryngology-Head and Neck Surgery, King Saud University College of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Schröder A, Takanen M, Schwarz K, Lenarz T, Gärtner L, Büchner A. Effects of stimulus polarity on the local evoked potential in auditory brainstem implant users. Sci Rep 2025; 15:5832. [PMID: 39966629 PMCID: PMC11836220 DOI: 10.1038/s41598-025-90114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Auditory brainstem implants (ABI) can enable hearing sensation through electrical stimulation of the cochlear nucleus. The basic stimulation and signal coding strategies of the ABI are based on those of the cochlear implant. This may not always be optimal, and ABI-specific strategies may be preferred. In a cohort of ten ABI users, we examined the feasibility of measuring local evoked potentials (LEP) via fine-grained stimulation with a forward masking paradigm. We introduce a new baseline-dependent definition of LEP amplitude for analyzing the LEP amplitude growth function to obtain threshold stimulation levels and slope values. The processing of biphasic pulses by the cochlear nucleus and the influence of the leading phase polarity were examined. There were no statistically significant differences in LEP thresholds or slopes between cathodic and anodic leading pulses. LEP thresholds measured with cathodic leading pulses (r = 0.77, t31 = 6.81, p < 0.0001) and anodic leading pulses (r = 0.70, t27 = 45.14, p < 0.0001) correlated significantly with perceptual hearing thresholds. The correlation analysis was impacted by outlier values, especially in the case of LEP thresholds measured with anodic leading pulses. Cathodic leading pulses had significantly shorter LEP peak latencies (t104.8 = 2.63, p < 0.01). These results show that the cathodic leading pulses are superior for eliciting LEPs. We suggest that cathodic leading pulses should be the basis for ABI-specific coding strategies.
Collapse
Affiliation(s)
- Anne Schröder
- MED-EL Deutschland GmbH, Starnberg, Germany
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | | | | | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Cluster of Excellence "Hearing4All", Hannover, Germany
| | - Lutz Gärtner
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Andreas Büchner
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Cluster of Excellence "Hearing4All", Hannover, Germany
| |
Collapse
|
3
|
Fellner A, Wenger C, Heshmat A, Rattay F. Auditory nerve fiber excitability for alternative electrode placement in the obstructed human cochlea: electrode insertion in scala vestibuli versus scala tympani. J Neural Eng 2024; 21:046034. [PMID: 39029505 DOI: 10.1088/1741-2552/ad6597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. The cochlear implant (CI) belongs to the most successful neuro-prostheses. Traditionally, the stimulating electrode arrays are inserted into the scala tympani (ST), the lower cochlear cavity, which enables simple surgical access. However, often deep insertion is blocked, e.g. by ossification, and the auditory nerve fibers (ANFs) of lower frequency regions cannot be stimulated causing severe restrictions in speech understanding. As an alternative, the CI can be inserted into the scala vestibuli (SV), the other upper cochlear cavity.Approach. In this computational study, the excitability of 25 ANFs are compared for stimulation with ST and SV implants. We employed a 3-dimensional realistic human cochlear model with lateral wall electrodes based on aμ-CT dataset and manually traced fibers. A finite element approach in combination with a compartment model of a spiral ganglion cell was used to simulate monophasic stimulation with anodic (ANO) and cathodic (CAT) pulses of 50μs.Main results. ANO thresholds are lower in ST (mean/std =μ/σ= 189/55μA) stimulation compared to SV (μ/σ= 323/119μA) stimulation. Contrary, CAT thresholds are higher for the ST array (μ/σ= 165/42μA) compared to the SV array (μ/σ= 122/46μA). The threshold amplitude depends on the specific fiber-electrode spatial relationship, such as lateral distance from the cochlear axis, the angle between electrode and target ANF, and the curvature of the peripheral process. For CAT stimulation the SV electrodes show a higher selectivity leading to less cross-stimulation of additional fibers from different cochlear areas.Significance. We present a first simulation study with a human cochlear model that investigates an additional CI placement into the SV and its impact on the excitation behavior. Results predict comparable outcomes to ST electrodes which confirms that SV implantation might be an alternative for patients with a highly obstructed ST.
Collapse
Affiliation(s)
- Andreas Fellner
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Cornelia Wenger
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Amirreza Heshmat
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
4
|
Adenis V, Partouche E, Stahl P, Gnansia D, Huetz C, Edeline JM. Asymmetric pulses delivered by a cochlear implant allow a reduction in evoked firing rate and in spatial activation in the guinea pig auditory cortex. Hear Res 2024; 447:109027. [PMID: 38723386 DOI: 10.1016/j.heares.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Despite that fact that the cochlear implant (CI) is one of the most successful neuro-prosthetic devices which allows hearing restoration, several aspects still need to be improved. Interactions between stimulating electrodes through current spread occurring within the cochlea drastically limit the number of discriminable frequency channels and thus can ultimately result in poor speech perception. One potential solution relies on the use of new pulse shapes, such as asymmetric pulses, which can potentially reduce the current spread within the cochlea. The present study characterized the impact of changing electrical pulse shapes from the standard biphasic symmetric to the asymmetrical shape by quantifying the evoked firing rate and the spatial activation in the guinea pig primary auditory cortex (A1). At a fixed charge, the firing rate and the spatial activation in A1 decreased by 15 to 25 % when asymmetric pulses were used to activate the auditory nerve fibers, suggesting a potential reduction of the spread of excitation inside the cochlea. A strong "polarity-order" effect was found as the reduction was more pronounced when the first phase of the pulse was cathodic with high amplitude. These results suggest that the use of asymmetrical pulse shapes in clinical settings can potentially reduce the channel interactions in CI users.
Collapse
Affiliation(s)
- V Adenis
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - E Partouche
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - P Stahl
- Oticon Medical, Vallauris, France
| | | | - C Huetz
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - J-M Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France.
| |
Collapse
|
5
|
Gransier R, Carlyon RP, Richardson ML, Middlebrooks JC, Wouters J. Artifact removal by template subtraction enables recordings of the frequency following response in cochlear-implant users. Sci Rep 2024; 14:6158. [PMID: 38486005 PMCID: PMC10940306 DOI: 10.1038/s41598-024-56047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Electrically evoked frequency-following responses (eFFRs) provide insight in the phase-locking ability of brainstem of cochlear-implant (CI) users. eFFRs can potentially be used to gain insight in the individual differences in the biological limitation on temporal encoding of the electrically stimulated auditory pathway, which can be inherent to the electrical stimulation itself and/or the degenerative processes associated with hearing loss. One of the major challenge of measuring eFFRs in CI users is the process of isolating the stimulation artifact from the neural response, as both the response and the artifact overlap in time and have similar frequency characteristics. Here we introduce a new artifact removal method based on template subtraction that successfully removes the stimulation artifacts from the recordings when CI users are stimulated with pulse trains from 128 to 300 pulses per second in a monopolar configuration. Our results show that, although artifact removal was successful in all CI users, the phase-locking ability of the brainstem to the different pulse rates, as assessed with the eFFR differed substantially across participants. These results show that the eFFR can be measured, free from artifacts, in CI users and that they can be used to gain insight in individual differences in temporal processing of the electrically stimulated auditory pathway.
Collapse
Affiliation(s)
- Robin Gransier
- ExpORL, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Matthew L Richardson
- Department of Otolaryngology, University of California at Irvine, Irvine, CA, USA
- Center for Hearing Research, University of California at Irvine, Irvine, CA, USA
| | - John C Middlebrooks
- Department of Otolaryngology, University of California at Irvine, Irvine, CA, USA
- Center for Hearing Research, University of California at Irvine, Irvine, CA, USA
- Departments of Neurobiology and Behavior, Biomedical Engineering, Cognitive Sciences, University of California at Irvine, Irvine, CA, USA
| | - Jan Wouters
- ExpORL, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Quass GL, Kral A. Tripolar configuration and pulse shape in cochlear implants reduce channel interactions in the temporal domain. Hear Res 2024; 443:108953. [PMID: 38277881 DOI: 10.1016/j.heares.2024.108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
The present study investigates effects of current focusing and pulse shape on threshold, dynamic range, spread of excitation and channel interaction in the time domain using cochlear implant stimulation. The study was performed on 20 adult guinea pigs using a 6-channel animal cochlear implant, recording was performed in the auditory midbrain using a multielectrode array. After determining the best frequencies for individual recording contacts with acoustic stimulation, the ear was deafened and a cochlear implant was inserted into the cochlea. The position of the implant was controlled by x-ray. Stimulation with biphasic, pseudomonophasic and monophasic stimuli was performed with monopolar, monopolar with common ground, bipolar and tripolar configuration in two sets of experiments, allowing comparison of the effects of the different stimulation strategies on threshold, dynamic range, spread of excitation and channel interaction. Channel interaction was studied in the temporal domain, where two electrodes were activated with pulse trains and phase locking to these pulse trains in the midbrain was quantified. The results documented multifactorial influences on the response properties, with significant interaction between factors. Thresholds increased with increasing current focusing, but decreased with pseudomonophasic and monophasic pulse shapes. The results documented that current focusing, particularly tripolar configuration, effectively reduces channel interaction, but that also pseudomonophasic and monophasic stimulation and phase duration intensity coding reduce channel interactions.
Collapse
Affiliation(s)
- Gunnar L Quass
- Institute for AudioNeuroTechnology (VIANNA) & Department of Experimental Otology, Otolaryngology Clinics, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4All" (EXC 2177), Germany.
| | - Andrej Kral
- Institute for AudioNeuroTechnology (VIANNA) & Department of Experimental Otology, Otolaryngology Clinics, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4All" (EXC 2177), Germany; Australian Hearing Hub, School of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
7
|
Takanen M, Strahl S, Schwarz K. Insights Into Electrophysiological Metrics of Cochlear Health in Cochlear Implant Users Using a Computational Model. J Assoc Res Otolaryngol 2024; 25:63-78. [PMID: 38278970 PMCID: PMC10907331 DOI: 10.1007/s10162-023-00924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/18/2023] [Indexed: 01/28/2024] Open
Abstract
PURPOSE The hearing outcomes of cochlear implant users depend on the functional status of the electrode-neuron interface inside the cochlea. This can be assessed by measuring electrically evoked compound action potentials (eCAPs). Variations in cochlear neural health and survival are reflected in eCAP-based metrics. The difficulty in translating promising results from animal studies into clinical use has raised questions about to what degree eCAP-based metrics are influenced by non-neural factors. Here, we addressed these questions using a computational model. METHODS A 2-D computational model was designed to simulate how electrical signals from the stimulating electrode reach the auditory nerve fibers distributed along the cochlea, evoking action potentials that can be recorded as compound responses at the recording electrodes. Effects of physiologically relevant variations in neural survival and in electrode-neuron and stimulating-recording electrode distances on eCAP amplitude growth functions (AGFs) were investigated. RESULTS In line with existing literature, the predicted eCAP AGF slopes and the inter-phase gap (IPG) effects depended on the neural survival, but only when the IPG effect was calculated as the difference between the slopes of the two AGFs expressed in linear input-output scale. As expected, shallower eCAP AGF slopes were obtained for increased stimulating-recording electrode distance and larger eCAP thresholds for greater electrode-neuron distance. These non-neural factors had also minor interference on the predicted IPG effect. CONCLUSIONS The model predictions demonstrate previously found dependencies of eCAP metrics on neural survival and non-neural aspects. The present findings confirm data from animal studies and provide insights into applying described metrics in clinical practice.
Collapse
Affiliation(s)
- Marko Takanen
- MED-EL Medical Electronics, Research and Development, Fürstenweg 77a, 6020, Innsbruck, Austria.
| | - Stefan Strahl
- MED-EL Medical Electronics, Research and Development, Fürstenweg 77a, 6020, Innsbruck, Austria
| | - Konrad Schwarz
- MED-EL Medical Electronics, Research and Development, Fürstenweg 77a, 6020, Innsbruck, Austria
| |
Collapse
|
8
|
Gärtner L, Backus BC, Le Goff N, Morgenstern A, Lenarz T, Büchner A. Cochlear Implant Stimulation Parameters Play a Key Role in Reducing Facial Nerve Stimulation. J Clin Med 2023; 12:6194. [PMID: 37834838 PMCID: PMC10573649 DOI: 10.3390/jcm12196194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
A percentage (i.e., 5.6%) of Cochlear Implant (CI) users reportedly experience unwanted facial nerve stimulation (FNS). For some, the effort to control this problem results in changing stimulation parameters, thereby reducing their hearing performance. For others, the only viable solution is to deactivate the CI completely. A growing body of evidence in the form of case reports suggests that undesired FNS can be effectively addressed through re-implantation with an Oticon Medical (OM) Neuro-Zti implant. However, the root of this benefit is still unknown: is it due to surgical adjustments, such as varied array geometries and/or positioning, or does it stem from differences in stimulation parameters and/or grounding? The OM device exhibits two distinct features: (1) unique stimulation parameters, including anodic leading pulses and loudness controlled by pulse duration-not current-resulting in lower overall current amplitudes; and (2) unconventional grounding, including both passive (capacitive) discharge, which creates a pseudo-monophasic pulse shape, and a 'distributed-all-polar' (DAP) grounding scheme, which is thought to reduce current spread. Unfortunately, case reports alone cannot distinguish between surgical factors and these implant-related ones. In this paper, we present a novel follow-up study of two CI subjects who previously experienced FNS before re-implantation with Neuro-Zti implants. We used the Oticon Medical Research Platform (OMRP) to stimulate a single electrode in each subject in two ways: (1) with traditional monopolar biphasic cathodic-first pulses, and (2) with distinct OM clinical stimulation. We progressively increased the stimulation intensity until FNS occurred or the sound became excessively loud. Non-auditory/FNS sensations were observed with the traditional stimulation but not with the OM clinical one. This provides the first direct evidence demonstrating that stimulation parameters and/or grounding-not surgical factors-play a key role in mitigating FNS.
Collapse
Affiliation(s)
- Lutz Gärtner
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (A.M.); (T.L.)
| | | | | | - Anika Morgenstern
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (A.M.); (T.L.)
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (A.M.); (T.L.)
- Cluster of Excellence “Hearing4all”, 30625 Hannover, Germany
| | - Andreas Büchner
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany; (L.G.); (A.M.); (T.L.)
- Cluster of Excellence “Hearing4all”, 30625 Hannover, Germany
| |
Collapse
|
9
|
Hughes ML. Electrically evoked compound action potential polarity sensitivity, refractory-recovery, and behavioral multi-pulse integration as potential indices of neural health in cochlear-implant recipients. Hear Res 2023; 433:108764. [PMID: 37062161 PMCID: PMC10322179 DOI: 10.1016/j.heares.2023.108764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Affiliation(s)
- Michelle L Hughes
- University of Nebraska-Lincoln, Dept. of Special Education and Communication Disorders, 276 Barkley Memorial Center, 4072 East Campus Loop, Lincoln, NE, 68583, USA.
| |
Collapse
|
10
|
Zamaninezhad L, Mert B, Benav H, Tillein J, Garnham C, Baumann U. Factors influencing the relationship between cochlear health measures and speech recognition in cochlear implant users. Front Integr Neurosci 2023; 17:1125712. [PMID: 37251736 PMCID: PMC10213548 DOI: 10.3389/fnint.2023.1125712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/27/2023] [Indexed: 05/31/2023] Open
Abstract
Background One factor which influences the speech intelligibility of cochlear implant (CI) users is the number and the extent of the functionality of spiral ganglion neurons (SGNs), referred to as "cochlear health." To explain the interindividual variability in speech perception of CI users, a clinically applicable estimate of cochlear health could be insightful. The change in the slope of the electrically evoked compound action potentials (eCAP), amplitude growth function (AGF) as a response to increased interphase gap (IPG) (IPGEslope) has been introduced as a potential measure of cochlear health. Although this measure has been widely used in research, its relationship to other parameters requires further investigation. Methods This study investigated the relationship between IPGEslope, demographics and speech intelligibility by (1) considering the relative importance of each frequency band to speech perception, and (2) investigating the effect of the stimulus polarity of the stimulating pulse. The eCAPs were measured in three different conditions: (1) Forward masking with anodic-leading (FMA) pulse, (2) Forward masking with cathodic-leading (FMC) pulse, and (3) with alternating polarity (AP). This allowed the investigation of the effect of polarity on the diagnosis of cochlear health. For an accurate investigation of the correlation between IPGEslope and speech intelligibility, a weighting function was applied to the measured IPGEslopes on each electrode in the array to consider the relative importance of each frequency band for speech perception. A weighted Pearson correlation analysis was also applied to compensate for the effect of missing data by giving higher weights to the ears with more successful IPGEslope measurements. Results A significant correlation was observed between IPGEslope and speech perception in both quiet and noise for between-subject data especially when the relative importance of frequency bands was considered. A strong and significant correlation was also observed between IPGEslope and age when stimulation was performed with cathodic-leading pulses but not for the anodic-leading pulse condition. Conclusion Based on the outcome of this study it can be concluded that IPGEslope has potential as a relevant clinical measure indicative of cochlear health and its relationship to speech intelligibility. The polarity of the stimulating pulse could influence the diagnostic potential of IPGEslope.
Collapse
Affiliation(s)
| | - Berkutay Mert
- ENT/Audiological Acoustics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | | | - Uwe Baumann
- ENT/Audiological Acoustics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
de Nobel J, Kononova AV, Briaire JJ, Frijns JHM, Bäck THW. Optimizing Stimulus Energy for Cochlear Implants with a Machine Learning Model of the Auditory Nerve. Hear Res 2023; 432:108741. [PMID: 36972636 DOI: 10.1016/j.heares.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Performing simulations with a realistic biophysical auditory nerve fiber model can be very time-consuming, due to the complex nature of the calculations involved. Here, a surrogate (approximate) model of such an auditory nerve fiber model was developed using machine learning methods, to perform simulations more efficiently. Several machine learning models were compared, of which a Convolutional Neural Network showed the best performance. In fact, the Convolutional Neural Network was able to emulate the behavior of the auditory nerve fiber model with extremely high similarity (R2>0.99), tested under a wide range of experimental conditions, whilst reducing the simulation time by five orders of magnitude. In addition, a method for randomly generating charge-balanced waveforms using hyperplane projection is introduced. In the second part of this paper, the Convolutional Neural Network surrogate model was used by an Evolutionary Algorithm to optimize the shape of the stimulus waveform in terms of energy efficiency. The resulting waveforms resemble a positive Gaussian-like peak, preceded by an elongated negative phase. When comparing the energy of the waveforms generated by the Evolutionary Algorithm with the commonly used square wave, energy decreases of 8%-45% were observed for different pulse durations. These results were validated with the original auditory nerve fiber model, which demonstrates that the proposed surrogate model can be used as its accurate and efficient replacement.
Collapse
Affiliation(s)
- Jacob de Nobel
- Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, Leiden, Netherlands.
| | - Anna V Kononova
- Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, Leiden, Netherlands
| | - Jeroen J Briaire
- Department of Otorhinolaryngology, Leiden University Medical Center, Albinusdreef 2, Leiden, Netherlands
| | - Johan H M Frijns
- Department of Otorhinolaryngology, Leiden University Medical Center, Albinusdreef 2, Leiden, Netherlands; Leiden Institute for Brain and Cognition, Wassenaarseweg 52, Leiden, Netherlands
| | - Thomas H W Bäck
- Leiden Institute of Advanced Computer Science, Niels Bohrweg 1, Leiden, Netherlands
| |
Collapse
|
12
|
Herrmann DP, Kalkman RK, Frijns JHM, Bahmer A. Intra-cochlear differences in the spread of excitation between biphasic and triphasic pulse stimulation in cochlear implants: A modeling and experimental study. Hear Res 2023; 432:108752. [PMID: 37019060 DOI: 10.1016/j.heares.2023.108752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Triphasic pulse stimulation can prevent unpleasant facial nerve stimulation in cochlear implant users. Using electromyographic measurements on facial nerve effector muscles, previous studies have shown that biphasic and triphasic pulse stimulations produce different input-output functions. However, little is known about the intracochlear effects of triphasic stimulation and how these may contribute to the amelioration of facial nerve stimulation. The present study used a computational model of implanted human cochleae to investigate the effect of pulse shape on the intracochlear spread of excitation. Biphasic and triphasic pulse stimulations were simulated from three different cochlear implant electrode contact positions. To validate the model results, experimental spread of excitation measurements were conducted with biphasic and triphasic pulse stimulation from three different electrode contact positions in 13 cochlear implant users. The model results depict differences between biphasic and triphasic pulse stimulations depending on the position of the stimulating electrode contact. While biphasic and triphasic pulse stimulations from a medial or basal electrode contact caused similar extents of neural excitation, differences between the pulse shapes were observed when the stimulating contact was located in the cochlear apex. In contrast, the experimental results showed no difference between the biphasic and triphasic initiated spread of excitation for any of the tested contact positions. The model was also used to study responses of neurons without peripheral processes to mimic the effect of neural degeneration. For all three contact positions, simulated degeneration shifted the neural responses towards the apex. Biphasic pulse stimulation showed a stronger response with neural degeneration compared to without degeneration, while triphasic pulse stimulation showed no difference. As previous measurements have demonstrated an ameliorative effect of triphasic pulse stimulation on facial nerve stimulation from medial electrode contact positions, the results imply that a complementary effect located at the facial nerve level must be responsible for reducing facial nerve stimulation.
Collapse
Affiliation(s)
- David P Herrmann
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg 97080, Germany.
| | - Randy K Kalkman
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Centre, PO Box 9600, RC Leiden 2300, the Netherlands
| | - Johan H M Frijns
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Centre, PO Box 9600, RC Leiden 2300, the Netherlands; Leiden Institute for Brain and Cognition, PO Box 9600, RC Leiden 2300, the Netherlands
| | - Andreas Bahmer
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University Hospital Würzburg, Josef-Schneider-Str. 11, Würzburg 97080, Germany
| |
Collapse
|
13
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
14
|
Partouche E, Adenis V, Stahl P, Huetz C, Edeline JM. What Is the Benefit of Ramped Pulse Shapes for Activating Auditory Cortex Neurons? An Electrophysiological Study in an Animal Model of Cochlear Implant. Brain Sci 2023; 13:brainsci13020250. [PMID: 36831793 PMCID: PMC9954719 DOI: 10.3390/brainsci13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In all commercial cochlear implant (CI) devices, the activation of auditory nerve fibers is performed with rectangular pulses that have two phases of opposite polarity. Recently, several papers proposed that ramped pulse shapes could be an alternative shape for efficiently activating auditory nerve fibers. Here, we investigate whether ramped pulse shapes can activate auditory cortex (ACx) neurons in a more efficient way than the classical rectangular pulses. Guinea pigs were implanted with CI devices and responses of ACx neurons were tested with rectangular pulses and with four ramped pulse shapes, with a first-phase being either cathodic or anodic. The thresholds, i.e., the charge level necessary for obtaining significant cortical responses, were almost systematically lower with ramped pulses than with rectangular pulses. The maximal firing rate (FR) elicited by the ramped pulses was higher than with rectangular pulses. As the maximal FR occurred with lower charge levels, the dynamic range (between threshold and the maximal FR) was not modified. These effects were obtained with cathodic and anodic ramped pulses. By reducing the charge levels required to activate ACx neurons, the ramped pulse shapes should reduce charge consumption and should contribute to more battery-efficient CI devices in the future.
Collapse
Affiliation(s)
- Elie Partouche
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Victor Adenis
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Pierre Stahl
- Departement of Scientific and Clinical Research, Oticon Medical, 06220 Vallauris, France
| | - Chloé Huetz
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
| | - Jean-Marc Edeline
- Jean-Marc Edeline Paris-Saclay Institute of Neurosciences (Neuro-PSI), CNRS UMR 9197, Universite Paris-Saclay, Campus CEA Saclay, Route de la Rotonde Bâtiment 151, 91400 Saclay, France
- Correspondence:
| |
Collapse
|
15
|
Hyppolito MA, Barbosa Reis ACM, Danieli F, Hussain R, Le Goff N. Cochlear re-implantation with the use of multi-mode grounding associated with anodic monophasic pulses to manage abnormal facial nerve stimulation. Cochlear Implants Int 2022:1-10. [PMID: 36583989 DOI: 10.1080/14670100.2022.2157077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives: To investigate the outcomes of cochlear re-implantation using multi-mode grounding stimulation associated with anodic monophasic pulses to manage abnormal facial nerve stimulation (AFNS) in cochlear implant (CI) recipients. Methods: Retrospective case report. An adult CI recipient with severe AFNS and decrease in auditory performance was re-implanted with a new CI device to change the pulse shape and stimulation mode. Patient's speech perception scores and AFNS were compared before and after cochlear re-implantation, using monopolar stimulation associated with cathodic biphasic pulses and multi-mode stimulation mode associated to anodic monophasic pulses, respectively. The insertion depth angle and the electrode-nerve distances were also investigated, before and after cochlear re-implantation. Results: AFNS was resolved, and the speech recognition scores rapidly increased in the first year after cochlear re-implantation while remaining stable. After cochlear re-implantation, the e15 and e20 electrodes showed shorter electrode-nerve distances compared to their correspondent e4 and e7 electrodes, which induced AFNS in the first implantation. Conclusions: Cochlear re-implantation with multi-mode grounding stimulation associated with anodic monophasic pulses was an effective strategy for managing AFNS. The patient's speech perception scores rapidly improved and AFNS was not detected four years after cochlear re-implantation.
Collapse
Affiliation(s)
- Miguel Angelo Hyppolito
- Department of Ophthalmology, Otorhinolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Fabiana Danieli
- Department of Health Sciences, RCS, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Clinical Department, Oticon Medical, São Paulo, Brazil
| | - Raabid Hussain
- Research & Technology Department, Oticon Medical, Smorum, Denmark
| | - Nicolas Le Goff
- Clinical Research Department, Oticon Medical, Smorum, Denmark
| |
Collapse
|
16
|
Comparison of response properties of the electrically stimulated auditory nerve reported in human listeners and in animal models. Hear Res 2022; 426:108643. [PMID: 36343534 PMCID: PMC9986845 DOI: 10.1016/j.heares.2022.108643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022]
Abstract
Cochlear implants (CIs) provide acoustic information to implanted patients by electrically stimulating nearby auditory nerve fibers (ANFs) which then transmit the information to higher-level neural structures for further processing and interpretation. Computational models that simulate ANF responses to CI stimuli enable the exploration of the mechanisms underlying CI performance beyond the capacity of in vivo experimentation alone. However, all ANF models developed to date utilize to some extent anatomical/morphometric data, biophysical properties and/or physiological data measured in non-human animal models. This review compares response properties of the electrically stimulated auditory nerve (AN) in human listeners and different mammalian models. Properties of AN responses to single pulse stimulation, paired-pulse stimulation, and pulse-train stimulation are presented. While some AN response properties are similar between human listeners and animal models (e.g., increased AN sensitivity to single pulse stimuli with long interphase gaps), there are some significant differences. For example, the AN of most animal models is typically more sensitive to cathodic stimulation while the AN of human listeners is generally more sensitive to anodic stimulation. Additionally, there are substantial differences in the speed of recovery from neural adaptation between animal models and human listeners. Therefore, results from animal models cannot be simply translated to human listeners. Recognizing the differences in responses of the AN to electrical stimulation between humans and other mammals is an important step for creating ANF models that are more applicable to various human CI patient populations.
Collapse
|
17
|
Eitutis ST, Carlyon RP, Tam YC, Salorio-Corbetto M, Vanat Z, Tebbutt K, Bardsley R, Powell HRF, Chowdhury S, Tysome JR, Bance ML. Management of Severe Facial Nerve Cross Stimulation by Cochlear Implant Replacement to Change Pulse Shape and Grounding Configuration: A Case-series. Otol Neurotol 2022; 43:452-459. [PMID: 35085112 PMCID: PMC8915992 DOI: 10.1097/mao.0000000000003493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the combined effect of changing pulse shape and grounding configuration to manage facial nerve stimulation (FNS) in cochlear implant (CI) recipients. PATIENTS Three adult CI recipients with severe FNS were offered a replacement implant when standard stimulation strategies and programming adjustments did not resolve symptoms. Our hypothesis was that the facial nerve was less likely to be activated when using anodic pulses with "mixed-mode" intra-cochlear and extra-cochlear current return. INTERVENTION All patients were reimplanted with an implant that uses a pseudo-monophasic anodic pulse shape, with mixed-mode grounding (stimulus mixed-mode anodic)-the Neuro Zti CI (Oticon Medical). This device also allows measurements of neural function and loudness with monopolar, symmetric biphasic pulses (stimulus MB), the clinical standard used by most CIs as a comparison. MAIN OUTCOME MEASURES The combined effect of pulse shape and grounding configuration on FNS was monitored during surgery. Following CI activation, FNS symptoms and performance with the Neuro Zti implant were compared with outcomes before reimplantation. RESULTS FNS could only be recorded using stimulus MB for all patients. In clinical use, all patients reported reduced FNS and showed an improvement in Bamford-Kowal-Bench sentences recognition compared with immediately before reimplantation. Bamford-Kowal-Bench scores with a male speaker were lower compared with measurements taken before the onset of severe FNS for patients 1 and 2. CONCLUSIONS In patients where CI auditory performance was severely limited by FNS, charge-balanced pseudo-monophasic stimulation mode with a mixed-mode grounding configuration limited FNS and improved loudness percept compared with standard biphasic stimulation with monopolar grounding.
Collapse
Affiliation(s)
- Susan T Eitutis
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust
- Cambridge Hearing Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge
| | - Yu Chuen Tam
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust
- Cambridge Hearing Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge
| | - Marina Salorio-Corbetto
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust
- Cambridge Hearing Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge
| | - Zebunnisa Vanat
- Emmeline Centre, Cambridge University Hospitals NHS Foundation Trust
| | | | | | | | | | - James R Tysome
- Cambridge Hearing Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge
| | - Manohar L Bance
- Cambridge Hearing Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge
| |
Collapse
|
18
|
Recording EEG in Cochlear Implant Users: Guidelines for Experimental Design and Data Analysis for Optimizing Signal Quality and Minimizing Artifacts. J Neurosci Methods 2022; 375:109592. [PMID: 35367234 DOI: 10.1016/j.jneumeth.2022.109592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 11/22/2022]
Abstract
Cochlear implants (CI) are neural prostheses that can restore hearing in individuals with severe to profound hearing loss. Although CIs significantly improve quality of life, clinical outcomes are still highly variable. An important part of this variability is explained by the brain reorganization following cochlear implantation. Therefore, clinicians and researchers are seeking objective measurements to investigate post-implantation brain plasticity. Electroencephalography (EEG) is a promising technique because it is objective, non-invasive, and implant-compatible, but is nonetheless susceptible to massive artifacts generated by the prosthesis's electrical activity. CI artifacts can blur and distort brain responses; thus, it is crucial to develop reliable techniques to remove them from EEG recordings. Despite numerous artifact removal techniques used in previous studies, there is a paucity of documentation and consensus on the optimal EEG procedures to reduce these artifacts. Herein, and through a comprehensive review process, we provide a guideline for designing an EEG-CI experiment minimizing the effect of the artifact. We provide some technical guidance for recording an accurate neural response from CI users and discuss the current challenges in detecting and removing CI-induced artifacts from a recorded signal. The aim of this paper is also to provide recommendations to better appraise and report EEG-CI findings.
Collapse
|
19
|
Gärtner L, Lenarz T, Ivanauskaite J, Büchner A. Facial nerve stimulation in cochlear implant users – a matter of stimulus parameters? Cochlear Implants Int 2022; 23:165-172. [DOI: 10.1080/14670100.2022.2026025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lutz Gärtner
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | | | - Andreas Büchner
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Hughes ML. Characterizing Polarity Sensitivity in Cochlear Implant Recipients: Demographic Effects and Potential Implications for Estimating Neural Health. J Assoc Res Otolaryngol 2022; 23:301-318. [PMID: 34988867 DOI: 10.1007/s10162-021-00824-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
Stimulus polarity can affect both physiological and perceptual measures in cochlear-implant recipients. Large differences between polarities for various outcome measures (e.g., eCAP threshold, amplitude, or slope) theoretically reflect poorer neural health, whereas smaller differences reflect better neural health. Therefore, we expect large polarity effects to be correlated with other measures shown to contribute to poor neural health, such as advanced age or prolonged deafness. Our earlier studies using the electrically evoked compound action potential (eCAP) demonstrated differences in polarity effects between users of Cochlear and Advanced Bionics devices when device-specific clinical pulse designs were used. Since the stimuli differed slightly between devices, the first goal of this study was to determine whether small, clinically relevant differences in pulse phase duration (PD) have a significant impact on eCAP polarity effects to potentially explain the device differences observed previously. Polarity effects were quantified as the difference in eCAP thresholds, mean normalized amplitudes, and slope of the amplitude growth function obtained for anodic-first versus cathodic-first biphasic pulses. The results showed that small variations in PD did not explain the observed differences in eCAP polarity effects between devices. Therefore, eCAP polarity sensitivity measures are relatively robust to small differences in pulse parameters. However, it remains unclear what underlies the observed manufacturer differences, which may limit the utility of eCAP polarity sensitivity measures. The second goal was to characterize polarity sensitivity in a large group of CI recipients (65 ears) to relate polarity sensitivity to age and duration of deafness as a proxy for neural health. The same pulse parameters were used for both device groups. The only significant predictors of eCAP polarity effects were age for threshold and amplitude polarity effects for Cochlear recipients and age and duration of deafness for slope for AB recipients. However, three of these four correlations were in the opposite direction of what was expected. These results suggest that eCAP polarity sensitivity measures likely reflect different mechanisms than the effects that age and duration of deafness induce on the peripheral auditory system.
Collapse
Affiliation(s)
- Michelle L Hughes
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 276 Barkley Memorial Center, Lincoln, NE, 68583, USA.
| |
Collapse
|
21
|
Takanen M, Seeber BU. A Phenomenological Model Reproducing Temporal Response Characteristics of an Electrically Stimulated Auditory Nerve Fiber. Trends Hear 2022; 26:23312165221117079. [PMID: 36071660 PMCID: PMC9459496 DOI: 10.1177/23312165221117079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of cochlear implants (CIs) to restore hearing to profoundly deaf people is based on direct electrical stimulation of the auditory nerve fibers (ANFs). Still, CI users do not achieve as good hearing outcomes as their normal-hearing peers. The development and optimization of CI stimulation strategies to reduce that gap could benefit from computational models that can predict responses evoked by different stimulation patterns, particularly temporal responses for coding of temporal fine structure information. To that end, we present the sequential biphasic leaky integrate-and-fire (S-BLIF) model for the ANF response to various pulse shapes and temporal sequences. The phenomenological S-BLIF model is adapted from the earlier BLIF model that can reproduce neurophysiological single-fiber cat ANF data from single-pulse stimulations. It was extended with elements that simulate refractoriness, facilitation, accommodation and long-term adaptation by affecting the threshold value of the model momentarily after supra- and subthreshold stimulation. Evaluation of the model demonstrated that it can reproduce neurophysiological data from single neuron recordings involving temporal phenomena related to inter-pulse interactions. Specifically, data for refractoriness, facilitation, accommodation and spike-rate adaptation can be reproduced. In addition, the model can account for effects of pulse rate on the synchrony between the pulsatile input and the spike-train output. Consequently, the model offers a versatile tool for testing new coding strategies for, e.g., temporal fine structure using pseudo-monophasic pulses, and for estimating the status of the electrode-neuron interface in the CI user's cochlea.
Collapse
Affiliation(s)
- Marko Takanen
- Audio Information Processing, Department of Electrical and
Computer Engineering, Technical University of Munich, Munich, Germany
| | - Bernhard U. Seeber
- Audio Information Processing, Department of Electrical and
Computer Engineering, Technical University of Munich, Munich, Germany
| |
Collapse
|
22
|
Characteristics of the Adaptation Recovery Function of the Auditory Nerve and Its Association With Advanced Age in Postlingually Deafened Adult Cochlear Implant Users. Ear Hear 2022; 43:1472-1486. [PMID: 35139051 PMCID: PMC9325924 DOI: 10.1097/aud.0000000000001198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE This study aimed to (1) characterize the amount and the speed of recovery from neural adaptation at the auditory nerve (AN) and (2) assess their associations with advanced age in postlingually deafened adult cochlear implant users. DESIGN Study participants included 25 postlingually deafened adult, Cochlear Nucleus device users, ranging in age between 24.83 and 83.21 years at the time of testing. The stimulus was a 100-ms pulse train presented at four pulse rates: 500, 900, 1800, and 2400 pulses per second (pps). The pulse trains were presented at the maximum comfortable level measured for the 2400-pps pulse train. The electrically evoked compound action potential (eCAP) evoked by the last pulse of the pulse train (i.e., the probe pulse) was recorded. The remaining pulses of the pulse train served as the pulse-train masker. The time interval between the probe pulse and the last pulse of the pulse-train masker [i.e., masker-probe-interval (MPI)] systematically increased from 0.359 ms up to 256 ms. The adaptation recovery function (ARF) was obtained by plotting normalized eCAP amplitudes (re: the eCAP amplitude measured at the MPI of 256 ms) as a function of MPIs. The adaptation recovery ratio (ARR) was defined as the ratio between the eCAP amplitude measured at the MPI of 256 ms and that measured for the single-pulse stimulus presented at the same stimulation level. The time constants of the ARF were estimated using a mathematical model with an exponential function with up to three components. Generalized Linear Mixed effects Models were used to compare ARRs and time constants measured at different electrode locations and pulse rates, as well as to assess the effect of advanced age on these dependent variables. RESULTS There were three ARF types observed in this study. The ARF type observed in the same study participant could be different at different electrode locations and/or pulse rates. Substantial variations in both the amount and the speed of neural adaptation recovery among study participants were observed. The ARR was significantly affected by pulse rate but was not affected by electrode location. The effect of electrode location on the time constants of the ARF was not statistically significant. Pulse rate had a statistically significant effect on τ 1, but not on τ 2 or τ 3 . There was no statistically significant effect of age on the ARR or the time constants of the ARF. CONCLUSIONS Neural adaptation recovery processes at the AN demonstrate substantial variations among human cochlear implant users. The recovery pattern can be nonmonotonic with up to three phases. While the amount of neural adaptation recovery decreases as pulse rate increases, only the speed of the first phase of neural adaptation recovery is affected by pulse rate. Electrode location or advanced age has no robust effect on neural adaptation recovery processes at the level of the AN for a 100-ms pulse-train masker with pulse rates of 500 to 2400 pps. The lack of sufficient participants in this study who were 40 years of age or younger at the time of testing might have precluded a thorough assessment of the effect of advanced age.
Collapse
|
23
|
Heshmat A, Sajedi S, Schrott-Fischer A, Rattay F. Polarity Sensitivity of Human Auditory Nerve Fibers Based on Pulse Shape, Cochlear Implant Stimulation Strategy and Array. Front Neurosci 2021; 15:751599. [PMID: 34955717 PMCID: PMC8692583 DOI: 10.3389/fnins.2021.751599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Neural health is of great interest to determine individual degeneration patterns for improving speech perception in cochlear implant (CI) users. Therefore, in recent years, several studies tried to identify and quantify neural survival in CI users. Among all proposed techniques, polarity sensitivity is a promising way to evaluate the neural status of auditory nerve fibers (ANFs) in CI users. Nevertheless, investigating neural health based on polarity sensitivity is a challenging and complicated task that involves various parameters, and the outcomes of many studies show contradictory results of polarity sensitivity behavior. Our computational study benefits from an accurate three-dimensional finite element model of a human cochlea with realistic human ANFs and determined ANF degeneration pattern of peripheral part with a diminishing of axon diameter and myelination thickness based on degeneration levels. In order to see how different parameters may impact the polarity sensitivity behavior of ANFs, we investigated polarity behavior under the application of symmetric and asymmetric pulse shapes, monopolar and multipolar CI stimulation strategies, and a perimodiolar and lateral CI array system. Our main findings are as follows: (1) action potential (AP) initiation sites occurred mainly in the peripheral site in the lateral system regardless of stimulation strategies, pulse polarities, pulse shapes, cochlear turns, and ANF degeneration levels. However, in the perimodiolar system, AP initiation sites varied between peripheral and central processes, depending on stimulation strategies, pulse shapes, and pulse polarities. (2) In perimodiolar array, clusters formed in threshold values based on cochlear turns and degeneration levels for multipolar strategies only when asymmetric pulses were applied. (3) In the perimodiolar array, a declining trend in polarity (anodic threshold/cathodic threshold) with multipolar strategies was observed between intact or slight degenerated cases and more severe degenerated cases, whereas in the lateral array, cathodic sensitivity was noticed for intact and less degenerated cases and anodic sensitivity for cases with high degrees of degeneration. Our results suggest that a combination of asymmetric pulse shapes, focusing more on multipolar stimulation strategies, as well as considering the distances to the modiolus wall, allows us to distinguish the degeneration patterns of ANFs across the cochlea.
Collapse
Affiliation(s)
- Amirreza Heshmat
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria.,Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sogand Sajedi
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Anneliese Schrott-Fischer
- Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
24
|
Kalkman RK, Briaire JJ, Dekker DMT, Frijns JHM. The relation between polarity sensitivity and neural degeneration in a computational model of cochlear implant stimulation. Hear Res 2021; 415:108413. [PMID: 34952734 DOI: 10.1016/j.heares.2021.108413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022]
Abstract
The main aim of this computational modelling study was to test the validity of the hypothesis that sensitivity to the polarity of cochlear implant stimulation can be interpreted as a measure of neural health. For this purpose, the effects of stimulus polarity on neural excitation patterns were investigated in a volume conduction model of the implanted human cochlea, which was coupled with a deterministic active nerve fibre model based on characteristics of human auditory neurons. The nerve fibres were modelled in three stages of neural degeneration: intact, with shortened peripheral terminal nodes and with complete loss of the peripheral processes. The model simulated neural responses to monophasic, biphasic, triphasic and pseudomonophasic pulses of both polarities. Polarity sensitivity was quantified as the so-called polarity effect (PE), which is defined as the dB difference between cathodic and anodic thresholds. Results showed that anodic pulses mostly excited the auditory neurons in their central axons, while cathodic stimuli generally excited neurons in their peripheral processes or near their cell bodies. As a consequence, cathodic thresholds were more affected by neural degeneration than anodic thresholds. Neural degeneration did not have a consistent effect on the modelled PE values, though there were notable effects of electrode contact insertion angle and distance from the modiolus. Furthermore, determining PE values using charge-balanced multiphasic pulses as approximations of monophasic stimuli produced different results than those obtained with true monophasic pulses, at a degree that depended on the specific pulse shape; in general, pulses with lower secondary phase amplitudes showed polarity sensitivities closer to those obtained with true monophasic pulses. The main conclusion of this study is that polarity sensitivity is not a reliable indicator of neural health; neural degeneration affects simulated polarity sensitivity, but its effect is not consistently related to the degree of degeneration. Polarity sensitivity is not simply a product of the state of the neurons, but also depends on spatial factors.
Collapse
Affiliation(s)
- Randy K Kalkman
- ENT-department, Leiden University Medical Centre, PO box 9600, 2300, RC, Leiden, the Netherlands
| | - Jeroen J Briaire
- ENT-department, Leiden University Medical Centre, PO box 9600, 2300, RC, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, PO box 9600, 2300, RC, Leiden, the Netherlands
| | - David M T Dekker
- ENT-department, Leiden University Medical Centre, PO box 9600, 2300, RC, Leiden, the Netherlands
| | - Johan H M Frijns
- ENT-department, Leiden University Medical Centre, PO box 9600, 2300, RC, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, PO box 9600, 2300, RC, Leiden, the Netherlands
| |
Collapse
|
25
|
Effects of electrical pulse polarity shape on intra cochlear neural responses in humans: Triphasic pulses with anodic and cathodic second phase. Hear Res 2021; 412:108375. [PMID: 34749281 DOI: 10.1016/j.heares.2021.108375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022]
Abstract
Modern cochlear implants employ charge-balanced biphasic and triphasic pulses. However, the effectiveness of electrical pulse shape and polarity is still a matter of debate. For this purpose, a previous study (Bahmer & Baumann, 2013) conducted electrophysiological and psychophysical measurements following triphasic pulse stimulation with constant cathodic second phase and varying anodic first and third phases. Pulse stimulation with constant anodic second phase was not investigated. Therefore, in this study, pulse stimulation with cathodic and anodic second phase was applied for the recording of electrically evoked compound action potentials (ECAPs) as well as for psychophysical thresholds in cochlear implant (CI) recipients. First it was investigated whether the temporal polarity distribution has a different effect on neuronal stimulation when the second phase is cathodic or anodic; second, whether the electrophysiological and psychophysical results show a comparable difference between triphasic stimulation with anodic and cathodic second phases. The results showed that variation of the temporal polarity distribution of the triphasic pulse had a smaller effect on the ECAP response when the second phase was anodic compared to when it was cathodic, whereas for psychophysical detection thresholds this variation had a similar effect for both polarities. While electrophysiological responses and psychophysical detection thresholds showed a high correlation for variations of the triphasic pulse with cathodic second phase, the results for variations of the triphasic pulse with anodic second phase showed only moderate correlation. Furthermore, the difference between triphasic stimulation with cathodic and anodic second phases did not correlate between the electrophysiological and psychophysical results. In summary, after stimulation with different configurations of triphasic pulses used in the present study, the polarity of the second phase has an effect on electrophysiological response at suprathreshold level but not on the psychophysical detection thresholds. Thus, at different stimulation levels a possible substitution of the psychophysical test by an electrophysiological measurement (e.g. neural health measurement of the cochlea) could not be corroborated by the present results.
Collapse
|
26
|
Carlyon RP, Goehring T. Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J Assoc Res Otolaryngol 2021; 22:481-508. [PMID: 34432222 PMCID: PMC8476711 DOI: 10.1007/s10162-021-00811-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cochlear implants (CIs) are the world's most successful sensory prosthesis and have been the subject of intense research and development in recent decades. We critically review the progress in CI research, and its success in improving patient outcomes, from the turn of the century to the present day. The review focuses on the processing, stimulation, and audiological methods that have been used to try to improve speech perception by human CI listeners, and on fundamental new insights in the response of the auditory system to electrical stimulation. The introduction of directional microphones and of new noise reduction and pre-processing algorithms has produced robust and sometimes substantial improvements. Novel speech-processing algorithms, the use of current-focusing methods, and individualised (patient-by-patient) deactivation of subsets of electrodes have produced more modest improvements. We argue that incremental advances have and will continue to be made, that collectively these may substantially improve patient outcomes, but that the modest size of each individual advance will require greater attention to experimental design and power. We also briefly discuss the potential and limitations of promising technologies that are currently being developed in animal models, and suggest strategies for researchers to collectively maximise the potential of CIs to improve hearing in a wide range of listening situations.
Collapse
Affiliation(s)
- Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
| | - Tobias Goehring
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|
27
|
He S, Xu L, Skidmore J, Chao X, Riggs WJ, Wang R, Vaughan C, Luo J, Shannon M, Warner C. Effect of Increasing Pulse Phase Duration on Neural Responsiveness of the Electrically Stimulated Cochlear Nerve. Ear Hear 2021; 41:1606-1618. [PMID: 33136636 PMCID: PMC7529657 DOI: 10.1097/aud.0000000000000876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study is to (1) investigate the effects of increasing the pulse phase duration (PPD) on the neural response of the electrically stimulated cochlear nerve (CN) in children with CN deficiency (CND) and (2) compare the results from the CND population to those measured in children with normal-sized CNs. DESIGN Study participants included 30 children with CND and 30 children with normal-sized CNs. All participants used a Cochlear Nucleus device in the test ear. For each subject, electrically evoked compound action potential (eCAP) input/output (I/O) functions evoked by single biphasic pulses with different PPDs were recorded at three electrode locations across the electrode array. PPD durations tested in this study included 50, 62, 75, and 88 μsec/phase. For each electrode tested for each study participant, the amount of electrical charge corresponding to the maximum comfortable level measured for the 88 μsec PPD was used as the upper limit of stimulation. The eCAP amplitude measured at the highest electrical charge level, the eCAP threshold (i.e., the lowest level that evoked an eCAP), and the slope of the eCAP I/O function were measured. Generalized linear mixed effect models with study group, electrode location, and PPD as the fixed effects and subject as the random effect were used to compare these dependent variables measured at different electrode locations and PPDs between children with CND and children with normal-sized CNs. RESULTS Children with CND had smaller eCAP amplitudes, higher eCAP thresholds, and smaller slopes of the eCAP I/O function than children with normal-sized CNs. Children with CND who had fewer electrodes with a measurable eCAP showed smaller eCAP amplitudes and flatter eCAP I/O functions than children with CND who had more electrodes with eCAPs. Increasing the PPD did not show a statistically significant effect on any of these three eCAP parameters in the two subject groups tested in this study. CONCLUSIONS For the same amount of electrical charge, increasing the PPD from 50 to 88 μsec for a biphasic pulse with a 7 μsec interphase gap did not significantly affect CN responsiveness to electrical stimulation in human cochlear implant users. Further studies with different electrical pulse configurations are warranted to determine whether evaluating the eCAP sensitivity to changes in the PPD can be used as a testing paradigm to estimate neural survival of the CN for individual cochlear implant users.
Collapse
Affiliation(s)
- Shuman He
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205
| | - Lei Xu
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Jeffrey Skidmore
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
| | - Xiuhua Chao
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - William J. Riggs
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205
| | - Ruijie Wang
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Chloe Vaughan
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
| | - Jianfen Luo
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Michelle Shannon
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205
| | - Cynthia Warner
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205
| |
Collapse
|
28
|
The Effects of GJB2 or SLC26A4 Gene Mutations on Neural Response of the Electrically Stimulated Auditory Nerve in Children. Ear Hear 2021; 41:194-207. [PMID: 31124793 DOI: 10.1097/aud.0000000000000744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to (1) investigate the effect of GJB2 and SLC26A4 gene mutations on auditory nerve function in pediatric cochlear implant users and (2) compare their results with those measured in implanted children with idiopathic hearing loss. DESIGN Participants included 20 children with biallelic GJB2 mutations, 16 children with biallelic SLC26A4 mutations, and 19 children with idiopathic hearing loss. All subjects except for two in the SLC26A4 group had concurrent Mondini malformation and enlarged vestibular aqueduct. All subjects used Cochlear Nucleus devices in their test ears. For each subject, electrophysiological measures of the electrically evoked compound action potential (eCAP) were recorded using both anodic- and cathodic-leading biphasic pulses. Dependent variables (DVs) of interest included slope of eCAP input/output (I/O) function, the eCAP threshold, and eCAP amplitude measured at the maximum comfortable level (C level) of the anodic-leading stimulus (i.e., the anodic C level). Slopes of eCAP I/O functions were estimated using statistical modeling with a linear regression function. These DVs were measured at three electrode locations across the electrode array. Generalized linear mixed effect models were used to evaluate the effects of study group, stimulus polarity, and electrode location on each DV. RESULTS Steeper slopes of eCAP I/O function, lower eCAP thresholds, and larger eCAP amplitude at the anodic C level were measured for the anodic-leading stimulus compared with the cathodic-leading stimulus in all subject groups. Children with GJB2 mutations showed steeper slopes of eCAP I/O function and larger eCAP amplitudes at the anodic C level than children with SLC26A4 mutations and children with idiopathic hearing loss for both the anodic- and cathodic-leading stimuli. In addition, children with GJB2 mutations showed a smaller increase in eCAP amplitude when the stimulus changed from the cathodic-leading pulse to the anodic-leading pulse (i.e., smaller polarity effect) than children with idiopathic hearing loss. There was no statistically significant difference in slope of eCAP I/O function, eCAP amplitude at the anodic C level, or the size of polarity effect on all three DVs between children with SLC26A4 mutations and children with idiopathic hearing loss. These results suggested that better auditory nerve function was associated with GJB2 but not with SLC26A4 mutations when compared with idiopathic hearing loss. In addition, significant effects of electrode location were observed for slope of eCAP I/O function and the eCAP threshold. CONCLUSIONS GJB2 and SLC26A4 gene mutations did not alter polarity sensitivity of auditory nerve fibers to electrical stimulation. The anodic-leading stimulus was generally more effective in activating auditory nerve fibers than the cathodic-leading stimulus, despite the presence of GJB2 or SLC26A4 mutations. Patients with GJB2 mutations appeared to have better functional status of the auditory nerve than patients with SLC26A4 mutations who had concurrent Mondini malformation and enlarged vestibular aqueduct and patients with idiopathic hearing loss.
Collapse
|
29
|
Xu L, Skidmore J, Luo J, Chao X, Wang R, Wang H, He S. The Effect of Pulse Polarity on Neural Response of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency and Children With Normal-Sized Cochlear Nerves. Ear Hear 2021; 41:1306-1319. [PMID: 32141933 PMCID: PMC7879579 DOI: 10.1097/aud.0000000000000854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to (1) investigate the effect of pulse polarity on neural response of the electrically stimulated cochlear nerve in children with cochlear nerve deficiency (CND) and children with normal-sized cochlear nerves and (2) compare the size of the pulse polarity effect between these two subject groups. DESIGN The experimental and control group included 31 children with CND and 31 children with normal-sized cochlear nerves, respectively. For each study participant, evoked compound action potential (eCAP) input/output (I/O) functions for anodic-leading and cathodic-leading biphasic stimuli were measured at three electrode locations across the electrode array. The dependent variables of interest included the eCAP amplitude measured at the maximum comfortable level of the anodic stimulus, the lowest level that could evoke an eCAP (i.e., the eCAP threshold), the slope of the eCAP I/O function estimated based on linear regression, the negative-peak (i.e., N1) latency of the eCAP, as well as the size of the pulse polarity effect on these eCAP measurements. Generalized linear mixed effect models were used to compare the eCAP amplitude, the eCAP threshold, the slope of the eCAP I/O function, and the N1 latency evoked by the anodic-leading stimulus with those measured for the cathodic-leading stimulus for children with CND and children with normal-sized cochlear nerves. Generalized linear mixed effect models were also used to compare the size of the pulse polarity effect on the eCAP between these two study groups. The one-tailed Spearman correlation test was used to assess the potential correlation between the pulse phase duration and the difference in N1 latency measured for different pulse polarities. RESULTS Compared with children who had normal-sized cochlear nerves, children with CND had reduced eCAP amplitudes, elevated eCAP thresholds, flatter eCAP I/O functions, and prolonged N1 latencies. The anodic-leading stimulus led to higher eCAP amplitudes, lower eCAP thresholds, and shorter N1 latencies than the cathodic-leading stimulus in both study groups. Steeper eCAP I/O functions were recorded for the anodic-leading stimulus than those measured for the cathodic-leading stimulus in children with CND, but not in children with normal-sized cochlear nerves. Group differences in the size of the pulse polarity effect on the eCAP amplitude, the eCAP threshold, or the N1 latency were not statistically significant. CONCLUSIONS Similar to the normal-sized cochlear nerve, the hypoplastic cochlear nerve is more sensitive to the anodic-leading than to the cathodic-leading stimulus. Results of this study do not provide sufficient evidence for proving the idea that the pulse polarity effect can provide an indication for local neural health.
Collapse
Affiliation(s)
- Lei Xu
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Jeffrey Skidmore
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
| | - Jianfen Luo
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Xiuhua Chao
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Ruijie Wang
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Haibo Wang
- Department of Auditory Implantation, Shandong Provincial ENT Hospital Affiliated to Shandong University, Duanxing W. Rd, Huaiyin, Jinan, Shandong Province, P.R. China 250022
| | - Shuman He
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205
| |
Collapse
|
30
|
Recommendations for Measuring the Electrically Evoked Compound Action Potential in Children With Cochlear Nerve Deficiency. Ear Hear 2021; 41:465-475. [PMID: 31567301 DOI: 10.1097/aud.0000000000000782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study reports a method for measuring the electrically evoked compound action potential (eCAP) in children with cochlear nerve deficiency (CND). DESIGN This method was developed based on experience with 50 children with CND who were Cochlear Nucleus cochlear implant users. RESULTS This method includes three recommended steps conducted with recommended stimulating and recording parameters: initial screen, pulse phase duration optimization, and eCAP threshold determination (i.e., identifying the lowest stimulation level that can evoke an eCAP). Compared with the manufacturer-default parameters, the recommended parameters used in this method yielded a higher success rate for measuring the eCAP in children with CND. CONCLUSIONS The eCAP can be measured successfully in children with CND using recommended parameters. This specific method is suitable for measuring the eCAP in children with CND in clinical settings. However, it is not suitable for intraoperative eCAP recordings due to the extensive testing time required.
Collapse
|
31
|
Jiang C, Singhal S, Landry T, Roberts I, de Rijk S, Brochier T, Goehring T, Tam Y, Carlyon R, Malliaras G, Bance M. An Instrumented Cochlea Model for the Evaluation of Cochlear Implant Electrical Stimulus Spread. IEEE Trans Biomed Eng 2021; 68:2281-2288. [PMID: 33587694 PMCID: PMC8215857 DOI: 10.1109/tbme.2021.3059302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cochlear implants use electrical stimulation of the auditory nerve to restore the sensation of hearing to deaf people. Unfortunately, the stimulation current spreads extensively within the cochlea, resulting in “blurring” of the signal, and hearing that is far from normal. Current spread can be indirectly measured using the implant electrodes for both stimulating and sensing, but this provides incomplete information near the stimulating electrode due to electrode-electrolyte interface effects. Here, we present a 3D-printed “unwrapped” physical cochlea model with integrated sensing wires. We integrate resistors into the walls of the model to simulate current spread through the cochlear bony wall, and “tune” these resistances by calibration with an in-vivo electrical measurement from a cochlear implant patient. We then use this model to compare electrical current spread under different stimulation modes including monopolar, bipolar and tripolar configurations. Importantly, a trade-off is observed between stimulation amplitude and current focusing among different stimulation modes. By combining different stimulation modes and changing intracochlear current sinking configurations in the model, we explore this trade-off between stimulation amplitude and focusing further. These results will inform clinical strategies for use in delivering speech signals to cochlear implant patients.
Collapse
|
32
|
The Sensitivity of the Electrically Stimulated Auditory Nerve to Amplitude Modulation Cues Declines With Advanced Age. Ear Hear 2021; 42:1358-1372. [PMID: 33795616 DOI: 10.1097/aud.0000000000001035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to investigate effects of aging and duration of deafness on sensitivity of the auditory nerve (AN) to amplitude modulation (AM) cues delivered using trains of biphasic pulses in adult cochlear implant (CI) users. DESIGN There were 21 postlingually deaf adult CI users who participated in this study. All study participants used a Cochlear Nucleus device with a full electrode array insertion in the test ear. The stimulus was a 200-ms pulse train with a pulse rate of 2000 pulses per second. This carrier pulse train was sinusodially AM at four modulation rates (20, 40, 100, 200 Hz). The peak amplitude of the modulated pulse train was the maximum comfortable level (i.e., C level) measured for the carrier pulse train. The electrically evoked compound action potential (eCAP) to each of the 20 pulses selected over the last two AM cycles were measured. In addition, eCAPs to single pulses were measured with the probe levels corresponding to the levels of 20 selected pulses from each AM pulse train. There were seven electrodes across the array evaluated in 16 subjects (i.e., electrodes 3 or 4, 6, 9, 12, 15, 18, and 21). For the remaining five subjects, 4 to 5 electrodes were tested due to impedance issues or time constraints. The modulated response amplitude ratio (MRAR) was calculated as the ratio of the difference in the maximum and the minimum eCAP amplitude measured for the AM pulse train to that measured for the single pulse, and served as the dependent variable. Age at time of testing and duration of deafness measured/defined using three criteria served as the independent variables. Linear Mixed Models were used to assess the effects of age at testing and duration of deafness on the MRAR. RESULTS Age at testing had a strong, negative effect on the MRAR. For each subject, the duration of deafness varied substantially depending on how it was defined/measured, which demonstrates the difficulty of accurately measuring the duration of deafness in adult CI users. There was no clear or reliable trend showing a relationship between the MRAR measured at any AM rate and duration of deafness defined by any criteria. After controlling for the effect of age at testing, MRARs measured at 200 Hz and basal electrode locations (i.e., electrodes 3 and 6) were larger than those measured at any other AM rate and apical electrode locations (i.e., electrodes 18 and 21). CONCLUSIONS The AN sensitivity to AM cues implemented in the pulse-train stimulation significantly declines with advanced age. Accurately measuring duration of deafness in adult CI users is challenging, which, at least partially, might have accounted for the inconclusive findings in the relationship between the duration of deafness and the AN sensitivity to AM cues in this study.
Collapse
|
33
|
Aristovich K, Donega M, Fjordbakk C, Tarotin I, Chapman CAR, Viscasillas J, Stathopoulou TR, Crawford A, Chew D, Perkins J, Holder D. Model-based geometrical optimisation and in vivo validation of a spatially selective multielectrode cuff array for vagus nerve neuromodulation. J Neurosci Methods 2021; 352:109079. [PMID: 33516735 DOI: 10.1016/j.jneumeth.2021.109079] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neuromodulation by electrical stimulation of the human cervical vagus nerve may be limited by adverse side effects due to stimulation of off-target organs. It may be possible to overcome this by spatially selective stimulation of peripheral nerves. Preliminary studies have shown this is possible using a cylindrical multielectrode human-sized nerve cuff in vagus nerve selective neuromodulation. NEW METHOD The model-based optimisation method for multi-electrode geometric design is presented. The method was applied for vagus nerve cuff array and suggested two rings of 14 electrodes, 3 mm apart, with 0.4 mm electrode width and separation and length 0.5-3 mm, with stimulation through a pair in the same radial position on the two rings. The electrodes were fabricated using PDMS-embedded stainless steel foil and PEDOT: pTS coating. RESULTS In the cervical vagus nerve in anaesthetised sheep, it was possible to selectively reduce the respiratory breath rate (RBR) by 85 ± 5% without affecting heart rate, or selectively reduce heart rate (HR) by 20 ± 7% without affecting respiratory rate. The cardiac- and pulmonary-specific sites on the nerve cross-sectional perimeter were localised with a radial separation of 105 ± 5 degrees (P < 0.01, N = 24 in 12 sheep). CONCLUSIONS Results suggest organotopic or function-specific organisation of neural fibres in the cervical vagus nerve. The optimised electrode array demonstrated selective electrical neuromodulation without adverse side effects. It may be possible to translate this to improved treatment by electrical autonomic neuromodulation for currently intractable conditions.
Collapse
Affiliation(s)
- Kirill Aristovich
- Medical Physics and Biomedical Engineering, University College London, UK.
| | - Matteo Donega
- Neuromodulation, Galvani Bioelectronics, Stevenage, UK
| | | | - Ilya Tarotin
- Medical Physics and Biomedical Engineering, University College London, UK
| | | | | | | | | | - Daniel Chew
- Neuromodulation, Galvani Bioelectronics, Stevenage, UK
| | | | - David Holder
- Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
34
|
Zhan KY, Adunka OF, Eshraghi A, Riggs WJ, Prentiss SM, Yan D, Telischi FF, Liu X, He S. Electrophysiology and genetic testing in the precision medicine of congenital deafness: A review. J Otol 2021; 16:40-46. [PMID: 33505449 PMCID: PMC7814082 DOI: 10.1016/j.joto.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Congenital hearing loss is remarkably heterogeneous, with over 130 deafness genes and thousands of variants, making for innumerable genotype/phenotype combinations. Understanding both the pathophysiology of hearing loss and molecular site of lesion along the auditory pathway permits for significantly individualized counseling. Electrophysiologic techniques such as electrocochleography (ECochG) and electrically-evoked compound action potentials (eCAP) are being studied to localize pathology and estimate residual cochlear vs. neural health. This review describes the expanding roles of genetic and electrophysiologic evaluation in the precision medicine of congenital hearing loss.The basics of genetic mutations in hearing loss and electrophysiologic testing (ECochG and eCAP) are reviewed, and how they complement each other in the diagnostics and prognostication of hearing outcomes. Used together, these measures improve the understanding of insults to the auditory system, allowing for individualized counseling for CI candidacy/outcomes or other habilitation strategies. CONCLUSION Despite tremendous discovery in deafness genes, the effects of individual genes on neural function remain poorly understood. Bridging the understanding between molecular genotype and neural and functional phenotype is paramount to interpreting genetic results in clinical practice. The future hearing healthcare provider must consolidate an ever-increasing amount of genetic and phenotypic information in the precision medicine of hearing loss.
Collapse
Affiliation(s)
- Kevin Y. Zhan
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Oliver F. Adunka
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Adrien Eshraghi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William J. Riggs
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sandra M. Prentiss
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fred F. Telischi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xuezhong Liu
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shuman He
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
35
|
Undurraga JA, Van Yper L, Bance M, McAlpine D, Vickers D. Neural encoding of spectro-temporal cues at slow and near speech-rate in cochlear implant users. Hear Res 2020; 403:108160. [PMID: 33461048 DOI: 10.1016/j.heares.2020.108160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
The ability to process rapid modulations in the spectro-temporal structure of sounds is critical for speech comprehension. For users of cochlear implants (CIs), spectral cues in speech are conveyed by differential stimulation of electrode contacts along the cochlea, and temporal cues in terms of the amplitude of stimulating electrical pulses, which track the amplitude-modulated (AM'ed) envelope of speech sounds. Whilst survival of inner-ear neurons and spread of electrical current are known factors that limit the representation of speech information in CI listeners, limitations in the neural representation of dynamic spectro-temporal cues common to speech are also likely to play a role. We assessed the ability of CI listeners to process spectro-temporal cues varying at rates typically present in human speech. Employing an auditory change complex (ACC) paradigm, and a slow (0.5Hz) alternating rate between stimulating electrodes, or different AM frequencies, to evoke a transient cortical ACC, we demonstrate that CI listeners-like normal-hearing listeners-are sensitive to transitions in the spectral- and temporal-domain. However, CI listeners showed impaired cortical responses when either spectral or temporal cues were alternated at faster, speech-like (6-7Hz), rates. Specifically, auditory change following responses-reliably obtained in normal-hearing listeners-were small or absent in CI users, indicating that cortical adaptation to alternating cues at speech-like rates is stronger under electrical stimulation. In CI listeners, temporal processing was also influenced by the polarity-behaviourally-and rate of presentation of electrical pulses-both neurally and behaviorally. Limitations in the ability to process dynamic spectro-temporal cues will likely impact speech comprehension in CI users.
Collapse
Affiliation(s)
- Jaime A Undurraga
- Department of Linguistics, 16 University Avenue, Macquarie University, NSW 2109, Australia.
| | - Lindsey Van Yper
- Department of Linguistics, 16 University Avenue, Macquarie University, NSW 2109, Australia
| | - Manohar Bance
- Cambridge Hearing Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, CB2 0QQ, UK
| | - David McAlpine
- Department of Linguistics, 16 University Avenue, Macquarie University, NSW 2109, Australia
| | - Deborah Vickers
- Cambridge Hearing Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, CB2 0QQ, UK
| |
Collapse
|
36
|
Lamping W, Deeks JM, Marozeau J, Carlyon RP. The Effect of Phantom Stimulation and Pseudomonophasic Pulse Shapes on Pitch Perception by Cochlear Implant Listeners. J Assoc Res Otolaryngol 2020; 21:511-526. [PMID: 32804337 PMCID: PMC7644600 DOI: 10.1007/s10162-020-00768-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
It has been suggested that a specialized high-temporal-acuity brainstem pathway can be activated by stimulating more apically in the cochlea than is achieved by cochlear implants (CIs) when programmed with contemporary clinical settings. We performed multiple experiments to test the effect on pitch perception of phantom stimulation and asymmetric current pulses, both supposedly stimulating beyond the most apical electrode of a CI. The two stimulus types were generated using a bipolar electrode pair, composed of the most apical electrode of the array and a neighboring, more basal electrode. Experiment 1 used a pitch-ranking procedure where neural excitation was shifted apically or basally using so-called phantom stimulation. No benefit of apical phantom stimulation was found on the highest rate up to which pitch ranks increased (upper limit), nor on the slopes of the pitch-ranking function above 300 pulses per second (pps). Experiment 2 used the same procedure to study the effects of apical pseudomonophasic pulses, where the locus of excitation was manipulated by changing stimulus polarity. A benefit of apical stimulation was obtained for the slopes above 300 pps. Experiment 3 used an adaptive rate discrimination procedure and found a small but significant benefit of both types of apical stimulation. Overall, the results show some benefit for apical stimulation on temporal pitch processing at high pulse rates but reveal that the effect is smaller and more variable across listeners than suggested by previous research. The results also provide some indication that the benefit of apical stimulation may decline over time since implantation.
Collapse
Affiliation(s)
- Wiebke Lamping
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK.
| | - John M Deeks
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Jeremy Marozeau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
37
|
Guérit F, Marozeau J, Epp B, Carlyon RP. Effect of the Relative Timing between Same-Polarity Pulses on Thresholds and Loudness in Cochlear Implant Users. J Assoc Res Otolaryngol 2020; 21:497-510. [PMID: 32833160 PMCID: PMC7644659 DOI: 10.1007/s10162-020-00767-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
The effect of the relative timing between pairs of same-polarity monophasic pulses has been studied extensively in single-neuron animal studies and has revealed fundamental properties of the neurons. For human cochlear implant listeners, the requirement to use charge-balanced stimulation and the typical use of symmetric, biphasic pulses limits such measures, because currents of opposite polarities interact at the level of the neural membrane. Here, we propose a paradigm to study same-polarity summation of currents while keeping the stimulation charge-balanced within a short time window. We used pairs of mirrored pseudo-monophasic pulses (a long-low phase followed by a short-high phase for the first pulse and a short-high phase followed by a long-low phase for the second pulse). We assumed that most of the excitation would stem from the two adjacent short-high phases, which had the same polarity. The inter-pulse interval between the short-high phases was varied from 0 to 345 μs. The inter-pulse interval had a significant effect on the perceived loudness, and this effect was consistent with both passive (membrane-related) and active (ion-channel-related) neuronal mechanisms contributing to facilitation. Furthermore, the effect of interval interacted with the polarity of the pulse pairs. At threshold, there was an effect of polarity, but, surprisingly, no effect of interval nor an interaction between the two factors. We discuss possible peripheral origins of these results.
Collapse
Affiliation(s)
- François Guérit
- Hearing Systems Group, Department of Health Technology, Technical University of Denmark, 352 Ørsteds Plads, 2800, Kgs. Lyngby, Denmark.
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.
| | - Jeremy Marozeau
- Hearing Systems Group, Department of Health Technology, Technical University of Denmark, 352 Ørsteds Plads, 2800, Kgs. Lyngby, Denmark
| | - Bastian Epp
- Hearing Systems Group, Department of Health Technology, Technical University of Denmark, 352 Ørsteds Plads, 2800, Kgs. Lyngby, Denmark
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| |
Collapse
|
38
|
Quass GL, Baumhoff P, Gnansia D, Stahl P, Kral A. Level coding by phase duration and asymmetric pulse shape reduce channel interactions in cochlear implants. Hear Res 2020; 396:108070. [PMID: 32950954 DOI: 10.1016/j.heares.2020.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
Conventional loudness coding with CIs by pulse current amplitude has a disadvantage: Increasing the stimulation current increases the spread of excitation in the auditory nerve, resulting in stronger channel interactions at high stimulation levels. These limit the number of effective information channels that a CI user can perceive. Stimulus intensity information (loudness) can alternatively be transmitted via pulse phase duration. We hypothesized that loudness coding by phase duration avoids the increase in the spread of the electric field and thus leads to less channel interactions at high stimulation levels. To avoid polarity effects, we combined this coding with pseudomonophasic stimuli. To test whether this affects the spread of excitation, 16 acutely deafened guinea pigs were implanted with CIs and neural activity from the inferior colliculus was recorded while stimulating with either biphasic, amplitude-coded pulses, or pseudomonophasic, duration- or amplitude-coded pulses. Pseudomonophasic stimuli combined with phase duration loudness coding reduced the lowest response thresholds and the spread of excitation. We investigated the channel interactions at suprathreshold levels by computing the phase-locking to a pulse train in the presence of an interacting pulse train on a different electrode on the CI. Pseudomonophasic pulses coupled with phase duration loudness coding reduced the interference by 4-5% compared to biphasic pulses, depending on the place of stimulation. This effect of pseudomonophasic stimuli was achieved with amplitude coding only in the basal cochlea, indicating a distance- or volume dependent effect. Our results show that pseudomonophasic, phase-duration-coded stimuli slightly reduce channel interactions, suggesting a potential benefit for speech understanding in humans.
Collapse
Affiliation(s)
- Gunnar Lennart Quass
- Institute for AudioNeuroTechnology (VIANNA), ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4All" (EXC 2177).
| | - Peter Baumhoff
- Institute for AudioNeuroTechnology (VIANNA), ENT Clinics, Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Andrej Kral
- Institute for AudioNeuroTechnology (VIANNA), ENT Clinics, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence "Hearing4All" (EXC 2177)
| |
Collapse
|
39
|
Jiang C, de Rijk SR, Malliaras GG, Bance ML. Electrochemical impedance spectroscopy of human cochleas for modeling cochlear implant electrical stimulus spread. APL MATERIALS 2020; 8:091102. [PMID: 32929397 PMCID: PMC7470452 DOI: 10.1063/5.0012514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/14/2020] [Indexed: 05/07/2023]
Abstract
Cochlear implants (CIs) have tremendously helped people with severe to profound hearing loss to gain access to sound and oral-verbal communication. However, the electrical stimulus in the cochlea spreads easily and widely, since the perilymph and endolymph (i.e., intracochlear fluids) are essentially electrolytes, leading to an inability to focus stimulation to discrete portions of the auditory nerve, which blurs the neural signal. Here, we characterize the complex transimpedances of human cadaveric cochleas to investigate how electrical stimulus spread is distributed from 10 Hz to 100 kHz. By using electrochemical impedance spectroscopy (EIS), both the resistive and capacitive elements of human cochleas are measured and modeled with an electrical circuit model, identifying spread-induced and spread-independent impedance components. Based on this electrical circuit model, we implement a Laplace transform to simulate the theoretical shapes of the spread signals. The model is validated by experimentally applying the simulated stimulus as a real stimulus to the cochlea and measuring the shapes of the spread signals, with relative errors of <0.6% from the model. Based on this model, we show the relationship between stimulus pulse duration and electrical stimulus spread. This EIS technique to characterize the transimpedances of human cochleas provides a new way to predict the spread signal under an arbitrary electrical stimulus, thus providing preliminary guidance to the design of CI stimuli for different CI users and coding strategies.
Collapse
Affiliation(s)
| | - S. R. de Rijk
- Department of Clinical Neurosciences, University
of Cambridge, Cambridge CB2 0AH, United Kingdom
| | - G. G. Malliaras
- Division of Electrical Engineering, Department of
Engineering, University of Cambridge, Cambridge CB3 0FA, United
Kingdom
- Authors to whom correspondence should be addressed:
and
| | - M. L. Bance
- Authors to whom correspondence should be addressed:
and
| |
Collapse
|
40
|
Yang H, Won JH, Choi I, Woo J. A computational study to model the effect of electrode-to-auditory nerve fiber distance on spectral resolution in cochlear implant. PLoS One 2020; 15:e0236784. [PMID: 32745116 PMCID: PMC7398541 DOI: 10.1371/journal.pone.0236784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Spectral ripple discrimination (SRD) has been widely used to evaluate the spectral resolution in cochlear implant (CI) recipients based on its strong correlation with speech perception performance. However, despite its usefulness for predicting speech perception outcomes, SRD performance exhibits large across-subject variabilities even among subjects implanted with the same CIs and sound processors. The potential factors of this observation include current spread, nerve survival, and CI mapping. Previous studies have found that the spectral resolution reduces with increasing distance of the stimulation electrode from the auditory nerve fibers (ANFs), attributable to increasing current spread. However, it remains unclear whether the spread of excitation is the only cause of the observation, or whether other factors such as temporal interaction also contribute to it. In this study, we used a computational model to investigate channel interaction upon non-simultaneous stimulation with respect to the electrode-ANF distance, and evaluated the SRD performance for five electrode-ANF distances. The SRD performance was determined based on the similarity between two neurograms in response to standard and inverted stimuli and used to evaluate the spectral resolution in the computational model. The spread of excitation was observed to increase with increasing electrode-ANF distance, consistent with previous findings. Additionally, the preceding pulses delivered from neighboring channels induced a channel interaction that either inhibited or facilitated the neural responses to subsequent pulses depending on the electrode-ANF distance. The SRD performance was also found to decrease with increasing electrode-ANF distance. The findings of this study suggest that variation of the neural responses (inhibition or facilitation) with the electrode-ANF distance in CI users may cause spectral smearing, and hence poor spectral resolution. A computational model such as that used in this study is a useful tool for understanding the neural factors related to CI outcomes, such as cannot be accomplished by behavioral studies alone.
Collapse
Affiliation(s)
- Hyejin Yang
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Jong Ho Won
- Division of ENT, Sleep Disordered Breathing, Respiratory, and Anesthesia, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States of America
| | - Jihwan Woo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
41
|
The Effect of Increasing Interphase Gap on N1 Latency of the Electrically Evoked Compound Action Potential and the Stimulation Level Offset in Human Cochlear Implant Users. Ear Hear 2020; 42:244-247. [PMID: 32701729 DOI: 10.1097/aud.0000000000000919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study reports two potential biomarkers of the physiological status of the cochlear nerve (CN) in cochlear implant users. DESIGN This project represents a complementary analysis on a subset of electrophysiological data from our recently published study. This study compared changes in N1 latency and stimulation level (i.e., N1 latency offset and stimulation level offset) with increasing interphase gap of a biphasic pulse between children with cochlear nerve deficiency and children with normal-sized CNs. RESULTS Children with cochlear nerve deficiency showed smaller N1 latency offsets and larger stimulation level offsets than children with normal-sized CNs at all electrode locations tested. CONCLUSIONS The N1 latency and stimulation level offsets differ in two patient populations with different physiological statuses of the CN. These parameters may be useful for evaluating CN function in individual cochlear implant patients.
Collapse
|
42
|
Potrusil T, Heshmat A, Sajedi S, Wenger C, Johnson Chacko L, Glueckert R, Schrott-Fischer A, Rattay F. Finite element analysis and three-dimensional reconstruction of tonotopically aligned human auditory fiber pathways: A computational environment for modeling electrical stimulation by a cochlear implant based on micro-CT. Hear Res 2020; 393:108001. [PMID: 32535276 DOI: 10.1016/j.heares.2020.108001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 01/01/2023]
Abstract
The application of cochlear implants can be studied with computational models. The electrical potential distribution induced by an implanted device is evaluated with a volume conductor model, which is used as input for neuron models to simulate the reaction of cochlear neurons to micro-stimulation. In order to reliably predict the complex excitation profiles it is vital to consider an accurate representation of the human cochlea geometry including detailed three-dimensional pathways of auditory neurons reaching from the organ of Corti through the cochlea-volume. In this study, high-resolution micro-CT imaging (Δx = Δy = Δz = 3 μm) was used to reconstruct the pathways of 30 tonotopically organized nerve fiber bundles, distributed over eight octaves (11500-40 Hz). Results of the computational framework predict: (i) the peripheral process is most sensitive to cathodic stimulation (CAT), (ii) in many cases CAT elicits spikes in the peripheral terminal at threshold but with larger stimuli there is a second spike initiation site within the peripheral process, (iii) anodic stimuli (ANO) can excite the central process even at threshold, (iv) the recruitment of fibers by electrodes located in the narrowing middle- and apical turn is complex and impedes focal excitation of low frequency fibers, (v) degenerated cells which lost the peripheral process are more sensitive to CAT when their somata are totally covered with 2 membranes of a glial cell but they become ANO sensitive when the myelin covering is reduced.
Collapse
Affiliation(s)
- Thomas Potrusil
- Innsbruck Medical University, Department of Otorhinolaryngology, Laboratory for Inner Ear Biology, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Amirreza Heshmat
- Innsbruck Medical University, Department of Otorhinolaryngology, Laboratory for Inner Ear Biology, Anichstrasse 35, A-6020, Innsbruck, Austria; TU Wien, Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8-10, A- 1040, Vienna, Austria
| | - Sogand Sajedi
- TU Wien, Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8-10, A- 1040, Vienna, Austria
| | - Cornelia Wenger
- TU Wien, Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8-10, A- 1040, Vienna, Austria
| | - Lejo Johnson Chacko
- Innsbruck Medical University, Department of Otorhinolaryngology, Laboratory for Inner Ear Biology, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Rudolf Glueckert
- Innsbruck Medical University, Department of Otorhinolaryngology, Laboratory for Inner Ear Biology, Anichstrasse 35, A-6020, Innsbruck, Austria
| | - Anneliese Schrott-Fischer
- Innsbruck Medical University, Department of Otorhinolaryngology, Laboratory for Inner Ear Biology, Anichstrasse 35, A-6020, Innsbruck, Austria.
| | - Frank Rattay
- TU Wien, Institute for Analysis and Scientific Computing, Wiedner Hauptstraße 8-10, A- 1040, Vienna, Austria
| |
Collapse
|
43
|
Ramped pulse shapes are more efficient for cochlear implant stimulation in an animal model. Sci Rep 2020; 10:3288. [PMID: 32094368 PMCID: PMC7039949 DOI: 10.1038/s41598-020-60181-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/03/2020] [Indexed: 01/20/2023] Open
Abstract
In all commercial cochlear implant (CI) devices, the electric stimulation is performed with a rectangular pulse that generally has two phases of opposite polarity. To date, developing new stimulation strategies has relied on the efficacy of this shape. Here, we investigate the potential of a novel stimulation paradigm that uses biophysically-inspired electrical ramped pulses. Using electrically-evoked auditory brainstem response (eABR) recordings in mice, we found that less charge, but higher current level amplitude, is needed to evoke responses with ramped shapes that are similar in amplitude to responses obtained with rectangular shapes. The most charge-efficient pulse shape had a rising ramp over both phases, supporting findings from previous in vitro studies. This was also true for longer phase durations. Our study presents the first physiological data on CI-stimulation with ramped pulse shapes. By reducing charge consumption ramped pulses have the potential to produce more battery-efficient CIs and may open new perspectives for designing other efficient neural implants in the future.
Collapse
|
44
|
Polarity Sensitivity as a Potential Correlate of Neural Degeneration in Cochlear Implant Users. J Assoc Res Otolaryngol 2020; 21:89-104. [PMID: 32020417 DOI: 10.1007/s10162-020-00742-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Cochlear implant (CI) performance varies dramatically between subjects. Although the causes of this variability remain unclear, the electrode-neuron interface is thought to play an important role. Here we evaluate the contribution of two parameters of this interface on the perception of CI listeners: the electrode-to-modiolar wall distance (EMD), estimated from cone-beam computed tomography (CT) scans, and a measure of neural health. Since there is no objective way to quantify neural health in CI users, we measure stimulus polarity sensitivity, which is assumed to be related to neural degeneration, and investigate whether it also correlates with subjects' performance in speech recognition and spectro-temporal modulation detection tasks. Detection thresholds were measured in fifteen CI users (sixteen ears) for partial-tripolar triphasic pulses having an anodic or a cathodic central phase. The polarity effect was defined as the difference in threshold between cathodic and anodic stimuli. Our results show that both the EMD and the polarity effect correlate with detection thresholds, both across and within subjects, although the within-subject correlations were weak. Furthermore, the mean polarity effect, averaged across all electrodes for each subject, was negatively correlated with performance on a spectro-temporal modulation detection task. In other words, lower cathodic thresholds were associated with better spectro-temporal modulation detection performance, which is also consistent with polarity sensitivity being a marker of neural degeneration. Implications for the design of future subject-specific fitting strategies are discussed.
Collapse
|
45
|
Effectiveness of Phantom Stimulation in Shifting the Pitch Percept in Cochlear Implant Users. Ear Hear 2020; 41:1258-1269. [PMID: 31977727 DOI: 10.1097/aud.0000000000000845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Phantom electrode stimulation was developed for cochlear implant (CI) systems to provide a lower pitch percept by stimulating more apical regions of the cochlea, without inserting the electrode array deeper into the cochlea. Phantom stimulation involves simultaneously stimulating a primary and a compensating electrode with opposite polarity, thereby shifting the electrical field toward the apex and eliciting a lower pitch percept. The current study compared the effect sizes (in shifts of place of excitation) of multiple phantom configurations by matching the perceived pitch with phantom stimulation to that perceived with monopolar stimulation. Additionally, the effects of electrode location, type of electrode array, and stimulus level on the perceived pitch were investigated. DESIGN Fifteen adult advanced bionics CI users participated in this study, which included four experiments to eventually measure the shifts in place of excitation with five different phantom configurations. The proportions of current delivered to the compensating electrode, expressed as σ, were 0.5, 0.6, 0.7, and 0.8 for the symmetrical biphasic pulses (SBC0.5, SBC0.6, SBC0.7, and SBC0.8) and 0.75 for the pseudomonophasic pulse shape (PSA0.75). A pitch discrimination experiment was first completed to determine which basal and apical electrode contacts should be used for the subsequent experiments. An extensive loudness balancing experiment followed where both the threshold level (T-level) and most comfortable level (M-level) were determined to enable testing at multiple levels of the dynamic range. A pitch matching experiment was then performed to estimate the shift in place of excitation at the chosen electrode contacts. These rough shifts were then used in the subsequent experiment, where the shifts in place of excitation were determined more accurately. RESULTS Reliable data were obtained from 20 electrode contacts. The average shifts were 0.39, 0.53, 0.64, 0.76, and 0.53 electrode contacts toward the apex for SBC0.5, SBC0.6, SBC0.7, SBC0.8, and PSA0.75, respectively. When only the best configurations per electrode contact were included, the average shift in place of excitation was 0.92 electrode contacts (range: 0.25 to 2.0). While PSA0.75 leads to equal results as the SBC configurations in the apex, it did not result in a significant shift at the base. The shift in place of excitation was significantly larger at the apex and with lateral wall electrode contacts. The stimulus level did not affect the shift. CONCLUSIONS Phantom stimulation results in significant shifts in place of excitation, especially at the apical part of the electrode array. The phantom configuration that leads to the largest shift in place of excitation differs between subjects. Therefore, the settings of the phantom electrode should be individualized so that the phantom stimulation is optimized for each CI user. The real added value to the sound quality needs to be established in a take-home trial.
Collapse
|
46
|
Schvartz-Leyzac KC, Colesa DJ, Buswinka CJ, Swiderski DL, Raphael Y, Pfingst BE. Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs. Hear Res 2019; 383:107809. [PMID: 31630082 DOI: 10.1016/j.heares.2019.107809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022]
Abstract
The electrically-evoked compound action potential (ECAP) is correlated with spiral ganglion neuron (SGN) density in cochlear implanted animals. In a previous study, we showed that ECAP amplitude growth function (AGF) linear slopes for stimuli with a constant interphase gap (IPG) changed significantly over time following implantation. Related studies have also shown that 1) IPG sensitivity for ECAP measures ("IPG Effect") is related to SGN density in animals and 2) the ECAP IPG Effect is related to speech recognition performance in humans with cochlear implants. The current study examined how the ECAP IPG Effect changed following cochlear implantation in four non-deafened guinea pigs with residual inner hair cells (IHCs) and 5 deafened, neurotrophin-treated guinea pigs. Simple impedances were measured on the same days as the ECAP measures. Generally, non-deafened implanted animals with higher SGN survival demonstrated higher ECAP AGF linear slope and peak amplitude values than the deafened, implanted guinea pigs. The ECAP IPG Effect for the AGF slopes and peak amplitudes was also larger in the hearing animals. The N1 latencies for a constant IPG were not different between groups, but the N1 latency IPG Effect was smaller in the non-deafened, implanted animals. Similar to previously reported results, ECAP measures using a fixed or changing IPG required as many as three months after implantation before a stable point could be calculated, but this was dependent on the animal and condition. For all ECAP measures most animals showed greater variance in the first 30 days post-implantation. Post-implantation changes in ECAPs and impedances were not correlated with one another. Results from this study are helpful for estimating the mechanisms underlying ECAP characteristics and have implications for clinical application of the ECAP measures in long-term human cochlear implant recipients. Specifically, these measures could help to monitor neural health over a period of time, or during a time of stability these measures could be used to help select electrode sites for activation in clinical programming.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA; Hearing Rehabilitation Center, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI, 48108.
| | - Deborah J Colesa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Christopher J Buswinka
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| |
Collapse
|
47
|
Goehring T, Archer-Boyd A, Deeks JM, Arenberg JG, Carlyon RP. A Site-Selection Strategy Based on Polarity Sensitivity for Cochlear Implants: Effects on Spectro-Temporal Resolution and Speech Perception. J Assoc Res Otolaryngol 2019; 20:431-448. [PMID: 31161338 PMCID: PMC6646483 DOI: 10.1007/s10162-019-00724-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Thresholds of asymmetric pulses presented to cochlear implant (CI) listeners depend on polarity in a way that differs across subjects and electrodes. It has been suggested that lower thresholds for cathodic-dominant compared to anodic-dominant pulses reflect good local neural health. We evaluated the hypothesis that this polarity effect (PE) can be used in a site-selection strategy to improve speech perception and spectro-temporal resolution. Detection thresholds were measured in eight users of Advanced Bionics CIs for 80-pps, triphasic, monopolar pulse trains where the central high-amplitude phase was either anodic or cathodic. Two experimental MAPs were then generated for each subject by deactivating the five electrodes with either the highest or the lowest PE magnitudes (cathodic minus anodic threshold). Performance with the two experimental MAPs was evaluated using two spectro-temporal tests (Spectro-Temporal Ripple for Investigating Processor EffectivenesS (STRIPES; Archer-Boyd et al. in J Acoust Soc Am 144:2983–2997, 2018) and Spectral-Temporally Modulated Ripple Test (SMRT; Aronoff and Landsberger in J Acoust Soc Am 134:EL217–EL222, 2013)) and with speech recognition in quiet and in noise. Performance was also measured with an experimental MAP that used all electrodes, similar to the subjects’ clinical MAP. The PE varied strongly across subjects and electrodes, with substantial magnitudes relative to the electrical dynamic range. There were no significant differences in performance between the three MAPs at group level, but there were significant effects at subject level—not all of which were in the hypothesized direction—consistent with previous reports of a large variability in CI users’ performance and in the potential benefit of site-selection strategies. The STRIPES but not the SMRT test successfully predicted which strategy produced the best speech-in-noise performance on a subject-by-subject basis. The average PE across electrodes correlated significantly with subject age, duration of deafness, and speech perception scores, consistent with a relationship between PE and neural health. These findings motivate further investigations into site-specific measures of neural health and their application to CI processing strategies.
Collapse
Affiliation(s)
- Tobias Goehring
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Alan Archer-Boyd
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - John M Deeks
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Julie G Arenberg
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Seattle, WA, 98105, USA
| | - Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
48
|
Jahn KN, Arenberg JG. Evaluating Psychophysical Polarity Sensitivity as an Indirect Estimate of Neural Status in Cochlear Implant Listeners. J Assoc Res Otolaryngol 2019; 20:415-430. [PMID: 30949879 PMCID: PMC6646612 DOI: 10.1007/s10162-019-00718-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/12/2019] [Indexed: 01/04/2023] Open
Abstract
The physiological integrity of spiral ganglion neurons is presumed to influence cochlear implant (CI) outcomes, but it is difficult to measure neural health in CI listeners. Modeling data suggest that, when peripheral processes have degenerated, anodic stimulation may be a more effective neural stimulus than cathodic stimulation. The primary goal of the present study was to evaluate the emerging theory that polarity sensitivity reflects neural health in CI listeners. An ideal in vivo estimate of neural integrity should vary independently of other factors known to influence the CI electrode-neuron interface, such as electrode position and tissue impedances. Thus, the present analyses quantified the relationships between polarity sensitivity and (1) electrode position estimated via computed tomography imaging, (2) intracochlear resistance estimated via electrical field imaging, and (3) focused (steered quadrupolar) behavioral thresholds, which are believed to reflect a combination of local neural health, electrode position, and intracochlear resistance. Eleven adults with Advanced Bionics devices participated. To estimate polarity sensitivity, electrode-specific behavioral thresholds in response to monopolar, triphasic pulses where the central high-amplitude phase was either anodic (CAC) or cathodic (ACA) were measured. The polarity effect was defined as the difference in threshold response to the ACA compared to the CAC stimulus. Results indicated that the polarity effect was not related to electrode-to-modiolus distance, electrode scalar location, or intracochlear resistance. Large, positive polarity effects, which may indicate SGN degeneration, were associated with relatively high focused behavioral thresholds. The polarity effect explained a significant portion of the variation in focused thresholds, even after controlling for electrode position and intracochlear resistance. Overall, these results provide support for the theory that the polarity effect may reflect neural integrity in CI listeners. Evidence from this study supports further investigation into the use of polarity sensitivity for optimizing individual CI programming parameters.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Seattle, WA, 98105, USA.
| | - Julie G Arenberg
- Massachusetts Eye and Ear, 243 Charles St., Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
49
|
Assessing the Relationship Between the Electrically Evoked Compound Action Potential and Speech Recognition Abilities in Bilateral Cochlear Implant Recipients. Ear Hear 2019; 39:344-358. [PMID: 28885234 DOI: 10.1097/aud.0000000000000490] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The primary objective of the present study was to examine the relationship between suprathreshold electrically evoked compound action potential (ECAP) measures and speech recognition abilities in bilateral cochlear implant listeners. We tested the hypothesis that the magnitude of ear differences in ECAP measures within a subject (right-left) could predict the difference in speech recognition performance abilities between that subject's ears (right-left). DESIGN To better control for across-subject variables that contribute to speech understanding, the present study used a within-subject design. Subjects were 10 bilaterally implanted adult cochlear implant recipients. We measured ECAP amplitudes and slopes of the amplitude growth function in both ears for each subject. We examined how each of these measures changed when increasing the interphase gap of the biphasic pulses. Previous animal studies have shown correlations between these ECAP measures and auditory nerve survival. Speech recognition measures included speech reception thresholds for sentences in background noise, as well as phoneme discrimination in quiet and in noise. RESULTS Results showed that the between-ear difference (right-left) of one specific ECAP measure (increase in amplitude growth function slope as the interphase gap increased from 7 to 30 µs) was significantly related to the between-ear difference (right-left) in speech recognition. Frequency-specific response patterns for ECAP data and consonant transmission cues support the hypothesis that this particular ECAP measure may represent localized functional acuity. CONCLUSIONS The results add to a growing body of literature suggesting that when using a well-controlled research design, there is evidence that underlying neural function is related to postoperative performance with a cochlear implant.
Collapse
|
50
|
The Effect of Stimulus Polarity on the Relation Between Pitch Ranking and ECAP Spread of Excitation in Cochlear Implant Users. J Assoc Res Otolaryngol 2019; 20:279-290. [PMID: 30706216 DOI: 10.1007/s10162-018-00712-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/26/2018] [Indexed: 01/21/2023] Open
Abstract
Although modern cochlear implants (CIs) use cathodic-leading symmetrical biphasic pulses to stimulate the auditory nerve, a growing body of evidence suggests that anodic-leading pulses may be more effective. The positive polarity has been shown to produce larger electrically evoked compound action potential (ECAP) amplitudes, steeper slope of the amplitude growth function, and broader spread of excitation (SOE) patterns. Polarity has also been shown to influence pitch perception. It remains unclear how polarity affects the relation between physiological SOE and psychophysical pitch perception. Using a within-subject design, we examined the correlation between performance on a pitch-ranking task and spatial separation between SOE patterns for anodic and cathodic-leading symmetric biphasic pulses for 14 CI ears. Overall, there was no effect of polarity on either ECAP SOE patterns, pitch ranking performance, or the relation between the two. This result is likely due the use of symmetric biphasic pulses, which may have reduced the size of the effect previously observed for pseudomonophasic pulses. Further research is needed to determine if a pseudomonophasic stimulus might further improve the relation between physiology and pitch perception.
Collapse
|