1
|
Nassiri M, Ghovvati S, Gharouni M, Tahmoorespur M, Bahrami AR, Dehghani H. Engineering Human Pancreatic RNase 1 as an Immunotherapeutic Agent for Cancer Therapy Through Computational and Experimental Studies. Protein J 2024; 43:316-332. [PMID: 38145445 DOI: 10.1007/s10930-023-10171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Most plant and bacterial toxins are highly immunogenic with non-specific toxic effects. Human ribonucleases are thought to provide a promising basis for reducing the toxic agent's immunogenic properties, which are candidates for cancer therapy. In the cell, the ribonuclease inhibitor (RI) protein binds to the ribonuclease enzyme and forms a tight complex. This study aimed to engineer and provide a gene construct encoding an improved version of Human Pancreatic RNase 1 (HP-RNase 1) to reduce connection to RI and modulate the immunogenic effects of immunotoxins. To further characterize the interaction complex of HP-RNase 1 and RI, we established various in silico and in vitro approaches. These methods allowed us to specifically monitor interactions within native and engineered HP-RNase 1/RI complexes. In silico research involved molecular dynamics (MD) simulations of native and mutant HP-RNase 1 in their free form and when bound to RI. For HP-RNase 1 engineering, we designed five mutations (K8A/N72A/N89A/R92D/E112/A) based on literature studies, as this combination proved effective for the intended investigation. Then, the cDNA encoding HP-RNase 1 was generated by RT-PCR from blood and cloned into the pSYN2 expression vector. Consequently, wild-type and the engineered HP-RNase 1 were over-expressed in E. coli TG1 and purified using an IMAC column directed against a poly-his tag. The protein products were detected by SDS-PAGE and Western blot analysis. HP-RNase 1 catalytic activity, in the presence of various concentrations of RI, demonstrated that the mutated version of the protein is able to escape the ribonuclease inhibitor and target the RNA substrate 2.5 folds more than that of the wild type. From these data, we tend to suggest the engineered recombinant HP-RNase 1 potentially as a new immunotherapeutic agent for application in human cancer therapy.
Collapse
Affiliation(s)
- Mohammadreza Nassiri
- Department of Animal Science, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, 41635-1314, Rasht, Guilan, Iran.
| | - Marzieh Gharouni
- Department of Biochemistry, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mojtaba Tahmoorespur
- Department of Animal Science, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Molecular Cell Biology, College of Applied Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Physiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Noro I, Bettin I, Fasoli S, Smania M, Lunardi L, Giannini M, Andreoni L, Montioli R, Gotte G. Human RNase 1 can extensively oligomerize through 3D domain swapping thanks to the crucial contribution of its C-terminus. Int J Biol Macromol 2023; 249:126110. [PMID: 37536419 DOI: 10.1016/j.ijbiomac.2023.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Human ribonuclease (RNase) 1 and bovine RNase A are the proto-types of the secretory "pancreatic-type" (pt)-RNase super-family. RNase A can oligomerize through the 3D domain swapping (DS) mechanism upon acetic acid (HAc) lyophilisation, producing enzymatically active oligomeric conformers by swapping both N- and C-termini. Also some RNase 1 mutants were found to self-associate through 3D-DS, however forming only N-swapped dimers. Notably, enzymatically active dimers and larger oligomers of wt-RNase 1 were collected here, in higher amount than RNase A, from HAc lyophilisation. In particular, RNase 1 self-associates through the 3D-DS of its N-terminus and, at a higher extent, of the C-terminus. Since RNase 1 is four-residues longer than RNase A, we further analyzed its oligomerization tendency in a mutant lacking the last four residues. The C-terminus role has been investigated also in amphibian onconase (ONC®), a pt-RNase that can form only a N-swapped dimer, since its C-terminus, that is three-residues longer than RNase A, is locked by a disulfide bond. While ONC mutants designed to unlock or cut this constraint were almost unable to dimerize, the RNase 1 mutant self-associated at a higher extent than the wt, suggesting a specific role of the C-terminus in the oligomerization of different RNases. Overall, RNase 1 reaches here the highest ability, among pt-RNases, to extensively self-associate through 3D-DS, paving the way for new investigations on the structural and biological properties of its oligomers.
Collapse
Affiliation(s)
- Irene Noro
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Luca Lunardi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Michele Giannini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Leonardo Andreoni
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
3
|
Munro J, Gillen SL, Mitchell L, Laing S, Karim SA, Rink CJ, Waldron JA, Bushell M. Optimisation of Sample Preparation from Primary Mouse Tissue to Maintain RNA Integrity for Methods Examining Translational Control. Cancers (Basel) 2023; 15:3985. [PMID: 37568801 PMCID: PMC10417042 DOI: 10.3390/cancers15153985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The protein output of different mRNAs can vary by two orders of magnitude; therefore, it is critical to understand the processes that control gene expression operating at the level of translation. Translatome-wide techniques, such as polysome profiling and ribosome profiling, are key methods for determining the translation rates occurring on specific mRNAs. These techniques are now widely used in cell lines; however, they are underutilised in tissues and cancer models. Ribonuclease (RNase) expression is often found to be higher in complex primary tissues in comparison to cell lines. Methods used to preserve RNA during lysis often use denaturing conditions, which need to be avoided when maintaining the interaction and position of the ribosome with the mRNA is required. Here, we detail the cell lysis conditions that produce high-quality RNA from several different tissues covering a range of endogenous RNase expression levels. We highlight the importance of RNA integrity for accurate determination of the global translation status of the cell as determined by polysome gradients and discuss key aspects to optimise for accurate assessment of the translatome from primary mouse tissue.
Collapse
Affiliation(s)
- June Munro
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sarah L. Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sarah Laing
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Saadia A. Karim
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Curtis J. Rink
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Joseph A. Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| |
Collapse
|
4
|
Ting DSJ, Mohammed I, Lakshminarayanan R, Beuerman RW, Dua HS. Host Defense Peptides at the Ocular Surface: Roles in Health and Major Diseases, and Therapeutic Potentials. Front Med (Lausanne) 2022; 9:835843. [PMID: 35783647 PMCID: PMC9243558 DOI: 10.3389/fmed.2022.835843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Sight is arguably the most important sense in human. Being constantly exposed to the environmental stress, irritants and pathogens, the ocular surface – a specialized functional and anatomical unit composed of tear film, conjunctival and corneal epithelium, lacrimal glands, meibomian glands, and nasolacrimal drainage apparatus – serves as a crucial front-line defense of the eye. Host defense peptides (HDPs), also known as antimicrobial peptides, are evolutionarily conserved molecular components of innate immunity that are found in all classes of life. Since the first discovery of lysozyme in 1922, a wide range of HDPs have been identified at the ocular surface. In addition to their antimicrobial activity, HDPs are increasingly recognized for their wide array of biological functions, including anti-biofilm, immunomodulation, wound healing, and anti-cancer properties. In this review, we provide an updated review on: (1) spectrum and expression of HDPs at the ocular surface; (2) participation of HDPs in ocular surface diseases/conditions such as infectious keratitis, conjunctivitis, dry eye disease, keratoconus, allergic eye disease, rosacea keratitis, and post-ocular surgery; (3) HDPs that are currently in the development pipeline for treatment of ocular diseases and infections; and (4) future potential of HDP-based clinical pharmacotherapy for ocular diseases.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
- *Correspondence: Darren Shu Jeng Ting
| | - Imran Mohammed
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Harminder S. Dua
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
5
|
Gotte G, Menegazzi M. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Front Immunol 2019; 10:2626. [PMID: 31849926 PMCID: PMC6901985 DOI: 10.3389/fimmu.2019.02626] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases (RNases) are a large number of enzymes gathered into different bacterial or eukaryotic superfamilies. Bovine pancreatic RNase A, bovine seminal BS-RNase, human pancreatic RNase 1, angiogenin (RNase 5), and amphibian onconase belong to the pancreatic type superfamily, while binase and barnase are in the bacterial RNase N1/T1 family. In physiological conditions, most RNases secreted in the extracellular space counteract the undesired effects of extracellular RNAs and become protective against infections. Instead, if they enter the cell, RNases can digest intracellular RNAs, becoming cytotoxic and having advantageous effects against malignant cells. Their biological activities have been investigated either in vitro, toward a number of different cancer cell lines, or in some cases in vivo to test their potential therapeutic use. However, immunogenicity or other undesired effects have sometimes been associated with their action. Nevertheless, the use of RNases in therapy remains an appealing strategy against some still incurable tumors, such as mesothelioma, melanoma, or pancreatic cancer. The RNase inhibitor (RI) present inside almost all cells is the most efficacious sentry to counteract the ribonucleolytic action against intracellular RNAs because it forms a tight, irreversible and enzymatically inactive complex with many monomeric RNases. Therefore, dimerization or multimerization could represent a useful strategy for RNases to exert a remarkable cytotoxic activity by evading the interaction with RI by steric hindrance. Indeed, the majority of the mentioned RNases can hetero-dimerize with antibody derivatives, or even homo-dimerize or multimerize, spontaneously or artificially. This can occur through weak interactions or upon introducing covalent bonds. Immuno-RNases, in particular, are fusion proteins representing promising drugs by combining high target specificity with easy delivery in tumors. The results concerning the biological features of many RNases reported in the literature are described and discussed in this review. Furthermore, the activities displayed by some RNases forming oligomeric complexes, the mechanisms driving toward these supramolecular structures, and the biological rebounds connected are analyzed. These aspects are offered with the perspective to suggest possible efficacious therapeutic applications for RNases oligomeric derivatives that could contemporarily lack, or strongly reduce, immunogenicity and other undesired side-effects.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Garnett ER, Lomax JE, Mohammed BM, Gailani D, Sheehan JP, Raines RT. Phenotype of ribonuclease 1 deficiency in mice. RNA (NEW YORK, N.Y.) 2019; 25:921-934. [PMID: 31053653 PMCID: PMC6633200 DOI: 10.1261/rna.070433.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/27/2019] [Indexed: 05/06/2023]
Abstract
Biological roles for extracellular RNA (eRNA) have become apparent. For example, eRNA can induce contact activation in blood via activation of the plasma proteases factor XII (FXII) and factor XI (FXI). We sought to reveal the biological role of the secretory enzyme ribonuclease 1 (RNase 1) in an organismal context by generating and analyzing RNase 1 knockout (Rnase1-/-) mice. We found that these mice are viable, healthy, and fertile, though larger than Rnase1+/+ mice. Rnase1-/- plasma contains more RNA than does the plasma of Rnase1+/+ mice. Moreover, the plasma of Rnase1-/- mice clots more rapidly than does wild-type plasma. This phenotype appeared to be due to increased levels of the active form of FXII (FXIIa) in the plasma of Rnase1-/- mice compared to Rnase1+/+ mice, and is consistent with the known effects of eRNA on FXII activation. The apparent activity of FXI in the plasma of Rnase1-/- mice was 1000-fold higher when measured in an assay triggered by a low concentration of tissue factor than in assays based on recalcification, consistent with eRNA enhancing FXI activation by thrombin. These findings suggest that one of the physiological functions of RNase 1 is to degrade eRNA in blood plasma. Loss of this function facilitates FXII and FXI activation, which could have effects on inflammation and blood coagulation. We anticipate that Rnase1-/- mice will be a useful tool for evaluating other hypotheses about the functions of RNase 1 and of eRNA in vivo.
Collapse
Affiliation(s)
- Emily R Garnett
- Graduate Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jo E Lomax
- Graduate Program Molecular and Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bassem M Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - John P Sheehan
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
7
|
Jordaan S, Akinrinmade OA, Nachreiner T, Cremer C, Naran K, Chetty S, Barth S. Updates in the Development of ImmunoRNases for the Selective Killing of Tumor Cells. Biomedicines 2018; 6:biomedicines6010028. [PMID: 29510557 PMCID: PMC5874685 DOI: 10.3390/biomedicines6010028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Targeted cancer therapy includes, amongst others, antibody-based delivery of toxic payloads to selectively eliminate tumor cells. This payload can be either a synthetic small molecule drug composing an antibody-drug conjugate (ADC) or a cytotoxic protein composing an immunotoxin (IT). Non-human cytotoxic proteins, while potent, have limited clinical efficacy due to their immunogenicity and potential off-target toxicity. Humanization of the cytotoxic payload is essential and requires harnessing of potent apoptosis-inducing human proteins with conditional activity, which rely on targeted delivery to contact their substrate. Ribonucleases are attractive candidates, due to their ability to induce apoptosis by abrogating protein biosynthesis via tRNA degradation. In fact, several RNases of the pancreatic RNase A superfamily have shown potential as anti-cancer agents. Coupling of a human RNase to a humanized antibody or antibody derivative putatively eliminates the immunogenicity of an IT (now known as a human cytolytic fusion protein, hCFP). However, RNases are tightly regulated in vivo by endogenous inhibitors, controlling the ribonucleolytic balance subject to the cell’s metabolic requirements. Endogenous inhibition limits the efficacy with which RNase-based hCFPs induce apoptosis. However, abrogating the natural interaction with the natural inhibitors by mutation has been shown to significantly enhance RNase activity, paving the way toward achieving cytolytic potency comparable to that of bacterial immunotoxins. Here, we review the immunoRNases that have undergone preclinical studies as anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Sandra Jordaan
- Medical Biotechnology and Immunotherapy Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Olusiji A Akinrinmade
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Thomas Nachreiner
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, 52056 Aachen, Germany.
| | - Christian Cremer
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, 52056 Aachen, Germany.
| | - Krupa Naran
- Medical Biotechnology and Immunotherapy Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Shivan Chetty
- Medical Biotechnology and Immunotherapy Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa.
| |
Collapse
|
8
|
Comparative functional analysis of ribonuclease 1 homologs: molecular insights into evolving vertebrate physiology. Biochem J 2017; 474:2219-2233. [PMID: 28495858 DOI: 10.1042/bcj20170173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/30/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022]
Abstract
Pancreatic-type ribonucleases (ptRNases) comprise a class of highly conserved secretory endoribonucleases in vertebrates. The prototype of this enzyme family is ribonuclease 1 (RNase 1). Understanding the physiological roles of RNase 1 is becoming increasingly important, as engineered forms of the enzyme progress through clinical trials as chemotherapeutic agents for cancer. Here, we present an in-depth biochemical characterization of RNase 1 homologs from a broad range of mammals (human, bat, squirrel, horse, cat, mouse, and cow) and nonmammalian species (chicken, lizard, and frog). We discover that the human homolog of RNase 1 has a pH optimum for catalysis, ability to degrade double-stranded RNA, and affinity for cell-surface glycans that are distinctly higher than those of its homologs. These attributes have relevance for human health. Moreover, the functional diversification of the 10 RNase 1 homologs illuminates the regulation of extracellular RNA and other aspects of vertebrate evolution.
Collapse
|
9
|
Kleinert E, Langenmayer MC, Reichart B, Kindermann J, Griemert B, Blutke A, Troidl K, Mayr T, Grantzow T, Noyan F, Abicht JM, Fischer S, Preissner KT, Wanke R, Deindl E, Guethoff S. Ribonuclease (RNase) Prolongs Survival of Grafts in Experimental Heart Transplantation. J Am Heart Assoc 2016; 5:e003429. [PMID: 27121849 PMCID: PMC4889206 DOI: 10.1161/jaha.116.003429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell damage, tissue and vascular injury are associated with the exposure and release of intracellular components such as RNA, which promote inflammatory reactions and thrombosis. Based on the counteracting anti-inflammatory and cardioprotective functions of ribonuclease A (RNase A) in this context, its role in an experimental model of heart transplantation in rats was studied. METHODS AND RESULTS Inbred BN/OrlRj rat cardiac allografts were heterotopically transplanted into inbred LEW/OrlRj rats. Recipients were intravenously treated every other day with saline or bovine pancreatic RNase A (50 μg/kg). Toxic side effects were not found (macroscopically and histologically). Heart tissue flow cytometry and quantitative morphological analyses of explanted hearts at postoperative day 1 or postoperative day 4 showed reduced leukocyte infiltration, edema, and thrombus formation in RNase A-treated rats. In allogeneic mixed lymphocyte reactions, RNase A decreased the proliferation of effector T cells. RNase A treatment of rats resulted in prolonged median graft survival up to 10.5 days (interquartile range 1.8) compared to 6.5 days (interquartile range 1.0) in saline treatment (P=0.001). Treatment of rats with a new generated (recombinant) human pancreatic RNase 1 prolonged median graft survival similarly, unlike treatment with (recombinant) inactive human RNase 1 (each 50 μg/kg IV every other day, 11.0 days, interquartile range 0.3, versus 8.0 days, interquartile range 0.5, P=0.007). CONCLUSIONS Upon heart transplantation, RNase administration appears to present a promising and safe drug to counteract ischemia/reperfusion injury and graft rejection. Furthermore, RNase treatment may be considered in situations of critical reperfusion after percutaneous coronary interventions or in cardiac surgery using the heart-lung machine.
Collapse
Affiliation(s)
- Eike Kleinert
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Martin C Langenmayer
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Germany Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Germany
| | - Bruno Reichart
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Jana Kindermann
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany Department of Cardiac Surgery, Ludwig-Maximilians-Universität München, Germany
| | - Barbara Griemert
- Institute of Biochemistry, Medical School, Justus-Liebig-Universität, Giessen, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Kerstin Troidl
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tanja Mayr
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany Department of Anaesthesiology, Ludwig-Maximilians-Universität München, Germany
| | - Tobias Grantzow
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jan-Michael Abicht
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany Department of Anaesthesiology, Ludwig-Maximilians-Universität München, Germany
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-Universität, Giessen, Germany
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-Universität, Giessen, Germany
| | - Ruediger Wanke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Elisabeth Deindl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany
| | - Sonja Guethoff
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Germany Department of Cardiac Surgery, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
10
|
Fischer S, Preissner KT. Extracellular nucleic acids as novel alarm signals in the vascular system. Mediators of defence and disease. Hamostaseologie 2013; 33:37-42. [PMID: 23328880 DOI: 10.5482/hamo-13-01-0001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/08/2013] [Indexed: 01/13/2023] Open
Abstract
Upon vascular injury or tissue damage, the exposed intracellular material such as nucleic acids, histones and other macromolecules may come into contact with vessel wall cells and circulating blood cells and may thus, have an enduring influence on wound healing and body defence processes. This short review summarizes recent work related to extracellular DNA and RNA and their role as prominent alarm signals and inducers of different defence reactions related to innate immunity and thrombus formation. Of particular importance are DNA-histone complexes (nucleosome material) that, having been expelled during stimulation of the neutrophils, not only trap and eliminate bacteria but also promote thrombus formation in the arterial and venous system. Consequently therefore, the administration of DNase exhibits strong antithrombotic functions. Similarly, extracellular RNA provokes activation of the contact phase system of blood coagulation and, by interacting with specific proteins and cytokines, it promotes vascular permeability and oedema formation. The development of RNA-mediated thrombosis, vasogenic oedema or proinflammatory responses are counteracted by the administration of RNase1 in several pathogenetic animal models. Thus, extracellular nucleic acids appear not only to function as host alarm signals that serve to amplify the defence response, but they also provide important links to thrombus formation as part of the innate immune system.
Collapse
Affiliation(s)
- S Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-Universität, Friedrichstr. 24, 35392 Giessen, Germany
| | | |
Collapse
|
11
|
Chandrasekaran EV, Xue J, Xia J, Locke RD, Patil SA, Neelamegham S, Matta KL. Characterization of cancer associated mucin type O-glycans using the exchange sialylation properties of mammalian sialyltransferase ST3Gal-II. J Proteome Res 2012; 11:2609-18. [PMID: 22329400 DOI: 10.1021/pr201108q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our previous studies suggest that the α2,3sialylated T-antigen (NeuAcα2,3Galβ1,3GalNac-) and associated glycan structures are likely to be elevated during cancer. An easy and reliable strategy to label mucinous glycans that contain such carbohydrates can enable the identification of novel glycoproteins that are cancer associated. To this end, the present study demonstrates that the exchange sialylation property of mammalian ST3Gal-II can facilitate the labeling of mucin glycoproteins in cancer cells, tumor specimens, and glycoproteins in cancer sera. Results show that (i) the radiolabeled mucin glycoproteins of each of the cancer cell lines studied (T47D, MCF7, LS180, LNCaP, SKOV3, HL60, DU4475, and HepG2) is distinct either in terms of the specific glycans presented or their relative distribution. While some cell lines like T47D had only one single sialylated O-glycan, others like LS180 and DU4475 contained a complex mixture of mucinous carbohydrates. (ii) [14C]sialyl labeling of primary tumor cells identified a 25-35 kDa mucin glycoprotein unique to pancreatic tumor. Labeled glycoproteins for other cancers had higher molecular weight. (iii) Studies of [14C] sialylated human sera showed larger mucin glycopeptides and >2-fold larger mucin-type chains in human serum compared to [14C]sialyl labeled glycans of fetuin. Overall, the exchange sialylation property of ST3Gal-II provides an efficient avenue to identify mucinous proteins for applications in glycoproteomics and cancer research.
Collapse
Affiliation(s)
- E V Chandrasekaran
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, United States.
| | | | | | | | | | | | | |
Collapse
|
12
|
The eight human "canonical" ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett 2010; 584:2194-200. [PMID: 20388512 DOI: 10.1016/j.febslet.2010.04.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 01/25/2023]
Abstract
Human ribonucleases (RNases) are members of a large superfamily of rapidly evolving homologous proteins. Upon completion of the human genome, eight catalytically active RNases (numbered 1-8) were identified. These structurally distinct RNases, characterized by their various catalytic differences on different RNA substrates, constitute a gene family that appears to be the sole vertebrate-specific enzyme family. Apart from digestion of dietary RNA, a wide variety of biological actions, including neurotoxicity, angiogenesis, immunosuppressivity, and anti-pathogen activity, have been recently reported for almost all members of the family. Recent evolutionary studies suggest that RNases started off in vertebrates as host defence or angiogenic proteins.
Collapse
|
13
|
Mathew M, Verma RS. Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci 2009; 100:1359-65. [PMID: 19459847 PMCID: PMC11158948 DOI: 10.1111/j.1349-7006.2009.01192.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chemotherapy, radiation, and surgery are the conventional treatment modalities for cancer. The success achieved with these approaches has been limited due to several factors like chemoresistance to drugs, non-specificity leading to peripheral toxicity, and non-resectable tumors. To combat these problems, the concept of targeted therapy using immunotoxins was developed. Immunotoxins are chimeric proteins with a cell-selective ligand chemically linked or genetically fused to a toxin moiety and can target cancer cells overexpressing tumor-associated antigens, membrane receptors, or carbohydrate antigens. Ligands for these receptors or monoclonal antibodies or single chain variable fragments directed against these antigens are fused with bacterial or plant toxins and are made use of as immunotoxins. Pseudomonas exotoxin, anthrax toxin, and diphtheria toxin are the commonly used bacterial toxins. Ricin, saporin, gelonin, and poke weed antiviral protein are the plant toxins utilized in immunotoxin constructs. Several such fusion proteins are in clinical trials, and denileukin difitox is a FDA-approved fusion protein. In spite of the promise shown by bacterial- and plant toxin-based chimeric proteins, their clinical application is hampered by several factors like immunogenicity of the toxin moiety and non-specific toxicity leading to vascular leak syndrome. In order to overcome these problems, a novel generation of immunotoxins in which the cytotoxic moiety is an endogenous protein of human origin like proapoptotic protein or RNase has been developed. This review summarizes the advances in this new class of fusion protein and the future directions to be explored.
Collapse
Affiliation(s)
- Mrudula Mathew
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
14
|
Rodríguez M, Moussaoui M, Benito A, Cuchillo CM, Nogués MV, Vilanova M. Human pancreatic ribonuclease presents higher endonucleolytic activity than ribonuclease A. Arch Biochem Biophys 2008; 471:191-7. [PMID: 18191631 DOI: 10.1016/j.abb.2007.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/14/2007] [Accepted: 12/15/2007] [Indexed: 11/17/2022]
Abstract
Analyzing the pattern of oligonucleotide formation induced by HP-RNase cleavage shows that the enzyme does not act randomly and follows a more endonucleolytic pattern when compared to RNase A. The enzyme prefers the binding and cleavage of longer substrate molecules, especially when the phosphodiester bond that is broken is 8-11 nucleotides away from at least one of the ends of the substrate molecule. This more endonucleolytic pattern is more appropriate for an enzyme with a regulatory role. Deleting two positive charges on the N-terminus (Arg4 and Lys6) modifies this pattern of external/internal phosphodiester bond cleavage preference, and produces a more exonucleolytic enzyme. These residues may reinforce the strength of a non-catalytic secondary phosphate binding (p2) or, alternatively, constitute a new non-catalytic phosphate binding subsite (p3).
Collapse
Affiliation(s)
- M Rodríguez
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n, 17071 Girona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Benner SA, Sassi SO, Gaucher EA. Molecular paleoscience: systems biology from the past. ACTA ACUST UNITED AC 2007; 75:1-132, xi. [PMID: 17124866 DOI: 10.1002/9780471224464.ch1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Experimental paleomolecular biology, paleobiochemistry, and paleogenetics are closely related emerging fields that infer the sequences of ancient genes and proteins from now-extinct organisms, and then resurrect them for study in the laboratory. The goal of paleogenetics is to use information from natural history to solve the conundrum of modern genomics: How can we understand deeply the function of biomolecular structures uncovered and described by modern chemical biology? Reviewed here are the first 20 cases where biomolecular resurrections have been achieved. These show how paleogenetics can lead to an understanding of the function of biomolecules, analyze changing function, and put meaning to genomic sequences, all in ways that are not possible with traditional molecular biological studies.
Collapse
Affiliation(s)
- Steven A Benner
- Foundation for Applied Molecular Evolution, 1115 NW 4th Street, Gainesville, FL 32601, USA
| | | | | |
Collapse
|
16
|
Johnson RJ, McCoy JG, Bingman CA, Phillips GN, Raines RT. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 2007; 368:434-49. [PMID: 17350650 PMCID: PMC1993901 DOI: 10.1016/j.jmb.2007.02.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/27/2007] [Accepted: 02/02/2007] [Indexed: 11/26/2022]
Abstract
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.
Collapse
Affiliation(s)
- R Jeremy Johnson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | | | | | | | |
Collapse
|
17
|
Katekaew S, Torikata T, Araki T. The Complete Amino Acid Sequence of Green Turtle (Chelonia mydas) Egg White Ribonuclease. Protein J 2006; 25:316-27. [PMID: 16947078 DOI: 10.1007/s10930-006-9017-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Egg white ribonuclease was first found in green turtle eggs. This enzyme has been purified by CM-toyopearl cation exchange. Two isoforms (GTRNase-1 and GTRNase-2) were further separated by RP-HPLC, with the same M.W. (13 kDa) and activity. These isoforms carried one amino acid exchange of Ser and Leu at the position 37. The N-terminal sequence, ETRYEKF, was determined for the transblotted protein. Internal sequences were analyzed by protein sequencer and ESI-Q-TOF mass spectrometry for tryptic peptides (Ts). The overlapping sequences were obtained from chymotryptic peptides, CNBr fragments and ISD-MS/MS analysis. The C-terminal Ile was identified by CPase-Y. The established sequence composed of 119 residues with the molecular mass of 12,942.1 Da for GTRNase-1 and 12,967.8 Da for GTRNase-2. The comparison of sequence with known pancreatic RNases, 27 positions including catalytic residues at the position 11 and 114 were conserved. Also basic residues contributed to phosphate binding residues were conserved with the exception of Lys 66. One insertion at the position 14, and 3 deletions at the position-1, between position 64-65, and 110 and 111 were found. Two Cys residues at position 65 and 72 that form a disulfide bond in mammalian RNase were deleted and exchanged. All these difference in the sequence were similar to reptile pancreatic RNase.
Collapse
Affiliation(s)
- Somporn Katekaew
- Department of Bioscience, School of Agriculture, Kyushu Tokai University, Aso, Kumamoto 869-1404, Japan
| | | | | |
Collapse
|
18
|
Schienman JE, Holt RA, Auerbach MR, Stewart CB. Duplication and divergence of 2 distinct pancreatic ribonuclease genes in leaf-eating African and Asian colobine monkeys. Mol Biol Evol 2006; 23:1465-79. [PMID: 16751256 DOI: 10.1093/molbev/msl025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Unique among primates, the colobine monkeys have adapted to a predominantly leaf-eating diet by evolving a foregut that utilizes bacterial fermentation to breakdown and absorb nutrients from such a food source. It has been hypothesized that pancreatic ribonuclease (pRNase) has been recruited to perform a role as a digestive enzyme in foregut fermenters, such as artiodactyl ruminants and the colobines. We present molecular analyses of 23 pRNase gene sequences generated from 8 primate taxa, including 2 African and 2 Asian colobine species. The pRNase gene is single copy in all noncolobine primate species assayed but has duplicated more than once in both the African and Asian colobine monkeys. Phylogenetic reconstructions show that the pRNase-coding and noncoding regions are under different evolutionary constraints, with high levels of concerted evolution among gene duplicates occurring predominantly in the noncoding regions. Our data suggest that 2 functionally distinct pRNases have been selected for in the colobine monkeys, with one group adapting to the role of a digestive enzyme by evolving at an increased rate with loss of positive charge, namely arginine residues. Conclusions relating our data to general hypotheses of evolution following gene duplication are discussed.
Collapse
Affiliation(s)
- John E Schienman
- Department of Biological Sciences, University at Albany, State University of New York, USA.
| | | | | | | |
Collapse
|
19
|
Potenza N, Salvatore V, Migliozzi A, Martone V, Nobile V, Russo A. Hybridase activity of human ribonuclease-1 revealed by a real-time fluorometric assay. Nucleic Acids Res 2006; 34:2906-13. [PMID: 16738129 PMCID: PMC1474055 DOI: 10.1093/nar/gkl368] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human ribonuclease-1 (hRNase-1) is an extracellular enzyme found in exocrine pancreas, blood, milk, saliva, urine and seminal plasma, which has been implicated in digestion of dietary RNA and in antiviral host defense. The enzyme is characterized by a high catalytic activity toward both single-stranded and double-stranded RNA. In this study, we explored the possibility that hRNase-1 may also be provided with a ribonuclease H activity, i.e. be able to digest the RNA component of RNA:DNA hybrids. For this purpose, we developed an accurate and sensitive real-time RNase H assay based on a fluorogenic substrate made of a 12 nt 5′-fluorescein-labeled RNA hybridized to a complementary 3′-quencher-modified DNA. Under physiological-like conditions, hRNase-1 was found to cleave the RNA:DNA hybrid very efficiently, as expressed by a kcat/Km of 330 000 M−1 s−1, a value that is over 180-fold higher than that obtained with the homologous bovine RNase A and only 8-fold lower than that measured with Escherichia coli RNase H. The kinetic characterization of hRNase-1 showed that its hybridase activity is maximal at neutral pH, increases with lowering ionic strength and is fully inhibited by the cytosolic RNase inhibitor. Overall, the reported data widen our knowledge of the enzymatic properties of hRNase-1 and provide new elements for the comprehension of its biological function.
Collapse
Affiliation(s)
| | | | | | | | | | - Aniello Russo
- To whom correspondence should be addressed. Tel: +39 0823 274569; Fax: +39 0823 274571;
| |
Collapse
|
20
|
Abstract
Bovine pancreatic ribonuclease (RNase A) is one of the most well studied enzymes of the ribonuclease family, unlike its human counterpart, the human pancreatic ribonuclease (HPR), whose physiological role in the body is not clearly understood. Human pancreatic ribonuclease consists of 128 amino acids and the main residues located in the active site of RNase A are also conserved in HPR. In the current study, to investigate the role of Asp-121 in the catalytic activity of human pancreatic ribonuclease, several variants were generated in which Asp-121 was either mutated to an alanine or C-terminal residues beyond Asp-121, and Phe-120 were deleted. The HPR mutants were cloned, expressed in E. coli and purified to homogeneity, and functionally characterized. The mutation D121A in HPR significantly decreased the rate of the enzymatic reaction, however this decrease was not universally observed for all substrates studied. Removal of the seven C-terminal amino acid residues thereby exposing Asp-121 yielded an HPR mutant with enhanced activity, however a further deletion removing Asp-121 resulted in the complete inactivation of HPR. Our results indicate that Asp-121 is crucial for the catalytic activity of HPR and may be involved in the depolymerization activity of the enzyme.
Collapse
Affiliation(s)
- Deepak Gaur
- Immunochemistry Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
21
|
|
22
|
Sorrentino S, Naddeo M, Russo A, D'Alessio G. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues. Biochemistry 2003; 42:10182-90. [PMID: 12939146 DOI: 10.1021/bi030040q] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under physiological salt conditions double-stranded (ds) RNA is resistant to the action of most mammalian extracellular ribonucleases (RNases). However, some pancreatic-type RNases are able to degrade dsRNA under conditions in which the activity of bovine RNase A, the prototype of the RNase superfamily, is essentially undetectable. Human pancreatic ribonuclease (HP-RNase) is the most powerful enzyme to degrade dsRNA within the tetrapod RNase superfamily, being 500-fold more active than the orthologous bovine enzyme on this substrate. HP-RNase has basic amino acids at positions where RNase A shows instead neutral residues. We found by modeling that some of these basic charges are located on the periphery of the substrate binding site. To verify the role of these residues in the cleavage of dsRNA, we prepared four variants of HP-RNase: R4A, G38D, K102A, and the triple mutant R4A/G38D/K102A. The overall structure and active site conformation of the variants were not significantly affected by the amino acid substitutions, as deduced from CD spectra and activity on single-stranded RNA substrates. The kinetic parameters of the mutants with double-helical poly(A).poly(U) as a substrate were determined, as well as their helix-destabilizing action on a synthetic DNA substrate. The results obtained indicate that the potent activity of HP-RNase on dsRNA is related to the presence of noncatalytic basic residues which cooperatively contribute to the binding and destabilization of the double-helical RNA molecule. These data and the wide distribution of the enzyme in different organs and body fluids suggest that HP-RNase has evolved to perform both digestive and nondigestive physiological functions.
Collapse
MESH Headings
- Amino Acid Substitution
- Amino Acids, Basic/chemistry
- Amino Acids, Basic/genetics
- Amino Acids, Basic/metabolism
- Animals
- Circular Dichroism
- Hot Temperature
- Humans
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Poly dA-dT/chemistry
- Poly dA-dT/metabolism
- Polyribonucleotides/chemistry
- Polyribonucleotides/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/metabolism
- RNA, Fungal/metabolism
- RNA, Viral/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonuclease, Pancreatic/chemistry
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Ribonucleases/metabolism
- Static Electricity
- Statistics as Topic
- Substrate Specificity
Collapse
Affiliation(s)
- Salvatore Sorrentino
- Department of Biological Chemistry, University Federico II of Naples, Naples, Italy.
| | | | | | | |
Collapse
|
23
|
Leimoni ID, Sideris DC, Fragoulis EG. Purification from normal human plasma and biochemical characterization of a ribonuclease specific for poly(C) and poly(U). Arch Biochem Biophys 2003; 413:83-90. [PMID: 12706344 DOI: 10.1016/s0003-9861(03)00082-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new specific ribonuclease from normal human plasma has been purified to homogeneity, following a five-step purification protocol that included DEAE-Sepharose, CM-Sepharose, and Heparin-Sepharose chromatographies. The purified enzyme was found to be glycosylated and appeared as a single 25-kDa band on a SDS polyacrylamide gel. This RNase is poly(C) preferential, degrading poly(U) at a lower rate. Activity of this RNase toward cleavage of native substrates such as ribosomal RNA was also detected. The human plasma ribonuclease is a thermolabile molecule, exhibiting maximum activity at pH 6.5. Comparison between other known plasma RNases and the human plasma ribonuclease described here indicated a variety of differences in their biochemical and catalytic properties.
Collapse
Affiliation(s)
- Irini D Leimoni
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimioupolis, Greece
| | | | | |
Collapse
|
24
|
Landré JBP, Hewett PW, Olivot JM, Friedl P, Ko Y, Sachinidis A, Moenner M. Human endothelial cells selectively express large amounts of pancreatic-type ribonuclease (RNase 1). J Cell Biochem 2003; 86:540-52. [PMID: 12210760 DOI: 10.1002/jcb.10234] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pyrimidine-specific ribonucleases are a superfamily of structurally related enzymes with distinct catalytic and biological properties. We used a combination of enzymatic and non-enzymatic assays to investigate the release of such enzymes by isolated cells in serum-free and serum-containing media. We found that human endothelial cells typically expressed large amounts of a pancreatic-type RNase that is related to, if not identical to, human pancreatic RNase. This enzyme exhibits pyrimidine-specific catalytic activity, with a marked preference for poly(C) substrate over poly(U) substrate. It was potently inhibited by placental RNase inhibitor, the selective pancreatic-type RNase inhibitor Inhibit-Ace, and a polyclonal antibody against human pancreatic RNase. The enzyme isolated from medium conditioned by immortalized umbilical vein endothelial cells (EA.hy926) possesses an amino-terminal sequence identical to that of pancreatic RNase, and shows molecular heterogeneity (molecular weights 18,000-26,000) due to different degrees of N-glycosylation. Endothelial cells from arteries, veins, and capillaries secreted up to 100 ng of this RNase daily per million cells, whereas levels were low or undetectable in media conditioned by other cell types examined. The corresponding messenger RNA was detected by RT-PCR in most cell types tested so far, and level of its expression was in keeping with the amounts of protein. The selective strong release of pancreatic-type RNase by endothelial cells suggests that it is endowed with non-digestive functions and involved in vascular homeostasis.
Collapse
Affiliation(s)
- Julien B P Landré
- INSERM EPI-0113, Université Bordeaux-I, Avenue des Facultés, Talence, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Benito A, Bosch M, Torrent G, Ribó M, Vilanova M. Stabilization of human pancreatic ribonuclease through mutation at its N-terminal edge. Protein Eng Des Sel 2002; 15:887-93. [PMID: 12538908 DOI: 10.1093/protein/15.11.887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enzyme stability can be an important parameter in the design of recombinant toxins because unstable proteins are often degraded before they can reach their cellular target. There is great interest in the design of human pancreatic ribonuclease variants that could be cytotoxic against tumoral cells. To this end, some residues in the protein need to be substituted, but this may result in a loss of stability. Previous papers have reported the production of N- and C-terminal human pancreatic ribonuclease variants with increased thermal stability. Here, we investigated the contribution of the different amino acid changes at the N-terminus of the protein to its thermostability increase. We show that this increase correlates with the helical propensity of the first alpha-helix of the protein. On the other hand, deletion of the four last residues of the protein does not affect its thermal stability. These results set the basis for the design of a human pancreatic ribonuclease template on which amino acid substitutions can be made that could render the enzyme cytotoxic, without an important loss in its stability.
Collapse
Affiliation(s)
- A Benito
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain
| | | | | | | | | |
Collapse
|
26
|
Gaur D, Seth D, Batra JK. Glycine 38 is crucial for the ribonucleolytic activity of human pancreatic ribonuclease on double-stranded RNA. Biochem Biophys Res Commun 2002; 297:390-5. [PMID: 12237131 DOI: 10.1016/s0006-291x(02)02216-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human pancreatic ribonuclease (HPR) and bovine seminal ribonuclease (BS-RNase) exhibit significantly higher activity against double stranded RNA (dsRNA), compared to RNase A. The high dsRNA cleavage activity of BS-RNase, in part, has been attributed to glycine residues at positions 38 and 111. HPR possesses a glycine residue at position 38, whereas it has a glutamic acid at position 111. To understand the mechanism of dsRNA degradation by the single strand preferring HPR, we have generated HPR variants containing mutations at positions 38 and 111. Our study shows that Glycine 38 is crucial for the full catalytic activity of the human enzyme on duplex RNA as its substitution with aspartate or alanine results in a drastic reduction in the dsRNA cleavage activity of HPR. The substitution of Glutamate111 with glycine also resulted in the reduction of the dsRNA cleavage activity of HPR, indicating that a glycine residue at 111 is not a requirement for the ribonucleolytic activity on double stranded substrate.
Collapse
Affiliation(s)
- Deepak Gaur
- Immunochemistry Laboratory, National Institute of Immunology, New Delhi 110 067, India
| | | | | |
Collapse
|
27
|
Gho YS, Yoon WH, Chae CB. Antiplasmin activity of a peptide that binds to the receptor-binding site of angiogenin. J Biol Chem 2002; 277:9690-4. [PMID: 11782452 DOI: 10.1074/jbc.m105526200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been suggested that angiogenin binds to an actin-like molecule present on the surface of endothelial cells. Actin inhibits plasmin activity, but the angiogenin-actin complex is not active. In this report, we found that plasmin inhibits the interaction between angiogenin and actin suggesting a possibility that both angiogenin and plasmin may bind to a similar site on actin. Here we report that chANG, an antiangiogenin peptide that binds to the actin-binding site of angiogenin, inhibits the proteolytic activity of plasmin without any apparent effect on the activities of plasminogen activators and matrix metalloproteases. Its antiplasmin activity is comparable with that of actin. chANG inhibits plasmin activity via its binding to plasmin kringle domains while scrambled chANG does not bind to plasmin. chANG also inhibits the invasion of angiogenin-secreting human fibrosarcoma and colorectal carcinoma cells without effecting migration. Furthermore, chANG blocks angiogenesis induced by fibrosarcoma cells and metastasis of colorectal carcinoma cells to the liver. Therefore, the 11-amino acid peptide chANG has both antiangiogenin and antiplasmin activity, and could be useful in the development of anticancer agents.
Collapse
Affiliation(s)
- Yong Song Gho
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | |
Collapse
|
28
|
Canals A, Pous J, Guasch A, Benito A, Ribó M, Vilanova M, Coll M. The structure of an engineered domain-swapped ribonuclease dimer and its implications for the evolution of proteins toward oligomerization. Structure 2001; 9:967-76. [PMID: 11591351 DOI: 10.1016/s0969-2126(01)00659-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Domain swapping has been proposed as a mechanism that explains the evolution from monomeric to oligomeric proteins. Bovine and human pancreatic ribonucleases are monomers with no biological properties other than their RNA cleavage ability. In contrast, the closely related bovine seminal ribonuclease is a natural domain-swapped dimer that has special biological properties, such as cytotoxicity to tumour cells. Several recombinant ribonuclease variants are domain-swapped dimers, but a structure of this kind has not yet been reported for the human enzyme. RESULTS The crystal structure at 2 A resolution of an engineered ribonuclease variant called PM8 reveals a new kind of domain-swapped dimer, based on the change of N-terminal domains between the two subunits. The swapping is fastened at both hinge peptides by the newly introduced Gln101, involved in two intermolecular hydrogen bonds and in a stacking interaction between residues of different chains. Two antiparallel salt bridges and water-mediated hydrogen bonds complete a new interface between subunits, while the hinge loop becomes organized in a 3(10) helix structure. CONCLUSIONS Proteins capable of domain swapping may quickly evolve toward an oligomeric form. As shown in the present structure, a single residue substitution reinforces the quaternary structure by forming an open interface. An evolutionary advantage derived from the new oligomeric state will fix the mutation and favour others, leading to a more extended complementary dimerization surface, until domain swapping is no longer necessary for dimer formation. The newly engineered swapped dimer reported here follows this hypothetical pathway for the rapid evolution of proteins.
Collapse
Affiliation(s)
- A Canals
- Laboratori d'Enginyeria de Proteïnes, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Girona E-17071, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Gaur D, Swaminathan S, Batra JK. Interaction of human pancreatic ribonuclease with human ribonuclease inhibitor. Generation of inhibitor-resistant cytotoxic variants. J Biol Chem 2001; 276:24978-84. [PMID: 11342552 DOI: 10.1074/jbc.m102440200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian ribonucleases interact very strongly with the intracellular ribonuclease inhibitor (RI). Eukaryotic cells exposed to mammalian ribonucleases are protected from their cytotoxic action by the intracellular inhibition of ribonucleases by RI. Human pancreatic ribonuclease (HPR) is structurally and functionally very similar to bovine RNase A and interacts with human RI with a high affinity. In the current study, we have investigated the involvement of Lys-7, Gln-11, Asn-71, Asn-88, Gly-89, Ser-90, and Glu-111 in HPR in its interaction with human ribonuclease inhibitor. These contact residues were mutated either individually or in combination to generate mutants K7A, Q11A, N71A, E111A, N88R, G89R, S90R, K7A/E111A, Q11A/E111A, N71A/E111A, K7A/N71A/E111A, Q11A/N71A/E111A, and K7A/Q11A/N71A/E111A. Out of these, eight mutants, K7A, Q11A, N71A, S90R, E111A, Q11A/E111A, N71A/E111A, and K7A/N71A/E111A, showed an ability to evade RI more than the wild type HPR, with the triple mutant K7A/N71A/E111A having the maximum RI resistance. As a result, these variants exhibited higher cytotoxic activity than wild type HPR. The mutation of Gly-89 in HPR produced no change in the sensitivity of HPR for RI, whereas it has been reported that mutating the equivalent residue Gly-88 in RNase A yielded a variant with increased RI resistance and cytotoxicity. Hence, despite its considerable homology with RNase A, HPR shows differences in its interaction with RI. We demonstrate that interaction between human pancreatic ribonuclease and RI can be disrupted by mutating residues that are involved in HPR-RI binding. The inhibitor-resistant cytotoxic HPR mutants should be useful in developing therapeutic molecules.
Collapse
Affiliation(s)
- D Gaur
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067, India
| | | | | |
Collapse
|
30
|
Hu CC, Lee YH, Tang CH, Cheng JT, Wang JJ. Synergistic cytotoxicity of Rana catesbeiana ribonuclease and IFN-gamma on hepatoma cells. Biochem Biophys Res Commun 2001; 280:1229-36. [PMID: 11162659 DOI: 10.1006/bbrc.2001.4272] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RC-RNase purified from Rana catesbeiana (bullfrog) oocytes is a pyrimidine-guanine sequence-specific ribonuclease. RC-RNase is derived from the RNase superfamily genes exerting distinct ribonucleolytic activity and possesses cytotoxicity to tumor cells, but rarely to primary cells. In this study, we utilized RC-RNase to function with antiproliferative cytokines. The combination with TNF-alpha or TNF-beta would not aggravate cell death. However, the combination with IFN-gamma could induce synergistic cytotoxicity verified by XTT assays toward three hepatoma cell lines bearing different differentiation stages. The distinct cytotoxicity from RC-RNase or RC-RNase/IFN-gamma on different hepatoma cells was correlated with the differentiation extent but not the proliferation rate of the cells. Despite the synergistic cytotoxicity and severe mitochondrial disruptions in the RC-RNase/IFN-gamma-treated cells, we scarcely detected any significant feature of apoptosis or necrosis by FACS analysis on annexin-V/propidium iodide staining. The mechanisms of cell death triggered by RC-RNase or RC-RNase/IFN-gamma require further investigation.
Collapse
Affiliation(s)
- C C Hu
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
31
|
Pous J, Canals A, Terzyan SS, Guasch A, Benito A, Ribó M, Vilanova M, Coll M. Three-dimensional structure of a human pancreatic ribonuclease variant, a step forward in the design of cytotoxic ribonucleases. J Mol Biol 2000; 303:49-60. [PMID: 11021969 DOI: 10.1006/jmbi.2000.4506] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have determined the crystal structure of a human pancreatic ribonuclease or RNase 1 variant at 1.65 A resolution. Five residues in the N-terminal region were substituted by the corresponding amino acids of the bovine seminal RNase. In addition, a Pro to Ser mutation was present at position 50. The substitution of part of the N terminus has been critical both in improving the expression of this enzyme as a recombinant protein and in achieving its crystallisation. The determination of the crystal structure revealed the characteristic RNase fold including a V-shaped beta-sheet and three alpha-helices. It differs from its bovine RNase orthologue mainly in the loop regions. The active-site cleft shows a similar architecture to that of its bovine counterpart, with the essential residues occupying equivalent positions. In the present structure, however, His119 is displaced as it is in the structure of RNase A at high pH. An interaction model of human ribonuclease with the ribonuclease inhibitor, together with inhibition assays, indicate that, in contrast to RNase A, the modification of the loop beta4beta5 is not enough to avoid inhibition. This study represents the first crystallographic approach to the human enzyme, and should constitute an invaluable tool for the design of ribonuclease variants with acquired cytotoxic properties.
Collapse
Affiliation(s)
- J Pous
- Institut de Biologia Molecular de Barcelona, CID-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Russo N, Antignani A, D'Alessio G. In vitro evolution of a dimeric variant of human pancreatic ribonuclease. Biochemistry 2000; 39:3585-91. [PMID: 10736157 DOI: 10.1021/bi992367q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-directed mutagenesis of human pancreatic RNase (HP-RNase) was used as a model system for investigating the genetic events underlying the evolutionary origins of protein oligomers. HP-RNase is a monomeric enzyme with no natural tendency to oligomerize (K(d) for any dimers in solution of >280 mM). Nevertheless, deletion of five amino acid residues in the loop linking the N-terminal helix of HP-RNase to the rest of the protein was found to drive polypeptide chains to fold into dimers. These dimers could not be dissociated by heating at 70 degrees C, and small amounts of monomer were detected only in highly diluted samples. Measurement of dimer and monomer concentrations under equilibrium conditions yielded a K(d) of 1.5 microM. This implies that the deletion increases the protein propensity to dimerize at least 5.2 orders of magnitude. Moreover, the HP-RNase dimers were found to be over 4.6 orders of magnitude more stable than the dimers of bovine pancreatic RNase A obtained by lyophilization from acetic acid (K(d) > 73 mM). Cross-linking experiments with divinyl sulfone indicated that the HP-RNase dimers are stabilized by the exchange between subunits of their N-terminal helices. This generates composite active sites, i.e., each contributed by two subunit chains, that retain full enzymatic activity. Overall, these results show that a deletion of few residues in a key region of a monomeric protein can be the primary event irreversibly leading to oligomerization of the protein through the swap of a secondary structure element between protomers.
Collapse
Affiliation(s)
- N Russo
- Department of Life Sciences, Second University of Naples, Caserta, Italy
| | | | | |
Collapse
|
33
|
Fernández-Salas E, Peracaula R, Frazier ML, de Llorens R. Ribonucleases expressed by human pancreatic adenocarcinoma cell lines. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1484-94. [PMID: 10691987 DOI: 10.1046/j.1432-1327.2000.01148.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human ribonucleases have been considered as a possible tumor marker for pancreatic cancer, and elevated serum levels of ribonuclease activity in patients with pancreatic cancer have been reported by many authors. The reason for this elevation is unknown. In this study, we demonstrate that human pancreatic adenocarcinoma cell lines synthesize and secrete different ribonucleases. We isolated and characterized human pancreatic, or secretory, ribonuclease (RNase 1) from the conditioned media of the human pancreatic adenocarcinoma cell lines Capan-1, MDAPanc-3, IBF-CP3 and Panc-1, and the ampullary adenocarcinoma cell line MDAAmp-7, which represent a wide range of differentiation stages. Only one of these cell lines, Panc-1, produces significant amounts of nonsecretory ribonuclease. We then established a purification procedure for both secretory and nonsecretory ribonucleases, consisting of concentration of the supernatant by tangential filtration, anion-exchange and cation-exchange liquid chromatography and C4 RP-HPLC. Ribonuclease activity fractions were monitored using both the spectrophotometric and negative-staining zymogram techniques. The results of N-terminal sequence analysis, kinetic analysis and endoglycosidase digestion studies indicate that the main ribonuclease secreted by all the cell lines is the secretory-type ribonuclease and that it is composed of several differently N-glycosylated forms. Northern blot analyses confirm that some of the cell lines express secretory ribonuclease mRNA. The mRNA levels produced by Panc-1 and MDAPanc-28 are too low to be detected. Similar levels of expression of nonsecretory ribonuclease are found by Northern blot analysis in all the cell lines except Panc-1, which expresses higher levels. Here, we describe, for the first time, that several human pancreatic cancer cell lines with different degrees of differentiation express and secrete ribonucleases. This fact indicates that one origin of the elevated serum RNase levels in patients with pancreatic cancer are tumor cells. Analysis of the oligosaccharide moiety of the RNase 1 secreted by Capan-1 shows that it is highly glycosylated and its N-glycan chains are significantly different from that of the RNase 1 produced by normal pancreas. These results renew the possibility of using human serum RNase 1 determination as a tumor marker.
Collapse
Affiliation(s)
- E Fernández-Salas
- Unitat de Bioquímica, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Spain
| | | | | | | |
Collapse
|
34
|
Canals A, Ribó M, Benito A, Bosch M, Mombelli E, Vilanova M. Production of engineered human pancreatic ribonucleases, solving expression and purification problems, and enhancing thermostability. Protein Expr Purif 1999; 17:169-81. [PMID: 10497083 DOI: 10.1006/prep.1999.1112] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human pancreatic ribonuclease, the homolog of bovine pancreatic ribonuclease, has a significant therapeutic potential. Its study has been hindered by the difficulty of obtaining the enzyme in a pure and homogeneous form, either from human source or using heterologous expression. Engineering of different variants of human pancreatic ribonuclease has allowed us to study and overcome some problems encountered during its heterologous production in an Escherichia coli system and its purification from inclusion bodies. The 5'-end region of the mRNA that encodes the enzyme is critical for obtaining high expression levels. The results also suggest the importance of the proline 50 residue in the recovery yields of human pancreatic ribonuclease. All the variants produced are pure and homogeneous. Their homogeneity has been demonstrated by cation-exchange and reversed-phase chromatography and by mass spectrometry analysis. Moreover, enhancement of human pancreatic ribonuclease thermal stability is observed when residues R4, K6, Q9, D16, and S17 are changed to the corresponding residues of bovine seminal ribonuclease.
Collapse
Affiliation(s)
- A Canals
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Girona, 17071, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Gotte G, Bertoldi M, Libonati M. Structural versatility of bovine ribonuclease A. Distinct conformers of trimeric and tetrameric aggregates of the enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:680-7. [PMID: 10504400 DOI: 10.1046/j.1432-1327.1999.00761.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lyophilization of bovine ribonuclease A (RNase A; Sigma, type XII-A) from 40% acetic acid solutions leads to the formation of approximately 14 aggregated species that can be separated by ion-exchange chromatography. Several aggregates were identified, including two variously deamidated dimeric subspecies, two distinct trimeric and two distinct tetrameric RNase A conformers, besides the two forms of dimer characterized previously [Gotte, G. & Libonati, M. (1998) Two different forms of aggregated dimers of ribonuclease A. Biochim. Biophys. Acta 1386, 106-112]. We also have possible evidence for the existence of two forms of pentameric RNase A. The two forms of trimers and tetramers are characterized by: (a) slightly different gel filtration patterns; (b) different retention times in ion-exchange chromatography; and (c) different mobilities in cathodic gel electrophoresis under nondenaturing conditions. Therefore, they appear to have distinct structural organizations responsible for a different availability of their positively charged amino acid residues. All RNase A oligomers, in particular the two distinct trimeric and tetrameric conformers, degrade poly(A).poly(U), viral double-stranded RNA and polyadenylate with a catalytic efficiency that is in general higher for the more basic species. On the contrary, the activity of the RNase A oligomers, from dimer to pentamer, on yeast RNA and poly(C) (Kunitz assay) is lower than that of monomeric RNase A.
Collapse
Affiliation(s)
- G Gotte
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Italy
| | | | | |
Collapse
|
36
|
Piccoli R, Di Gaetano S, De Lorenzo C, Grauso M, Monaco C, Spalletti-Cernia D, Laccetti P, Cinátl J, Matousek J, D'Alessio G. A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc Natl Acad Sci U S A 1999; 96:7768-73. [PMID: 10393896 PMCID: PMC22136 DOI: 10.1073/pnas.96.14.7768] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monomeric human pancreatic RNase, devoid of any biological activity other than its RNA degrading ability, was engineered into a dimeric protein with a cytotoxic action on mouse and human tumor cells, but lacking any appreciable toxicity on mouse and human normal cells. This dimeric variant of human pancreas RNase selectively sensitizes to apoptotic death cells derived from a human thyroid tumor. Because of its selectivity for tumor cells, and because of its human origin, this protein represents a potentially very attractive, novel tool for anticancer therapy.
Collapse
Affiliation(s)
- R Piccoli
- Department of Organic and Biological Chemistry, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chang CF, Chen C, Chen YC, Hom K, Huang RF, Huang TH. The solution structure of a cytotoxic ribonuclease from the oocytes of Rana catesbeiana (bullfrog). J Mol Biol 1998; 283:231-44. [PMID: 9761686 DOI: 10.1006/jmbi.1998.2082] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RC-RNase is a pyrimidine-guanine sequence-specific ribonuclease and a lectin possessing potent cell cytotoxicity. It was isolated from the oocytes of Rana catesbeiana (bull frog). From analysis of an extensive set of 1H homonuclear 2D NMR spectra we have completed the resonance assignments. Determination of the three-dimensional structure was carried out with the program X-PLOR using a total of 951 restraints including 814 NMR-derived distances, 61 torsion angles, and 76 hydrogen bond restraints. In the resultant family of 15 best structures, selected from a total of 150 calculated structures, the root-mean-square deviation from the average structure for the backbone heavy-atoms involved in well-defined secondary structure is 0.48 A, while that for all backbone heavy-atoms is 0.91 A. The structure of RC-RNase consists of three alpha-helices and two triple-stranded anti-parallel beta-sheets and folds in a kidney-shape, very similar to the X-ray crystal structure of a homolo gous protein, onconase isolated from Rana pipiens. We have also investigated the interaction between RC-RNase and two inhibitors, cytidylyl(2'-->5')guanosine (2',5'-CpG) and 2'-deoxycytidylyl(3'-->5')-2'-deoxyguanosine (3',5'-dCpdG). Based on the ligand-induced chemical shift changes in RC-RNase and the NOE cross-peaks between RC-RNase and the inhibitors, the key residues involved in protein-inhibitor interaction have been identified. The inhibitors were found to bind in a "retro-binding" mode, with the guanine base bonded to the B1 subsite. The His103 residue was found to occupy the B state with the imidazole ring pointing away from the active site. The structure coordinates and the NMR restraints have been deposited in the Brookhaven Protein Data Bank (1bc4 and 1bc4mr, respectively).
Collapse
Affiliation(s)
- C F Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, 11529, The Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Ronald T. Raines
- Departments of Biochemistry and Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
39
|
Gho YS, Chae CB. Anti-angiogenin activity of the peptides complementary to the receptor-binding site of angiogenin. J Biol Chem 1997; 272:24294-9. [PMID: 9305884 DOI: 10.1074/jbc.272.39.24294] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis promotes growth and metastasis of tumor cells. In this study, we have developed two peptide antagonists of human angiogenin by deducing the codes from the antisense RNA sequence corresponding to the receptor-binding site of angiogenin in either 5' --> 3' (chANG) or 3' --> 5' (chGNA) direction. chANG and chGNA peptides bind to angiogenin with specificity and high affinity (Kd approximately 44 nM) and inhibit the interaction of angiogenin with actin, which is regarded as the angiogenin-binding protein on the surface of endothelial cells. The peptides inhibit the neovascularization induced by angiogenin in the chick chorioallantoic membrane assay. The anti-angiogenic activity of the peptides is specific for angiogenin, and the peptides do not have any apparent effect on embryonic angiogenesis or the preexisting blood vessels. chANG and chGNA also inhibit the angiogenesis induced by the angiogenin-secreting PC 3 human prostate adenocarcinoma cells and have no direct effect on the proliferation as well as the adhesion of PC 3 cells to angiogenin. Therefore, the inhibition of the tumor-induced angiogenesis by the peptides is most likely caused by neutralization of the extracellular angiogenin secreted by PC 3 cells. Based on our results, chANG and chGNA peptides may be effective for treatment of various human tumors which secrete angiogenin.
Collapse
Affiliation(s)
- Y S Gho
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | |
Collapse
|
40
|
Strydom DJ, Bond MD, Vallee BL. An angiogenic protein from bovine serum and milk--purification and primary structure of angiogenin-2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:535-44. [PMID: 9266695 DOI: 10.1111/j.1432-1033.1997.00535.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bovine serum and milk contain a basic angiogenic protein that binds tightly to placental ribonuclease inhibitor. It was purified from both sources by ion-exchange and reversed-phase chromatographies. Its amino acid sequence revealed that it is a member of the ribonuclease superfamily. It contains 123 amino acids in a single polypeptide chain, is cross-linked by three disulfide bonds, is glycosylated at Asn33, and is 57% identical to bovine angiogenin. The amino-terminal and carboxyl-terminal residues are pyroglutamic acid and proline, respectively. The protein has ribonucleolytic activity that is similar to, but somewhat lower than, that of bovine angiogenin, i.e. very low relative to RNase. It is angiogenically potent on chicken chorioallantoic membrane, but less so than angiogenin. The sequence and activities demonstrate that this protein is a second, distinct, member of the angiogenin sub-family of pancreatic ribonucleases, and is referred to as angiogenin-2.
Collapse
Affiliation(s)
- D J Strydom
- Center for Biochemical and Biophysical Sciences and Medicine, and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Futami J, Tsushima Y, Murato Y, Tada H, Sasaki J, Seno M, Yamada H. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol 1997; 16:413-9. [PMID: 9150428 DOI: 10.1089/dna.1997.16.413] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The tissue-specific expression of five human pancreatic-type RNases and RNase inhibitor was analyzed by Northern hybridization against poly(A)+ RNA prepared from 16 normal tissues. The widespread expression of RNase 1 was observed in almost all of the tissues. RNase 4 and angiogenin showed a similar distribution of expression abundantly present in the liver. This suggested the identity of the cell types producing these two molecules. However, no relativity appeared to be present between the vascularization of the tissues and the angiogenin expression. A narrow range of expression of the eosinophil-derived neurotoxin gene was observed. This localization seems related to the phagocytic cells in the tissues. The undetectable level of the eosinophil cationic protein mRNA in normal tissues suggests that the differentiation of eosinophils, triggered by inflammation and/or atopy, is required. The expression of RNase inhibitor was found to be ubiquitous. The regulatory function of inhibitor against RNases in the cell should be considered in studying the physiological significance of the pancreatic-type RNase family.
Collapse
Affiliation(s)
- J Futami
- Department of Bioengineering Science, Faculty of Engineering, Okayama University, Tsushima-Naka, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Rosenberg HF, Dyer KD. Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res 1996; 24:3507-13. [PMID: 8836175 PMCID: PMC146131 DOI: 10.1093/nar/24.18.3507] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The discovery of Ribonuclease k6 (RNase k6) was an unexpected result of our ongoing efforts to trace the evolutionary history of the ribonuclease gene family. The open reading frame of RNase k6, amplified from human genomic DNA, encodes a 150 amino acid polypeptide with eight cysteines and histidine and lysine residues corresponding to those found in the active site of the prototype, ribonuclease A. The single-copy gene encoding RNase k6 maps to human chromosome 14 and orthologous sequences were detected in both primate and non-primate mammalian species. A single mRNA transcript (1.5 kb) was detected in all human tissues tested, with lung representing the most abundant source. At the cellular level, transcripts encoding RNase k6 were detected in normal human monocytes and neutrophils (but not in eosinophils) suggesting a role for this ribonuclease in host defense. Of the five previously identified human ribonucleases of this group, RNase k6 is most closely related to eosinophil-derived neurotoxin (EDN), with 47% amino acid sequence identity; slight cross-reactivity between RNase k6 and EDN was observed on Western blots probed with polyclonal anti-EDN antiserum. The catalytic constants determined, Km = 5.0 microM and Kcat = 0.13 s-1, indicate that recombinant RNase k6 has approximately 40-fold less ribonuclease activity than recombinant EDN. The identification and characterization of RNase k6 has extended the ribonuclease gene family and suggests the possibility that there are others awaiting discovery.
Collapse
Affiliation(s)
- H F Rosenberg
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
43
|
Libonati M, Bertoldi M, Sorrentino S. The activity on double-stranded RNA of aggregates of ribonuclease A higher than dimers increases as a function of the size of the aggregates. Biochem J 1996; 318 ( Pt 1):287-90. [PMID: 8761484 PMCID: PMC1217620 DOI: 10.1042/bj3180287] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stable bovine RNase A aggregates larger than dimers (identified as trimers, tetramers, pentamers and hexamers) were obtained by lyophilization of RNase A from 40-50% acetic acid solutions. The RNase activity of these aggregates was compared with that of monomeric RNase A on single- and double-stranded polyribonucleotides. Their activity toward poly(U) and yeast RNA slightly decreases as a function of the size of the aggregates. In contrast, their action on poly(A).poly(U) as substrate progressively increases from a relative activity of 1 for the RNase monomer to 10 for the hexamer. These results are discussed in the light of an already advanced hypothesis about a possible mechanism of RNase attack on double-stranded RNA.
Collapse
Affiliation(s)
- M Libonati
- Istituto di Chimica Biologica, Facoltà di Medicine e Chirurgla, Università di Verona, Italy
| | | | | |
Collapse
|
44
|
Seno M, Futami J, Kosaka M, Seno S, Yamada H. Nucleotide sequence encoding human pancreatic ribonuclease. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1218:466-8. [PMID: 8049276 DOI: 10.1016/0167-4781(94)90208-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A cDNA coding for human pancreatic ribonuclease was isolated from a pancreas cDNA library and sequenced. This cDNA (1620 bp) includes an entire open reading frame encoding mature protein (128 aa) following a signal peptide (28 aa) as well as 5'- and 3'-untranslated regions.
Collapse
Affiliation(s)
- M Seno
- Department of Bioengineering Science, Faculty of Engineering, Okayama University, Japan
| | | | | | | | | |
Collapse
|
45
|
Zhao W, Beintema JJ, Hofsteenge J. The amino acid sequence of iguana (Iguana iguana) pancreatic ribonuclease. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:641-6. [PMID: 8307028 DOI: 10.1111/j.1432-1033.1994.tb19979.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The pyrimidine-specific ribonuclease superfamily constitutes a group of homologous proteins so far found only in higher vertebrates. Four separate families are found in mammals, which have resulted from gene duplications in mammalian ancestors. To learn more about the evolutionary history of this superfamily, the primary structure and other characteristics of the pancreatic enzyme from iguana (Iguana iguana), a herbivorous lizard species belonging to the reptiles, have been determined. The polypeptide chain consists of 119 amino acid residues. The positions of insertions and deletions in the sequence are identical to those in the enzyme from snapping turtle. However, the two enzymes differ at 54% of the amino acid positions. Iguana ribonuclease contains no carbohydrate, although the enzyme possesses three recognition sites for carbohydrate attachment, and has a high number of acidic residues in a localized part of the sequence.
Collapse
Affiliation(s)
- W Zhao
- Biochemisch Laboratorium, Rijksuniversiteit, Groningen
| | | | | |
Collapse
|
46
|
Yasuda T, Nadano D, Takeshita H, Kishi K. Two distinct secretory ribonucleases from human cerebrum: purification, characterization and relationships to other ribonucleases. Biochem J 1993; 296 ( Pt 3):617-25. [PMID: 8280059 PMCID: PMC1137742 DOI: 10.1042/bj2960617] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two RNAases from human cerebrum were purified to an electrophoretically homogeneous state and their molecular masses were 22.0 kDa (tentatively called RNAase HB-1) and 19.0 kDa (RNAase HB-2). Analyses of the amino acid compositions, N-terminal amino acid sequences and catalytic properties of these enzymes provided strong evidence that they were strictly related to the secretory (sec) RNAases, such as the pancreatic enzyme, very similar immunologically to urinary sec RNAase, but clearly distinguishable from urinary non-secretory (nonsec) RNAase. There were several differences between HB-1 and HB-2, namely their immunological reactivities with specific antibodies, heat-stabilities, attached carbohydrate moieties and molecular masses. In particular, HB-2 appeared to be nonglycosylated, in view of its lack of affinity for several conjugated lectins, the absence of hexosamine and no change in electrophoretic mobility before and after peptide:N-glycosidase F digestion, whereas HB-1 and human sec RNAases purified from kidney, pancreas and urine all appeared to be glycosylated, as they moved to the same position as HB-2 when electrophoresed after glycosidase digestion. An antibody against urinary sec RNAase inhibited 75% and 20% of the total activity of the crude cerebral extract against RNA at pH 8.0 and 6.0 respectively, whereas an antibody against urinary nonsec RNAase had no such inhibitory effect. These findings suggest that yet another type(s) of cerebral RNAase, which is unable to cross-react immunologically with sec and nonsec RNAases, may exist. Two RNAases corresponding to HB-1 and HB-2 were identified in fresh cerebrospinal fluid.
Collapse
Affiliation(s)
- T Yasuda
- Department of Legal Medicine, Fukui Medical School, Japan
| | | | | | | |
Collapse
|
47
|
Russo N, de Nigris M, Ciardiello A, Di Donato A, D'Alessio G. Expression in mammalian cells, purification and characterization of recombinant human pancreatic ribonuclease. FEBS Lett 1993; 333:233-7. [PMID: 7654266 DOI: 10.1016/0014-5793(93)80660-m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A synthetic cDNA coding for human pancreatic RNase, equipped with a secretion signal sequence, was cloned and stably expressed in Chinese hamster ovary cells. The recombinant RNase, secreted into the culture medium, was purified and characterized. It was found to be indistinguishable, by structural and catalytic parameters, from the enzyme isolated from human pancreas. Furthermore, the glycosylated forms were separated from the non-glycosylated form. Up until now, human RNases have been isolated only in small amounts from autopic specimens. This has hindered the exploitation of a human RNase for the construction of immunotolerated immunotoxins. On the other hand, the availability of an effective system for the expression of a human RNase may render feasible the transfer, by protein engineering, of the interesting pharmacological actions of non-human RNase [1993 Trends Cell Biol. 3, 106-109] to an immunotolerated, human RNase.
Collapse
Affiliation(s)
- N Russo
- Dipartimento di Chimica Organica e Biologica, Università di Napoli Federico II, Italy
| | | | | | | | | |
Collapse
|
48
|
Zhou HM, Strydom DJ. The amino acid sequence of human ribonuclease 4, a highly conserved ribonuclease that cleaves specifically on the 3' side of uridine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:401-10. [PMID: 8223579 DOI: 10.1111/j.1432-1033.1993.tb18259.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A ribonuclease (RNase) that cleaves specifically on the 3' side of uridine [Shapiro, R., Fett, J. W., Strydom, D. J. & Vallee, B. L. (1986a) Biochemistry 25, 7255-7264] was purified from human plasma and its amino acid sequence was determined. This protein is a 119-residue single-chain polypeptide cross-linked by four disulfide bonds and has an amino-terminal pyroglutaminyl residue. No post-translational modifications were observed during extensive sequence studies on peptide fragments, except for the amino-terminal pyroglutamic acid and a possible deamidation of Asn66. The protein is homologous to the pancreatic ribonucleases and angiogenin, but differs substantially from both of these proteins; the protein sequence has 43% identity with human pancreatic ribonuclease and 39% identity with human angiogenin, as compared to 35% identity between human angiogenin and pancreatic ribonuclease. It is referred to as RNase 4, based on the nomenclature currently used for the genes of pancreatic RNase (RNase 1) and the eosinophil-derived RNases (RNase 2 and RNase 3). Virtually all of the RNase active-site components, including the catalytic residues His12, His119 and Lys41, are preserved. However, some invariant residues of RNase 1 are replaced, e.g. Lys7 by arginine, Asp14 by histidine, and Pro42 by arginine. RNase 4 contains a unique two-residue deletion at the position corresponding to amino acids 77 and 78 of pancreatic RNase, and its carboxyterminal sequence is truncated at position 122. The deletion in angiogenin at position 21 is also found in RNase 4. RNase 4 is very similar to two RNases isolated from bovine and porcine liver, and together they form a new family in the RNase superfamily. The degree of inter-species similarity (90%) is much greater than within the pancreatic RNase and angiogenin families, which suggests that this ribonuclease could possess a physiologically important function other than general RNA catabolism.
Collapse
Affiliation(s)
- H M Zhou
- Center for Biochemical and Biophysical Sciences and Medicine, Boston, MA 02115
| | | |
Collapse
|
49
|
Ramaswamy H, Swamy C, Das M. Purification and characterization of a high molecular weight ribonuclease from human milk. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53595-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Libonati M, Sorrentino S. Revisiting the action of bovine ribonuclease A and pancreatic-type ribonucleases on double-stranded RNA. Mol Cell Biochem 1992; 117:139-51. [PMID: 1488047 DOI: 10.1007/bf00230753] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-strand-preferring ribonucleases of the pancreatic type, structurally and/or catalytically similar to bovine RNase A but endowed with a higher protein basicity, are able to degrade double-stranded RNA (dsRNA) or DNA:RNA hybrids under standard assay conditions (0.15 M NaCl, 0.015 M sodium citrate, pH 7), where RNase A is inactive. This enzyme too, however, becomes quite active if assay conditions are slightly modified or its basicity is increased (polyspermine-RNase). In the attempt to review these facts, we have analyzed and discussed the role that in the process have the secondary structure of dsRNA as well as other variables whose influence has come to light in addition to that of the basicity of the enzyme protein, i.e., the ionic strength, the presence of carbohydrates on the RNase molecule, and the structure (monomeric or dimeric) of the enzyme. A possible mechanism by which dsRNAs are attacked by pancreatic-type RNases has been proposed.
Collapse
Affiliation(s)
- M Libonati
- Istituto di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università di Verona, Italy
| | | |
Collapse
|